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The brain is one of the most complex organs, and tools are lacking
to assess its cellular morphology in vivo. Here we combine original
diffusion-weightedmagnetic resonance (MR) spectroscopy acquisition
and novel modeling strategies to explore the possibility of quantify-
ing brain cell morphology noninvasively. First, the diffusion of cell-
specific metabolites is measured at ultra-long diffusion times in the
rodent and primate brain in vivo to observe how cell long-range
morphology constrains metabolite diffusion. Massive simulations of
particles diffusing in synthetic cells parameterized by morphometric
statistics are then iterated to fit experimental data. This method
yields synthetic cells (tentatively neurons and astrocytes) that ex-
hibit striking qualitative and quantitative similarities with histol-
ogy (e.g., using Sholl analysis). With our approach, we measure
major interspecies difference regarding astrocytes, whereas den-
dritic organization appears better conserved throughout species.
This work suggests that the time dependence of metabolite diffu-
sion coefficient allows distinguishing and quantitatively character-
izing brain cell morphologies noninvasively.

cell morphology | noninvasive histology | diffusion-weighted NMR
spectroscopy | numerical simulations | metabolites

The brain is one of the most complex organs, and it has defined
an inexhaustible field of research over the last centuries. Un-

fortunately, brain’s complexity is paralleled by the difficulty in ex-
amining it noninvasively. Some fundamental questions regarding
morphological modifications of neurons and astrocytes along
brain development, aging, or disease, as well as interspecies
differences, can only be investigated postmortem using histology,
the current gold standard to study cellular morphology. The de-
velopment of a noninvasive neuroimaging tool to evaluate and
monitor brain cell morphology under normal and pathological
conditions in vivo would thus represent a major breakthrough.
MRI and magnetic resonance spectroscopy (MRS) techniques

have opened new doors for examining brain tissues in vivo at both
meso- and macroscales. Diffusion-weighted (DW)-MRI and -MRS,
which allow the investigation of the diffusion process of endogenous
molecules in biological tissues at these scales (1), have made it clear
that cell architecture has a critical influence on molecular displace-
ment (2–5). To quantitatively evaluate the impact of cell structure on
measured molecular diffusion, mainly two modeling strategies have
been developed. The first approach consists in performing numerical
simulations of many particles diffusing in arbitrary geometries (e.g.,
defined by 3D meshes) mimicking “realistic” cell architectures (6–9).
Because these realistic geometries are generally built directly from
microscopy data rather than being described and generated by a
(small) set of parameters, and because simulations are extremely
computationally demanding, this approach does not seem adapted
to fit experimental data. The second approach consists in simplifying
cell architectures to basic geometries (such as spheres, cylinders, or
pores) for which analytical solutions describing diffusion generally
exist (10). The main advantages of this simplification are the
computing speed associated with analytical expressions and the

fact that the geometry can be described by a small number of
parameters. This strategy is the basis for recent quantitative DW-
MRI strategies (AxCaliber, ActivAx, NODDI, etc.) (11–13) to
estimate relevant structural quantities based on water diffusion in
the brain, essentially axonal diameter, density, and angular dis-
persion. However, it clearly does not capture the complexity of
cellular architectures that exist in living tissues, such as the brain.
In the present work, we introduce a strategy to noninvasively

assess cellular morphology, where the better of the two afore-
mentioned modeling approaches is merged using advanced
computational techniques and used to analyze experimental data
acquired with an original DW-MRS paradigm. For the first time,
to our knowledge, the diffusion of cell-specific metabolites is
investigated at ultra-long diffusion times (up to 2 s) in the
healthy rodent and primate brain by DW-MRS in vivo, to spe-
cifically probe the intracellular compartment at increasing spatial
scales as the diffusion time is increased. Then, massive Monte
Carlo simulations of particles diffusing in many synthetic cells,
parameterized by a small set of morphometric statistics allowing
the generation of complex and heterogeneous morphologies,
are run on graphics processing unit (GPU) and iterated to fit
DW-MRS data (a scheme of the simulation-fitting pipeline is
reported in Fig. 1). This approach ultimately yields synthetic
cellular compartments (tentatively neurons and astrocytes) that
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can be examined and compared qualitatively and quantitatively
with conventional histology.

