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Abstract

Solving large-scale optimization problems lies at the core of modern machine learn-

ing applications. Unfortunately, obtaining a sufficiently accurate solution quickly

is a difficult task. However, the problems we consider in many machine learning

applications exhibit a particular structure. In this thesis we study optimization meth-

ods and improve their convergence behavior by taking advantage of such structures.

In particular, this thesis constitutes of two parts:

In the first part of the thesis, we consider the Temporal Difference learning (TD)

problem in off-line Reinforcement Learning (RL). In off-line RL, it is typically the

case that the number of samples is small compared to the number of features. There-

fore, recent advances have focused on efficient algorithms to incorporate feature

selection via `1-regularization which effectively avoids over-fitting. Unfortunately,

the TD optimization problem reduces to a fixed-point problem where convexity

of the objective function cannot be assumed. Further, it remains unclear whether

existing algorithms have the ability to offer good approximations for the task of

policy evaluation and improvement (either they are non-convergent or do not solve

the fixed-point problem). In this part of the thesis, we attempt to solve the `1-

regularized fixed-point problem with the help of Alternating Direction Method of

Multipliers (ADMM) and we argue that the proposed method is well suited to the

structure of the aforementioned fixed-point problem.

In the second part of the thesis, we study multilevel methods for large-scale opti-

mization and extend their theoretical analysis to self-concordant functions. In par-
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ticular, we address the following issues that arise in the analysis of second-order

optimization methods based either on sampling, randomization or sketching: (a) the

analysis of the iterates is not scale-invariant and (b) lack of global fast convergence

rates without restrictive assumptions. We argue that, with the analysis undertaken

in this part of the thesis, the analysis of randomized second-order methods can be

considered on-par with the analysis of the classical Newton method. Further, we

demonstrate how our proposed method can exploit typical spectral structures of the

Hessian that arise in machine learning applications to further improve the conver-

gence rates.



Impact Statement

In the third chapter we aim to solve the Temporal Difference (TD) learning problem

in off-line Reinforcement Learning (RL) which typically is a difficult task and for

this reason it cannot find many practical applications specifically when sparsity is

required. Our proposed method is tested in a complex environment and our prelim-

inary numerical results show an encouraging performance of our method (ADMM-

TD). However, a proof of convergence of ADMM-TD is still open. We believe that

our encouraging numerical results will drive other researchers within academia to

establish a complete theory of ADMM-TD. On the other hand, outside academia,

on-line TD learning is already widely used in practice and in many machine learn-

ing applications is producing sufficiently accurate approximations. With the work

undertaken in this chapter we believe that off-line TD learning can be efficiently

compared to other techniques applied in machine learning problems. In the fourth

chapter of this thesis we study the multilevel methods and we propose YAWN, a

variant of the Newton method. In large-scale optimization, randomized variants of

the Newton method have concentrated the main interest of the research commu-

nity due to their fast convergence rates. However, their analysis suffers from one

the following shortfalls: (a) is not scale invariant, (b) is not global, (c) absence of

super-linear convergence rates —we note that all three characteristics are involved

in the analysis of the classical Newton method. In this part of the thesis, we claim

that our proposed method is able to address all three issues. Hence, with the analy-

sis undertaken in this chapter, the analysis of the randomized variants of the Newton

method can be considered on par with the classical analysis of the Newton method.
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The super-linear convergence of YAWN can be further improved by estimating spe-

cific parameters of the algorithm, something that can attract the interest of other

researchers within academia. On the other hand, outside academia, we argue that

YAWN can be directly applied in practice and be able to produce accurate results

quickly. This is also demonstrated in our initial numerical experiments which sug-

gest that YAWN outperforms state-of-the-art methods.



“All paths lead to the same goal: to convey to others what we are. And we must

pass through solitude and difficulty, isolation and silence in order to reach forth to

the enchanted place where we can dance our clumsy dance and sing our sorrowful

song”

Pablo Neruda
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Chapter 1

Introduction

“There are reasons to be sad,

disconsolate, bitter, but there is not

a single reason to be hopeless.”

Nazim Hikmet Ran

Modern machine learning applications often require optimizing large-scale mod-

els. In this domain, the ability to obtain sufficiently accurate solutions quickly is

crucial. Examples of such problems can be found in [5, 6, 7, 8]. In the context

of computational optimization, there have been many developments for reducing

the computational burden of solving large-scale optimization problems. In general,

for an arbitrary optimization problem, aiming for extremely fast convergence rates

is typically a very difficult task [9]. Therefore, much emphasis has been given in

designing methods that take advantage of the problem structure. In addition to the

fast solvers, the goal of accuracy in prediction is equally important. For this reason,

exploitation of the prior knowledge about regularity in datasets, such as sparsity and

smoothness, has become necessary. In particular, regularization in statistical regres-

sion setting has attracted an increasing interest during the last decade. Statistical

regularization, or alternatively, penalization of the standard least-squares problem,

has been efficiently applied in many diverse fields, such as classification, prediction

on multivariate datasets (eg., graphical models), image and signal processing and
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compressive sensing. To this end, the goal of this thesis is to develop and study

optimization methods that take advantage of the structures of optimization models

that arise in machine learning applications.

1.1 ADMM for Reinforcement Learning

Problems with large datasets are encountered in almost all applied fields such as AI,

statistics, machine learning, etc. Here, we discuss Alternating Direction Method

of Multipliers (ADMM), a general optimization framework which has recently re-

ceived a lot of attention for various large regularized regression problems [10, 11].

ADMM is most useful when applied to optimization problems with a separable ob-

jective function. Regularized regression problems, such as Lasso, ridge regression

and basis pursuit, fall into this category. In particular, since the function subject

to minimization is separable, it can be split into two parts, and thus the algorithm

can handle each part completely separately (i.e., each iteration can be viewed as

an independent subproblem). For instance, each ADMM iteration implies a small

convex optimization problem for which is often the case that it can be calculated

analytically, thus yielding an efficient algorithm in terms of time complexity.

The algorithm was developed in 1970s and is closely related to algorithms such

as Douglas-Rachford splitting, Dykstra’s alternating projections and the method of

multipliers [12]. ADMM has a fairly well established theory in the context of con-

vex optimization and hence, within this domain, it has found numerous applications

in different fields such as in [13] for compressive sensing, [14] for graphical mod-

els and [15] for signal processing and control problems. However, convexity of

the objective functions does not always hold in many applied fields. For instance,

the Reinforcement Learning problem we discuss below considers solving a fixed-

point problem which in turn does not correspond to any other convex optimization

problem.
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Reinforcement Learning

Reinforcement Learning (RL) is a sub-field of machine learning [16]. As the name

suggests, it considers learning problems where, when interacting with the environ-

ment, we learn what to do or what actions to take in order to optimize the desirable

outcome. In particular, RL considers an agent which interacts with the environment.

The agent finds itself in a current state and faces the dilemma of what action to se-

lect, since it is not told which action performs optimally. Moreover, after executing

an action, the environment returns a new state together with a reward (indicating

how good the selected action was) and the procedure continues in the same manner.

In practice, we face problems where a sequence of actions (policy) needs to be taken

in order to achieve our goal. The desirable outcome (or goal) in RL is to maximize

the sum of the expected reward, or equivalently, to find the assignment of actions to

each state that, when executed, maximizes the sum of the expected reward (optimal

policy).

Furthermore, RL can be considered as a part of Artificial Intelligence (AI) and as

such it aims for autonomous systems (or intelligent agents) that can make decisions

and eventually achieve the determined goals. During the last years RL has success-

fully found many applications in AI such as robotics [17], autonomous helicopter

[18] and TD-Gammon [19]. It has also been applied in fields such as Control the-

ory and Operational Research (inverted pendulum [20] and shop scheduling [21],

respectively).

Here, we consider off-line (batch) RL [22] where the agent is not allowed to interact

with the environment in order to obtain the optimal policy but instead is given a fixed

set of sampled states and actions, typically finite. Using the given information, the

agent forms a random policy which is then used to interact with the environment;

the policy is fixed and does not improve during the procedure. Hence, the goal in

off-line RL is, given the existing data, to find the policy that maximizes the sum of

rewards. The goal of maximizing the sum of rewards can be attained by computing

the so called value functions.
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A core problem in off-line RL emerges in situations where the state space is large,

where explicit computation of the value functions becomes infeasible. Instead, ap-

proximation techniques provide the only way forward. In this work we are inter-

ested in linear representation of the value functions since the updates reduce to

a simple form when employing first- or second-order methods [23, 16]. Least-

squares and regularized least-squares methods have been proposed to solve the RL

problem [24, 25, 26, 3, 27, 28, 29, 30, 31]. However, none of the proposed meth-

ods have been able to solve the RL problem, especially when the goal is to find

the optimal policy. In particular, least-squares methods are known to be vulnerable

to over-fitting and thus lead to poor predictions. On the other hand, `1-regularized

least-squares methods, although have been found to overcome the over-fitting issue,

only converge under some strong assumptions that rarely hold in practice.

In this thesis, we propose to use ADMM for solving the `1-regularized least-squares

optimization problem. This problem, however, reduces to a fixed-point problem

and as such it does not correspond to any convex optimization problem. Therefore,

we modify the standard ADMM in order to now solve the aforementioned fixed-

point problem. Our theoretical analysis shows that our proposed method is able

to return efficient solutions. Incorporating `1-regularization into the fixed-point so-

lution means that the underlying optimization problem is separable and thus can

be handled efficiently by ADMM producing fast iterations. Another advantage is

that ADMM yields closed-form solutions for the subproblems of the `1-regularized

least-squares problem that are easy to compute. However, since the optimization

problem we consider here is not convex, a proof of convergence is a difficult task

and remains open. Finally, we perform preliminary numerical experiments which

indicate the effectiveness of our proposed method.

The main contributions of this work have been published in:

Nikos Tsipinakis and James D.B. Nelson. Sparse temporal difference learning via

alternating direction method of multipliers. In Machine Learning and Applications

(ICMLA), 2015 IEEE 14th International Conference on, pages 220–225. IEEE,
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2015.

1.2 Multilevel Methods

Multilevel methods in optimization arise from the general field of multigrid meth-

ods that were first introduced for solving (non-)linear Partial Differential Equations

(PDEs) [33, 34, 35, 36]. In this domain, multigrid methods, in order to overcome

the computational burden, attempt to offer approximate solutions from coarser dis-

cretizations of a mesh. They construct a hierarchy of different-sized discretization

problems where the idea is to use the information of the smaller problems (in lower

dimensionality) to solve the exact problem. Problems of lower dimensions are often

called coarse problems. The advantage of this procedure is clear: coarse problems

are typically much easier to be optimized because of their significantly reduced di-

mensionality; we note that, directly solving for the exact solution in the context of

PDEs is expensive.

When the discussion comes to the context of large-scale optimization in machine

learning applications the situation is similar: optimizing the exact model is often an

intractable task (see [8] for examples in applications such as background extraction

in video processing, and face recognition). To this end, the multigrid idea (solving

coarse models in order to obtain a solution of the exact model) was introduced

into optimization where many authors adopted the name multilevel [37, 38, 39, 40].

Importantly, the performance of multilevel methods has been found very efficient

and in many cases it has been shown to outperform classical optimization methods.

Classical optimization methods such as first order methods, stochastic, proximal,

accelerated or otherwise, are the most popular class of algorithms for the large-

scale optimization models that arise in modern machine learning applications. The

ease of implementation in distributed architectures and the ability to obtain a reason-

ably accurate solution quickly are the main reasons for the dominance of first-order

methods in machine learning applications. In the last few years, second-order meth-
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ods based on variants of the Newton method have also been proposed. Second-order

methods, such as the Newton method, offer the potential of quadratic convergence

rates (the holy grail in optimization algorithms). Unfortunately, the conventional

Newton method has huge storage and computational demands and does not scale to

applications that have both large and dense Hessian matrices. To improve the con-

vergence rates, and robustness of the optimization algorithms used in machine learn-

ing applications many authors have recently proposed modifications of the classical

Newton method [41, 42, 43, 44]. However, the current state-of-the-art methods dis-

cussed previously suffer from either of the following shortfalls: Shortfall I: Lack of

scale-invariant convergence analysis without restrictive assumptions, and, Short-

fall II: Lack of global super-linear rates without ad-hoc assumptions regarding the

spectral properties of the input data.

In this thesis, we propose a general unconstrained optimization method based on

the multilevel framework and we attempt to address both shortcomings listed above.

Our theoretical analysis is based on the theory of self-concordant functions and we

are able to prove a super-linear convergence rate without relying on unknown pa-

rameters (scale invariant analysis). Thus, we argue that with the results presented

in this thesis, the theory of the variants of the Newton methods can be considered

to be on-par with the theory of the classical Newton method. These fundamental

results are achieved by drawing parallels between the second-order methods used in

machine learning, and the so-called Galerkin model from the multilevel optimiza-

tion literature. To the best of our knowledge, this is the first multilevel optimization

method that captures the advantages of the multigrid theory (i.e., fast global con-

vergence rates) and in parallel does not suffer from either of the shortfalls listed

above.

The main contents of this work are currently in preparation with title:

Nikos Tsipinakis and Panos Parpas. Exploiting coarse-grained models for faster,

scale-invariant convex optimization.



Chapter 2

Background Theory

In this chapter we present the most relevant theory of optimization methods required

for this thesis. In particular, in the first section we present the theory of convex and

self-concordant functions. In the second section, we review the most relevant first-

and second-order methods for unconstrained convex optimization. In the third, we

present the Alternating Direction Method of Multipliers and we describe the setting

of the equality constrained convex optimization. In section four, we present opti-

mization methods for approximating matrices with low-rank structure. We would

like to emphasize that the goal of this chapter is not to provide a complete review

of the methods that will be discussed. Our purpose, nevertheless, is to provide the

reader with the necessary theoretical knowledge required before moving forward to

the core of this work.

2.1 Preliminaries

In this section we collect some general, fundamental, results that will be useful

throughout this thesis.

For any x,y ∈ Rn the standard inner product is defined by

〈x,y〉 = xTy =
n∑
i=1

xiyi.
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A function f : Rn → R is said to be proper when dom f 6= ∅, where dom f =

{x ∈ Rn : f(x) < +∞}. Additionally, a function f : Rn → R is said to be closed

when its epigraph, epi f , is a closed set, where

epi f = {(x, t) : x ∈ dom f, t ∈ R, f(x) ≤ t}.

A function f : Rn → R+ is called a norm if for any x,y ∈ Rn we have that: (i)

f(x) = 0, then x = 0; (ii) f(λx) = |λ|x, λ ∈ R; (iii) the triangle inequality holds,

i.e., f(x+y) ≤ f(x)+f(y). A vector spaceH with a norm that satisfies the above

conditions is called a normed vector space. Let p ≥ 1. The `p-norm is defined as

follows

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

.

Let H = (H, ‖ · ‖) be a normed vector space. A mapping f : H → H is called

contraction if for any x,y ∈ H and γ ∈ (0, 1) we have that

‖f(x)− f(y)‖ ≤ γ‖x− y‖.

The Banach space is defined as a complete normed vector space, where every

Cauchy sequence is convergent (i.e., lim
n→∞

sup
m≥n
‖an − am‖ = 0, where {an}n≥0 is

a sequence onH).

Theorem 2.1.1 (Banach’s fixed-point theorem [1]). Let V be a Banach space and

T : V → V be a contraction mapping. Then T has a unique fixed-point.

For more details on the preliminary theory discussed above see [45, 46, 1].

2.1.1 Convex Functions

A function f : Rn → R is convex, if, for all x,y ∈ dom f and some θ ∈ [0, 1], we

have that

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y),
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where dom f is a convex set. Based on the first-order information, for a differen-

tiable function f , the above definition becomes

f(y) ≥ f(x) +∇f(x)T (y − x). (2.1)

Inequality (2.1) constitutes a necessary and sufficient condition for a function f to

be convex. Further, a function is called strictly convex if (2.1) holds with strict

inequality. Importantly, note that if ∇f(x)T = 0 then we have f(x) ≤ f(y) for

all x,y ∈ dom f which means that x is global minimizer of f . In addition to

the first-order convexity condition, the second-order condition, assuming a twice

differentiable f is given by

∇2f(x) � 0,

for all x ∈ dom f . In other words, a twice differentiable function is convex when

the Hessian matrix is positive semi-definite. If, in addition, the Hessian matrix is

positive definite then f is strictly convex.

A twice differentiable is strongly convex if there exists a constant µ > 0 such that

∇2f(x) � µIn×n, (2.2)

where In×n is the identity matrix. A direct consequence of strong convexity is

that the Hessian matrix is also bounded above, i.e., there exists M > 0 such that

∇2f(x) �MIn×n. Combining both bounds of the Hessian matrix we have that

f(x)+∇f(x)T (y−x)+
µ

2
‖y−x‖2 ≤ f(y) ≤ f(x)+∇f(x)T (y−x)+

M

2
‖y−x‖2.

(2.3)

For a more refined analysis on convex functions we refer the reader to [45, 9].

2.1.2 Self-Concordant Functions

In this section we recall some of the main properties and inequalities of the class of

self-concordant functions. We follow similar notation as in the books [9, 45] (for a
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complete theory on self-concordant functions see [9]).

A univariate convex function φ : R→ R is called self-concordant if

|φ′′′(x)| ≤ 2φ′′(x)3/2. (2.4)

Examples of such functions include but not are limited to linear, quadratic and

logarithmic. Further, consider a multivariate function f : Rn → R and also fix

x ∈ dom f and a direction u ∈ Rn. Then, φ(t) = f(x + tu) is called self-

concordant for all x and u if it is self-concordant along every line in its domain.

Importantly, self-concordance is preserved under composition with any affine func-

tion.

Next, given x ∈ dom f and assuming that∇2f(x) is positive-definite we can define

the following norms

‖u‖x = 〈∇2f(x)u,u〉1/2 and ‖v‖∗x = 〈[∇2f(x)]−1v,v〉1/2, (2.5)

where it holds that |〈u,v〉| ≤ ‖u‖∗x‖v‖x. The Newton decrement is defined as

λf (x) = ‖∇f(x)‖∗x = ‖[∇2f(x)]−1/2∇f(x)‖2. (2.6)

In addition, we take into consideration two auxiliary functions, both introduced in

[9]. Define the univariate functions ω and ω∗ such that

ω(x) = x− log(1 + x) and ω∗(x) = −x− log(1− x), (2.7)

with domω = {x ∈ R : x ≥ 0} and domω∗ = {x ∈ R : 0 ≤ x < 1},
respectively. Note that both functions are convex and their range is the set of positive

real numbers.
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Now, from the definition (2.4), we have that∣∣∣∣ ddt (φ′′(t)−1/2)
∣∣∣∣ ≤ 1,

from which, after integration, we obtain the following bounds

φ′′(0)

(1 + tφ′′(0)1/2)2
≤ φ′′(t) ≤ φ′′(0)

(1− tφ′′(0)1/2)2
(2.8)

where the lower bound holds for t ≥ 0 and the upper bound for t ∈ [0, φ′′(0)−1/2),

with t ∈ domφ. Consider now functions on Rn. For x ∈ dom f , and for any

y ∈ S(x), where S(x) = {y ∈ Rn : ‖y − x‖x < 1}, we have that

(1− ‖y − x‖x)2∇2f(x) � ∇2f(y) � 1

(1− ‖y − x‖x)2
∇2f(x). (2.9)

Finally, let us state one last pair of inequalities that will be useful in our analysis.

For x and y from dom f it holds that

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ ω(‖∇f(y)−∇f(x)‖∗y)

and if also ‖∇f(x)−∇f(x)‖∗y < 1, then

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ ω∗(‖∇f(y)−∇f(x)‖∗y). (2.10)

For more details on self-concordant functions see [45, 9].

2.2 Unconstrained Convex Optimization Methods

In this section we are interested in solving the following unconstrained optimization

problem

min
x∈Rn

f(x), (2.11)

where f : Rn → R is a convex function. Further, we assume that f is twice

differentiable and a minimizer x∗ exists. In the unconstrained case, x∗ is an optimal
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Algorithm 2.1 Gradient Descent
1: Initialize: x0 ∈ Rn

2: for k = 0, 1, . . . do
3: Compute the direction as dk = −∇f(xk)
4: Choose tk through inexact line search Algorithm 2.2
5: Update

xk+1 := xk + tkdk

6: end for
7: return xh,k

point if and only if

∇f(x∗) = 0. (2.12)

Therefore, the goal is to seek points that satisfy (2.12). In practice, this can be

achieved via an iterative scheme by producing a sequence of k points; the iterative

procedure terminates, at some iteration k, if ‖∇f(x)‖2 < ε, for some tolerance

ε > 0.

2.2.1 Gradient Descent Method

In this section we discuss first-order methods for solving the convex program (2.11).

Specifically, we will concentrate on the gradient descent method [46, 45, 9], a

method which is frequently well suited to large-scale optimization problems since,

by definition, it uses “cheap” iterations based on the first-order information (i.e.,

gradients) of the objective function.

Consider the optimization problem in (2.11). The gradient descent method builds

iterates using the first-order information. In particular, the negative gradient is cho-

sen as search direction, that is, dk = −∇f(xk), and thus we take the following

iterative scheme

xk+1 = xk + tkdk.
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Algorithm 2.2 Armijo Rule

1: Input: α ∈ (0, 0.5), β ∈ (0, 1) and a descent direction d
2: t := 1
3: while f(x + td) > f(x) + αt∇f(x)Td do
4: t := βt
5: end while

This choice of search direction produces a descent algorithm since

∇f(xk)dk = −‖∇f(xk)‖2 < 0

which means that, at each iteration, we expect f(xk+1) < f(xk), unless xk is op-

timal. The gradient descent method has been analyzed assuming f is a m-strongly

convex function and enjoys a linear convergence rate. In Algorithm 2.1, the step

size is computed through the inexact line search method. If we instead assume that

f has a L-Lipschitz continuous gradient, with L known, then we can use constant

step size as t = 1/L (similarly, when assuming m-strongly convex function, there

exists parameterM such that the constant step yields t = 1/M ). Since in most prac-

tical problems such constants are typically unknown, for computing tk, we consider

the Armijo rule or inexact line search method, see Algorithm 2.2.

2.2.2 Newton Method

In this section we consider the Newton method [46, 45, 9], a second-order method

for solving (2.11). In general, second-order methods make use of the information

which emerges from the second derivative of the objective function. We discuss the

Newton method with analysis based on both classical theory (Lipschitz continuity

and strongly convex functions) and theory of self-concordant functions.

We are interested in solving the convex optimization problem (2.11). The Newton

method builds the iterates based on the second-order Taylor approximation of f ,

i.e.,

f(xk + d) ≈ f(xk) + 〈∇f(xk),d〉+
1

2
dT∇2f(xk)d.
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Algorithm 2.3 Newton Method
1: Initialize: x0 ∈ Rn

2: for k = 0, 1, . . . do
3: Compute direction and decrement by

dk = −[∇f(xk)]
−1∇f(xk), λ(xk)

2 = ∇f(xk)
T [∇2f(xk)]

−1∇f(xk)
4: Choose tk through inexact line search Algorithm 2.2
5: Update

xk+1 := xk + tkdk

6: end for
7: return xh,k

Since∇2f(xk) is positive definite, we can minimize the right-hand side (which is a

convex quadratic function) to obtain the Newton direction

dk = −[∇2f(xk)]
−1∇f(xk).

Positive definiteness of ∇2f(xk) also implies that the Newton step is a descent

direction

∇f(xk)
Td = −∇f(xk)

T [∇2f(xk)]
−1∇f(xk) < 0 (2.13)

unless xk is a minimizer. It is easy to see that dk is what we need to add to the

current point xk so that to minimize the right-hand side of the Taylor approximation.

The intuition indicates that if f in (2.11) is a quadratic function, then the point

xk +dk is exactly the minimizer of f and thus the Newton method converges in one

iteration. Relation (2.13) leads us to the definition of the Newton decrement

λ(xk) =
[
∇f(xk)

T [∇2f(xk)]
−1∇f(xk)

]1/2
.