Results
Brain Metabolite Diffusion at Long Time Scales. The rationale for
using DW-MRS is that brain metabolites are almost exclusively
confined into the intracellular space, so that modeling their diffusion
is more direct and requires fewer assumptions compared with water
diffusion observed by DW-MRI. In addition, some metabolites are
thought to have a preferential cellular compartmentation: N-acetyl-
aspartate (NAA) and the neurotransmitter glutamate (Glu) have
been reported to reside essentially in neurons (14–16), whereas it is
often accepted, although sometimes questioned, that myo-inositol
(Ins) and choline compounds (tCho) are preferentially compart-
mentalized in glial cells (17), especially in astrocytes (14, 18) (the
dominant glial cell type, representing at least half the total glial
volume) (19). The total creatine (tCr) pool is generally considered to
be evenly distributed between astrocytes and neurons. In this con-
text, DW-MRS offers a unique noninvasive tool to specifically probe
each of these cellular compartments and to link the cellular archi-
tecture with the macroscopic signal being measured and vice versa.
Here we decided to elaborate on our recent finding that metabolite
diffusion measured at long diffusion times td (up to ∼1 s) is fairly
stable in the monkey (20) and in the human brain (21), suggesting
that metabolites are not significantly confined in subcellular re-
gions or organelles but are instead diffusing in the long fibers
typical of neuron and astrocyte morphology. However, because
axons, dendrites, and astrocytic processes are not infinite, metabolites
should start experiencing long-range structure as td keeps

increasing. They will have the possibility to explore the different
ramifying branches, so that their apparent diffusion coefficient
(ADC) should exhibit sensitivity to ramifications. They will also
experience restriction at the extremity of the fibers, making their
ADC depend on cell fiber length. In this work, we therefore pushed
the limits of ultra-long td acquisitions by measuring metabolite ADC
up to 2 s in the mouse and in the macaque brain, using pulsed field
gradient-stimulated echo acquisitions (Materials and Methods and SI
Appendix, Section I). Typical spectra at the longest td and ADC as a
function of td are displayed in Fig. 2 (SI Appendix, Table S1). Re-
sults show that ADC tends to slowly decrease as td is increased,
consistent with the existence of long-range constraints imposed by
cell morphology.

Intracellular Diffusion Models. We then developed a model of cell
morphology to account for these long-range constraints while
neglecting short-range cellular features. This simplification is
possible because short-range features do not induce temporal
dependency of the ADC at long td. For example, restriction
imposed in the plane perpendicular to fiber’s axis results in a
negligible displacement compared with the displacement along
fibers (d2 << 2Dintratd, where d is the fiber diameter, typically a
few micrometers, and Dintra is the free intracellular diffusion
coefficient that can be estimated to ∼0.5 μm2/ms) (22). Similarly,
the hindrance due to organelles or dendritic spines is simply
averaged out at long td, and results in an effective tortuosity that
can be incorporated into Dintra (23). In the end, fibers can be
essentially treated as monodimensional objects “embedded” in a
3D space (24). We decided to describe long-range cellular ar-
chitecture by only three morphometric statistics (each defined by
a mean and SD) accounting for the characteristic “tree-like”
structure of neurons and astrocytes: the number of processes
Nproc leaving the soma (e.g., the dendrites or astrocytic pro-
cesses), the number of successive embranchments (bifurcations)
Nbranch along each process, and the segment length Lsegment (in
micrometers) for a given segment of process comprised between
two successive branching points. For each of these statistics, a
Gaussian distribution was assumed, with SDs SDNproc, SDNbranch,
and SDLsegment. They are exemplified in Fig. 1A.
In vivo DW-MRS signal arises from a coarse-grained average

within various cellular structures. For any given set of morphometric
statistics values, a large set of different synthetic cells following these
statistics can be generated (SI Appendix, Section II). Molecular dif-
fusion of many particles in each cell is then simulated according to a
Monte Carlo algorithm. The corresponding diffusion-weighted sig-
nals arising from each cell are computed using the phase accumu-
lation approach and then summed over the whole set of cells to
obtain the coarse-grained averaged ADC, which can be compared
with experimental metabolite ADC (Materials and Methods and SI
Appendix, Section III). The driving idea is to iteratively change the
morphometric statistics values, generate many synthetic cells ac-
cordingly, and simulate particle diffusion in these cells to compute
the corresponding ADC, until the difference between simulated and
measured ADC satisfies some convergence criteria (Fig. 1). The
entire simulation pipeline was implemented on graphics processing
units (GPUs), taking advantage of the parallelizable nature of par-
ticles diffusion. In this work, we considered five parameters to be
fitted for each measured metabolite: Dintra, Lsegment, SDLsegment,
Nbranch, and SDNbranch. The process number statistics was found to
have no impact on measured ADC (at least with the current ac-
quisition scheme) and was arbitrarily fixed to 10 ± 5 (SI Appendix,
Section IV). Stability of the fit relative to noise was assessed by a
Monte Carlo procedure and found to be good, yielding satisfying
accuracy and precision despite experimental noise (bias and relative
SD less than 5% for all parameters; SI Appendix, Section V). Im-
portantly, this shows that fitting the five aforementioned parameters
using six experimental data points for each metabolite is feasible
under the present conditions.

Fig. 1. Scheme of the simulation-fitting pipeline proposed. (A) The set of
parameters describing cellular morphometric statistics is initialized. (B) Many
synthetic cells are generated according to the morphometric statistics in A
and the intracellular diffusion of many particles, corresponding diffusion-
weighted signal, and relative ADC are simulated. (C) If the difference be-
tween simulated and measured ADC satisfies the selected convergence criteria,
the pipeline provides the best fitting morphometric statistics, otherwise steps A,
B, and C are iteratively repeated, adjusting the morphometric statistics to fit
experimental data.
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Classifying Cellular Compartments According to Metabolite Diffusion:
Neurons vs. Astrocytes. The morphometric statistics resulting from
the best fit of experimental ADC (averaged over cohorts) for all five
metabolites in the two species are reported in Table 1. Some syn-
thetic cells corresponding to the best fits are reported in Fig. 2. In
this initial work, we used exactly the same model to generate the
synthetic cells associated with each metabolite, because we did not
want to associate metabolites with a specific cellular compartment a
priori. For example, we did not introduce additional long axons that
could be relevant for neuronal Glu and NAA. The rationale is that
we wanted to assess the ability of our strategy to differentiate
between astrocytic and neuronal metabolites based on their diffu-
sion properties only, without differences imposed by different
models. In this context, it is striking that the cellular compartments
extracted for all five metabolites match the presumed cell-specific
compartmentation: Ins and tCho, which are often thought to
be mainly in astrocytes, are indeed associated with the smallest
synthetic cells, whereas Glu and NAA, which are mainly in neurons,
are associated with the largest synthetic cells. Within each animal
species, astrocytic and neuronal metabolites are discriminated
according to the Lsegment statistics for both species (SI Appendix,
Section IV and Tables S3 and S4 for statistical significances).
Cellular compartments associated with astrocytic metabolites are
also less complex (i.e., their processes exhibit a lower degree of
ramification, as quantified by Nbranch) than the ones associated with
neuronal metabolites (although not significantly in the monkey
brain). In parallel, tCr, which is considered to be evenly distributed
between neurons and astrocytes, is associated with a compartment
of intermediate segment length (Lsegment) and total process length
(Lsegment × Nbranch). The larger cellular heterogeneity of tCr is also
confirmed by the larger SD of morphometric statistics compared
with astrocytic or neuronal metabolites (in particular SDLsegment,
which is approximately doubled), further supporting the ability of
our strategy to assign consistent cellular compartmentation to each
of the observed metabolites. Note that in the mouse brain the ADC
of taurine (Tau), in addition to the other five metabolites, could also
be measured due to its high abundance. Like tCr, Tau exhibits no
preferential cellular compartmentation in the brain. As a matter of
fact, the morphometric statistics extracted for Tau compartment are
almost exactly identical to those extracted for tCr (including the
large SDLsegment), demonstrating again the self-consistency of
our method.