The Newton decrement plays important role in the analysis of the Newton method

and can be used as an exit condition (i.e., λ(xk)
2/2 ≤ ε for some small ε > 0).

One important aspect of the Newton method is that the Newton step builds iterates

that are invariant of affine transformation of variables. This means that the conver-

gence rate is not affected by the input data.
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Analysis with classical theory

In addition to the basic assumptions (convexity and twice differentiable function),

the analysis of the Newton method has been conducted by further assuming the

following

Assumption 2.2.1. Function f is strongly convex. Then, there exist positive con-

stants m and M such that

mIn×n ≤ ∇2f(x) ≤MIn×n.

where In×n is the identity matrix. Further, f possesses L-Lipschitz continuous Hes-

sian, i.e.,

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖, x,y ∈ dom f.

The above assumption is typical when analyzing descent methods based on second-

order information. It has been proved that the Newton method can achieve quadratic

convergence rate. In particular, convergence is split into two phases according to

the magnitude of ‖∇f(xk)‖2: (a) the damped Newton phase where Algorithm 2.3

can choose step size tk < 1 and (b) the quadratic phase where the convergence is

extremely fast and the step is always chosen as tk = 1.

Theorem 2.2.2 ([45]). Suppose that Algorithm 2.3 is performed and let Assumption

2.2.1 hold. There exists η ∈ (0,m2/L] such that

1. if ‖∇f(xk)‖2 > η, then there exists γ = αβ m
M2 such that

f(xk+1)− f(xk) ≤ −γ

2. if ‖∇f(xk)‖2 ≤ η, then tk = 1 and

‖∇f(xk+1)‖2 ≤
L

2m2
(‖∇f(xk)‖2)2
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Theorem 2.2.2 describes the convergence behavior of the Newton method. If the

current point xk is far from the optimizer, then the damped Newton phase is per-

formed which guarantees reduction of the value function according to some constant

γ. If xk is sufficiently close to the minimizer, then we obtain quadratic reduction in

the value of ‖∇f(xk+1)‖2.

Although the Newton method, under Assumption 2.2.1, achieves quadratic conver-

gence rate, we cannot say much about both regions of convergence since constants

L andm are typically unknown in practice. Intuition suggests that sufficiently small

values in L yield extremely fast reduction in ‖∇f(xk+1)‖2. In the next section we

see how to obtain explicit expressions about the quadratically convergence phase of

Newton method.

Analysis with self-concordant functions

The analysis of the Newton method conducted in the previous section has two im-

portant shortcomings: (a) complexity bounds involve constants m,M and L which

are typically not known in practice and thus we cannot obtain an explicit bound on

the number of iterations; (b) Although the Newton step produces an affine invariant

method with respect to the change of coordinates, its analysis is not affine invari-

ant, i.e., if we change coordinates all constants m,M and L change. Therefore we

should seek a theory that is independent of the affine transformation of variables.

The way forward for achieving this goal is to replace Assumption 2.2.1 with the

elegant theory of self-concordant functions.

Therefore, we are interested in solving the optimization problem (2.11) where, now,

we assume that the objective function f is a strictly self-concordant function. The

idea of the analysis of Newton method remains the same but now the results do not

depend on any unknown constants. In contrast to the classical analysis, the region

of quadratic convergence depends on the magnitude of the Newton decrement (in

place of the norm of the gradient).
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Theorem 2.2.3 ([45]). Suppose that Algorithm 2.3 is performed and let f be a

strictly self-concordant function. Then, for η ∈ (0, 1/4],

1. if λ(xk) > η, then there exists γ = αβη2 η2

1+η
such that

f(xk+1)− f(xk) ≤ −γ

2. if λ(xk) ≤ η, then tk = 1 and

λ(xk) ≤ 2λ(xk)
2

Theorem 2.2.3 shows that the Newton method enjoys a quadratic convergence rate.

In particular, we come up with an explicit expression of the region of the quadrat-

ically convergent phase (independent of any unknown constants). This mean that

Algorithm 2.3 is affine invariant with respect to the change of coordinates.

To this end, the Newton method, either analyzed using the classical theory or the

theory of self-concordant functions, has been found to outperform many algorithms

due to its quadratically convergent phase. However, the main drawback arises in

large-scale optimization problems since handling ∇2f(x) is typically infeasible.

On the other hand, for moderate-sized optimization problems, Newton method can

be considered as one of the best method to be applied to, due to its extremely fast

convergent behavior and its advanced theoretical analysis.

2.3 Equality Constrained Convex Optimization

Consider the optimization problem of the form

minimize
x∈Rn

f(x)

subject to Ax = b,

(2.14)
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where A ∈ Rm×n, x ∈ Rn, b ∈ Rm and f : Rn → R is a convex function

with primal optimal value p∗. The Lagrangian [46, 10, 11, 45] associated with the

problem (2.14) is a function L : Rn × Rm → R defined as

L(x,y) = f(x) + yT (Ax− b),

where y ∈ Rm is called the dual variable or the Lagrange multiplier of the equality

constraint. The Lagrange dual function g : Rm → R is defined as the infimum of

the Lagrangian, that is

g(y) = inf
x∈Rn
{f(x) + yT (Ax− b)}.

There are two important properties regarding the Lagrangian. First, the dual func-

tion, g(y), is always concave —this is true even in the case where the optimization

problem (2.14) is not convex. Moreover, it implies lower bounds on the primal

optimal value p∗, for any y ∈ Rm, i.e.,

g(y) ≤ p∗.

Therefore, this leads one to search the best available lower bound. The best bound

can be obtained by the following unconstrained optimization problem, called the

Lagrange dual problem

max
y∈Rm

g(y). (2.15)

We denote the dual optimal value of the above optimization problem as d∗. Note that

(2.15) is always convex since it is a maximization problem over a concave function.

When the best lower bound obtained by the dual problem is equal to the primal

optimal value of the initial problem, i.e., d∗ = p∗, we say either that the duality gap

is zero or that strong duality holds.
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KKT Optimality Conditions

We shall now examine the sufficient and necessary conditions of the problem (2.14).

Consider x∗ and y∗ as the primal and dual optimal points, respectively, and also that

strong duality holds. We have the following optimality conditions associated with

the optimization problem (2.14) and its dual problem (2.15)

∂f(x∗) + ATy∗ 3 0

Ax∗ = b.

The above optimality conditions are called Karush-Kuhn-Tucker (KKT) conditions.

Any x∗ and y∗ must satisfy the above conditions when duality gap is zero [45].

Note that the first equation is obtained by taking the gradient of the Lagrangian

over x and the second equation because of the fact that the equality constraint must

always hold. The operator ∂ denotes the subdifferential of a function since f(x)

might not be differentiable. Additionally, ∂f is set-valued and hence we use ∈
instead of =. When f(x) is differentiable, the subdifferential symbol, ∂, can be re-

placed by the gradient, and the inclusion symbol by equality (for more background

on subdifferential calculus see [47]).

Augmented Lagrangian

Consider now the optimization problem of the form

minimize
x∈Rn

f(x) +
ρ

2
‖Ax− b‖2

subject to Ax = b.

(2.16)

For any feasible point x, the above optimization problem is equivalent to (2.14) —

the term ρ
2
‖Ax − b‖2 will be equal to zero. Therefore, the Lagrangian of (2.16) is

Lρ(x,y) = f(x) + yT (Ax− b) +
ρ

2
‖Ax− b‖2, (2.17)
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where ρ > 0 denotes the penalty parameter. Equivalently, equation (2.17) can be

viewed as the augmented Lagrangian of the problem (2.14) [10, 11]. Note that for

ρ = 0 the augmented Lagrangian yields the standard Lagrangian.

2.3.1 Alternating Direction Method of Multipliers

In this section we discuss problems of the form as in (2.14) where the objective func-

tion is separable, i.e., f(x) = g(x) + h(x). The Alternating Direction Method of

Multipliers (ADMM) is a simple but powerful algorithm as it has been demonstrated

to be very efficient for problems with separable objective functions in the context

of large scale optimization [10, 11]. Consider the following composite problem

minimize
x∈Rn

h(x) + g(z)

subject to Ax + Bz = c,

(2.18)

where A ∈ Rm×n, x ∈ Rn, B ∈ Rm×p, z ∈ Rp and c ∈ Rm. Moreover, func-

tions h and g are convex, proper and closed functions. The variable z emerges by

performing variable splitting over x, i.e., x has been split into two parts, namely

x and z, and then, for feasibility purposes, we must incorporate z into the equality

constraint.

The augmented Lagrangian associated with the problem (2.18) is of the form

Lρ(x, z,y) = h(x) + g(z) + yT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2,

where y ∈ Rm denotes the dual variable and ρ > 0 is the penalty parameter. The

ADMM iterations are functions of the augmented Lagrangian and ρ can be consid-

ered as the step-size parameter of the algorithm. In particular, we have the following



2.3. Equality Constrained Convex Optimization 41

ADMM iterations

xk+1 := argmin
x∈Rn

{Lρ(x, zk,yk)}

zk+1 := argmin
z∈Rp

{Lρ(xk+1, z,yk)}

yk+1 := yk + ρ(Axk+1 + Bzk+1 − c).

(2.19)

The above iterations are often difficult to calculate and thus is more convenient to

express the Lagrangian in the following form

Lρ(x, z,y) =

h(x) + g(z) + yT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2 =

h(x) + g(z) + yT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2 +

1

2ρ
‖y‖2 − 1

2ρ
‖y‖2 =

h(x) + g(z) +
ρ

2
(‖Ax + Bz− c‖2 +

2

ρ
yT (Ax + Bz− c) +

1

ρ2
‖y‖2)− 1

2ρ
‖y‖2 =

h(x) + g(z) + ‖Ax + Bz− c +
1

ρ
y‖2 − 1

2ρ
‖y‖2 =

h(x) + g(z) + ‖Ax + Bz− c + u‖2 − ρ

2
‖u‖2,

where u ∈ Rm denotes the scaled dual variable, u = 1
ρ
y. Hence, by replacing the

above result in (2.19), we have that

xk+1 := argmin
x∈Rn

{h(x) +
ρ

2
‖Ax + Bzk − c + uk‖2}

zk+1 := argmin
z∈Rp

{g(z) +
ρ

2
‖Axk+1 + Bz− c + uk‖2}

uk+1 := uk + Axk+1 + Bzk+1 − c.

(2.20)

As a result, both ADMM forms, (2.19) and (2.20), are equivalent and also it is evi-

dent that the right hand side of the latter ADMM form can be often easily evaluated

since the minimization part is simpler (easier differentiation of such a function)

—this form is also called as scaled form due to the scaled dual variable u.
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Optimality Conditions and Convergence

At the optimal points x∗, z∗ and y∗, ADMM must satisfy the following optimality

conditions

Ax∗ + Bz∗ − c = 0 (2.21)

∂h(x∗) + ATy∗ 3 0 (2.22)

∂g(z∗) + BTy∗ 3 0. (2.23)

It has been shown that the optimality conditions associated with the ADMM itera-

tions (2.19) are

0 ∈ ∂h(xk+1) + ATyk+1 + ρATB(zk − zk+1) (2.24)

0 ∈ ∂g(zk+1) + BTyk+1. (2.25)

For more details on the derivation of the aforementioned optimality conditions see

[10]. It is obvious that equation (2.25) always satisfies optimality condition (2.23).

On the other hand, equation (2.22) will only be satisfied when

ρATB(zk+1 − zk) ∈ ∂h(xk+1) + ATyk+1.

The quantity on the left-hand side of the above relation is called the dual residual

and we define

qk+1 = ρATB(zk+1 − zk).

Furthermore, optimality conditions (2.21) indicate that

Axk+1 + Bzk+1 − c = 0,

which is called primal residual, and thus we define

rk+1 = Axk+1 + Bzk+1 − c.
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ADMM has been shown to converge under the most general assumptions. In partic-

ular, the extended functions h : Rn → R∪{+∞} and g : Rp → R∪{+∞} need to

be convex, proper and closed functions and moreover the standard Lagrangian (L0)

to have a saddle point, i.e.,

L(x∗, z∗,y) ≤ L(x∗, z∗,y∗) ≤ L(x, z,y∗).

Note that functions h and g can take the value +∞ and also that there no assump-

tions on matrices A and B. Under these assumptions it has been proved that the

algorithm converges to the optimal solution p∗ and, further, the dual variable y to its

optimal point y∗ as k → +∞. Additionally, it has been shown that both primal and

dual residuals converge to zero in the limit.

2.3.2 Proximal ADMM

In this section we discuss the proximal form of ADMM. We start by providing the

relevant theory on proximal operators.

The proximal operator of a convex, proper and closed function f : Rn → R∪{+∞}
is defined as

proxµf (v) = argmin
x∈Rn

{f(x) +
1

2µ
‖x− v‖2},

where proxµf : Rn → Rn [11]. Moreover, µ > 0 denotes the step-size parameter

indicating how fast we want to move towards the optimal point.

The resolvent of an operator H with scalar µ is defined as JµH = (I + µH)−1

—note that the resolvent is a relation (for more details see [48]). In the case of

proximal operators, we have that the resolvent of the subdifferential operator and

the proximal operator coincide, so we have that

proxµf = Jµ∂f .

For f convex, proper and closed and since ∂f is a maximal monotone operator,
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the resolvent of the subdifferential is single-valued even though ∂f is set-valued.

Furthermore, the application of the proximal operator can be viewed as a fixed-

point iteration. In particular, it has been shown that for any maximal monotone

operator H, x minimizes H, i.e., 0 ∈ H(x), if and only if x = JµH(x), which in

turn yields

0 ∈ ∂f(x) ⇔ x = proxµf (x). (2.26)

For a proof of the theorem and details on monotone operators see [12]. As a result,

equation (2.26) implies the proximal point algorithm, that is

xk+1 := proxµf (xk).

The proximal point algorithm has not been found effective in most applications

since it requires minimization over f(x) + 1
2µ
‖x − v‖2 at each iteration. For this

reason, it is more useful to apply either proximal gradient method or ADMM in

its proximal form, also known as Douglas-Rachford splitting method. The former

method considers the unconstrained optimization problem of the form

minimize
x∈Rn

h(x) + g(x), (2.27)

where, again, the objective function f has been split into h and g and moreover

we require h to be differentiable. The proximal gradient method consists of the

following iterations

xk+1 := proxµkg(xk − µk∇h(xk)),

where µk > 0 denotes the step-size parameter. It has been shown that the algorithm

also converges for a fixed step-size, µ, and moreover, in the case where ∇h is L-

Lipschitz continuous, µ can take values in (0, 2
L

] (for more discussion about the

proximal gradient method and its accelerated form see [11]).

On the other hand, the proximal form of ADMM performs variable splitting to the
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unconstrained problem (2.27)

minimize h(x) + g(z)

subject to x = z,

where we now introduce the equality constraint requiring variables x and z to be

equal. Thus, we have the following iterations

xk+1 := proxµh(zk − uk)

zk+1 := proxµg(xk+1 + uk)

uk+1 := uk + xk+1 − zk+1,

where x, z,u ∈ Rn, with u denoting the dual variable.

The advantage of ADMM against the proximal gradient method is that the former

evaluates h(x) and g(z) completely separately, in many cases, yielding the algo-

rithm to perform more efficiently in terms of time complexity. Additionally, none

of the functions h(x) and g(z) are required to be differentiable. Finally, it is easy

to see that, by replacing u = 1
ρ
y, µ = 1

ρ
and matrices A,B with the identity ma-

trix, the ADMM version in (2.19) is equivalent with the proximal version presented

above, and thus proximal ADMM can be viewed as a special case of the standard

ADMM in Section 2.3.1.

2.4 Low-Rank Approximation Methods

A key feature in modern (large-scale) machine learning problems is the limitation

of storing excessively big matrices. Fortunately, in many applications (see [49] and

references therein), these matrices exhibit a low-rank structure. First, consider a

general A ∈ Rn×m matrix. The Singular Value Decomposition of A is summarized

in the following theorem.

Theorem 2.4.1 ([50]). Let A ∈ Rn×m and assume that n < m. Then, there ex-
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ist unitary matrices U ∈ Rn×n and V ∈ Rm×m and a diagonal matrix Σn =

diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn > 0 such that

A = UΣV, Σ =
(
Σn 0

)
where Σ is a diagonal n×m matrix.

The positive constants σ1, . . . , σn are called the singular values of A and when

rank(A) = n they coincide with the square roots of the eigenvalues of the matrix

AAT . If, further, matrix A is known to be of rank-p < n, the above theorem

applies with singular values of Σn be as σ1 ≥ · · · ≥ σp > 0 = σp+1 = · · · = σn.

For the purposes of this work, we consider low-rank approximations of a positive

semi-definite matrix A ∈ Rn×n. We can obtain an rank-p approximation matrix,

Ap, of A by solving the following optimization problem

min
Ap∈Rn×n

‖A−Ap‖2 s.t. rank(Ap) = p, p < n.

It is known that the above optimization problem can be analytically solved through

the eigenvalue decomposition [51, 49]. That is,

A = UΣUT =
(
Up Un−p

)
diag(Σp,Σn−p)

(
Up Un−p

)T
where Σp ∈ Rp×p, Σn−p ∈ R(n−p)×(n−p) are diagonal matrices containing the eigen-

values of A and Up ∈ Rn×p, Un−p ∈ Rn×(n−p) are unitary matrices containing the

corresponding eigenvectors. Then, we construct Ap as

Ap = UpΣpU
T
p .

Note that this method is just a special case of Theorem 2.4.1 for positive semi-

definite matrices. It can be also found in literature under the name Truncated-SVD

(T-SVD) where, by positive semi-definiteness of A, SVD coincides with the eigen-
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value decomposition. The name “truncated” refers to the truncation step, i.e., first

compute the eigenvalue decomposition and then perform the truncation step so that

to retain only the first p eigenvalues by zeroing all the last (n− p) eigenvalues.

2.4.1 Randomized SVD

Deterministic algorithms [52] for computing the T-SVD of a matrix are typically

expensive (of order O(pn2)) but they offer effective approximations. Randomized

methods have lately drawn much attention due to their decreased computational

cost and, in parallel, they have been developed enough so that to offer competi-

tive error bounds. In a survey paper [49], the authors discuss, among others, the

pros and cons of the Randomized SVD method. As discussed, the main limitation

(computational burden) arises in cases where the singular values decay slowly. In

such case, Randomized SVD addresses this difficulty by incorporating q number of

power iterations and a random Gaussian test matrix (q equal 1 or 2 typically suffices

in practice). This choice of test matrix has been shown to almost always produce

efficient approximations. This is illustrated in the following theorem —for more

details on randomized methods see [49].

Theorem 2.4.2 ([49]). Let A ∈ Rn×n be a positive semi-definite matrix. Select

a target rank 2 ≤ p ≤ n/2 and a number q of power iterations. Execute the

Randomized SVD to obtain a rank-2p factorization UΣUT of A. If, further, we

incorporate the truncation step to retain only the first p eigenvalues and vectors we

obtain the following bound

E
∥∥A−UpΣpU

T
p

∥∥
2
≤ λp+1 +

[
1 + 4

√
2n

p− 1

]1/(2q+1)

λp+1,

where the expectation is taken over the randomness of the test matrix and λp+1

denotes the (p+ 1)th eigenvalue of A.

Note that the above bound depends on the (p + 1)th eigenvalue of A which is typi-

cally a very small positive real number (in practice, we encounter matrix structures
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such that there is a large gap between the pth and the (p + 1)th eigenvalues). Thus,

the Randomized SVD method produces an efficient low rank approximation. The

Randomized SVD requiresO(n2 log(p)) computations which constitutes a clear ad-

vantage over the deterministic methods. Finally, we emphasize that Theorem 2.4.2

can be applied to matrices which are not positive semi-definite, i.e., it applies to any

A ∈ Rn×m matrix.

2.4.2 Nyström method

In the context of computational complexity, the Nyström method obtains a good low

rank approximation of a positive semi-definite matrix A with cheap per-iteration

cost [53, 54, 55]. Let a set SN = {1, 2, . . . , n} with Sp ⊆ Sn and denote si be

the ith element of Sp, where i = 1, 2, . . . , p and p ≤ n. The method comprises the

following steps

1. Construct matrix B ∈ Rp×n such that the ith row of B is the si row of A

2. Construct matrix C ∈ Rp×p such that the (i, j)th element of C is the (si, sj)
th

element of A and then compute the pseudo-inverse C+

3. Construct matrix D ∈ Rn×p such that the ith column of D is the si column of

A

Then, the Nyström method builds a low-rank approximation of A as

Ap = DC+B. (2.28)

In general, the set Sp can be constructed using different sampling methods [53,

54, 55]. In this work we consider the naive Nyström method which is based on

uniform sampling without replacement. In particular, we can construct a matrix

P ∈ Rn×p such that ith column of P is the si column of the identity matrix In×n.
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Then, equation (2.28) can alternatively be seen as

Ap = (AP)
(
PTAP

)+
(AP)T . (2.29)

It has been shown that, with high probability, the error bound of the naive Nyström

method is governed by the λp+1 eigenvalue of A [54]. This means that we can

obtain accurate approximations when there is a large gap between the pth and the

(p+ 1)th eigenvalues.



Chapter 3

Sparse Temporal Difference

Learning via Alternating Direction

Method of Multipliers

Convex optimization methods have found many applications in myriad applied

fields. Unfortunately, there exist a number of optimization problems where the con-

vexity of the objective function cannot be assumed. In this setting, local optima are

not guaranteed to offer “good” solutions. As a fixed-point problem, least-squares

temporal difference for Reinforcement Learning falls under this category. More in-

terestingly, recent work in off-line Reinforcement Learning has focused on efficient

algorithms to incorporate feature selection, via `1-regularization, into the Bellman

operator fixed-point estimators. These developments now mean that over-fitting

can be avoided when the number of samples is small compared to the number of

features. However, it remains unclear whether existing algorithms have the ability

to offer good approximations for the task of policy evaluation and improvement. In

this chapter, we propose a new algorithm for approximating the `1-regularized fixed-

point based on the Alternating Direction Method of Multipliers (ADMM). We argue

that the new ADMM is well suited to the aforementioned fixed-point problem, even

though it reduces to a non-convex optimization problem, by demonstrating, with
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experimental results, that the proposed algorithm is more stable for policy iteration

compared to prior work. Furthermore, we derive a theoretical result that states the

proposed algorithm obtains a solution which satisfies the optimality conditions for

the fixed-point problem.

3.1 Introduction

Reinforcement Learning (RL) is a sub-field of machine learning [16]. As the name

suggests, it considers learning problems where, when interacting with the environ-

ment, we learn what to do or what actions to take in order to optimize the desirable

outcome. In particular, RL considers an agent which interacts with the environment.

The agent finds itself in a current state and faces the dilemma of what action to se-

lect, since it is not told which action performs optimally. Moreover, after executing

an action, the environment returns a new state together with a reward (indicating

how good the selected action was) and the procedure continues in the same manner.

In practice, we face problems where a sequence of actions (policy) needs to be taken

in order to achieve our goal. The desirable outcome (or goal) in RL is to maximize

the sum of the expected reward, or equivalently, to find the assignment of actions to

each state that, when executed, maximizes the sum of the expected reward (optimal

policy).

Learning what actions to execute is of central importance in on-line RL. Without

knowing which actions yield the total expected reward, the agent must first gain

experience by executing actions that have not been selected in the past. To this end,

the agent exploits the acquired knowledge and thus selects actions that perform

optimal in the long-term run. This is the so called exploration/exploitation trade-off

which, in essence, balances the task of exploration and exploitation.

In off-line (or batch) RL [22], the situation is slightly different in the sense that the

information is collected a priori. In this case, the agent is not allowed to interact

with the environment in order to obtain the optimal policy but instead is given a fixed
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set of sampled states and actions, typically finite. Using the given information, the

agent forms a random policy which is then used to interact with the environment

—the policy is fixed and does not improve during the procedure. Hence, the goal in

off-line RL is, given the existing data, to find the policy that maximizes the sum of

rewards.

A core problem in off-line RL emerges in situations where the state space is large.