Diffusion Modeling vs. Conventional Histology: The Example of Sholl
Analysis on Mouse Astrocytes. Using our approach, it becomes
possible to generate synthetic tissues that can be compared with
actual tissues studied through conventional histological methods.
Fig. 3A shows a collection of real (hippocampal) astrocytes stained
by GFAP in a 40-μm-thick slice from the mouse brain. Fig. 3B
represents synthetic astrocytes in the mouse, respectively, in a
40-μm-thick “virtual” slice, generated from the Ins and tCho
compartments that here we assume to be mainly astrocytic.
Qualitatively, the similarity between images obtained from both
techniques is striking. Generation of virtual slices also allows the
quantitative analysis of synthetic cells reconstructed from diffusion
not only based on the model parameters, but also using tools
available for conventional histology, such as Sholl analysis (25)
(at least for Sholl parameters that do not depend on the number
of processes or can be normalized by it, because our modeling
approach does not allow extracting the process number sta-
tistics). Specifically, four Sholl morphometric descriptors were
considered: the Schoenen ramification index (26); the enclosing
radius (i.e., the largest of intersecting radii, which are the num-
ber of sampling radii intersecting the arbor at least once); the
normalized critical value (the maximum value of sampled in-
tersections normalized by the number of processes, reflecting the
highest number of branches in the arbor normalized by the
number of processes); and the critical radius (the distance at

Fig. 2. DW-MRS results and modeling in the mouse and macaque brain. The
investigated volume of interest within the brain (green box) and a typical
DW-MRS spectrum at td = 2 s (here without diffusion weighting), as used to
measure ADC time dependence for each metabolite (Inset plots), are shown
for each species. Points and error bars stand for ADC means and SEMs, re-
spectively, estimated among the cohorts. Best fit of ADC (averaged over the
cohorts) is also displayed as a continuous curve. A subset of the extracted
synthetic cells for each metabolite is also reported. (Scale bar, 100 μm.)
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which critical value occurs). Results of Sholl analysis performed
on mouse hippocampal astrocytes using conventional histology,
and on synthetic astrocytes generated from the Ins and tCho dif-
fusion compartments in the mouse brain, are reported in Table 2
and SI Appendix, Fig. S9. In our opinion, the very good agreement
between Sholl analysis on synthetic and real astrocytes firmly
supports the notion that most of Ins and tCho signal indeed
comes from astrocytes and provides a strong argument in fa-
vor of the validity of our experimental and modeling strate-
gies. Note that in this work we focused on mouse astrocytes
because they represent a relatively homogenous population
(compared with neurons), and in the mouse brain their domains
do not overlap, facilitating Sholl analysis.

Measuring Cell-Specific Interspecies Difference: Rodents vs. Primates.
Fig. 3 B and D represent a collection of synthetic astrocytes in the
mouse and macaque brain, respectively, generated from the Ins and
tCho compartments. In Fig. 3 A and C, a conventional GFAP
staining of astrocytes in the mouse and macaque brain is displayed
for comparison. The increased size and complexity of primate as-
trocytes compared with those in mice can be visually assessed.
Quantitatively, morphological statistics obtained here from synthetic
astrocytes are consistent with the most recent knowledge about as-
trocytes in rodents and primates (27, 28); in particular, we find that
the overall diameter of synthetic astrocytes is 2.52 ± 0.10 times larger
in macaques than in mice, in good agreement with the 2.55 ± 0.05
ratio obtained from direct histological quantification (human vs.
mouse) (28). Statistical significance of interspecies comparisons is
given in detail in SI Appendix, Table S5. Although it is difficult to
obtain reference values about the morphometric characteristics of
neurons at the scale of the whole DW-MRS volume of interest, the
synthetic neurons are reminiscent of iconic images of Golgi-stained
neurons. Their size (∼500 μm overall diameter) agrees well with the
typical extension of the dendritic tree described for pyramidal neu-
rons, granule cells, striatal interneurons, or medium spiny neurons.
Unlike for astrocytes, the literature does not report dramatic in-
terspecies difference regarding neurons (apart from the apical den-
drites of pyramidal neurons, which are significantly longer in
primates, but our simulations show that this kind of very long fibers
does not affect the morphometric statistics extracted by our method
and might instead explain the higher Dintra in the monkey brain; SI
Appendix, Section VII). However, it has been reported that primate
neurons tend to exhibit larger size and complexity than their rodent
counterparts in some structures, such as the hippocampus (29), and

also greater heterogeneity (30). Our work supports these findings at
the scale of the investigated volume of interest: we extract relatively
similar structural characteristics for neurons in mice and primates,
despite a small (and not significant most of the time; SI Appendix,
Table S5) tendency for larger size and complexity (Lsegment and
Nbranch) and greater heterogeneity (SDLsegment and SDNbranch)
in primates.

Discussion
In this work, we introduced the use of Monte Carlo simulation to
calculate diffusion-weighted signal of intracellular particles in many

Table 1. Estimated morphometric parameters

Metabolite Nbranch SDNbranch Lsegment (μm) SDLsegment (μm) Dintra (μm2/ms)

Mouse
Ins (A) 3.3 (±0.1) 2.2 (±0.2) 23.8 (±0.3) 11.1 (±1.0) 0.386 (±0.003)
tCho (A) 2.6 (±0.1) 2.1 (±0.1) 16.3 (±0.1) 8.5 (±0.3) 0.344 (±0.003)
tCr (A+N) 3.4 (±0.2) 2.4 (±0.1) 45.4 (±0.3) 17.8 (±0.9) 0.404 (±0.002)
Tau (A+N) 3.4 (±0.2) 2.3 (±0.6) 45.9 (±0.4) 15.0 (±0.9) 0.440 (±0.003)
NAA (N) 4.0 (±0.2) 2.2 (±0.2) 60.4 (±0.3) 4.8 (±0.6) 0.306 (±0.001)
Glu (N) 4.5 (±0.1) 2.1 (±0.4) 60.5 (±0.2) 8.1 (±0.7) 0.421 (±0.003)

Macaque
Ins (A) 4.0 (±0.1) 2.4 (±0.2) 39.7 (±0.2) 7.1 (±0.6) 0.393 (±0.001)
tCho (A) 4.2 (±0.1) 2.3 (±0.2) 37.5 (±0.1) 5.7 (±1.0) 0.370 (±0.001)
tCr (A+N) 4.7 (±0.6) 2.5 (±0.5) 56.0 (±7.4) 16.0 (±2.8) 0.467 (±0.072)
NAA (N) 4.6 (±0.2) 1.8 (±0.3) 64.6 (±0.4) 7.1 (±0.7) 0.454 (±0.002)
Glu (N) 4.5 (±0.3) 2.4 (±0.4) 60.0 (±0.4) 7.6 (±0.5) 0.476 (±0.002)

Morphometric parameters estimated for the metabolite compartments by fitting the ADC time dependency in
the mouse and macaque brain. Metabolites thought to be preferentially compartmentalized in astrocytes are
indicated by the letter A, those thought to be preferentially compartmentalized in neurons are indicated by the
letter N, and those thought to be evenly mixed are indicated by A+N. Taurine could only be measured in
the mouse brain, because of its higher abundance. ±Error in parentheses represents the SD on the fitted
parameters (SI Appendix, Section VI, including P value calculation).

Fig. 3. Conventional vs. noninvasive histology. Comparison between conven-
tional histological images of astrocytes and the corresponding synthetic tissue in
the mouse and macaque brain. Confocal microscopy images by GFAP staining of
astrocytes in the hippocampus of the mouse brain (A) and of the macaque brain
(C). Collection of synthetic astrocytes extracted from Ins and tCho compartments
in the mouse brain (B) and in the macaque brain (D). (Scale bars, 50 μm.) Corner
Insets are a 1.5× magnification of a portion of the main image.