In such cases, explicit computation of the value functions becomes infeasible —

rewards are represented via the value functions which are then subject to maxi-

mization. Instead, approximation techniques provide the only way forward. In

particular, common choices to represent the value functions are those of linear ar-

chitecture [23] where the hypothesis space F is defined by a set of feature vectors.

In this domain, Least-Squares Temporal Difference (LSTD) algorithms [24, 25, 26]

attempt to find the fixed-point of the projected Bellman operator, ΠT , by using a

rich number of samples. Unfortunately, for off-line learning, it is typically the case

in practice that the amount of available data is not sufficient, leading LSTD to poor

predictions. Indeed, in the regression setting, when only a small number of samples

is available relative to the number of features, the least-squares method is known to

be very vulnerable to over-fitting. A typical way to overcome this issue is by in-

corporating `1- and/or `2-regularization known as Lasso [56] and ridge-regression

[57], respectively. The former turns out to be of particular interest in the context

of high-dimensional problems since it produces sparse solutions and therefore per-

forms feature selection.

Many authors have explored regularized approximations for the value functions

[3, 27, 28, 29, 30, 31] as a means to address the over-fitting problem in RL. How-

ever, the majority of these methods are not able to both produce sparse solutions and

treat the function approximation as a fixed-point problem. In particular, in [3] the

authors perform `1-regularization to the Bellman Residual Minimization (BRM).

This means that the method performs feature selection, however, the optimization

problem is not treated as a fixed-point problem. In [27] the `2-regularized fixed-
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point problem is studied which overcomes the over-fitting issue but is not able to

return sparse solutions. In [28, 29] the authors take a different route by solving a

convex optimization problem. As such, the `1-regularization can be easily incorpo-

rated but, again, the optimization problem loses its interpretation as a fixed-point

problem. On the other hand, several recent methods have been proposed which add

an `1 penalty to the fixed-point of the composed Bellman operator. In [31] the au-

thors were the first to introduce the `1-regularization of the least-squares fixed-point.

As the name suggests, their LARS-TD algorithm is inspired by the Least Angle Re-

gression (LARS) algorithm. However, as is shown, the algorithm only converges

to the fixed-point under some strong assumptions which rarely hold in the context

of policy iteration (see Section 3.2.5) where the goal is to find the optimal policy

(also known as control problem). Further, LARS as a homotopy method needs to

compute the complete path of regularization parameters. Therefore, the optimal reg-

ularization parameter is guaranteed to be selected, however, in cases where a dense

solution is required, this fact may result in an inefficient method in terms of time

complexity. Next, in [30] the authors compute the same fixed-point using the linear

complementarity formulation but again the algorithm shares the same conditions

with LARS-TD.

To this end, for such methodology to be practically feasible when aiming for the

optimal policy, there still remains an apparent need to introduce new algorithms to

TD learning in order to efficiently evaluate the `1-regularized fixed-point problem

within policy iteration. In this chapter we propose solving the `1-regularized fixed-

point problem with the help of the Alternating Direction Method of Multipliers

(ADMM) which has been shown to be able to efficiently handle large problems

(for details on ADMM see Section 2.3 and [10, 11]). Thus, our goal is to develop

a method that not only overcomes time complexity issues but also offers optimal

solutions to the context of policy iteration —an area of off-line TD learning which

still suffers. To be precise, our contributions are as follows:

• We employ ADMM for solving the `1-regularized fixed-point problem. To
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the best of our knowledge this is the first ADMM method to be applied on

TD learning. For this reason we name our algorithm ADMM-TD.

• In terms of computational complexity, since the `1-regularized fixed-point

problem is a separable, ADMM is able to exploit its structure by introducing

new variables. This means that ADMM handles each subproblem indepen-

dently thus yielding an efficient algorithm in the context of large-scale op-

timization. We note that if, further, the regularization parameter is known

a-priori, we come up with an even faster optimization method.

• We aim to establish theoretical guarantees of ADMM in the TD context. In

particular, we show that the ADMM-TD solution satisfies the `1-regularized

fixed-point problem optimality conditions. This means that we should ex-

pect efficient approximate solutions comparable with the state-of-the-art, see

LARS-TD in [31]. Note that the TD learning problem, as a fixed-point prob-

lem, it does not correspond to any convex optimization problem and hence, a

proof of convergence is a challenging task and remains open.

• Our preliminary numerical experiments illustrate the efficacy of ADMM-TD.

In particular, for the prediction problem, ADMM-TD compares similarly to

LARS-TD both yielding the same approximation error (this fact was also ex-

plained by our theoretical analysis). However, one should expect for LARS-

TD to return better approximate solutions since it searches the full regular-

ization path (and is able to find the optimal parameter) while ADMM-TD

searches only a small path. This indicates that searching for the full path is

possibly not always necessary. In turn, this means that LARS-TD performs

redundant iterations which result in an increased computational cost. This

is a fact that ADMM-TD exploits by searching only a small subset of the

full path. Further, as noticed above, if the optimal regularization parameter

is known at hand, then LARS-TD loses its efficiency in comparison to non-

homotopy methods.

• In the context of policy iteration, our experimental results show a more stable
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performance for ADMM-TD compared to LARS-TD.

The rest of this chapter is organized as follows. In Section 3.2, we provide the

required background. Specifically, we first review the basic RL problem together

with the necessary theory. We then discuss how the value functions can be approx-

imated. Further we discuss state-of-the-art methods and we present the so called

`1-regularized fixed-point problem.

In Section 3.3, we present the new ADMM algorithm for TD learning. We start

by deriving the algorithm steps and then prove that the solution obtained from the

algorithm satisfies the optimality conditions. We also derive the stopping criteria

of ADMM-TD. Furthermore, we validate the efficiency of the algorithm through

several experiments.

In Section 3.4, we discuss our contributions in the context of the most relevant,

recent work, we provide a general discussion about the proposed method.

3.2 Reinforcement Learning: Background Knowl-

edge

The RL problem is modeled by a Markov Decision Process (MDP). It considers an

agent which interacts in a given environment. In particular, the agent finds itself in a

state at a certain point in time, and the interaction occurs when executing an action

from the set of the available actions. Subsequently, the agent observes a new state

and receives a reward. Based on this new state, the agent faces a similar task, where

now the set of actions might not be the same (see Figure 3.1). The set of executed

actions at each state defines a policy. In this context, the agent’s goal is to find an

optimal policy by maximizing the sum of the expected reward.

More formally, a MDP [2] is defined as the tuple 〈S,A, P,R, γ〉, where S denotes

the set of states and A(s) the set of actions available at each state; a policy, π : S →
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Figure 3.1: A basic reinforcement learning problem. The agent (controller) interacts with
the environment (system), by executing an action, which then returns a new
state along with the associated reward (plot taken from [1]).

A, is a mapping from states to actions; P : S × A× S → p(s′|s, π(s)) ∈ [0, 1] are

the transition probabilities of moving to a new state, s′, after executing an action

π(s) ∈ A(s). When reaching a new state the system returns a reward (or a cost),

R(s, π(s), s′) : S → R; γ ∈ [0, 1) is the discount factor. For ease, we consider dis-

crete state space and finite MDPs. We further assume that the rewards are bounded

by a scalar M <∞, for all s ∈ S and π(s) ∈ A, i.e., sup {R(s, π(s), s′)} ≤M .

Let t = 0, 1, 2, .. be the discrete time step, e.g., st = s and st+1 = s′. The sequence

of rewards received by the agent at each state is denoted as rt+1, rt+2, ..., and thus

the goal is to maximize the discounted sum of rewards, that is

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1.

It is easy to see that maximizing the above equation in absence of the discount

factor, the sum may be infinite. Moreover, γ can be viewed as a weight on future

reward, e.g., as γ approaches zero, the agent accounts more for the early returns.

Moreover, the expected reward, at a given time step t, state s and when executing
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Figure 3.2: A simple environment of two states (plot taken from [2]).

an action a, can be calculated by the following equation

Rt(s, a) =
∑
s′∈S

r(s, a, s′)p(s′|s, a).

In what follows, we revise two simple examples.

Example 1 (Recycling Robot, [16]): We describe a simple real-world example,

that is a robot which has as a job to collect empty cans in an office environment.

The robot is supplied with a “hand” for collecting the cans and a bin to recycle them

while it is moving. Moreover, it has sensors for detecting empty cans, a navigation

system and a rechargeable battery. The robot is controlled by a reinforcement learn-

ing agent and in order to complete its task the agent acts according to the level of the

battery and not according to any factors of the external environment. As a result, we

define the set of states as the current charge level of the battery, i.e., S = (s1, s2),

where s1 and s2 respectively denote the high and the low level of the battery. The

action set available to the agent consists of three actions, A = (a1, a2, a3), where a1

denotes that the agent takes the decision to actively search and collect empty cans,

a2 to remain in the same position and wait for someone to collect a can for itself and

a3 to recharge the battery. Furthermore, when a1 is executed (searching for cans)

it is likely that the robot runs out of battery, while when staying stationary, a2, the

battery level remains the same. If the battery becomes depleted, the robot must be
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rescued and returned to the charging point (yielding a negative reward). We can also

define the action set available to the agent at each state, that is, A(s1) = (a1, a2) and

A(s2) = (a1, a2, a3) —note that a3 is not included in the A(s1) set since recharging

the robot while the battery level remains high is meaningless.

Additionally, the transition probabilities and the rewards of moving to a new state

s′ are the following: (i) P (s1, a1, s1) = α, that is, the probability that the robot

is currently at high level of battery (s1), completes the searching task (a1) and the

battery still remains fully charged (s2) is α, while P (s1, a1, s2) = 1 − α. In both

cases, the agent is rewarded the same i.e., R(s1, a1, s1) = R(s1, a1, s2) = r1; (ii)

P (s2, a1, s2) = β and P (s2, a1, s1) = 1−β while the rewards areR(s2, a1, s2) = r1

and R(s2, a1, s1) = −1 (in the latter case the reward is negative since the robot ran

out of battery and had to be rescued); (iii) P (s1, a2, s1) = 1 and R(s1, a2, s1) = r2,

i.e, the level of the battery always remains the same when robot is waiting (a2)

which yields a reward r2. Note that r1 > r2, r1, r2 > 0 since the robot is able to

collect more empty cans when searching. Finally, when robot recharges the battery

we assume that no cans are collected and thus it yields a zero-reward. See Table 3.1

for the full list of transition probabilities and rewards.

Table 3.1: Recycling Robot: Transition probabilities and expected rewards.

s s′ a P (s, a, s′) R(s, a, s′)

s1 s1 a1 α r1
s1 s2 a1 1− α r1
s1 s1 a2 1 r2
s1 s2 a2 0 r2
s2 s1 a1 1− β −1
s2 s2 a1 β r1
s2 s1 a2 0 r2
s2 s2 a2 1 r2
s2 s1 a3 1 0
s2 s2 a3 0 0

Example 2 [2]: Figure 3.2 illustrates a simple two-state stationary model, where

rewards and transition probabilities remain the same at each time step. In state s1 the

agent is allowed to select from three available actions (a1,1, a1,2, a1,3), while state s2
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supplies the agent with only one action a2,1. The arrows indicate the possible transi-

tions. The braces under each arrow indicate the rewards and transition probabilities

of executing an action, respectively. For instance, when executing action a1,1 the

system evolves in states s1 and s2, both, with probabilities 0.5, respectively, and the

agent receives a reward of 5 units in both states. We can now formally define the

stationary model (assuming only transition probabilities) of Figure 3.2 as follows

Set of states :

S = {s1, s2}.

Set of actions :

A(s1) = {a1,1, a1,2, a1,3}, A(s2) = {a2,1}.

Rewards :

r(s1, a1,1, s1) = 5

r(s1, a1,1, s2) = 5

r(s1, a1,2, s2) = 10

r(s1, a1,3, s1) = 0
r(s2, a2,1, s2) = −1.

Transition probabilities :

p(s1, a1,1, s1) = 0.5

p(s1, a1,1, s2) = 0.5

p(s1, a1,2, s2) = 1

p(s1, a1,3, s1) = 1
p(s2, a2,1, s2) = 1.

Note that transition probabilities p(s2, a2,1, s1), p(s1, a1,2, s1), p(s1, a1,3, s2) are

equal to zero. We can now calculate the expected rewards. Expected rewards :

R(s1, a1,1) = p(s1, a1,1, s1)r(s1, a1,1, s1) + p(s1, a1,1, s2)r(s1, a1,1, s2)

= 0.5× 5 + 0.5× 5 = 5,
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similarly we find

R(s1, a1,2) = 10

R(s1, a1,3) = 0
R(s2, a2,1) = −1.

�

Therefore, the goal is to find the policy that returns the optimal behavior. This can

be achieved by computing the so called value functions, which we review in the

following section.

3.2.1 Value Functions and Optimal Value functions

A policy can be evaluated through the value functions [16]. The state-value func-

tion, V : S → R, as the name indicates, denotes the value of a state for a given

policy and is defined as

V π(s) = Eπ [Rt|st] = Eπ

[
∞∑
k=0

γkrt+k+1|st
]
.

Note that the index π of Eπ refers to the given policy. The state-value function

can be written in a recursive form showing the relationship between the current and

successor states, i.e.,

V π(s) =
∑
a∈A(s)

π(s, a)
∑
s′∈S

P (s, a, s′) [R(s, a, s′) + γV π(s′)] , (3.1)

where π(s, a) is the probability of selecting an action a. However, in practical

problems we only consider deterministic policies where π(s, a) = 1, i.e., the agent

always executes the same action in a given policy and thus we often denote a =

π(s).

Alternatively, one can evaluate a policy using the action-value function, Q : S ×
A→ R. The action-value function indicates “how good” an action is, and is defined
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as

Qπ(s, a) = Eπ [Rt|st, at]

= Eπ

[
∞∑
k=0

γkrt+k+1|st, at
]

=
∑
s′

P (s, a, s′) [R(s, a, s) + γV π(s′)] ,

(3.2)

which effectively connects the state- and the action-value functions. The value func-

tions in their recursive form are also known as the Bellman’s Equations for V π and

Qπ, respectively.

The optimal state- and action-value functions are defined as

V ∗(s) = max
π

V π(s), for all s ∈ S,

Q∗(s, a) = max
π

Qπ(s, a), for all s ∈ S and a ∈ A(s),

respectively. Again, Q∗ can be written in terms of V ∗ as

Q∗(s, a) = E [rt+1 + γV ∗(s′)|st, at] .

Subsequently, we can define Bellman’s optimality equations for V and Q which

satisfy the following recursive forms

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

∑
s′

P (s, a, s′) [R(s, a, s′) + γV ∗(s′)] ,

and

Q∗(s, a) = E
[
rt+1 + γmax

a′
Q∗(st+1, a

′)|st, at
]

=
∑
s′

P (s, a, s′)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
,
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respectively. Equivalently, Bellman’s optimality equation for Q can be written as

Q∗(s, a) = R(s, a, s′) + γ
∑
s′

P (s, a, s′)V ∗(s′).

Using the optimal value functions one can obtain the optimal policy. We say a policy

π∗ is optimal if and only if V π∗ ≥ V π, for any policy π, i.e., it obtains the largest

expected reward, and we denote π∗ ≥ π. An optimal policy π∗ always exists, but

is not necessarily unique even though the optimal value functions are unique (for

more details see [16]). The formula for π∗ is given by the following equation

π∗(s) = argmax
a

Q(s, a)

= argmax
a

∑
s′

P (s, a, s′) [R(s, a, s′) + γV π(s′)] .

In addition, Bellman’s equation for V can be viewed as a linear system of equations,

and since we assume large but finite S andA sets it can be expressed in matrix form.

In particular, assuming deterministic policies (π(s, a) = 1), equation (3.1) can be

written as

V π = R + γP πV π, (3.3)

which is a set of |S| linear equations, V ∈ R|S|, where |S| is the total number of

states. Furthermore, R is the vector of rewards, R ∈ R|S|,

R =


R1

R2

...

R|S|

 =



∑
s′∈S P (s1, a, s

′)R(s1, a, s
′)∑

s′∈S P (s2, a, s
′)R(s2, a, s

′)
...∑

s′∈S P (s|S|, a, s
′)R(s|S|, a, s

′)

 , s ∈ S,
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and P π is the matrix of transition probabilities, P ∈ R|S|×|S|,

P π =


P (s1)

P (s2)
...

P (s|S|)

 , P (si)
T ∈ R|S| for i = 1, . . . , |S|.

Finally, note that the Bellman’s optimality equations for V and Q are not linear.

3.2.2 Bellman Operator

We consider the Bellman operator in order to calculate the value and the optimal

value functions. Let B(s) ∈ R|S| be the set of all state-value functions, i.e.,

B(s) = {V |V : S → R} , ||V ||∞ <∞}, ||V ||∞ = max
s∈S
{|V (s)|}.

The Bellman operator [1], Tπ : B(s)→ B(s), is defined as

(T πV )(s) = R(s, π(s), s′) + γ
∑
s′∈S

P (s, π(s), s′)V π(s′), s ∈ S.

From the above equation and equation (3.3) we have that

T πV π = V π. (3.4)

Moreover, it has been shown that T π is a maximum norm contraction (L-Lipschitz

continuous with L ∈ (0, 1)), i.e.,

‖T πW − T πV ‖∞ ≤ γ‖W − V ‖∞,

for 0 < γ < 1. Therefore, Banach’s fixed-point theorem applies, which in turn

implies the existence and uniqueness of the fixed-point of equation T πV π = V π

—for more details see [1].
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Alternatively, one can compute the state-value function by solving a linear system

of equations. Equation (3.4) implies that V π = R+γP πV π, and when R and P are

known, which is typically not true in practice, it can be solved analytically yielding

V π = (I − γP π)−1R.

Similarly, we can define the Bellman operator for the action-value function. Let

now B(s, a) ∈ R|S|×|A| be the set of all action-value functions such that

B(s, a) = {Q|Q : S × A→ R} , ||Q||∞ <∞}, ||Q||∞ = max
s∈S
{|Q(s, a)|}.

Hence, the Bellman operator, Tπ : B(s, a)→ B(s, a), is defined as

T πQπ(s, a) = R(s, a, s′) + γ
∑
s′∈S

P (s, a, s′)Q(s′, π(s′)), (s, a) ∈ S × A,

which, as before, yields

T πQπ = R + γP πQπ.

Again, due to Banach’s theorem, we have that the fixed-point of T πQπ = Qπ exists

and is unique, for γ ∈ (0, 1).

Finally, Banach’s fixed-point theorem also holds for the Bellman’s optimality op-

erator T ∗, for both V ∗ and Q∗. Define the Bellman optimality operator for V ∗ as

T ∗V : R|S| → R|S| and for Q∗ as T ∗Q : R|S|×|A| → R|S|×|A|. It has been shown that the

fixed-point equations

T ∗V V
∗ = V ∗ and T ∗QQ

∗ = Q∗,

have unique solutions since operators T ∗V and T ∗Q are maximum norm contractions

for γ ∈ (0, 1).
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3.2.3 Function Approximation

In many practical problems, we often deal with large state spaces and thus storing

and filling arrays of the above form becomes infeasible due to time and memory

constraints. In such situations, approximation of the value functions is necessary.

The most common choice to represent the value functions are those of linear archi-

tecture using a set of features, i.e,

V̂ π = Φw,

where Φ ∈ R|S|×n is the feature matrix, that is

Φ =


φ(s1)

T

φ(s2)
T

...

φ(s|S|)
T

 ,

where φ(si) ∈ Rn, i = 1, . . . , |S| and w ∈ Rn is the vector of weights. Similarly,

action-value function can be approximated as follows

Q̂π = Φw =
n∑
i=1

wiφi(s),

where Q̂π ∈ R|S||A|, Φ ∈ R|S||A|×n and w ∈ Rn.

Gaussian Radial Basis Functions

Throughout this chapter, we will be representing the value functions using Gaussian

Radial Basis functions (RBFs) as features,

ft0,r0(x) = e−t0(x−r0)
2

,

where t0 denotes the scale factor of the RBF and r0 its location. Given the scale

factor t0, the location r0, N -number of states and n-number of features we have
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that

φ(s) =
[
1 ft,r1(s) · · · ft,rn−1(s)

]T
,

where s ∈ S, t = r0(n−2)
N−1 and rj = 1 + (j − 1)N−1

n−2 with j = 1, . . . , n − 1.

Furthermore, it is common to use two dimensional RBFs when the state space lies

in two dimensions, i.e.,

ft0,r0(x, y) = e−(tx(x−rx)
2+ty(y−ry)2),

where, now, t0 = (tx, ty) is the scale factor of the RBF and r0 = (rx, ry) denotes

its location in R2, respectively. Additionally, we define the mapping between states

s ∈ S and the R2 space as

(x, y) ∈ [0, xmax]× [0, ymax].

Again, givenN -number of states, a g×g grid, the scale t0 = (tx, ty) and the location

r0 = (rx, ry), the feature vector is given by

φ(s = x, y) =
[
1 ft,r1(s) · · · ft,rn−1(s)

]T
,

where s ∈ S, t = ( tx(g+1)
xmax

, ty(d+1)

ymax
) and, rj ∈ {(xmax

g+1
k, ymax

g+1
d) | k, d = 1, . . . , g},

j = 1, . . . , g2, thus total number of features is given by n = g2 + 1. It is also

possible to concatenate RBFs at different scales (or otherwise at different grids).

We call these multilevel RBFs, where now the total number of features is given

by n = 1 +
∑q

i=1 g
2
i , where q denotes the total number of different levels. For

example, let [2, 4, 8, 16, 32] be the two dimensional grid, that is, we concatenate the

RBFs at different scales plus a constant offset as discussed above. As a result, the

total number of features is n = 1+
∑5

i=1 g
2
i = 1365 (for more details see [4, Section

5.2.5].
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  T(Φw)

  Π (Φw)T

V =Φw

BRM minimizes
this distance

LSTD
minimizes this

distance

span(Φ)

Figure 3.3: LSTD fixed-point. Φw lies on the hypothesis space F spanned by the columns
of Φ (i.e., span(Φ)). However, when applying the Bellman operator T , T (Φw)
does not necessarily lie onto span(Φ). Hence, LSTD first minimizes the dis-
tance ‖T (Φw) − y‖, for any y ∈ F , yielding the projection ΠT (Φw) onto
span(Φ), and then minimizes ‖Φw − ΠT (Φw)‖. On the other hand, Bellman
Residual Minimization (BRM) minimizes ‖Φw − T (Φw)‖ directly, however,
this optimization problem does not reduces to the fixed-point problem of TD
learning (for more details on BRM see [3]) —plot taken from [4].

3.2.4 Least-Squares Temporal Difference

Approximating value function as discussed above, defines a hypothesis space

spanned by the columns of Φ, i.e., F = {Φw,w ∈ Rn}. However, when applying

the Bellman operator, the point T πV̂ π does not necessarily lie onto F . LSTD [26]

solves the problem of approximating the vector w by projecting T πV̂ π back onto

the hypothesis space. The objective function subject to approximation is therefore

defined as V̂ π = ΠT π(V̂ π), where Π is the projection operator. As a consequence,

LSTD searches for the fixed-point, V̂ π, of the composed operator ΠT π. The latter

fixed-point problem can be then written as an optimization problem, i.e.,

w = f(w) = θ = argmin
θ∈Rn

‖Φθ − (R + γPΦw)‖2ξ , (3.5)
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where ξ ∈ R|S|×|S| is a diagonal matrix with entries representing the stationary

distribution of the states (where ‖x‖2ξ = xT ξx). To make things more clear, the

above fixed-point problem is effectively a nested optimization problem, that is

θw = argmin
θ∈Rn

‖Φθ − (R + γPΦw)‖2

w∗ = argmin
w∈Rn

‖Φw − Φθw‖2,
(3.6)

where the first equation accounts for the projection while the second for the mini-

mization (for intuition, see Figure 3.3).

The LSTD fixed-point problem (3.5) requires knowledge of P and the construc-

tion of a large matrix, Φ. To this end, LSTD collects m samples of the form,

{si, ai, ris′i}i=1,...,m, possibly sampled over several trajectories. This results in the

sampled matrices

Φ̃ =


φ(s1)

T

φ(s2)
T

...

φ(sm)T

 , Φ̃′ =


φ(s′1)

T

φ(s′2)
T

...

φ(s′m)T

 , R̃ =


r1

r2
...

rm

 ,

where Φ′ = PΦ. Replacing the sampled features and reward matrices in (3.5) we

have that

w = argmin
θ∈Rn

‖Φ̃θ − (R̃ + γΦ̃′w)‖2.

The above problem can be solved explicitly using the nested formulation of the

fixed-point problem. Hence, equation (3.6), using the sampled features and rewards

matrices replaced, implies

Φ̃T (Φ̃θw − (R̃ + γΦ̃′w)) = 0

Φ̃T (Φw − Φθw) = 0
⇒

Φ̃T Φ̃θw − Φ̃T R̃− γΦ̃T Φ̃′w = 0

w = θw

,
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yielding the following set of linear equations

Ãw = b̃ ⇒ w = Ã−1b̃ (3.7)

where Ã ∈ Rn×n, b̃ ∈ Rn are defined as

Ã = Φ̃T
(

Φ̃− γΦ̃′
)

b̃ = Φ̃T R̃,

respectively. Alternatively, one can obtain the solution of the fixed-point problem

by solving analytically the equation

V̂ π = ΠT π(V̂ π)

Φ̃w = Φ̃(Φ̃T Φ̃)−1Φ̃T (R̃ + γΦ̃′w)

where the projection is given explicitly by Π = Φ̃(Φ̃T Φ̃)−1Φ̃T .

Similarly to V function, the objective function subject to approximation for Q is

Q̂π = ΠT π(Q̂π) which, again, can be solved analytically yielding the same set of

linear equation, (3.7). The only difference is that the sampled feature matrices are

now defined as follows

Φ̃ =


φ(s1, a1)

T

φ(s2, a2)
T

...

φ(sm, am)T

 , Φ̃′ =


φ(s′1, π(s1))

T

φ(s′2, π(s2))
T

...

φ(s′m, π(sm))T ,


where again Φ′ = PΦ. Hence, the algorithm for the Q function is called LSTDQ.

For finding the optimal policy, the authors in [25] introduced Least-Squares Policy

Iteration (LSPI) algorithm which is based on the general policy iteration framework

for dynamic programming. Using the Q value, the optimal policy can be obtained
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Algorithm 3.1 LSPI
1: Input:
2: {si, ai, ri, s′i}i=1,...,n and form Φ̃
3: Initialize:
4: γ ∈ [0, 1]
5: w0 ← 0 and obtain π0
6: πnew ← π0
7: repeat
8: π ← πnew

9: πnew ← argmax
a∈A

{Φ̃w} (w evaluated by LSTDQ using policy

π)
10: until convergence, i.e., πnew ≈ π
11: return π

from

π∗(s, a) = argmax
a∈A

Q̂(s, a) = argmax
a∈A

n∑
i=1

φi(s, a)Twi. (3.8)

The LSPI algorithm is an “off-policy” mechanism in the sense that the policy used

to estimate Q function is different from the one used to sample state-action pairs.

LSPI works as follows: a random policy π (subject to evaluation), characterized by

the sampled features and the weight parameter w, enters the LSTDQ together with

the samples of the form {si, ai, ri, s′i}i=1,...,m. Then, the maximization equation

(3.8) is performed to identify the new policy πnew yielding also, through LSTDQ,

an improved wnew vector. Afterwards, the algorithm continues in the same manner

until either two successor policies to be equivalent or ‖wnew − w‖ < ε, for some

small ε > 0. LSPI is shown in Algorithm 3.1.

In summary, LSTD has been found to perform very well when the number of sam-

ples is large and the number of features is small. However, there is a number of

drawbacks that accompany LSTD. The main one emerges when m < n (fewer

samples compared to features). In this case, least-squares is prone to over-fitting

and results in poor approximations. Moreover, the matrix Ã need not be full col-

umn rank and thus its left-inverse is not always guaranteed to exist. Finally, when

n is too large the method is not feasible due to memory and time constraints since
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LSTD requires O(n2) computations.

3.2.5 LARS-TD

To overcome the limitations arising in LSTD, the authors in [31] proposed LARS-

TD. They apply the `1-regularization penalty to the LSTD objective function which

has the characteristic of avoiding over-fitting and performing sparse selection. More

precisely, the penalty is added to the projection of T πV onto the hypothesis space

F , which yields the following optimization problem

w = argmin
θ∈Rn

‖Φ̃θ − (R̃ + γΦ̃′w)‖2 + λ‖θ‖1, (3.9)

or equivalently, it can be viewed in a nested form as

θw = argmin
θ∈Rn

‖Φ̃θ − (R̃ + γΦ̃′w)‖2 + λ‖θ‖1

w∗ = argmin
w∈Rn

‖Φ̃w − Φ̃θw‖2.

The above optimization problem can be alternatively written as a fixed-point

Φ̃w = Π̃`1T̃ (Φ̃w),

for which it has been proved that the operator Π̃`1T̃ is a γ-contraction, which in turn

ensures the existence and uniqueness of the fixed-point Φ̃w, see [58] —although we

note that w, itself, need not be unique.

To efficiently solve for the `1-regularized fixed-point in (3.9), the authors employ the

Least Angle Regression (LARS) method. LARS is based on a homotopy method

which allows the computation of the complete regularization path, for details see

[59]. It has been shown that as long as Ã is a P -matrix1, each LARS-TD step

satisfies the optimality conditions, and thus the algorithm always finds a solution to

(3.9).
1A square matrix A, not necessarily symmetric, is a P -matrix when all its principle minors are

positive.
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It is instructive to review analytically the major steps of the optimality conditions

since they play an important role for LARS-TD and our proposed algorithm (cf.

Section 3.3).

Define G(θ) = 1
2
‖Φ̃θ− (R̃+ γΦ̃′w)‖2 + λ‖θ‖1, and thus the optimality conditions

for the convex problem are

0 ∈ ∂G(θ), (3.10)

where ∂ denotes the sub-differential (since ‖θ‖1 is not differentiable). Moreover,

we have that

∂G(θ) = Φ̃T (Φ̃θ − (R̃ + γΦ̃′w)) + λ∂‖θ‖1,

where

∂‖θ‖1 ∈


{+1}, θi > 0

[−1, 1], θi = 0

{−1}, θi < 0.

Therefore, equation (3.10) implies that

[Φ̃T (Φ̃θ − (R̃ + γΦ̃′w))]i ∈


{−λ}, θi > 0

[−λ, λ], θi = 0

{λ}, θi < 0.

Now, setting w = θ, as required at the fixed-point, the optimality conditions for the

problem (3.9) become

[Φ̃T R̃− Φ̃T
(

Φ̃− γΦ̃′
)
w]i = [b̃− Ãw]i ∈


{λ}, wi > 0

[−λ, λ], wi = 0

{−λ}, wi < 0.

(3.11)

A solution w satisfying the optimality conditions yields the fixed-point Φ̃w of the

composed operator Π̃`1T̃
π.
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LARS-TD enjoys many of the benefits of LARS, in that it follows a homotopy

path and hence it offers all the solutions w∗(λ). Its computational complexity is

O(mnk2), where k denotes the cardinality of the active set. Therefore, if the so-

lution is sparse enough, the algorithm can compute the fixed-point very efficiently,

i.e., after a few numbers of iterations. On the other hand, LARS-TD also inherits

the LARS drawbacks, too. If the whole path needs to be computed, the complexity

reduces to a full least-squares, requiring to invert a nearly dense Ã, many times.

Additionally, LARS-TD converges to the fixed-point under the assumption that Ã

is a P -matrix. However, Ã is not necessarily a P -matrix when samples are collected

off-policy where, inevitably, the distribution of states is different from the distribu-

tion of the underlying policy. To overcome this issue, the authors propose adding an

`2-penalty to the fixed-point problem, known as elastic net [60], to ensure that Ã is

positive definite. Elastic net formulation of the problem (3.9) nevertheless comes at

cost of reduced sparsity. More importantly, in the context of policy iteration, com-

puting an almost complete regularization path could be inefficient, as also discussed

in [30].

3.3 Sparse Temporal Difference Learning via ADMM

Our proposed approach is to apply ADMM to TD learning for solving the `1-

regularized fixed-point problem. ADMM exploits some nice characteristics of the

structure of (3.9) which match those of `1-regularization in linear regression. For

this reason, we name the algorithm ADMM-TD.

3.3.1 ADMM-TD

We proceed by deriving the ADMM-TD steps. Consider the optimization problem

(3.9) and note that it is convex over θ, i.e.,

minimize
θ∈Rn

1

2
‖Φ̃θ − (R̃ + γΦ̃′w)‖2 + λ‖θ‖1.
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The above problem has the property of being separable and, hence, it can been split

into two parts, namely f(·) and g(·). Furthermore, the requirement that the separate

variables are equal yields the following equivalent problem

minimize f(θ, w) + g(z) subject to θ = z, (3.12)

where f(θ, w) = 1
2
‖Φ̃θ − (R̃ + γΦ̃′w)‖2 and g(z) = λ‖z‖1. The ADMM-TD

steps for the fixed-point problem can be derived through the augmented Lagrangian

which, in terms of the proximal form, reduces to

wk+1 := f(w) = θk+1 = proxµf (zk − uk) (3.13)

zk+1 := proxµg(wk+1 + uk) (3.14)

uk+1 := uk + wk+1 − zk+1, (3.15)

where u = 1
ρ
y, u ∈ Rn, denotes the scaled dual variable of the dual variable y ∈ Rn

and µ = 1
ρ
> 0 the step-size (or penalty) parameter (for more details on ADMM

and its proximal version see [10, 11] and Section 2.3). The proximal operator of the

first subproblem (3.13) is defined as

θk+1 :=argmin
θ∈Rn

{
1

2
‖Φ̃θ − (R̃ + γΦ̃′w)‖2 +

ρ

2
‖θ − zk + uk‖2

}
,

which can be solved by setting the gradient, w.r.t. θ, equal to zero, i.e.,

∇θ

(
1

2
‖Φ̃θ − (R̃ + γΦ̃′w)‖2 +

ρ

2
‖θ − zk + uk‖2

)
= 0,

which is equal to

Φ̃T (Φ̃θ − (R̃ + γΦ̃′w)) + ρ(θ − zk + uk) = 0.
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At the fixed-point we requirew = θ (as discussed in Section 3.2.4) and using simple

algebra we have that

Φ̃T Φ̃w − Φ̃T R̃− γΦ̃T Φ̃′w + ρw − ρ(zk + uk) = 0

⇒ (Φ̃T Φ̃− γΦ̃T Φ̃′ + ρI)w = Φ̃T R̃ + ρ(zk + uk)

⇒ (Φ̃T (Φ̃− γΦ̃′) + ρI)w = Φ̃T R̃ + ρ(zk + uk),

and thus it follows the fixed-point solution

wk+1 :=
(
Ã+ ρI

)−1 (
b̃+ ρ(zk − uk)

)
, (3.16)

where Ã = Φ̃T
(

Φ̃− γΦ̃′
)

and b̃ = Φ̃T R̃. Note that ρ equal to zero yields ex-

actly the LSTD fixed-point solution. For solving the second subproblem (3.14), we

evaluate the proximal operator with respect to the previous iteration, i.e.,

zk+1 := argmin
z∈Rn

{
‖z‖1 +

ρ

2
‖wk+1 − z + uk‖2

}
.

Using subdifferential theory we can obtain a closed form solution, that is,

0 ∈ ∂(‖z‖1 +
ρ

2
‖wk+1 − z + uk‖2)

which reduces to the soft-thresholding shrinkage operator [61]

zk+1 := Sλ/ρ(wk+1 + uk), (3.17)

with

Sβ(x) = sgn(x)�max {|x| − β, 0} , x ∈ Rp, (3.18)
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and where sgn(x) is the signum function defined as

[sgn(x)]i =


+1, xi > 0

0, xi = 0

−1, xi < 0.

(3.19)

The soft-thresholding is a component-wise operation, and thus � denotes the

component-wise multiplication. Equivalently, the soft thresholding operator can

be seen in the following form

Sβ(x) = (x− β)+ − (−x− β)+.

The ADMM-TD pseudocode is presented in Algorithm 3.2. Note that the vector w

will be equal to z, and hence sparse, only in the limit as indicated by the subproplem

(3.15).

Algorithm 3.2 ADMM-TD
1: Input:
2: {si, ri, s′i}i=1,...,n and form Φ̃ and Φ̃′

3: Initialize:
4: γ ∈ [0, 1], λ ≥ 0 , ρ > 0

5: Ã← Φ̃T
(

Φ̃− γΦ̃′
)
, b̃← Φ̃TR

6: for k = 0, 1, . . . do
7: wk+1 := (Ã+ ρI)−1(b̃+ ρ(zk − uk))
8: zk+1 := Sλ/ρ(w

k+1 + uk)
9: uk+1 := uk + wk+1 − zk+1

10: end for
11: return w

3.3.2 Stopping Criteria

The stopping criteria used for ADMM-TD are similar to those discussed by the

authors in [10], see also Section 2.3. More precisely, for deriving the stopping

criteria we first need to examine the necessary and sufficient optimality conditions
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for the ADMM-TD problem. Those consist of primal feasibility

w∗ − z∗ = 0, (3.20)

and dual feasibility

0 = ∇θf(w∗) + y∗ (3.21)

0 ∈ ∂g(z∗)− y∗ (3.22)

The above optimality conditions can be easily obtained from the augmented La-

grangian of the problem (3.12). In equation (3.21) we use the gradient, ∇θf(w∗),

and not the subdifferential, ∂, since f(·) is differentiable (subproblem 3.13).

First, primal feasibility, equation (3.20), implies that the primal residual

rk+1 = wk+1 − zk+1 (3.23)

must be equal to zero as k →∞.

Moreover, we now have that θk+1 minimizes Lρ(θ, zk, yk). Taking the gradient w.r.t.

θ we have that

0 = ∇θf(θk+1, w) + yk + ρ(θk+1 − zk)

= ∇θf(wk+1) + yk + ρ(wk+1 − zk),

where the second equation obtained by setting w = θ since we are searching the

fixed-point. Incorporating now the dual variable update equation, yk+1 = yk +

ρ(wk+1 − zk+1), into the last equation, we have that

0 = ∇θf(wk+1) + yk+1 − ρ(wk+1 − zk+1) + ρ(wk+1 − zk)

= ∇θf(wk+1) + yk+1 + ρ(zk+1 − zk),
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or

ρ(zk − zk+1) = ∇θf(wk+1) + yk+1.

The last two equations indicate that the quantity

dk+1 = ρ(zk − zk+1) (3.24)

must vanish in the limit in order for the optimality condition (3.21) to hold. More-

over, dk+1 can be considered as the dual residual.

Furthermore, zk+1 minimizes Lρ(wk+1, z, yk) which yields

0 ∈ ∂g(zk+1)− yk − ρ(wk+1 − zk+1)

∈ ∂g(zk+1)− yk+1 + ρ(wk+1 − zk+1)− ρ(wk+1 − zk+1)

∈ ∂g(zk+1)− yk+1,

implying that the optimality condition (3.22) is always satisfied.

As a result, primal and dual residuals (equations (3.23) and (3.24), respectively)

can be chosen as the stopping criteria as both must converge to zero as k → ∞. In

particular, as similarly discussed in [10], we require primal and dual residual to be

small quantities, that is

‖rk+1‖ ≤ εprimal and ‖dk+1‖ ≤ εdual,

where the positive quantities εprimal and εdual denote the primal dual feasibility tol-

erances, respectively. Note that these tolerances show how much suboptimal we

would like to be compared to the optimal solution. Finally, primal and dual feasi-

bility tolerances can be evaluated according to the relative and absolute tolerances,
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εabs and εrel respectively, i.e.,

εprimal =
√
n εabs + εrel max {‖wk‖, ‖zk‖}

εdual =
√
n εabs + εrel‖yk‖

=
√
n εabs + εrel‖ρuk‖,

where εabs and εrel are positive quantities and
√
n because of the fact that w, z, u ∈

Rn.

3.3.3 Properties of ADMM-TD

In what follows, we show that the ADMM-TD fixed-point solution, w∗, is also a

solution to the `1-regularized fixed-point problem, (3.9), with optimality conditions

(3.11).

Lemma 3.3.1. The fixed-point solution, w∗, as obtained from the ADMM-TD it-

erations in Algorithm 3.2, satisfies the optimality conditions (3.11), and is thus a

solution to problem (3.9), for any λ ≥ 0 and ρ > 0.

Proof. At the fixed-point, ADMM-TD iterations satisfy the following equations

w∗ = (Ã+ ρI)−1(b̃+ ρ(z∗ − u∗)) (3.25)

z∗ = Sλ/ρ(w
∗ + u∗) (3.26)

u∗ = u∗ + w∗ − z∗. (3.27)

Equation (3.27) implies that w∗ = z∗. From (3.25) it follows that

(Ã+ ρI)w∗ = b̃+ ρw∗ − ρu∗

⇔ ρu∗ = b̃− Ãw∗

⇔ u∗ =
1

ρ
(b̃− Ãw∗).

(3.28)
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Similarly, equation (3.26) can be rewritten as:

w∗ = Sλ/ρ(w
∗ + u∗). (3.29)

Now, combining (3.28) with (3.29) we have that

w∗ = Sλ/ρ

(
w∗ +

1

ρ
(b̃− Ãw∗)

)
. (3.30)

From this point, the proof parallels those in [61] and [62]. Using now the definition

of the shrinkage operator (3.18), the right-hand side of the equation (3.30) can be

written as

sgn

(
w∗i +

1

ρ
[b̃− Ãw∗]i

)
max

{∣∣∣∣w∗i +
1

ρ
[b̃− Ãw∗]i

∣∣∣∣− λ

ρ
, 0

}
.

Since the max operator is nonnegative, the sign of operator sgn must agree with the

sign of w∗i . Therefore, if w∗i > 0, it follows by definition of sgn operator, (3.19),

that

sgn

(
w∗i +

1

ρ
[b̃− Ãw∗]i

)
= 1,

and also that

max

{∣∣∣∣w∗i +
1

ρ
[b̃− Ãw∗]i

∣∣∣∣− λ

ρ
, 0

}
= w∗i +

1

ρ
[b̃− Ãw∗]i −

λ

ρ
.

Replacing the above results to the equation (3.30) we have that

w∗i = w∗i +
1

ρ
[b̃− Ãw∗]i −

λ

ρ

⇔ [b̃− Ãw∗]i = λ, w∗i > 0,

as the optimality conditions, (3.11), indicate. With similar operations one can show

that [b̃− Ãw∗]i = −λ, for any w∗i < 0.
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Finally, w∗i = 0 implies either that

sgn

(
1

ρ
[b̃− Ãw∗]i

)
= 0, (3.31)

or

max

{∣∣∣∣1ρ [b̃− Ãw∗]i
∣∣∣∣− λ

ρ
, 0

}
= 0. (3.32)

In the first case, (i), we must have that

[b̃− Ãw∗]i = 0,

which satisfies the optimality conditions. From the second case, ((ii)), it follows

that ∣∣∣∣1ρ [b̃− Ãw∗]i
∣∣∣∣− λ

ρ
≤ 0

⇔ − λ ≤ [b̃− Ãw∗]i ≤ λ

which concludes the proof.

The above lemma indicates that the ADMM-TD solves the fixed-point problem

(3.9), and that the above proof also holds for w = z. A convergence proof of

the ADMM-TD to the fixed-point remains outstanding. However, our experimental

results in Section 3.3.4 below indicate comparable, if not better, behavior relative to

the LARS-TD algorithm.

3.3.4 Experiments

The four-rooms grid problem, as discussed in [4, Section 5], was used to compare

the proposed ADMM-TD with LARS-TD. The problem involves a two dimensional

grid with total number of states S = M ×N , where M and N denote the rows and

columns respectively and are chosen as the largest factors of S. The grid is split

into four interconnected rooms where only the neighbor rooms are connected to



3.3. Sparse Temporal Difference Learning via ADMM 82

400 500 600 700 800 900 1000

m

0.5

1.0

1.5

2.0

2.5

3.0

3.5

||V
−
V̂
||

larsTD
admmTD

(a) State-Value Function

1600 1800 2000 2200 2400

m

0

5

10

15

20

25

30

‖Q
−
Q̂
‖

larsTDQ
admmTDQ

(b) State-Action Value Function

Figure 3.4: (a) Averaged approximation error over 50 trials for V function using 1365 fea-
tures versus samples m. As shown both methods perform similarly when sam-
ples are collected on-policy. (b) Averaged approximation error over 50 trials for
Q function using 2728 features versus samples m. ADMM-TD is able to of-
fer better approximations for Q function when samples are collected off-policy
since LARS-TD, in order not to violate the optimality conditions, incorporates
also an `2 regularization (elastic net).

each other. The grid maps a state s ∈ S to the grid location, (i, j) as follows

s 7→
(
d s
N
e, (s− 1) mod N

)
, s = 1, . . . ,MN and (i, j) 7→ (i− 1)N+j.

Goal states are the states S − 1, S − 2. The agent receives a reward of 1 when it

visits the goal states and receives−1 elsewhere. The action set available to the agent

comprises eight actions —agents with these characteristics are called “king-move”

agents due to the king player in the chess game which is able to move towards all

possible directions, i.e., A = (N,S,W,E,NW,NE, SW, SE). Each action has a

probability of success of 0.85.

We used the four-rooms environment with a total of 25 states in all our experi-

ments, and thus goal states are the states 24 and 23. The value functions are rep-

resented with Gaussian Radial Basis Functions (RBFs) concatenated over different

two-dimensional grids (as exactly was applied in [31]. Training samples are col-

lected in different episodes of 5 steps each. The step-size parameter is kept fixed for

all the experiment, ρ = 0.1. To select the most effective value of the regularization
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(a) (b)

Figure 3.5: (a) 10-fold cross-validation (CV) versus regularization parameter λ; minimum
CV achieved for λ = 0.214. (b) averaged sparsity versus regularization param-
eter λ; λ = 0.214 yields approximately 227 nonzero features.

parameter, we use K-fold cross-validation (CV), for a total of 100 values of λ, with

K either 5 or 10 according to the magnitude of samples. As a stopping criterion for

the ADMM-TD algorithm, we selected the values εabs = 10−2 and εrel = 10−4 for

absolute and relative tolerance, respectively (see Section 3.3.2).

In the first experiment, Figure 3.4a, we approximate the state-value function using

1365 features concatenated over [2, 4, 8, 16, 32] grids, which indicate the scales of

RBFs. We compare the performance of the algorithms over different number of

samples (400, 700, 1000) collected on-policy, in 50 trials. Further, for obtaining the

best value of the regularization parameter λ, we performed K-fold CV with K = 5.

As expected for the prediction problem, where the samples are collected on-policy,

LARS-TD and the Lasso formulation of ADMM-TD yielded similar averaged ap-

proximation errors and both were always able to find the fixed-point solution.

Subsequently, we test both algorithms in the context of action-value function ap-

proximation. In this experiment we supply both methods with 2728 features con-

catenated over [2, 4, 8, 16] grids. Again, we average our results over 50 trials using

different number of samples (see Figure 3.4b). This time, we collected our samples
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Table 3.2: Mean simulated reward (20 trials) ± standard error between ADMM-TD and
LARS-TD for m = (1500, 2000) samples and 2728 features —the larger the
averaged simulated reward the better the policy is. ADMM-TD yields better
policies compared to the elastic net formulation of LARS-TD.

averaged simulated reward
No. of samples ADMM-TD LARS-TD

1500 73.06± 5.001 66.76± 6.91
2000 73.77± 3.47 67.78± 7.14

off-policy (executing a random policy at each episode). Under these circumstances,

LARS-TD was not always able to find a solution. In particular, we found LARS-TD

to violate the optimality conditions 27/150 times, while ADMM-TD never failed.