6674 | www.pnas.org/cgi/doi/10.1073/pnas.1504327113 Palombo et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504327113/-/DCSupplemental/pnas.1504327113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504327113/-/DCSupplemental/pnas.1504327113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504327113/-/DCSupplemental/pnas.1504327113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504327113/-/DCSupplemental/pnas.1504327113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504327113/-/DCSupplemental/pnas.1504327113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504327113/-/DCSupplemental/pnas.1504327113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504327113/-/DCSupplemental/pnas.1504327113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1504327113


complex and heterogeneous synthetic cells generated randomly
according to defined morphometric statistics, allowing the fitting of
experimental DW-MRS data. To our knowledge, this is the first time
such a paradigm is proposed. Monte Carlo simulations have been
proposed in the past to fit simulated (31) or experimental data (32),
but consisted in diffusion in determinist axonal geometries. Note
that, in these two previous studies (31, 32), diffusion signal was
precalculated for different parameter values to create a dictionary
that could then be compared with experimental data. Although the
generation of the dictionary requires a very large computational
time, data fitting is then extremely fast, which is interesting for
stabilized acquisition/modeling pipelines used routinely. Dictionary-
based fitting could be done in the future for the modeling strategy
proposed here, although the increasing power of GPUmay mitigate
the practical interest of such precalculation.
Starting from a unique model and without a priori constraints on

cell morphology, the simulation-fitting pipeline analyzed long-td
diffusion data and consistently classified cellular compartments,
strongly supporting the generally accepted (but sometimes debated)
preferential compartmentation of Ins and tCho inside astrocytes and
of Glu and NAA in neurons, whereas some other metabolites such
as tCr and Tau seem to have no preferential compartmentation. In
addition, extracted cell morphologies were qualitatively and quanti-
tatively consistent with histological data, which strongly supports the
idea that modeling metabolite diffusion based solely on the long-
range structural properties used here is essentially valid. Further-
more, the Sholl analysis on astrocytes provides solid arguments in
favor of a marked astrocytic specificity of Ins and tCho. Finally, our
strategy allowed the assessment of relevant interspecies differences
in astrocytic structure, providing additional arguments in favor of our
strategy and its underlying assumptions and demonstrating the
translational nature of the approach.
As far as we can see, the methods proposed here are the first steps

of a new paradigm for DW-MRS acquisition and modeling, which
will stimulate future works, including methodological improvements
and developments, as well as further validation (e.g., by more ex-
haustive comparison with microscopy data). For the interpreta-
tion of our results, in particular for comparison with histology,
we considered a strict cell specificity of metabolites: i.e., Ins and
tCho purely reflecting astrocytic properties and Glu and NAA
purely reflecting neuronal properties. Although we show here
that this assumption already gives very consistent results, the
estimation of astrocytic and neuronal morphology might be im-
proved in the future by knowing a priori what fraction of Ins and
tCho is actually in neurons and what fraction of Glu and NAA
is in astrocytes. As discussed above, in this initial work, we de-
cided to model neurons and astrocytes using the same morphom-
etric descriptors, but the high flexibility of our approach is perfectly
compatible with refining the model by including cell-specific
morphometric statistics, such as axonal length or neuronal asym-
metry, or by using context-aware modeling of cells morphologies
(33). Quantifying these additional long-range morphometric pa-
rameters would certainly benefit from acquisitions at longer td,
but the methodological challenge remains open, as signal loss
due to relaxation makes measurements at longer td extremely

difficult. Acquisitions at ultra-short td would allow the in-
dependent determination of Dintra or the introduction of ad-
ditional free parameters describing short-range morphological
features (e.g., fiber diameter and spine density). Generally
speaking, a great advantage of our modeling strategy is that it
can be adapted to available experimental data, whose amount
and quality is expected to keep increasing in the future, con-
sidering the continuous improvement of magnetic resonance
technology.
In conclusion, beyond the conceptual insights about intracellular

diffusion at long diffusion times and metabolite compartmentation,
the possibility to quantitatively estimate brain cell morphology using
the “noninvasive histology” method as suggested and introduced
here lays the ground for future methodological research and many
potential applications. The translational nature of the method may
have a great impact in the study and management of brain diseases,
e.g., to monitor neuronal atrophy in neurodegenerative diseases or
hypertrophic activated astrocytes in neuro-inflammation. In this
context, the strategy proposed here might find applications in pre-
clinical and clinical research, in particular to evaluate treatment ef-
ficacy at a cellular level.