For this reason, the LARS-TD results, illustrated in Figure 3.4b, incorporate `2-

regularization (elastic net) as also proposed in [31]. However, this modification in

LARS-TD comes with the drawback of increased error and computational cost due

to reduced sparsity. For instance, 10-fold cross-validation in the case of m = 1500

indicates λ = 0.214 producing about 200 nonzero features (Figures 3.5a, 3.5b),

while for the same example, LARS-TD produces approximately 2000 nonzero fea-

tures. As a result, ADMM-TD yields decreased averaged approximation error com-

pared to the elastic net formulation of LARS-TD as illustrated in Figure 3.4b. We

also performed the same experiment using even smaller number of samples, i.e.,

m = 1000. In this case, ADMM-TD was found to violate the optimality condi-

tion only once over 50 trials whilst LARS-TD 13 times over 50 trials which again

indicates the improved performance of ADMM-TD compared to LARS-TD in the

off-policy scenario.

In the final experiment, the ability of both algorithms to find good policies (policy

iteration) is evaluated. We use (1500, 2000) samples and, as before, the samples are

collected in the same manner. The results are averaged over 20 trials where each

policy iteration trial is run until either convergence to the optimal solution or a max-

imum of 15 steps is reached. In this setting, we found that LARS-TD violated the

optimality conditions repeatedly, and hence was never able to find a good policy.

This is understandable because the policy changes drastically at each step due to
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the rich available action set. On the other hand, given enough samples, ADMM-TD

never failed to reach the optimal policy —again, we only found ADMM-TD not

satisfying the optimality conditions for m ≤ 1000. Therefore, in order to compare

both methods in terms of the simulated reward, we, again, apply the an `2 regu-

larization in LARS-TD algorithm. Nevertheless, LARS-TD now requires storing

and inverting a square matrix with almost 2000 entries (as described in the previous

paragraph) many times at each policy iteration step. The fact that LARS-TD com-

putes a complete homotopy path within policy iteration makes the algorithm ineffi-

cient with respect to time complexity (the same issue is also discussed in [30]. As

a result, for practical purposes, we tuned both algorithms to produce no more than

200 nonzero features as indicated by the 10-fold cross-validation (Figure 3.5). In

this context, ADMM-TD yielded better policies compared to LARS-TD, as shown

in Table 3.2 (note that the largest value of averaged simulated reward denotes the

best policy). Furthermore, we noted that approximately 5 policy iteration steps were

needed for ADMM-TD to reach an optimal policy, while LARS-TD needed more

than 10 steps in average.

3.4 Conclusion and Perspectives

In this chapter we proposed an alternative off-line algorithm for solving the `1 regu-

larized fixed-point. We validated the efficacy of our algorithm against LARS-TD in

a complex experimental environment with many available actions. Our results indi-

cate that, given enough samples, ADMM-TD is able to find the fixed-point solution

even within the policy iteration procedure. Furthermore, our initial experiments

indicate that, for this particular example we consider in the previous section, our

proposed algorithm is more efficient compared to LARS-TD modified to incorpo-

rate `2 regularization.

In particular, we showed that, for the state-value function, both algorithms per-

formed equivalently offering similar approximations. Additionally, both algorithms

always converged to the fixed-point solution. This was expected since the samples
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are collected on policy. In this case, we form a positive definite matrix Ã and thus

both algorithms do not encounter any issues (specifically, given enough samples,

Ã is positive definite, and thus, it has been proved that LARS-TD converges to the

fixed-point solution, while for ADMM-TD we can only guarantee convergence em-

pirically). Furthermore, LARS-TD for state-value function, is shown to be more ef-

ficient in terms of time complexity (especially when high level of sparsity is needed)

since it can offer good approximations without requiring cross-validation. On the

other hand, ADMM-TD in order to provide a good approximation requires tun-

ning the parameter λ, by performing CV, which in turn increases the computational

cost (while in case where λ is known ADMM-TD can be extremely fast). Hence,

ADMM-TD as a Lasso method is not able to return the complete set of solutions,

as LARS-TD does being a homotopy method, but only returns a subset over a fixed

grid.

The main drawbacks of LARS-TD emerge when collecting the samples off-policy.

In fact, for approximating action-value function by following a random policy, we

demonstrated through experiments that ADMM-TD is able to offer an improved

performance over LARS-TD. In particular, LARS-TD diverged from the fixed-point

solution 27/150 times (for 1500, 2000 and 2500 samples) and 13/50 times (for 1000

samples). In contrast to LARS-TD, ADMM-TD was not able to find the `1 regular-

ized fixed-point only once in 50 trials (for m = 1000), while for m > 1000 never

failed (only for m < 1000 ADMM-TD encountered serious problems when trying

to approximate Q).

To overcome this issue in LARS-TD, we applied the elastic net formulation (by

adding an `2 penalty norm to the objective function). However, as illustrated in

Section 3.3.4, this modification now implies reduced sparsity for the vector w and

thus leads to a poorer approximation of the action-value function. Additionally, re-

duced sparsity increases the computational cost of LARS-TD. To see this, consider
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the basic LARS-TD iteration

∆wI = Ã−1I,I sign(cI).

As discussed before, subscript I denotes the active set which, in essence, indicates

the level of sparsity at each iteration. Solving for the elastic net problem yields

an almost full dense matrix Ã which needs to be inverted at each iteration (in our

experiments Ã was almost a 2000× 2000 matrix). It is natural then that LARS-TD

loses its efficiency since it computes the inverse of a matrix with very large dimen-

sions many times due to the decreased sparsity. More importantly, in the context

of policy iteration, things become even more worse for LARS-TD since the same

computations need to be performed at each policy iteration step. Therefore, it is not

clear whether obtaining the optimal policy via LARS-TD (modified to incorporate

the `2 penalty norm) is feasible or not.

On the other hand, given enough samples (> 1000), our experimental results show

that ADMM-TD was able to calculate the `1-regularized fixed-point. Hence, we

conjecture that our algorithm could be shown to converge to the fixed-point under

much weaker assumption compared to the existing work. Our anticipation is driven,

first, from the fact that the penalty parameter ρ is incorporated in the diagonal of Ã

and, second, due to the behavior of our algorithm in the context of policy iteration.

More precisely, recall the ADMM-TD iteration

wk+1 ← (Ã+ ρI)−1(b̃+ ρ(zk − uk)).

In fact, in contrast to the basic iteration of LARS-TD, we assume that the pres-

ence of penalty ρ could improve the stability of the ADMM-TD iterations in the

case where Ã is not positive definite (since the eigenvalues of Ã definitely play a

significant role for the algorithm’s convergence).

Furthermore, the advantage of ADMM-TD as a direct method committed to only a

single value of λ is that, even in the case where the optimality conditions are vio-
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lated, one may discard the coefficient for the specific λ without affecting the other

solutions. However, when LARS-TD violates the optimality conditions, the com-

plete homotopy path is affected. As also shown in [31], the homotopy path reaches

discontinuities which make the algorithm return multiple fixed-points. We addi-

tionally note that, similar to the standard ADMM, the proposed ADMM-TD can be

easily extended to allow other forms of regularization (eg., Tikhonov regularization

or elastic net). Finally, our main goal in the future is to establish convergence of

ADMM-TD and examine the efficacy of our method using real datasets.



Chapter 4

Multilevel Methods for

Self-Concordant Functions

The analysis of second-order optimization methods based either on sampling, ran-

domization or sketching has two serious shortcomings compared to conventional

second-order methods. The first shortcoming is that the analysis of the iterates

is not scale-invariant, and even if it is, restrictive assumptions are required on the

problem structure. The second shortfall is that the fast convergence rates of second-

order methods have only been established by making assumptions regarding the

input data. These theoretical shortcomings have severe practical implications too.

In this chapter, building upon the general framework of multigrid methods, we at-

tempt to address these issues. In particular, we propose Yet Another Well-behaved

Newton (YAWN) method and establish its super-linear convergence rate using the

well-established theory of self-concordant functions. Taking advantage of the the-

ory of multigrid optimization methods and the role of coarse-grained models to-

gether with self-concordance as our basic assumption, we come up with a method

that is global, scale invariant and independent of unknown constants such as Lip-

schitz constants and strong convexity parameters. To the best of our knowledge

this is the first multigrid optimization method to be analyzed using the theory of

self-concordant functions and, in parallel, offers theoretical guarantees that capture
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the efficient performance of the general multigrid methods developed for solving

Partial Differential Equations (PDEs).

4.1 Introduction

Multigrid methods [33, 34, 35, 36] have been successfully studied for solving Par-

tial Differential Equations (PDEs). In this domain, directly solving for the exact

solution is typically expensive. Fortunately, multigrid methods attempt to offer ap-

proximate solutions through discretization of a mesh. This means that a hierarchy

of discretized problems can be constructed and the multigrid idea is to use the infor-

mation of the discretized problems to solve the exact problem. We adopt the tradi-

tional terminology of the multigrid community and we call the discretized problems

as coarse problems while the exact problem is called fine. For instance, for the mesh

refinement example (for details see [33]), the solution of the fine problem is pro-

duced as follows: at each level, ranging from the coarsest to fine, the corresponding

solution yields the new starting point of the next level (next less coarse level in the

hierarchy), and this process moves towards the fine level. There are two advantages

of this idea: (a) the problems in coarser levels retain similar structure with the fine

problem and thus accurate solutions can be produced, and (b) the computational

cost of solving the coarse problems is significantly reduced (and varies according

to the dimensionality at each level), which in turn accelerates the convergence of

the fine problem. However, note that more accurate solution should be expected in

higher dimensions.

Multigrid methods were further extended to solve large-scale optimization prob-

lems using the second-order information. In this context, dimensionality reduction

is of great value since computing and inverting the exact Hessian of a large-scale

problem is typically infeasible. Nash [37] brought the multigrid philosophy into

the unconstrained convex optimization for infinite dimensional problems where a

global convergence is provided. However, a “smoothing” step is required when

switching to different levels, same as in solving PDEs. In [38], Gratton et al. ex-
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pand the work of Nash for solving a recursive trust region problem without requiring

the smoothing step and, further, they prove convergence for nonconvex problems.

Additionally, Wen and Goldfarb [39] proposed a line search method with global

sublinear convergence and also provide an extension of their results to nonconvex

problems. They also remove the burden of the smoothing step by introducing new

conditions which produce effective search directions. In a recent work, [40], which

constitutes an extension of the work in [39] the authors come up with an, improved,

composite convergence rate for strongly convex functions.

To this end, the performance of the multigrid methods in the domain of optimization

has been found very efficient for infinite dimensional problems and in many cases

outperform classical methods, see for instance [63, 40, 39]. Throughout this chapter

we adopt the name multilevel instead of the traditional multigrid (as proposed in

[39]), referring to the fine optimization problem (objective function) which can be

discretized in different levels.

Other than multilevel methods, first order methods, stochastic, proximal, acceler-

ated or otherwise, are the most popular class of algorithm for the large-scale op-

timization models that arise in modern machine learning applications. The ease

of implementation in distributed architectures and the ability to obtain a reason-

ably accurate solution quickly are the main reasons for the dominance of first-order

methods in machine learning applications. In the last few years, second-order meth-

ods based on variants of the Newton method have also been proposed. Second-order

methods, such as the Newton method, offer the potential of quadratic convergence

rates (the holy grail in optimization algorithms), and scale invariance. Both of these

features are highly desirable in optimization algorithms and are not present in first-

order methods.

Fast convergence rates do not need additional motivation, and they are particularly

important for machine learning applications such as background extraction in video

processing, and face recognition (see e.g. [8] for examples). Additionally, scale

invariance is crucial because it means that the algorithm is not sensitive to the input
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data (see [42] for a thorough discussion of the consequences of scale invariance in

machine learning applications). Unfortunately, the conventional Newton method

has huge storage and computational demands and does not scale to applications that

have both large and dense Hessian matrices.

To improve the convergence rates, and robustness of the optimization algorithms

used in machine learning applications many authors have recently proposed modifi-

cations of the classical Newton method. We refer the interested reader to the recent

survey in [41] for a thorough review. Below we discuss the methods most related

to our approach and discuss the theoretical and practical limitations of the current

state-of-the-art. Despite the recent interest, and developments in the application of

machine learning applications existing approaches suffer from one or both of the

following shortfalls that we address in this chapter. These shortcomings have sig-

nificant implications regarding the practical performance of second order methods

in machine learning applications (see [64, 43] for additional discussion).

Shortfall I: Lack of scale-invariant convergence analysis without restrictive as-

sumptions. The Newton algorithm can be analyzed using the elegant theory of

self-concordant functions. Convergence proofs using the theory of self-concordant

functions enable the derivation of convergence rates that are independent of prob-

lem constants such as the Lipschitz constants and strong convexity parameters [65].

In machine learning applications these constants are related to the input data of the

problem (e.g., the dictionary in supervised learning applications), so having a the-

ory that is not affected by the scaling of the data is quite important both for practical

reasons (e.g., choice of step-sizes), and theory (rates derived using this approach do

not depend on unknown constants). The analysis of a Newton algorithm based on

sketching was undertaken in [42], but the authors assumed that the square-root of

the Hessian matrix is known. In addition, [43] showed that the sub-sampled New-

ton method produces results that are better in practice. However, [43] rely on the

properties of the conjugate-gradient method and therefore their results still depend

on unknown problem parameters. Further, the theoretical guarantees of all the mul-
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tilevel methods discussed above also require dependence on these parameters.

Shortfall II: Lack of global super-linear or quadratic convergence rates with-

out ad-hoc assumptions regarding the spectral properties of the input data. In

addition to scale invariance and a theory that does not rely on unknown constants,

the second major feature of second-order methods is their extremely fast conver-

gence rates. The authors in [42] showed a super-linear convergence rate but made

assumptions regarding the square root of the Hessian matrix. While [44] do perform

a global convergence rate analysis, they do not establish super-linear convergence

of their method, and in addition, their analysis depends on unknown constants. As

for the multilevel literature in optimization, in [37], although the rate is global, the

smoothing step is required which reduces the usefulness of the method in the context

of the large-scale optimization. In [38], Gratton et al. also show global convergence

rate, nevertheless the total complexity of this method is the same as in gradient de-

scent. Moreover, in [39], the authors only show a global sublinear convergence rate.

On the other hand, in [40], the authors offer an improved, composite, convergence

rate but their theory is local and depends on unknown parameters.

The main contribution of this chapter is to propose an optimization algorithm based

on second-order information that can scale to realistic convex optimization models

that arise in machine learning applications. The method is general in the sense that

it does not assume that the objective function is a sum of functions, and we make

no assumptions regarding the data regime. The proposed approach can easily be

applied to the case where the constraints can be incorporated to the objective using

a self-concordant barrier function. However, in this chapter we focus on the un-

constrained case. Our theoretical analysis is based on the theory of self-concordant

functions and we are able to prove the super-linear, and under some additional as-

sumptions, the quadratic convergence of the algorithm without relying on unknown

parameters. We emphasize that the main results are independent of the problem

data. Thus with the results presented in this chapter, the theory of sub-sampled

or sketched Newton methods can be considered to be on-par with the theory of
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the classical Newton method. These fundamental results are achieved by drawing

parallels between the second-order methods used in machine learning, and the so-

called Galerkin model from the multigrid optimization literature. In addition, to the

best of our knowledge, this is the first multilevel optimization method that captures

the advantages of the multigrid theory (i.e., fast global convergence rates) and in

parallel does not suffer from either of the shortfalls listed above.

To be precise our contributions are as follows.

• We propose Yet Another Well-behaved Newton (YAWN) method based on the

multilevel framework for unconstrained convex optimization. In particular,

we extend the results in [40, 39] to self-concordant functions. Our analysis

is global and independent on any unknown problem parameters. To the best

of our knowledge, this is the first multilevel method to be analyzed using the

theory of self-concordant functions and the first second-order method with

convergence analysis that is on par with the standard Newton method.

• As in [40, 38], we specify the coarse model to be the Galerkin model. As long

as the first- and second-order coherency is retained, we discuss connections

of our method with the classical Newton method and the other variable metric

methods.

• Using self-concordance as the basic assumption for the coarse model too, we

show that the coarse/Galerkin model achieves a global quadratic convergence

rate. The convergence behavior of the coarse model is explicit in the sense

that it does not depend on any unknown constants.

• We start our analysis by showing that YAWN can achieve a worse-case sub-

linear rate which depends only on the choice of starting point. Later, we pro-

pose a super-linear convergence rate for our method with minimal assump-

tions. This result is global, invariant of the input data and we come up with

an explicit region of super-linear convergence.
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• We draw parallels between the Galerkin model and the low-rank approxima-

tion of the Hessian. In particular, with the help of the naive Nyström method,

we show how our algorithm can be seen as a Newton algorithm which lies in

a much lower subspace. Further, we show connections with the classical low-

rank Singular Value Decomposition (SVD) algorithms and how the search

direction can be obtained using these methods.

• Using SVD on the Hessian matrix of the fine model and some extra assump-

tions, we are able to prove quadratic convergence of our method with reduced

computational cost compared to the Newton method. This result is still global

and scale invariance is preserved.

• When SVD is applied to the Hessian matrix of the coarse model we show

that the general super-linear convergence rate applies. By assuming a spe-

cific structure on the Hessian matrix, which is not restrictive for practical

problems, we discuss how the super-linear rate can approach the fast rate of

Newton method.

• In addition to the fast convergence rates above, we also show that YAWN is

efficient enough to be applied to large-scale optimization models that arise

in machine learning applications. Numerical experiments based on standard

benchmark problems and other state-of-the-art second-order methods sug-

gest that the method compares favorably with the state-of-the-art (it is typ-

ically several times faster) and more robust (it is also faster in different data

regimes).

The rest of this chapter is organized as follows: In Section 4.2, we discuss the multi-

level framework and the background knowledge required for building the multilevel

scheme. We show connections with the variable metric methods and describe the

so-called Galerkin model. In Section 4.3, we present YAWN method and we show

that it enjoys a general super-linear rate with minimal assumptions. In Section 4.4

we aim to improve the convergence results by taking assumptions on the structure
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of the problem. Specifically, we show connections of YAWN with low-rank decom-

position methods. In Section 4.5, we provide complexity bounds for our methods.

If the structure of the problem is as in Section 4.4, we explain why one should ex-

pect a convergence rate that approaches the fast rate of Newton method. In Section

4.6, we validate our theoretical guarantees through several numerical results.

4.2 Multilevel Models for Unconstrained Optimiza-

tion

In this section we collect information and discuss the background of the general

multilevel framework. Since our work is based on the theory of self-concordant

functions, we start by discussing the important aspects of these functions. We then

discuss how the multilevel method can be constructed and show connections with

the variable metric methods. Finally, we present the Galerkin model together with

some general technical results that emerge due to the presence of self-concordant

functions.

4.2.1 Self-Concordant Functions

In this section we recall some main properties and inequalities about the class of

self-concordant functions that was also discussed in the second chapter. We follow

similar notation as in the books [9, 45] (for a more refined analysis one shall refer

to [9]).

A univariate convex function φ : R→ R is called self-concordant if

|φ′′′(x)| ≤ 2φ′′(x)3/2. (4.1)

Examples of such functions include but are not limited to linear, quadratic and

logarithmic. Further, consider a multivariate function f : Rn → R and also fix

x ∈ dom f and a direction u ∈ Rn. Then, φ(t) = f(x + tu) is called self-
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concordant for all x and u if it is self-concordant along every line in its domain.

Self-concordance is preserved under composition with any affine function.

Next, given x ∈ dom f and assuming that∇2f(x) is positive-definite we can define

the following norms

‖u‖x = 〈∇2f(x)u,u〉1/2 and ‖v‖∗x = 〈[∇2f(x)]−1v,v〉1/2, (4.2)

where it holds that |〈u,v〉| ≤ ‖u‖∗x‖v‖x. Therefore the Newton decrement can be

written as

λf (x) = ‖∇f(x)‖∗x = ‖[∇2f(x)]−1/2∇f(x)‖2. (4.3)

In addition, we take into consideration two auxiliary functions, both introduced in

[9]. Define the univariate functions ω and ω∗ such that

ω(x) = x− log(1 + x) and ω∗(x) = −x− log(1− x), (4.4)

with domω = {x ∈ R : x ≥ 0} and domω∗ = {x ∈ R : 0 ≤ x < 1},
respectively. Note that both functions are convex and their range is the set of positive

real numbers.

Now, from the definition (4.1), we have that∣∣∣∣ ddt (φ′′(t)−1/2)
∣∣∣∣ ≤ 1,

from which, after integration, we obtain the following bounds

φ′′(0)

(1 + tφ′′(0)1/2)2
≤ φ′′(t) ≤ φ′′(0)

(1− tφ′′(0)1/2)2
(4.5)

where the lower bound holds for t ≥ 0 and the upper bound for t ∈ [0, φ′′(0)−1/2),

with t ∈ domφ. Consider now functions on Rn. For x ∈ dom f , and for any
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y ∈ S(x), where S(x) = {y ∈ Rn : ‖y − x‖x < 1}, we have that

(1− ‖y − x‖x)2∇2f(x) � ∇2f(y) � 1

(1− ‖y − x‖x)2
∇2f(x). (4.6)

Finally, let us state one last pair of inequalities that will be useful in our analysis.

For x and y from dom f it holds that

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ ω(‖∇f(y)−∇f(x)‖∗y)

and if also ‖∇f(x)−∇f(x)‖∗y < 1, then

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ ω∗(‖∇f(y)−∇f(x)‖∗y). (4.7)

With the basic definitions and assumptions in place we shall proceed to the core

idea of multilevel methods.

4.2.2 Problem Framework and Settings

In this section, based on the idea of multigrid methods, we attempt to solve the

following unconstrained optimization problem

min
xh∈RN

fh(xh)

where fh : RN → R is a continuous, differentiable and strictly convex self-

concordant function. Further, we suppose that fh has a closed sublevel set and

is bounded below so that a minimizer x∗h exists.

Since this work constitutes an extension of the results in [40] to self-concordant

functions, we choose to adopt similar notations. We clarify that the subscript h de-

notes the discretization level and specifically it refers to the fine level of the multi-

grid and hence fh is considered to be the fine or exact model. In this chapter, unlike

the idea of multigrid methods, where a hierarchy of several discretized problems is

constructed according to the dimension of each level, we consider only two levels.
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The model in the lower level (lower dimension) is called coarse model. Thus, the

idea is to use information of the coarse model to solve the fine model. As with sub-

script h, we useH to refer to the coarse level and thus fH refers to the coarse model.

Moreover, the dimensions related to the fine and coarse models are denoted with N

and n, respectively, that is, dom fH = {xH ∈ Rn} and dom fh = {xh ∈ RN},
where n ≤ N .

To map information from coarse to fine model and vice versa we define P and R to

be the prolongation and restriction operators, respectively, where matrix P ∈ RN×n

defines a mapping from coarse to fine level and matrix R ∈ Rn×N from fine to

coarse. The following assumption on the aforementioned operators is typical for

multilevel methods, see for instance [40, 39],

Assumption 4.2.1. The restriction and prolongation operators R and P are con-

nected via the following relation

P = σRT ,

where σ > 0, and with P to be of full column rank, i.e.,

rank(P) = n.

For simplification purposes and without loss of generality we assume that σ = 1.

To construct the coarse model we use the following notation: denote as xh,k a vec-

tor that belongs in the fine level at some iteration k. Assuming that xh,k is the

current solution of the fine model with associated gradient ∇fh(xh,k), we move to

the coarse level with initial point xH,0 := Rxh,k. Thus, the optimization problem at

the coarse level is constructed as

min
xH∈Rn

ψH(xH) := min
xH∈Rn

{fH(xH) + 〈uH ,xH − xH,0〉} , (4.8)

where uH := R∇fh(xh,k) − ∇fH(xH,0) and fH : Rn → R. Note that the above
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objective function is not just fH(xH), but, in order for coarse model to be first-order

coherent, the quantity 〈uH ,xH − xH,0〉 is added, i.e.,

∇ψH(xH,0) = R∇fh(xh,k).

We shall mention that this idea is typical when constructing the coarse model and

it has been followed by many authors, see for instance [39, 40, 38]. In addition to

the first-order coherency condition, we assume that the coarse model is also second-

order coherent

R∇2fh(xh,k)P = ∇2ψH(xH,0).

In later section we discuss how the so called Galerkin model satisfies both first- and

second-order coherency conditions.

To this end, the philosophy behind multilevel algorithms is to make use of the so-

lution x∗H obtained by the coarse model (4.8) to provide the search direction. Such

direction is called coarse direction. Later we will show that, in order to ensure the

descent nature of our algorithm, we need to alternate between the coarse and the

fine search directions. For this reason, if the search direction is computed by the

solution of the fine model shall be called fine direction.

4.2.3 A Universal Multilevel Method

In this section we provide a description of the general multilevel method. Recall,

that we consider a two-level algorithm based on the fine and the coarse models.

Using coarse model (4.8) we derive the coarse direction as follows: first we compute

d̂H,k := x∗H − xH,0, (4.9)

where x∗H is the minimizer of (4.8), and then we apply the prolongation operator to

obtain the coarse direction, i.e.,

d̂h,k := P(x∗H − xH,0). (4.10)
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Note that the difference in the subscripts in the above definitions is because d̂H,k ∈
Rn, and d̂h,k ∈ RN . We would like further to clarify that dh,k, i.e., the “hat” is

omitted, will refer to the fine direction. We can now use d̂h,k to obtain the next

iteration

xh,k+1 = xh,k + th,kd̂h,k, (4.11)

where th,k > 0 is the stepsize.

The authors in [39] have proved that the coarse direction is a descent direction.

However, this result does not suffice for d̂h,k to always lead to reduction in value

function. It is easy for one to see that whenever ∇fh(xh,k) 6= 0 and ∇fh(xh,k) ∈
null(R) (i.e., R∇fh(xh,k) = 0), we have that d̂h,k = 0, which, clearly, implies no

progress for the multilevel scheme (4.11).

One way to overcome this issue, which we do not consider in this work, is to use

multiple prolongation and restriction operators. Specifically, it has been shown in

[40] that, if Ri, i = 0, 1, . . . ,m, operators are selected, then at least one will yield

Rj∇fh(xh,k) 6= 0 and thus d̂h,k 6= 0, so that the coarse direction will be effective.

Another approach to alleviate the issue of the ineffective coarse direction is by re-

placing it with the fine direction dh,k. Examples of such directions include search

directions arising from Newton, quasi-Newton and gradient descent methods. We

shall mention that this approach is very common in the multigrid literature, espe-

cially for PDE optimization problems, see for example [39, 66, 38]. In PDE prob-

lems, alternation between the coarse and the fine direction is necessary for obtaining

the optimal solution. Later we will discuss how to choose the prolongation operator

such that the fine direction need not be taken. The following conditions, proposed

in [39], determine whether or not the fine direction should be employed, i.e., we use

dh,k when

‖R∇fh(xh,k)‖2 ≤ ρ1 ‖∇fh(xh,k)‖2 or ‖R∇fh(xh,k)‖2 ≤ ε (4.12)

where ρ1 ∈ (0,min(1, ‖R‖2)). Note that the first condition prevents using the
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coarse direction when R∇fh(xh,k) = 0 while ∇fh(xh,k) 6= 0, and the second

one when xH,0 is sufficiently close to the solution x∗H according to some tolerance

ε ∈ (0, 1). In our analysis, we follow the same idea but, as we will discuss later,

for analysis purposes, we use the definitions of the Newton and approximate decre-

ments instead of the standard Euclidean norm.

4.2.4 Coarse Model and Variable Metric Methods

In this section we discuss the relation between the multilevel and the classical vari-

able metric methods, see also [40]. Recall that we can derive the descent direction

of a standard variable metric method by explicitly solving

dh,k = arg min
d∈RN

{
1

2
‖Q1/2d‖22 + 〈∇fh(xh,k),d〉

}
= −Q−1∇fh(xh,k),

(4.13)

where Q ∈ RN×N is a positive definite matrix. For example, if Q = ∇2fh(xh,k)

is selected, we obtain the Newton method. If Q is chosen to be the identity matrix,

then we obtain the steepest descent method.

Consider now that fH is chosen as

fH(xH) =
1

2

∥∥∥Q1/2
H (xH − xH,0)

∥∥∥2
2

where xH,0 = Rxh,k, and QH ∈ Rn×n is a positive definite matrix. Replacing this

definition into the coarse model (4.8) we take

min
xH∈Rn

ψH(xH) = min
xH∈Rn

{
1

2

∥∥∥Q1/2
H (xH − xH,0)

∥∥∥2
2

+ 〈R∇fh(xh,k),xH − xH,0〉
}
.

(4.14)

From the definition (4.9), dH = xH − xH,0, and thus

d̂H,k = arg min
dH∈Rn

{
1

2
‖Q1/2

H dH‖22 + 〈∇fh(xh,k),dH〉
}

= −Q−1H R∇fh(xh,k).
(4.15)
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Further, by construction of the coarse direction and its definition in (4.10) we con-

clude that

d̂h,k = −PQ−1H R∇fh(xh,k). (4.16)

Therefore, note that, using the above definition of fH(xH), the descent direction

in equation (4.16) is almost identical with the one in (4.13). Specifically, one can

see that if we naively set n = N and R = IN×N , then, we obtain exactly equation

(4.13).

4.2.5 The Galerkin Model

In this section we study the properties of the Galerkin model, which will be later

used to provide improved convergence results. It is worth mentioning that the

Galerkin model was introduced by Gratton et al. [39] in multilevel community for

solving a trust-region optimization problem and was found to produce competitive

numerical results.

The Galerkin model can be considered as a special case of the coarse model (4.14)

under a specific choice of the matrix QH . In particular, we define QH to be

QH(xh,k) := R∇2fh(xh,k)P. (4.17)

Before we present the Galerkin model let us show the positive-definiteness of matrix

QH(xh,k).

Proposition 4.2.2. Let fh : RN → R be a strictly convex self-concordant function.

Then, the matrix QH(xh) is positive definite.

Proof. This is a direct result of linear algebra using Assumptions 4.2.1 and

∇2fh(xh) � 0.

Now, using the definition (4.17) into the coarse model (4.14) we obtain the Galerkin
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model, i.e.,

min
xH∈Rn

ψH(xH) = min
xH∈Rn

{
1

2

∥∥[QH(xh,k)]
1/2(xH − xH,0)

∥∥2
2

+

+〈R∇fh(xh,k),xH − xH,0〉} .

Since, by Proposition 4.2.2, [QH(xh,k)]
−1 is well-defined, using similar arguments,

as in (4.15) and (4.16), we can derive d̂H,k and d̂h,k. Thus,

d̂H,k = −[R∇2fh(xh,k)P]−1R∇fh(xh,k) = −[QH(xh,k)]
−1R∇fh(xh,k), (4.18)

and then we prolongate the direction d̂H,k to obtain the coarse direction, that is

d̂h,k = −Pd̂H,k = −P[QH(xh,k)]
−1R∇fh(xh,k). (4.19)

In addition, observe that (4.18) is equivalent to solving the following linear system

of equations

QH(xh,k)dH = −R∇fh(xh,k),

which, by positive-definiteness of QH(xh,k), has a unique solution.

4.2.6 Technical Results for Self-Concordant Functions

We end this section by collecting and proving some general results that will be

required throughout the convergence analysis. In the end of this section, we state

the alternative conditions which prevent the use of an ineffective coarse direction

d̂h,k.

We begin by defining the YAWN decrement (or approximate decrement), a quantity

analogous to the Newton decrement in (4.3),

λ̂fh(xh,k) :=
[
(R∇fh(xh,k))T [QH(xh,k)]

−1R∇fh(xh,k)
]1/2

. (4.20)

We clarify that from this point and through the rest of this chapter, un-
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less specified differently, we denote dh,k be the Newton direction, dh,k =

−[∇2fh(xh,k)]
−1∇fh(xh,k), and in addition, for simplification, we omit the sub-

script fh from both YAWN and Newton decrements.

Proposition 4.2.3. For the approximate decrement in (4.20) we have that

(i) λ̂(xh,k)
2 = −∇fh(xh,k)T d̂h,k,

(ii) λ̂(xh,k)
2 = d̂Th,k∇2fh(xh,k)d̂h,k = ‖d̂h,k‖2xh,k ,

(iii) λ̂(xh,k)
2 = d̂Th,k∇2fh(xh,k)dh,k,

where d̂h,k is defined in (4.19), dh,k is the Newton direction and ‖ · ‖xh,k in (4.2).

Proof. The results can be immediately showed by direct replacement of the defini-

tions of d̂h,k and dh,k respectively.

Next, using the update rule in (4.11) we derive some useful bounds for Hessian

∇2fh(xh,k).

Proposition 4.2.4. Let fh : RN → R be a strictly convex self-concordant function.

By scheme (4.11) we have that

(i) ∇2fh(xh,k+1) � 1

(1−th,kλ̂(xh,k))2
∇2fh(xh,k),

(ii) [∇2fh(xh,k+1)]
−1/2 � 1

1−th,kλ̂(xh,k)
[∇2fh(xh,k)]

−1/2,

where λ̂(xh,k) < 1/th,k.

Proof. Consider the case (i). From the upper bound in (4.6), arising from self-

concordant functions, we have that

∇2fh(xh,k+1) �
1

(1− th,k‖d̂h,k‖xh,k)2
∇2fh(xh,k)

=
1

(1− th,kλ̂(xh,k))2
∇2fh(xh,k),
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which holds for λ̂(xh,k) < 1/th,k, as claimed. As for the case (ii), we make use of

the lower bound in (4.6), and thus, for λ̂(xh,k) < 1/th,k,

∇2fh(xh,k+1) � (1− th,kλ̂(xh,k))
2∇2fh(xh,k).

Since, further, fh is strictly convex we take

[∇2fh(xh,k+1)]
−1/2 � 1

1− th,kλ̂(xh,k)
[∇2fh(xh,k)]

−1/2,

which concludes the proof.

In addition, we can obtain analogous bounds for the matrix QH(xh,k).

Proposition 4.2.5. Let fh : RN → R be a strictly convex self-concordant function.

By scheme (4.11) we have that

(i) QH(xh,k+1) � 1

(1−th,kλ̂(xh,k))2
QH(xh,k),

(ii) [QH(xh,k+1)]
−1/2 � 1

1−th,kλ̂(xh,k)
[QH(xh,k)]

−1/2,

where λ̂(xh,k) < 1/th,k.

Proof. We already know that

∇2fh(xh,k+1) �
1

(1− th,kλ̂(xh,k))2
∇2fh(xh,k).

By strict convexity and Assumption 4.2.1 we see that

QH(xh,k+1) �
1

(1− th,kλ̂(xh,k))2
QH(xh,k),

which is exactly the bound in case (i). Next, recall that

∇2fh(xh,k+1) � (1− th,kλ̂(xh,k))
2∇2fh(xh,k),
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and, again, by strict convexity and Assumption 4.2.1 we have that

QH(xh,k+1) � (1− th,kλ̂(xh,k))
2QH(xh,k).

In addition, using Proposition 4.2.2 we can exactly obtain the bound in case (ii).

Finally, note that, by relation (4.6), all the above bounds hold for λ̂(xh,k) < 1/th,k,

which concludes the proof.

In our analysis, we will further make use of two general bounds that hold for uni-

variate self-concordant functions. We only mention the following results since they

are already proved in [45].

Proposition 4.2.6. [45] Let φ : R → R be a strictly convex self-concordant func-

tion. Then,

(i) φ(t) ≤ φ(0) + tφ′(0)− tφ′′(0)1/2 − log(1− tφ′′(0)1/2), t ≤ φ′′(0)−1/2,

(ii) φ(t) ≥ φ(0) + tφ′(0) + tφ′′(0)1/2 − log(1 + tφ′′(0)1/2), t ≥ 0.

Proof. Both inequalities can be proved using relation (4.5), for details see [45].

Fine Search Direction

As discussed in previous section, in the multilevel literature, condition (4.12) guar-

antees the progress of the update rule (4.11) by using the fine direction dh,k in place

of the coarse direction d̂h,k when the latter appears to be ineffective. In this work,

for preventing the use of an ineffective d̂h,k, we adopt the same idea but now instead

of the standard Euclidean norm we use the norms defined by the matrices QH(xh,k)

and ∇2fh(xh,k).

Note that the YAWN and Newton decrements can be rewritten as

λ̂(xh,k) := ‖R∇fh(xh,k)‖[QH(xh,k)]−1 and λ(xh,k) := ‖∇fh(xh,k)‖[∇2fh(xh,k)]−1 ,

(4.21)
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respectively, where in addition, by positive-definiteness of QH(xh,k) and

∇2fh(xh,k), we have that both norms are well-defined. Thus, the fine direction

dh,k is taken when

λ̂(xh,k) ≤ ρ1λ(xh,k) or λ̂(xh,k) ≤ ε. (4.22)

Let us now derive a bound for ρ1.

Proposition 4.2.7. Let λ̂(xh,k) and λ(xh,k) be as in (4.21). It holds that λ̂(xh,k) ≤
cλ(xh,k), where

c =

[
λmax(∇2fh(xh,k))

λmin(∇2fh(xh,k))

]1/2
‖ (RP)−1/2 ‖2‖R‖2,

λmax(∇2fh(xh,k)) and λmin(∇2fh(xh,k)) are the largest and smallest eigenvalues

of the Hessian∇2fh(xh,k), respectively.

Proof. Note that for the approximate decrement we have that

λ̂(xh,k) =
∥∥[QH(xh,k)]

−1/2R∇fh(xh,k)
∥∥
2

≤
∥∥[QH(xh,k)]

−1/2R[∇2fh(xh,k)]
1/2
∥∥
2

∥∥[∇2fh(xh,k)]
−1/2∇fh(xh,k)

∥∥
2

=
∥∥[QH(xh,k)]

−1/2R[∇2fh(xh,k)]
1/2
∥∥
2
λ(xh,k).

(4.23)

Next, for the Hessian∇2fh(xh,k) it holds that

λmin(∇2fh(xh,k))IN×N �∇2fh(xh,k) � λmax(∇2fh(xh,k))IN×N (4.24)

where IN×N is the N ×N identity matrix, and thus

[λmin(∇2fh(xh,k))]
1/2IN×N � [∇2fh(xh,k)]

1/2 � [λmax(∇2fh(xh,k))]
1/2IN×N .
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From relation (4.24) we can further obtain

[λmin(∇2fh(xh,k))]
1/2 (RP)1/2 � [QH(xh,k)]

1/2 � [λmax(∇2fh(xh,k))]
1/2 (RP)1/2 .

The above bound yields

[QH(xh,k)]
−1/2 �

(
1

λmin(∇2fh(xh,k))

)1/2

(RP)−1/2 ,

and also note that, by Assumption 4.2.1, (RP)−1/2 is well-defined. Finally, putting

all the above together, inequality (4.23) becomes

λ̂(xh,k) ≤ cλ(xh,k),

as claimed.

Therefore, we employ the fine search direction when λ̂(xh,k) ≤ ρ1λ(xh,k), where

ρ1 ∈ (0,min(1, c)). We can further simplify the latter bound. In particular, we will

show that c ≥ 1 which implies ρ1 ∈ (0, 1).

Consider the Singular Value Decomposition (SVD) of R, that is R = UΣVT ,

where U ∈ RN×N , V ∈ Rn×n are unitary matrices and Σ = [Σn 0] ∈ RN×n is the

singular matrix such that σ1 ≥ · · · ≥ σn > 0 = σn+1 = · · · = σN . Then we have

∥∥∥(RP)−1/2
∥∥∥
2

=
∥∥∥(UΣVTVΣTUT

)−1/2∥∥∥
2

=
∥∥∥U (ΣΣT

)−1/2
UT
∥∥∥
2

=
∥∥∥(ΣΣT

)−1/2∥∥∥
2

=
∥∥(Σn)−1

∥∥
2

=
1

σn
.

This implies

c =
σ1
σn

[
λmax(∇2fh(xh,k))

λmin(∇2fh(xh,k))

]1/2
≥ 1.
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Algorithm 4.1 YAWN

1: Input: ρ1 ∈ (0, 1) , α ∈ (0, 0.5), β ∈ (0, 1), ε ∈ (0, 0.682), R ∈ Rn×N

2: Initialize: xh,0 ∈ RN

3: for k = 0, 1, . . . do
4: Compute the direction as

d :=

{
d̂h,k from (4.19) if λ̂(xh,k) > ρ1λ(xh,k) and λ̂(xh,k) > ε

dh,k from (4.13) otherwise,

5: if λ(xh,k)
2 ≤ ε then

6: quit
7: end if
8: while fh(xh,k + tkd) > fh(xh,k) + αth,k∇fTh,k(xh,k)d, th,k ← 1 do
9: th,k ← βth,k

10: end while
11: Update

xh,k+1 := xh,k + th,kd

12: end for
13: return xh,k

Therefore we conclude that, for ρ1 ∈ (0, 1), the first inequality in (4.22) prevents

the use of the coarse direction d̂h,k when R∇fh(xh,k) = 0 while ∇fh(xh,k) 6= 0,

and the second one when xH,0 is sufficiently close to the solution x∗H according to

some tolerance ε.

4.3 YAWN: Convergence Analysis

In this section, we analyze YAWN for strictly convex self-concordant functions.

The pseudo-code of YAWN is stated in Algorithm 4.1 —see Remark 4.4.7 in Sec-

tion 4.4.3 for practical implementation of the algorithm. We begin by proving that

Algorithm 4.1 can achieve a worse-case sublinear convergence rate. Recall that,

in each step, the descent direction is computed according to the condition (4.22)

which guarantees the reduction of the value function. We emphasize that the choice

of the fine search direction need not necessarily be the Newton search direction

but any search direction arising from descent methods, such as steepest descent,
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gradient descent or quasi-Newton (e.g., L-BFGS search direction was used as the

fine direction in [39]). Further, for both fine and coarse direction steps, an inexact

backtracking line search is employed to compute step length (see [45]). For the

analysis of Newton method with self-concordant functions, the sub-optimality for

the current update xh,k is bounded by the Newton decrement as

fh(xh,k)− fh(x∗h) ≤ λ(xh,k)
2, (4.25)

which holds for some λ(xh,k) ≤ 0.68, and thus, λ(xh,k) can be used as exit condi-

tion. Later, in Lemma 4.5.1 we show that the same bound can be used as stopping

criterion for Algorithm 4.1. We proceed by showing quadratic convergence rate of

the coarse model and the general super-linear rate of YAWN method. We would like

to emphasize that our results below do not depend on any unknown problem param-

eters and more importantly they are global, as opposed to the classical analysis for

strongly convex functions.

4.3.1 Sublinear Convergence Rate

In this section we show that Algorithm 4.1 can, at least, achieve a sub-linear conver-

gence rate. We show, similar to the classical Newton method, that the convergence

of YAWN is split into two phases. The only difference in the sketch of the proof

is that λ̂(xh,k) is used in place of the Newton decrement. We take advantage of

the self-concordance assumption to show that the results depend only on the known

constants α and β of the line search condition. Specifically, we will prove that there

exist some positive η and γ, with η ≤ 0.6, such that

• if λ̂(xh,k) ≥ η, then

fh(xh,k+1)− fh(xh,k) ≤ −γ.
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• if λ̂(xh,k) < η, then

fh(xh,k)− fh(x∗h) ≤
1

k
.

We begin by proving reduction of the value function for using the coarse step whilst

the line search condition is satisfied. Define φ(th,k) = fh(xh,k + th,kd̂h,k), where

φ : R → R preserves the self-concordant properties as an affine transformation of

variables. With simple computations we can derive the following equalities

φ′(0) = −λ̂(xk)
2, φ′′(0) = λ̂(xk)

The idea of the proofs of the following lemmas is parallel with the one in [45].

Lemma 4.3.1. Let λ̂(xh,k) ≥ η for some η > 0. Then, there exists γ > 0 such that

the coarse direction d̂h,k will yield reduction in value function

fh(xh,k + th,kd̂h,k)− fh(xh,k) ≤ −γ,

for any k > 0.

Proof. By Proposition 4.2.6(i) we have that

φ(th,k) ≤ φ(0) + th,kφ
′(0)− th,kφ′′(0)1/2 − log

(
1− th,kφ′′(0)1/2

)
= φ(0)− th,kλ̂(xh,k)

2 − th,kλ̂(xh,k)− log
(

1− th,kλ̂(xh,k)
)

= h(th,k),

which is valid for th,k < 1

λ̂(xh,k)
. Note that h(th,k) is minimized at t∗h = 1

1+λ̂(xh,k)

and thus

φ(t∗h) ≤ φ(0)− λ̂(xh,k)
2

1 + λ̂(xh,k)
− λ̂(xh,k)

1 + λ̂(xh,k)
− log

(
1− λ̂(xh,k)

2

1 + λ̂(xh,k)

)
= φ(0)− λ̂(xh,k) + log

(
1 + λ̂(xh,k)

)
.

Using the inequality

−x+ log(1 + x) ≤ − x2

2(1 + x)
,
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for any x > 0, we obtain the following upper bound for φ(t∗h)

φ(t∗h) ≤ φ(0)− λ̂(xh,k)
2

2(1 + λ̂(xh,k))

≤ φ(0)− αt∗hλ̂(xh,k)
2

= φ(0) + αt∗h∇fTh (xh,k)d̂h,k,

which satisfies the condition of the line search and hence it will always return a step

size th,k > β/(1 + λ̂(xh,k)). Therefore,

fh(xh,k + th,kd̂h,k)− fh(xh,k) ≤ −αβ
λ̂(xh,k)

2

1 + λ̂(xh,k)
.

Additionally, since λ̂(xh,k) ≥ η and using the fact that the function x → x2

1+x
is

monotone increasing for any x > 0, we have that

fh(xh,k + th,kd̂h,k)− fh(xh,k) ≤ −αβ
η2

1 + η
.

which concludes the proof by setting γ = αβη2/(1 + η).

We proceed by estimating the functional gap fh(xh,k) − fh(x∗h). In particular, we

argue that this gap can also be bounded in terms of the decrement λ̂(xk), as opposed

to the classical one in (4.25).

Lemma 4.3.2. Let λ̂(xh,k) < 1. Then,

fh(xh,k)− fh(x∗h) ≤ ω∗(λ̂(xh,k)),

where the mapping ω∗ is defined in (4.4).

Proof. Using now Proposition 4.2.6(ii) we can obtain the following bound

φ(th,k) ≥ φ(0) + th,kφ
′(0) + th,kφ

′′(0)1/2 − log(1 + th,kφ
′(0)1/2)

= φ(0)− th,kλ̂(xh,k)
2 + th,kλ̂(xh,k)− log(1 + th,kλ̂(xh,k)) = g(th,k),
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which is true for any th,k ≥ 0. Moreover, the function g(th,k) is minimized at

t∗h = 1/(1− λ̂(xh,k)), and we take

inf
th,k≥0

{φ(th,k)} ≥ φ(0)− λ̂(xh,k)
2

1− λ̂(xh,k)
+

λ̂(xh,k)

1− λ̂(xh,k)
− log(1 +

λ̂(xh,k)

1− λ̂(xh,k)
)

= φ(0) + λ̂(xh,k) + log(1− λ̂(xh,k)),

which is valid since, by assumption, λ̂(xh,k) < 1. Similar to the analysis in [45],

since d̂h,k is a descent direction

fh(x
∗
h) ≥ fh(xh,k)− ω∗(λ̂(xh,k)),

which concludes the proof.

In order to complete the proof of our theorem we state the following lemma for

nonnegative real sequences, introduced in [67].

Lemma 4.3.3 ([67]). Let {Bn}n≥0 be a sequence of real nonnegative numbers with

n ∈ Z. Further, suppose that there exist positive constants µ and c such that

Bn − Bn+1 ≥ µB2
n and B0 ≤

1

µc
.

Then,

Bn ≤
1

µ(n+ c)
.

Proof. See [67], Lemma 3.5.

Combining all the above let us now derive the worst-case convergence rate of Al-

gorithm 4.1.

Theorem 4.3.4. Suppose that the sequence {xh,k}k with k = 0, 1, 2, . . ., is gener-

ated by Algorithm 4.1. There exists η ∈ (0, 0.6) such that if λ̂(xh,k) < η, then

fh(xh,k)− f(x∗h) ≤
1

k + 1/λ(xh,0)r(xh,0)
,
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where r(xh,0) = ‖xh,0 − x∗‖xh,0 .