Materials and Methods
Metabolite Diffusion at Ultra-Long Diffusion Times Measured by DW-MRS. All
animal studies were conducted according to the French regulation (directive 2010/
63/EU; FrenchAct Rural Code R 214-87 to 131). The animal facilitywas approved by
veterinarian inspectors (authorization #B 92-032-02) and complies with Standards
for Humane Care and Use of Laboratory Animals of the Office of Laboratory
Animal Welfare (OLAW; #A5826-01). All experimental procedures were approved
by the local Ethics Committee (committee #44; approval #10-057). Primate experi-
ments were performed on healthy male macaque monkeys (Macaca fascicularis,
body weight 4–6 kg) anesthetized with propofol, using a 7-T MRI scanner (Agi-
lent). The animals were held in the sphinx position, and the head was positioned
in a stereotaxic frame with a bite-bar and ear rods and maintained at 37 °C by
warm air. A 1H quadrature surface coil was used for radiofrequency emission
and reception. An 18- × 18- × 18-mm3 (5.8-mL) voxel was positioned in the
region of interest. The methodology used is exactly the same as described in
our recent work in the primate brain (20), i.e., spectra were acquired with a
diffusion contrast Δb = 3,000 s/mm2 using a STEAM (stimulated echo ac-
quisition mode) sequence modified for diffusion weighting, and td was
changed by changing the mixing time. Rodent experiments were performed
on healthy C57/BL6 male mice (body weight ∼ 30 g) anesthetized at low iso-
flurane dose (<1.5%), using an 11.7-T MRI scanner (Bruker BioSpec). The
animals were positioned in a stereotaxic frame with a bite-bar and ear rods
and maintained at 37 °C by circulation of warm water. Radiofrequency
transmission and reception was achieved using a quadrature surface cryo-
probe, and acquisitions were performed in a 5- × 2.4- × 6-mm3 (72-μL) voxel.
A DW-MRS approach comparable to that described above for the monkey
was used. Metabolite signal was quantified using LCModel (34). Additional
details about experiments and postprocessing can be found in SI Appendix,
Section I.

Simulating and Fitting Metabolite ADC by Monte Carlo Simulations in Synthetic
Cells. To simulate the ADC as a function of td for a given set of values of the
morphometric statistics, 80 different cell-graphs for each metabolite were gen-
erated (SI Appendix, Section II). Diffusion of n = 2,000 particles in each cell was
simulated according to a Monte Carlo algorithm (9). The corresponding diffusion-
weighted signals arising from each cell were computed by using the phase ac-
cumulation approach (9) and then summed over the whole set of cell graphs to
obtain the coarse-grained averaged ADC (SI Appendix, Section III). All codes were
implemented inMatlab (TheMathworks). An important assumption of our model
is that metabolites remain in a given cell during td, i.e., intercellular exchanges are
negligible. We think this assumption of clear metabolic compartmentation is valid
at the time scale of diffusion measurement: for example, the glutamate-gluta-
mine cycle, which is a major metabolic pathway between neurons and astrocytes,
is estimated in the range 0.2–0.5 μmol/g perminute based on 13CMRS studies (35),
so that less than 0.1% of the glutamate pool (∼10 μmol/g) is transferred from
neurons to astrocytes every second.