Proof. Denote Bk = fh(xh,k)− f(x∗h). Recall that from Lemma 4.3.1 we have that

fh(xh,k)− fh(xh,k+1) ≥ λ̂(xh,k)− log
(

1 + λ̂(xh,k)
)
.

The above bound together with the following inequality

x− log(1 + x) ≥ x4, x ∈ [0, 0.6]

implies that for λ̂(xh,k) ≤ 0.6 we obtain

fh(xh,k)− f(x∗h)− (fh(xh,k+1)− f(x∗h)) ≥ λ̂(xh,k)
4. (4.26)

Next, it holds that, for any x ∈ [0, 0.68]

−x− log(1− x) ≥ x2,

and thus, the result in Lemma 4.3.2 in conjunction with the above inequality yields

λ̂(xh,k)
2 ≥ fh(xh,k)− f(x∗h), λ̂(xh,k) ≤ 0.68. (4.27)

Combining (4.26) and (4.27) we get

Bk − Bk+1 ≥ B2
k. (4.28)

which is valid for λ̂(xh,k) ≤ 0.6. Recall that |〈u,v〉| ≤ ‖u‖∗x‖v‖x, and hence by

convexity we obtain

B0 = fh(xh,0)− f(x∗h) ≤ 〈∇fh(xh,0),xh,0 − x∗h〉

≤ ‖∇fh(xh,0)‖∗xh,0‖xh,0 − x∗h‖xh,0
= λ(xh,0)r(xh,0).

(4.29)
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Note that inequalities (4.28) and (4.29) imply that the conditions of Lemma 4.3.3

are fulfilled for the positive constants µ = 1 and c = 1/λ(xh,0)r(xh,0), respectively.

Therefore, we conclude the proof by replacing both values in the result of Lemma

4.3.3.

To this end, Theorem 4.3.4 provides us with the description of the convergence

of Algorithm 4.1 as given in the beginning of this section: for λ̂(xh,k) ≥ η the

value function is reduced as in Lemma 4.3.1 and when λ̂(xh,k) < η Algorithm

4.1 achieves a sub-linear convergence rate. Note that the region of the sub-linear

convergence phase is given explicitly. Interestingly, we see the above result depends

only on the distance of the initial point xh,0 from the solution x∗h. This fact equips

us with a simplified version of the sub-linear phase which is easier to interpret.

4.3.2 Quadratic Convergence Rate of the Coarse Model

In this section we show that the coarse model can achieve a quadratic convergence

rate. We start with the next lemma in which we examine the required condition for

Algorithm 4.1 to accept the unit step.

Lemma 4.3.5. Suppose that the coarse direction, d̂h,k, is employed. If

λ̂(xh,k) ≤
1

2
(1− 2α),

where α ∈ (0, 1/2), then Algorithm 4.1 accepts the unit step, th,k = 1.

Proof. Recall the inequality below, from Lemma 4.3.1

φ(th,k) ≤ φ(0)− th,kλ̂(xh,k)
2 − th,kλ̂(xh,k)− log

(
1− th,kλ̂(xh,k)

)
valid for λ̂(xh,k) < 1/th,k. Setting th,k = 1 we have that

φ(1) ≤ φ(0)− λ̂(xh,k)
2 − λ̂(xh,k)− log

(
1− λ̂(xh,k)

)
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with λ̂(xh,k) < 1. Further, as in [45], making use of the inequality

−x− log(1− x) ≤ 1

2
x2 + x3, x ∈ [0, 0.81]

we get

φ(1) ≤ φ(0)− 1

2
λ̂(xh,k)

2 + λ̂(xh,k)
3 = φ(0)− 1

2

(
1− 2λ̂(xh,k)

)
λ̂(xh,k)

2

which holds for λ̂(xh,k) ≤ 0.81. Setting α ≤ 1
2
(1− 2λ̂(xh,k)) we obtain

fh(xh,k + d̂h,k) ≤ fh(xh,k)− αλ̂(xh,k)
2, (4.30)

which satisfies the backtracking line search condition for th,k = 1 and for λ̂(xh,k) ≤
min{1

2
(1 − 2α), 0.81}. Since α ∈ (0, 1/2), inequality (4.30) holds for λ̂(xh,k) ≤

1
2
(1− 2α), which concludes the proof.

Using the above lemma we shall now prove quadratic convergence of the coarse

model.

Theorem 4.3.6. Suppose that the sequence {xh,k}k with k = 0, 1, 2, . . ., is gener-

ated by Algorithm 4.1 and th,k = 1. Suppose also that the coarse direction, d̂h,k, is

employed. Then,

λ̂(xh,k+1) ≤
(

λ̂(xh,k)

1− λ̂(xh,k)

)2

.

Proof. By the definition of the approximate decrement we have that

λ̂(xh,k) =
∥∥[QH(xh,k)]

−1/2R∇fh(xh,k)
∥∥
2
,

where, by Proposition 4.2.2, [QH(xh,k)]
−1/2 is well defined and unique. In addition,

from Proposition 4.2.5(ii), and since th,k = 1, we get

[QH(xh,k+1)]
− 1

2 � 1

1− λ̂(xh,k)
[QH(xh,k)]

− 1
2 ,
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which holds since, by assumption, λ̂(xh,k) < 1. Using this relation into the defini-

tion of λ̂(xh,k+1) above, we have that

λ̂(xh,k+1) =
∥∥[QH(xh,k+1)]

−1/2R∇fh(xh,k+1)
∥∥
2

≤ 1

1− λ̂(xh,k)

∥∥[QH(xh,k)]
−1/2R∇fh(xh,k+1)

∥∥
2
.

Further, observe that ∇fh(xh,k+1) =
∫ 1

0
∇2fh(xh,k + yd̂h,k)d̂h,k dy + ∇fh(xh,k)

and thus

λ̂(xh,k+1) ≤
1

1− λ̂(xh,k)
‖A1 + A2‖2 , (4.31)

where we denote A1 = [QH(xh,k)]
−1/2R

∫ 1

0
∇2fh(xh,k + yd̂h,k)d̂h,k dy and A2 =

[QH(xh,k)]
−1/2R∇fh(xh,k). By the definitions of the coarse step in (4.19) and

(4.18), we have that d̂h,k = Pd̂H,k, and thus, using simple algebra, A1 and A2

become

A1 = [QH(xh,k)]
−1/2

∫ 1

0

QH(xh,k + yd̂h,k)d̂H,k dy

=

∫ 1

0

[QH(xh,k)]
−1/2QH(xh,k + yd̂h,k)[QH(xh,k)]

−1/2 dy [QH(xh,k)]
1/2d̂H,k,

and

A2 = [QH(xh,k)]
1/2[QH(xh,k)]

−1R∇fh(xh,k)

= −[QH(xh,k)]
1/2d̂H,k,

respectively. From Proposition 4.2.5(i), we take QH(xh,k + yd̂h,k) �
1

(1−yλ̂(xh,k))2
QH(xh,k), which is valid since yλ̂(xh,k) < 1, and so A1 can be bounded

as follows

A1 �
∫ 1

0

1

(1− yλ̂(xh,k))2
dy[QH(xh,k)]

1/2d̂H,k.
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Putting this all together, inequality (4.31) becomes

λ̂(xh,k+1) ≤
1

1− λ̂(xh,k)

∥∥∥∥∥
∫ 1

0

1

(1− yλ̂(xh,k))2
dy [QH(xh,k)]

1/2d̂H,k−

−[QH(xh,k)]
1/2d̂H,k

∥∥∥
2

=
1

1− λ̂(xh,k)

∥∥∥∥∥
∫ 1

0

(
1

(1− yλ̂(xh,k))2
In×n − In×n

)
dy [QH(xh,k)]

1/2d̂H,k

∥∥∥∥∥
2

≤ 1

1− λ̂(xh,k)

∥∥∥∥∥
∫ 1

0

(
1

(1− yλ̂(xh,k))2
− 1

)
dy

∥∥∥∥∥
2

∥∥∥[QH(xh,k)]
1/2d̂H,k

∥∥∥
2
,

where In×n denotes the n× n identity matrix. Note that

∫ 1

0

(
1

(1− yλ̂(xh,k))2
− 1

)
dy =

λ̂(xh,k))

(1− λ̂(xh,k))
,

and also that

∥∥∥[QH(xh,k)]
1/2d̂H,k

∥∥∥
2

=

((
Pd̂H,k

)T
∇2fh(xh,k)Pd̂H,k

) 1
2

=
(
d̂Th,k∇2fh(xh,k)d̂h,k

) 1
2

= λ̂(xh,k),

which concludes the proof of the theorem by directly replacing both equalities into

the last inequality of λ̂(xh,k+1).

According to Theorem 4.3.6, we can infer the following about the convergence

rate of the coarse model: first, note that the root of λ/(1 − λ)2 = 1 can be found

at λ ≈ 0.38. Hence, we come up with an explicit expression about the region

of quadratic convergence, that is, when λ̂(xh,k) < 0.38, we can guarantee that

λ̂(xh,k+1) < λ̂(xh,k) and specifically that this process converges quadratically with

λ̂(xh,k+1) ≤
δ

(1− δ)2 λ̂(xh,k),

for some δ ∈ (0, λ). However, bear in mind that this result provides us with a
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description about the convergence of ‖∇fh(xh,k)‖ onto the space spanned by the

rows of R. As such, in the next section we attempt to examine the convergence of

‖∇fh(xh,k)‖ on the entire space RN .

4.3.3 Super-linear Convergence Rate of the Fine Model

In this section, we study the convergence of Algorithm 4.1 on RN and we show

that it can achieve a super-linear rate. Taking advantage of the self-concordant

assumption, our results are independent of unknown problem parameters, such as

Lipschitz constants. Moreover, it is important to mention that, unlike the classical

analysis of the Newton method where convergence is local (i.e., x0 sufficiently close

to x∗), our results are global. To achieve our purpose, we proceed by analyzing

the decrement λ(xh,k). Again, we follow the same philosophy with that of the

Newton method for self-concordant functions by showing that the convergence of

our algorithm is split into two phases according to the magnitude of λ̂(xh,k). The

following lemma constitutes the core of our theorem.

Lemma 4.3.7. Suppose that the coarse direction, d̂h,k, is employed and, in addition,

that the line search selects th,k = 1. Then,

λ(xh,k+1) ≤
ερ1 + λ̂(xh,k)(
1− λ̂(xh,k)

)2λ(xh,k),

where ερ1 =
√

1− ρ21 and ρ1 ∈ (0, 1).

Proof. By the definition of Newton decrement we have that

λ(xh,k+1) =
∥∥[∇2fh(xh,k+1)]

−1/2∇fh(xh,k+1)
∥∥
2
.

Since th,k = 1, from Proposition 4.2.4(ii), it holds that

[∇2fh(xh,k+1)]
−1/2 � 1

1− λ̂(xh,k)
[∇2fh(xh,k)]

−1/2,
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and in conjunction with the above definition we have the following bound

λ(xh,k+1) ≤
1

1− λ̂(xh,k)

∥∥[∇2fh(xh,k)]
−1/2∇fh(xh,k+1)

∥∥
2
. (4.32)

Denote Z = [∇2fh(xh,k)]
−1/2∇fh(xh,k+1). Using the fact that

∇fh(xh,k+1) =

∫ 1

0

∇2fh(xh,k + yd̂h,k)d̂h,k dy +∇fh(xh,k)

we see that

Z = [∇2fh(xh,k)]
−1/2

(∫ 1

0

∇2fh(xh,k + yd̂h,k)d̂h,k dy +∇fh(xh,k)
)

= [∇2fh(xh,k)]
−1/2

∫ 1

0

∇2fh(xh,k + yd̂h,k)d̂h,k dy − [∇2fh(xh,k)]
1/2dh,k,

where dh,k is the Newton direction. By Proposition 4.2.4(i) and since, by assump-

tion, yλ̂(xh,k) < 1, we obtain the following bound

Z �
∫ 1

0

1(
1− yλ̂(xh,k)

)2dy [∇2fh(xh,k)]
1/2d̂h,k − [∇2fh(xh,k)]

1/2dh,k.

Next, adding and subtracting the quantity
∫ 1

0
1

(1−yλ̂(xh,k))
2dy [∇2fh(xh,k)]

1/2dh,k in

the above relation it follows that

Z � Z1 + Z2,

where we further denote Z1 =
∫ 1

0
1

(1−yλ̂(xh,k))
2dy [∇2fh(xh,k)]

1/2
(
d̂h,k − dh,k

)
and Z2 =

∫ 1

0

(
1

(1−yλ̂(xh,k))
2 − 1

)
dy [∇2fh(xh,k)]

1/2dh,k. Putting this all together,
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inequality (4.32) becomes

λ(xh,k+1) ≤
1

1− λ̂(xh,k)
‖Z1 + Z2‖2

≤ 1

1− λ̂(xh,k)
(‖Z1‖2 + ‖Z2‖2) .

We complete the proof by estimating the above norms. For the first one, we have

that

‖Z1‖2 =

∥∥∥∥∥∥∥
∫ 1

0

1(
1− yλ̂(xh,k)

)2dy [∇2fh(xh,k)]
1/2
(
d̂h,k − dh,k

)∥∥∥∥∥∥∥
2

=
1

1− λ̂(xh,k)

∥∥∥[∇2fh(xh,k)]
1/2
(
d̂h,k − dh,k

)∥∥∥
2

=
1

1− λ̂(xh,k)

[(
d̂h,k − dh,k

)T
∇2fh(xh,k)

(
d̂h,k − dh,k

)] 1
2

=
1

1− λ̂(xh,k)

[
‖d̂Th,k‖2xh,k + ‖dTh,k‖2xh,k − 2d̂Th,k∇2fh(xh,k)dh,k

] 1
2
,

where ‖ · ‖xh,k is defined in (4.2). Using now the results from Proposition 4.2.3, we

obtain

‖Z1‖2 ≤
1

1− λ̂(xh,k)

[
λ(xh,k)

2 − λ̂(xh,k)
2
] 1

2
.

Recall that, by assumption (4.22), the coarse direction is taken when λ̂(xh,k) >

ρ1λ(xh,k) and that ερ1 =
√

1− ρ21. Then,

‖Z1‖2 ≤
ερ1

1− λ̂(xh,k)
λ(xh,k),

with ερ1 ∈ (0, 1) since ρ1 ∈ (0, 1). Next, the second norm implies that

‖Z2‖2 =

∥∥∥∥∥∥∥
∫ 1

0

 1(
1− yλ̂(xh,k)

)2 − 1

 dy [∇2fh(xh,k)]
1/2dh,k

∥∥∥∥∥∥∥
2

=
λ̂(xh,k)

1− λ̂(xh,k)
λ(xh,k).
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Combining all the above we conclude that

λ(xh,k+1) ≤
ερ1 + λ̂(xh,k)(
1− λ̂(xh,k)

)2λ(xh,k),

as claimed.

We now use this result to obtain the two phases of the convergence of Algorithm

4.1. Precisely, we show that the region of super-linear convergence is governed by

η =
3−
√

9−4(1−ερ1 )
2

.

Theorem 4.3.8. Suppose that the sequence {xh,k}k with k = 0, 1, 2, . . ., is gen-

erated by Algorithm 4.1 and that the coarse direction, d̂h,k, is employed. For any

ρ1 ∈ (0, 1), there exist constants γ > 0 and η ∈ (0, 0.38) such that

(i) if λ̂(xh,k) ≥ η, then

fh(xh,k+1)− fh(xh,k) ≤ −γ

(ii) if λ̂(xh,k) < η, then Algorithm 4.1 selects the unit step and

λ̂(xh,k+1) < λ̂(xh,k) (4.33)

λ(xh,k+1) < λ(xh,k). (4.34)

Proof. Notice that case (i) is already proved in Lemma 4.3.1 and in particular it

holds with

γ = αβ
η2

1 + η
.

Hence, it remains to prove case (ii). Obviously, from Lemma 4.3.5, we have that

for η ∈ (0, 0.38) Algorithm 4.1 selects the unit step. Now, from Theorem 4.3.6

λ̂(xh,k+1) ≤
(

λ̂(xh,k)

1− λ̂(xh,k)

)2

.
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The above bound implies that if λ̂(xh,k) < η, then we guarantee that λ̂(xh,k+1) <

λ̂(xh,k); in particular, see the discussion followed Theorem 4.3.6. Thus, inequality

(4.33) is proved.

Recall, from Lemma 4.3.7, that

λ(xh,k+1) ≤
ερ1 + λ̂(xh,k)(
1− λ̂(xh,k)

)2λ(xh,k).

By assumption, λ̂(xh,k) < η and since the function x → ερ1+x

(1−x)2 is monotone in-

creasing we have that

λ(xh,k+1) ≤
ερ1 + η

(1− η)2
λ(xh,k).

Note that the root of (ερ1 +η)/(1−η)2 = 1 is attained at η =
3−
√

9−4(1−ερ1 )
2

. There-

fore, ρ1 ∈ (0, 1) implies that η ∈ (0, 0.38) and thus inequality (4.34) is proved,

which concludes the proof of the theorem.

Theorem 4.3.8 shows that Algorithm 4.1 can achieve super-linear convergence rate.

In particular, we come up with with the following description of the region of the

convergence:

• First Phase: By Theorem 4.3.8(i), if λ̂(xh,k) ≥ η, we can derive the maxi-

mum number of iterations of this stage, i.e.,

M1 ≤
1

γ
[fh(xh,0)− fh(x∗h)].

• Second Phase: By Theorem 4.3.8(ii), for any ρ1 ∈ (0, 1) there exists η ∈
(0, 0.38) such that: if λ̂(xh,k) < η, then Algorithm 4.1 enters to its super-

linear phase and it holds that

λ(xh,k+1) < λ(xh,k).
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We shall emphasize that the above phases are affected by the user-defined constant

ρ1. That is, the region of convergence is proportional ρ1. Specifically, as ρ1 →
0, we see that η approaches zero yielding a restricted region of the super-linear

phase and thus lower convergence. On the other hand, when ρ1 → 1 we obtain

higher convergence. However, bear in mind that larger values of ρ1 may result in

fewer number of coarse direction steps. Hence, we conclude that there is a trade-off

between the number of coarse correction steps and the region of the super-linear

phase. Since this result is general, i.e., holds with the mildest of assumptions, we

cannot say much about the region of super-linear rate and how it is affected by the

choice of ρ1. Typically, this region can take any values in (0, 0.38). In the next

section, we consider structured problems and we discuss concepts where the value

of ρ1 does not influence the rate of convergence.

4.4 Low-Rank Approximation of the Galerkin Model

In this section we consider the case where the Hessian matrix accepts a low-rank

approximation. We show how the Galerkin model can be developed using classical

decomposition methods. Based on this framework, we are able to show that our

method enjoys super-linear and quadratic convergence rates with very cheap per-

iteration cost. We start by discussing the basic setting of low-rank approximation.

Let A ∈ RN×N be a positive-definite matrix. We consider matrices A in which the

following holds: there exists a large gap between the p and p+1 eigenvalues and, in

addition, all eigenvalues below λp are sufficiently small positive real numbers, i.e.,

λ1 ≥ λ2 ≥ · · · ≥ λp � λp+1 ≥ · · · ≥ λN .

Then, we say that A admits a low-rank approximation and the idea is to retain

the first p-eigenvalues which, in general, are the most informative. We can obtain



4.4. Low-Rank Approximation of the Galerkin Model 126

Ap ≈ A, with rank(Ap) = p < N , by solving the following optimization problem

minimize
Ap∈RN×N

‖A−Ap‖

subject to rank(Ap) = p.

(4.35)

It is known, that this problem can be solved by Singular Value Decomposition

(SVD) algorithms, where SVD, by positive-definiteness of A, coincides with the

eigenvalue decomposition. Among others, the Truncated SVD (T-SVD) yields

A ≈ Ap = UpΣpU
T
p ,

where Σp ∈ Rp×p is a diagonal matrix containing the p-largest eigenvalues and

Up ∈ RN×p the corresponding eigenvectors. In this context, T-SVD can now

be viewed as, initially, performing an approximate eigenvalue decomposition and

then truncating it, so that the eigenvalue matrix ΣN retains the first p-eigenvalues

and, in addition, the last (N − p)-eigenvalues are replaced with zero. Computing

[Up,Σp] using a deterministic solver is of O(N2p) order, nevertheless, one can

find in the literature randomized algorithms with cheaper per-iteration cost, such as

O(N2 log(p)), see for instance Halko et al in [49].

Throughout this section we specify the restriction and prolongation operators, de-

fined in Section 4.2.2, to be as follows

Definition 4.4.1. Let SN = {1, 2, . . . , N} and denote Sn ⊂ SN , with the property

that the n < N elements are uniformly selected by the set SN without replacement.

Further, assume that si is the ith element of Sn. Then the prolongation operator P

is generated as follows: The ith column of P is the si column of IN×N and, further,

it holds that R = PT .

Clearly, by the above definition, Assumption 4.2.1 remains true. Further, using the

above definition, a more sophisticated solution of the optimization problem in (4.35)

can be given via the Nyström method. In particular, the Nyström method builds a
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rank-n, n < N , approximation of A as

A ≈ Ap = AP(PTAP)−1(AP)T (4.36)

with P as in Definition 4.4.1 (for more details on Nyström method see [53, 49]).

Interestingly, since the right-hand side of the above relation is a low-rank approxi-

mation of A, we can perform classical decomposition methods, such as T-SVD, to

obtain Ap, see [49].

4.4.1 SVD on the Hessian of the Fine Model

It is very common in machine learning problems that the first few eigenvalues and

eigenvectors concentrate the most important second-order information while the

rest are small and hence non-informative. Under this regime, small eigenvalues

provide poor approximations. We aim to overcome this issue by performing Trun-

cated SVD. Specifically, we adopt the idea presented in [68] where the (N − n)-

eigenvalues (below the threshold), instead of being replaced by zero, are treated as

sufficiently small and almost equal to each other. Therefore, we make use of the

following assumption

Assumption 4.4.2. The Hessian ∇2f(xh,k) ∈ RN×N admits an approximate low-

rank factorization of size n < N and, in particular, for its eigenvalues it holds

that

λ1 ≥ λ2 ≥ . . . ≥ λn � λn+1 ≈ λn+2 ≈ · · · ≈ λN .

Using low-rank approximation of the Hessian we can show connection between

the coarse direction d̂h,k and the Newton direction dh,k. Consider the low-rank

approximation as presented in Nyström method in (4.36) and let A be the Hessian

matrix. Then

∇2f(xh,k) ≈ ∇2f(xh,k)P
(
R∇2f(xh,k)P

)−1
R∇2f(xh,k). (4.37)

Hence, multiplying right and left with [∇2f(xh,k)]
−1, respectively, the above rela-
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tion yields

[∇2f(xh,k)]
−1 ≈ Q̃h,k = P(R∇2f(xh,k)P)−1R. (4.38)

Note that, by Definition 4.4.1 and Assumption 4.2.1, Q̃h,k is well-defined. Next, we

observe that

dh,k ≈ d̂h,k = −Q̃h,k∇f(xh,k). (4.39)

Therefore, the coarse direction can be viewed as an approximation of the Newton

direction with [∇2f(xh,k)]
−1 ≈ Q̃h,k and, importantly, Q̃h,k can be calculated by

the T-SVD. Suppose further that Assumption 4.4.2 holds. We build Q̃h,k in the fol-

lowing manner: compute the (n+ 1)th T-SVD of∇2f(xh,k) to obtain [Un+1,Σn+1]

and form

Q̃h,k := λ−1n+1IN×N + Un(Σ−1n − λ−1n+1In×n)UT
n . (4.40)

In other words, relation (4.40) replaces all the eigenvalues below λn, of the full

eigenvalue matrix ΣN ∈ RN×N , with λn+1, i.e., λn+1 = · · · = λN , and hence we

have

Σ−1N = diag

(
1

λ1
,

1

λ2
, . . . ,

1

λn
,

1

λn+1

, . . . ,
1

λn+1

)
.