To fit experimental ADC as a function of td, it is necessary to iteratively change
the set of parameters describing the morphometric statistics used for cell graph
generation and then simulate particles diffusion and compute corresponding
ADC, until the difference between simulated and measured ADC satisfies some

Table 2. Estimated Sholl-based metrics

Sholl-based metrics Stained astrocytes Synthetic astrocytes

Ramification index 2.96 (±0.72) 2.66 (±0.64)
Enclosing radius (μm) 15.3 (±2.8) 22.5 (±5.1)
Normalized critical value 2.61 (±0.75) 2.24 (±0.73)
Critical radius (μm) 6.7 (±1.8) 5.7 (±1.3)

Results of Sholl analysis performed on mouse GFAP-stained hippocampal
astrocytes using conventional histology and on synthetic astrocytes gener-
ated from the mouse Ins and tCho diffusion compartments. ±Error in paren-
theses represents the SD (estimated on 135 cells).
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convergence criteria. The fitting procedure was based on the minimization of the
sum of square residuals by using an efficient and stable algorithm based on
combined Parallel Tempering and Levenberg–Marquardt approaches. The Parallel
Tempering method was used for the unsupervised initialization of the fitting
parameters. Then, starting from these initial values, the Levenberg–Marquardt
algorithm was used to quickly converge toward the set of parameters which
better describe experimental data. The average number of total iterations re-
quired to satisfy the convergence criteria ranged from 20 to 100 (with 80 cell
graphs generated at each iteration). The resulting simulation-fitting complexity
was then ∼1011. An efficient code was implemented in Matlab to manage in
parallel on a GPU device (NVIDIA Tesla K20c) this huge amount of computation.
Because of this approach, it was possible to fit experimental ADC in less than
3 min for each metabolite. To obtain very stable results with respect to Monte
Carlo simulation fluctuations, we repeated each simulation fitting 20 times (the
SD of the simulated ADC was then ∼2%), taking the average parameter value
over the 20 repetitions as the most likely value. The whole procedure required
about 1 h for each metabolite. The resulting outputs are reported in Table 1.

Synthetic Tissue Generation and Comparison with a Real Histological Slice.
Once the morphometric parameters were estimated for each metabolite com-
partment, it was possible to generate synthetic tissues directly comparable with
conventional histology, by representing together the corresponding cell graphs in
a realistic manner. Here we consider Ins and tCho compartments to obtain a
synthetic tissue representative of astrocytes and directly comparable with tissues
stained for GFAP observed by confocal microscopy. A large number of cell graphs
were generated according to the morphometric statistics for Ins and tCho
compartments for both mouse and macaque. Then, only the cell graphs inter-
secting a slice with the same thickness as the histological section (40 μm) were
considered for the direct comparison with the histological ones reported in Fig.
3. Further details are available in SI Appendix, Section VIII.

Histology and Confocal Microscopy. Coronal brain sections (30–40 μm) fixed
with 4% (wt/vol) paraformaldehyde were cut on a freezing microtome.
Sections were blocked with 4.5% normal goat serum (Sigma-Aldrich), incu-
bated with GFAP-Cy3 (1:1,000, mouse clone GA-5; Sigma-Aldrich) for 24 h at
4 °C and mounted using FluorSave reagent (Calbiochem). Sections were
analyzed using a confocal microscope (SP8 X; Leica) equipped with a white
light laser source and 20× (HC PL APO 20×/0.70 CS) and 40× (HC PL APO
40×/1.30 Oil CS2) objectives. Images were acquired at 1,024 × 1,024 resolu-
tion with a pixel size of 0.568 (20×) or 0.189 μm (40× with 1.5 zoom).

Sholl Analysis. We performed Sholl analysis (25) directly from bitmap images
by using the Fiji toolbox integrated in ImageJ (imagej.net/Sholl). The plug-in
pairs an improved algorithm to retrieve data from bitmap images with curve
fitting, regression analysis, and statistical inference so that an automatic
estimation of Sholl-based metrics of arborization is possible (36). An example of
the Sholl-based analysis is reported in SI Appendix, Fig. S9 A and B. Histological
slices from three different healthy mice were used to perform Sholl analysis of
the hippocampal GFAP-stained astrocytes. Three histological slices per animal
were investigated, taking into account 15 cells per slice. A total of 135 cells were
thus taken into account to estimate the mean and SD of the Sholl-based metrics
reported in Table 2 and SI Appendix, Fig. S9C, for both conventional histology
and synthetic astrocytes. Parameters depending on the number of processes
were normalized by it (because our diffusion data and modeling do not allow
extracting this number).
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