Obviously, by relation (4.39) and the definition of Q̃h,k in (4.40), −Q̃h,k∇f(xh,k)

is a descent direction and note that the approximated Hessian matrix is positive-

definite. In the next section we provide convergence analysis using the above frame-

work.

4.4.2 Convergence Analysis

In this section we show that YAWN achieves quadratic convergence rate provided

Assumptions 4.2.1, 4.4.2 and self-concordance hold. The main idea of the proof

continues in the same manner, i.e., convergence is split into two phases according

to the magnitude of λ̂(xh,k). The following lemma takes the place of Lemma 4.3.7,

of the super-linear rate in Section 4.3.3, where, now, the new coarse direction arises

from the low-rank approximation of the Hessian. Note that, by Assumption 4.4.2
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and construction of Q̃h,k, the Newton search direction and decrement coincide with

their approximations versions, i.e.,

λ̂(xh,k)
2 = ∇fTh (xh,k)Q̃h,k∇fh(xh,k)

= ∇fTh (xh,k)[∇2fh(xh,k)]
−1∇fh(xh,k) = λ(xh,k)

2

and

d̂h,k = −Q̃h,k∇fh(xh,k) = −∇2fh(xh,k)∇fh(xh,k) = dh,k

respectively. Therefore, it is only natural for one to expect the quadratic rate of this

scheme. However, we prefer to give a more sophisticated and detailed analysis be-

cause the following results will later be useful for providing the super-linear rate in

the case where the coarse direction and the approximate decrement do not coincide

with the Newton ones.

Lemma 4.4.3. Suppose that the coarse direction, d̂h,k, with Q̃h,k as in (4.40), is

taken and also that th,k = 1. Further, let Assumption 4.4.2 hold. Then,

λ(xh,k+1) ≤
λ̂(xh,k)(

1− λ̂(xh,k)
)2λ(xh,k).

Proof. The proof of the lemma is parallel to Lemma 4.3.7 and remains true since

d̂h,k = dh,k and λ̂(xh,k) = λ(xh,k) . For this reason, we only highlight the key

parts. Recall that

λ(xh,k+1) =
∥∥[∇2fh(xh,k+1)]

−1/2∇fh(xh,k+1)
∥∥
2
.

which by Lemma 4.3.7 yields

λ(xh,k+1) ≤
1

(1− λ̂(xh,k))2

(∥∥∥[∇2fh(xh,k)]
1/2
(
d̂h,k − dh,k

)∥∥∥
2

+ λ̂(xh,k)λ(xh,k)
)
.
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Using the definition of d̂h,k and dh,k, we obtain

d̂h,k − dh,k =
(

[∇2fh(xh,k)]
−1 − Q̃h,k

)
∇fh(xh,k)

=
(

[∇2fh(xh,k)]
−1/2 − Q̃h,k[∇2fh(xh,k)]

1/2
)

[∇2fh(xh,k)]
−1/2∇fh(xh,k)

and thus

∥∥∥[∇2fh(xh,k)]
1/2
(
d̂h,k − dh,k

)∥∥∥
2
≤‖IN×N−

−[∇2fh(xh,k)]
1/2Q̃h,k[∇2fh(xh,k)]

1/2
∥∥∥
2
λ(xh,k).

Therefore, we have that

λ(xh,k+1) ≤
ck + λ̂(xh,k)(
1− λ̂(xh,k)

)2λ(xh,k)

where

ck =
∥∥∥IN×N − [∇2fh(xh,k)]

1/2Q̃h,k[∇2fh(xh,k)]
1/2
∥∥∥
2
. (4.41)

It remains only to show that ck = 0. Consider the eigenvalue decomposition. We

take

[∇2fh(xh,k)]
1/2 = UNΣ

1/2
N UT

N ,

and

Q̃h,k = UQ̃h,k
ΣQ̃h,k

UT
Q̃h,k

,

where, by Assumption 4.4.2 and construction of Q̃h,k, UN and UQ̃h,k
coincide.

Thus, we can obtain

IN×N − [∇2fh(xh,k)]
1/2Q̃h,k[∇2fh(xh,k)]

1/2 =

UN

(
IN×N −Σ

1/2
N UT

NUQ̃h,k
ΣQ̃h,k

UT
Q̃h,k

UNΣ
1/2
N

)
UT
N =

UN

(
IN×N −Σ

1/2
N ΣQ̃h,k

Σ
1/2
N

)
UT
N .
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Denote λi,k be the ith-eigenvalue of the Hessian matrix at iteration k. Therefore, by

definition of Q̃h,k we obtain

ck =
∥∥∥IN×N −Σ

1/2
N ΣQ̃h,k

Σ
1/2
N

∥∥∥
2

= max

{∣∣∣∣1− λ1,k
λ1,k

∣∣∣∣ , . . . , ∣∣∣∣1− λn+1,k

λn+1,k

∣∣∣∣ , ∣∣∣∣1− λn+2,k

λn+1,k

∣∣∣∣ , . . . , ∣∣∣∣1− λN,k
λn+1,k

∣∣∣∣}
= 1− λN,k

λn+1,k

,

and since, by Assumption 4.4.2, λn+1,k = · · · = λN,k we take ck = 0 which

concludes the proof.

We emphasize that the above lemma can also hold for any matrix decomposition

method, not necessarily for the construction in (4.40), as long as the structure of the

Hessian matrix presented in Assumption 4.4.2 is preserved. For example, one could

use standard eigenvalue or QR decomposition algorithms to construct the matrix

Q̃h,k. On the other hand, it is easy to see that employing just the T-SVD without

further applying the construction in (4.40), will yield ck 6= 0. Using Lemma 4.4.3,

we are now in position to present our theorem.

Theorem 4.4.4. Suppose that the sequence {xh,k}k with k = 0, 1, 2, . . ., is gener-

ated by xh,k+1 = xh,k + th,kd̂h,k and let the conditions in Lemma 4.4.3 hold. There

exist γ > 0 and η ∈ (0, 0.38) such that

(i) if λ̂(xh,k) ≥ η, then

fh(xh,k+1)− fh(xh,k) ≤ −γ

(ii) if λ̂(xh,k) < η, then the line search selects the unit step and

λ(xh,k+1) < λ(xh,k), (4.42)

where, in particular, this process progresses quadratically.
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Proof. Note that case (i) and the unit step selection in case (ii) are already proved

in Theorem 4.3.8. As for inequality (4.42), by Lemma 4.4.3 we have that

λ(xh,k+1) ≤
λ̂(xh,k)(

1− λ̂(xh,k)
)2λ(xh,k).

Observe that the root λ̂(xh,k)/(1 − λ̂(xh,k))
2 = 1 is attained at λ̂(xh,k) = 3−

√
5

2
≈

0.38. Therefore, we conclude that if λ̂(xh,k) < η, for some η ∈ (0, 0.38), then

λ(xh,k+1) < λ(xh,k), and this process converges quadratically.

Theorem 4.4.4 shows that the YAWN scheme (4.11) with d̂h,k chosen as in relation

(4.39) enjoys quadratic convergence rate. Further, we are provided with the follow-

ing description and the region of convergence:

First phase: if λ̂(xh,k) ≥ η, for some η ∈ (0, 0.38), we obtain reduction of

fh(xh,k+1)− fh(xh,k) ≤ −γ,

where γ = αβη2/(1 + η) and hence, for this stage, the total number of iterations is

bounded by
1

γ
(fh(xh,0)− fh(x∗h)) .

Quadratic phase: if λ̂(xh,k) < η, for some η ∈ (0, 0.38), then th,k = 1 and the

process converges quadratically as

λ(xh,k+1) ≤
η

(1− η)2
λ(xh,k) < λ(xh,k).

Note that, as expected, this rate is exactly the rate in [9] but we emphasize that it is

accompanied with cheaper per iteration cost, i.e., Newton method requires O(N3)

iterations for computing the inverse while our methodO(N2n) to perform the stan-

dard T-SVD (or even O(N2 log(n)) when performing randomized decomposition

methods), where for cases with n small, the computational cost is significantly re-

duced (approximately O(N2)). However, for showing the desired result we assume
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equality between the last N − n eigenvalues. This assumptions may be restrictive

for many practical problems, nevertheless, identifies an instance where the above

scheme converges quadratically with cheap per-iteration cost. If equality between

the last eigenvalues does not hold, the process in turn achieves super-linear rate with

region depending on

η =
3−

√
9− 4

λk,N
λk,n+1

2
,

where λi,k denotes the ith-eigenvalue of the Hessian at iteration k. We summarize

this result in the following theorem.

Theorem 4.4.5. Suppose that the conditions of Theorem 4.4.4 remain true and,

further, Assumption 4.4.2 holds with λn+1 ≥ · · · ≥ λN . There exist γ > 0 and

η ∈ (0, 0.38) such that

(i) if λ̂(xh,k) ≥ η, then

fh(xh,k+1)− fh(xh,k) ≤ −γ

(ii) if λ̂(xh,k) < η, then the line search selects the unit step and

λ(xh,k+1) < λ(xh,k).

Proof. Note that the approximation error for using the inexact search direction

(4.39) depends on the (n + 1)-eigenvalue of the Hessian matrix (see for instance

theorem 2.4.2). Since, by assumption, we consider structures where there exists a

large gap between the nth and the (n+ 1)th eigenvalues, we can expect that, at each

iteration, λn+1 is small so that the above approximation is good. Therefore, lemmas

4.3.1 and 4.3.5 approximately hold for the current setting. This proves the first case

of the theorem (i.e., when λ̂(xh,k) ≥ η) and shows that, if λ̂(xh,k) < η, the unit step
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is accepted. Similarly, from Lemma 4.4.3 we obtain

λ(xh,k+1) ≤
ck + λ̂(xh,k)(
1− λ̂(xh,k)

)2λ(xh,k)

where, as before,

ck =
∥∥∥IN×N − [∇2fh(xh,k)]

1/2Q̃h,k[∇2fh(xh,k)]
1/2
∥∥∥
2
.

We immediately see that ck = 1− λN,k/λn+1,k and so

λ(xh,k+1) ≤
1− λN,k

λn+1,k
+ λ̂(xh,k)(

1− λ̂(xh,k)
)2 λ(xh,k)

By assumption λ̂(xh,k) < η,

λ(xh,k+1) ≤
1− λN,k

λn+1,k
+ η

(1− η)2
λ(xh,k)

with the root of (1− λN,k
λn+1,k

+ η)/ (1− η)2 = 1 to be attained at

η =
3−

√
9− 4

λk,N
λk,n+1

2
.

Since λk,N/λk,n+1 ∈ (0, 1), we conclude that if λ̂(xh,k) < η, then λ(xh,k+1) <

λ(xh,k), where η ∈ (0, 0.38).

To this end, Theorem 4.4.5 shows that when there exits a large gap between the

nth and (n+ 1)th eigenvalues of the Hessian matrix, the YAWN method with search

direction as in (4.39) achieves a super-linear convergence rate. In particular, the rate

is governed by the ratio of the N th and (n + 1)th eigenvalues. When this ratio ap-

proaches 1 the method approaches the fast convergence rate of the Newton method

with cheaper computational cost.

However, although Theorems 4.4.4 and 4.4.5 indicate very fast convergence rates,
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computing the T-SVD on the exact Hessian matrix is expensive, especially when N

is too large. For instance, consider a dataset matrix A ∈ Rm×N . The above scheme

requires O(mN2) computations to form the Hessian and O(nN2) to perform the

T-SVD which is quite restrictive for large-scale optimization problems. In the next

section we show how to address this issue.

4.4.3 SVD on the Coarse Grained Model

The bottleneck of the previous procedure arises from the fact that computations are

performed over the full Hessian matrix. Thus, the idea is now is to form the reduced

Hessian, i.e., QH(xh,k) = R∇2f(xh,k)P ∈ Rn×n, and then perform a rank-p T-

SVD; this process requires O(mn2) and O(pn2) operations, respectively, where

p < n and typically p� n. We now abandon the restrictive part of the Assumption

4.4.2 and examine the general case where equality over the last eigenvalues does

not hold, i.e.,

Assumption 4.4.6. The Hessian ∇2f(xh,k) ∈ RN×N admits an approximate low-

rank factorization of size p′ < N and, in particular, for its eigenvalues it holds

that

λ1 ≥ λ2 ≥ . . . ≥ λp′ � λp′+1 ≥ λp′+2 ≥ · · · ≥ λN .

In addition to the above assumption, we suppose that the prolongation operator

P is selected according to Definition 4.4.1. Clearly, the matrix QH(xh,k) can be

seen as a sampled version of the full Hessian. As a result, since uniform sampling

provides unbiased estimators, QH(xh,k) inherits all the properties of the Hessian,

i.e., QH(xh,k) ∈ Rn×n admits an approximate low-rank factorization of size p < n

with eigenvalues of the form

λ1 ≥ λ2 ≥ . . . ≥ λp � λp+1 ≥ λp+2 ≥ · · · ≥ λn.

Therefore, the natural way forward is to perform low-rank approximation on the
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matrix QH(xh,k). Specifically, we aim to use T-SVD to obtain

Q̃H,k ≈ (R∇2f(xh,k)P)−1. (4.43)

Since the above approximation is valid, it remains to provide connections with the

multilevel framework. In fact, this can be achieved through the naive Nyström

method using similar arguments as in Section 4.4.1: observe that, if we left and

right multiply with P and R, respectively, relation (4.43) becomes

PQ̃H,kR ≈ P[R∇2f(xh,k)P]−1R,

and so, by the naive Nyström (4.36) and relation (4.38), we have that

Q̂k := PQ̃H,kR ≈ [∇2f(xh,k)]
−1.

Hence, we can claim that

d̂h,k = −Q̂k∇f(xh,k) (4.44)

is an approximation of the Newton direction dh,k and, in addition, note that the new

approximate decrement can be written as

λ̂(xh,k) =
[
∇f(xh,k)

T Q̂k∇f(xh,k)
]1/2

. (4.45)

Further, we construct Q̂k as follows: compute the rank-p T-SVD of the reduced

Hessian matrix QH(xh,k) to obtain [Up+1,Σp+1] and form

Q̃H,k := λ−1p+1In×n + Up(Σ
−1
p − λ−1p+1Ip×p)U

T
p . (4.46)

where Up ∈ Rn×p and Σp ∈ Rp×p. Then, we left and right multiply equation (4.46)

with P and R, respectively, to obtain Q̂k. We call the algorithm that computes the

coarse correction step in this way YAWNSVD and present it in Algorithm 4.2.
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Algorithm 4.2 YAWNSVD

1: Input: ρ1 ∈ (0, 1), α ∈ (0, 0.5), β ∈ (0, 1), ε ∈ (0, 0.682), R ∈ Rn×N by
Definition 4.4.1, and the desired rank-p < n,

2: Initialize: xh,0 ∈ RN

3: for k = 0, 1, . . . do
4: if λ̂(xh,k) > ρ1λ(xh,k) and λ̂(xh,k) > ε then
5: Compute QH(xh,k) := R∇2f(xh,k)P
6: Obtain [Up+1,Σp+1] using (p+ 1)-Truncated SVD on QH(xh,k)

7: Form Q̃H,k from (4.46) and then Q̂ := PQ̃H,kR

8: Compute direction d = d̂h,k from (4.44)
9: else

10: Compute direction d = dh,k from (4.13)
11: end if
12: if λ(xh,k)

2 ≤ ε then
13: quit
14: end if
15: while fh(xh,k + tkd) > fh(xh,k)− αth,kλ̂(xh,k)

2, th,k ← 1 do
16: th,k ← βth,k
17: end while
18: Update

xh,k+1 := xh,k + th,kd

19: end for
20: return xh,k

Remark 4.4.7. We make some important remarks regarding the practical imple-

mentation of Algorithms 4.1 and 4.2. Firstly, in the general case, we make no

assumptions about the coarse model beyond what has already been discussed in

previously. For example, the fine model dimension N could be very large, while n

could be just a single dimension. This is the reason why we need to specify both

a coarse and a fine direction above (in practice we take n = N/2). Using the al-

gorithm in Definition 4.4.1, we sample different R and P at every iteration, but we

drop the dependence on k to simplify the notation. In our numerical experiments,

we set ρ1 small enough so that YAWN always chooses the coarse direction. In Sec-

tion 4.4 we describe instances where the value of ρ1 should not affect the rate of

YAWN. In Section 4.6 we show using several examples that in practice YAWN can

reach solutions with high accuracy without ever using fine correction steps.
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4.4.4 Convergence Analysis

In this section we show that YAWNSVD enjoys super-linear convergence rate. Using

the framework presented in Section 4.4.3, Algorithm 4.2 can be seen as an inex-

act version of Algorithm 4.1. Our goal is to show that Theorem 4.3.8 holds for

the current setting and thus, similar to YAWN method, the region of super-linear

convergence is controlled by η =
3−
√

9−4(1−ερ1 )
2

, where ερ1 =
√

1− ρ21.

Theorem 4.4.8. Suppose that the sequence {xh,k} with k = 0, 1, 2, . . ., is generated

by Algorithm 4.2 and let Assumption 4.4.6 hold. Further, suppose that the prolonga-

tion operator is generated according to Definition 4.4.1. Then, for any ρ1 ∈ (0, 1),

the result in Theorem 4.3.8 applies with the same constants γ and η.

Proof. The proof of the theorem is an immediate result of Theorem 4.3.8. By As-

sumption 4.4.6 we have that the approximation error for using the inexact search

direction in (4.44) is small and hence all requirements of Theorem 4.3.8 hold ap-

proximately for the current setting which concludes the proof of the theorem.

We have showed that the inexact Algorithm 4.2 enjoys a super-linear convergence

rate. Specifically, this rate is identical with that of Algorithm 4.1 (see also the

discussion followed Theorem 4.3.8 for a description of the region of super-linear

convergence). We would like to clarify two aspects of YAWNSVD method. First,

the choice of the approximated Hessian need not necessarily be the one in equation

(4.46). As long as the new approximated matrix Q̃H,k produces a descent direc-

tion, one could use any valid low-rank method, for details see [49], to approximate

the Hessian. This fact indicates the broadness of our method. For instance, one

could employ just the standard T-SVD method or the QR decomposition method,

nevertheless, our numerical results indicate a more efficient performance when the

construction in equation (4.46) is applied. Second, Assumption 4.4.6 can be re-

moved without affecting the convergence of the method. It does not constitute a

necessary and sufficient condition for the convergence of the algorithm. In fact,

Assumption 4.4.6 ensures that the decrement in (4.45) will be an effective approxi-
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mation of the Newton decrement and thus the coarse direction will always be taken.

On the other hand, recall that condition (4.22) ensures that no coarse step will be

taken when the YAWNSVD decrement provides poor approximations. Therefore, we

could abandon Assumption 4.4.6 but this might imply an increased number of fine

steps which in turn yields expensive iterations. To avoid expensive iterations, one

could set the user-defined parameter ρ1 very small so that condition (4.22) is not ac-

tivated. However, our analysis suggests that smaller values in ρ1 result a restricted

region of super-linear convergence and thus an increased number of total iterations.

Our numerical experience, nevertheless, indicates that the bound of total steps (see

Section 4.5) is fairly pessimistic and that, in many cases, YAWNSVD is able to con-

verge in as many iterations as the Newton method (see Section 4.6). Our intuition

suggests that this fact occurs since YAWNSVD captures only the effective informa-

tion of the exact Hessian matrix. We also discuss this in the next section where we

provide analytical complexity bounds of our methods.

4.5 Complexity Analysis: YAWN vs Newton

In this section we derive a complexity bound for the YAWN method. Since the anal-

ysis of YAWN applies to YAWNSVD, the following bounds hold for both methods.

We measure the effectiveness of both algorithms in terms of the worst-case number

of iterations needed to achieve an accuracy ε. The next lemma provides a bound on

suboptimality.

Lemma 4.5.1. Let λ(xh,k) ≤ 0.68. Then, fh(xh,k)− fh(x∗h) ≤ λ(xh,k)
2.

Proof. Using inequality (4.7) we obtain that

fh(xh,k)− fh(x∗h) ≤ ω∗(‖∇fh(xh,k)‖∗xh,k)

= ω∗(λ(xh,k)), λ(xh,k) < 1

≤ λ(xh,k)
2,
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where the last inequality holds since−x− log(1−x) ≤ x2, for x ≤ 0.68, and ω∗(·)
is defined in (4.4).

In the next lemma we attempt to derive a similar region of convergence as the one

proved for the Newton method in [45], i.e., there exists η ≤ 1/4. The idea of the

proof is similar to that of Theorem 4.3.8, i.e., convergence is split into two phases,

conditioning λ̂(xh,k), in order, now, to obtain reduction of λ(xh,k+1) ≤ 1
2
λ(xh,k).

We show that the region of super-linear convergence is governed by

η = 2−
√

3 + 2
√

1− ρ21,

where ρ1 ∈ (0.866, 1).

Lemma 4.5.2. Suppose that the coarse direction, d̂h,k, is employed. For ρ1 ∈
(0.866, 1) there exist constants γ > 0 and η ∈ (0, 1/4) such that

(i) if λ̂(xh,k) ≥ η, then

fh(xh,k+1)− fh(xh,k) ≤ −γ

(ii) if λ̂(xh,k) < η, then the line search selects th,k = 1 with

λ(xh,k+1) <
1

2
λ(xh,k). (4.47)

Proof. Recall that the first case, (i), is already proved in Lemma 4.3.1 with γ =

αβη2/(1 + η). As for the second case, (ii), we proceed using similar arguments as

in Theorem 4.3.6. By Lemma 4.3.7 and assumption λ̂(xh,k) < η we have that

λ(xh,k+1) ≤
ερ1 + η

(1− η)2
λ(xh,k),

where ερ1 =
√

1− ρ21. We see that the root of (ερ1 + η)/(1− η)2 = 1/2 is attained

at η = 2 −
√

3 + 2ερ1 . Therefore, assumption ρ1 ∈ (0.866, 1) implies: (a) that
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ερ1 ∈ (0, 1/2) and (b) that η ∈ (0, 1/4), and hence we conclude that

λ(xh,k+1) <
1

2
λ(xh,k),

when λ̂(xh,k) < η, which completes the proof.

We combine the above lemmas to obtain the total number of iterations for Algorithm

4.1.

Theorem 4.5.3. Suppose that the sequence {xh,k}k with k = 0, 1, 2, . . ., is gen-

erated by Algorithm 4.1 and that the coarse direction, d̂h,k, is employed with

ρ1 ∈ (0.866, 1). Then, the total number of iterations, for achieving an ε approx-

imate solution, do not exceed

M =
1

γ
[fh(xh,0)− fh(x∗h)] + log2

(
1

ε

)
+ log2

[(
η

ρ1

)2
]
− 1,

where γ is defined in Lemma 4.3.1 and η ∈ (0, 1/4).

Proof. We make use of the results in Lemma 4.5.2, for obtaining a bound on the

number of iterations at each phase.

First Phase: It is obvious that, from Lemma 4.5.2(i), the number of iterations is

bounded by

M1 ≤
1

γ
[fh(xh,0)− fh(x∗h)],

when λ̂(xh,k) ≥ η.

Second Phase: Now suppose that at some iteration k the second phase is activated,

i.e., λ̂(xh,k) < η, and denote with µ the total number of iterations of the algorithm

with µ ≥ k, thus it holds λ̂(xh,µ) < η. From the result in Lemma 4.5.2(ii) observe

that

λ(xh,µ) ≤ 1

2
λ(xh,µ−1) ≤

(
1

2

)2

λ(xh,µ−2) ≤ . . . ≤
(

1

2

)µ−k
λ(xh,k)
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which implies

λ(xh,µ)2 ≤
(

1

2

)M2+1

λ(xh,k)
2, (4.48)

where we let M2 = µ − k. Further, since, by assumption, d̂h,k is employed (see

condition (4.22)) and λ̂(xh,k) < η, we have that λ(xh,k) < λ̂(xh,k)/ρ1 < η/ρ1 and

thus inequality (4.48) becomes

λ(xh,µ)2 ≤
(

1

2

)M2+1(
η

ρ1

)2

.

Next, by Lemma 4.5.1, for λ(xh,µ) ≤ 0.68 and for all µ ≥ k, it holds that

fh(xh,µ)− fh(x∗h) ≤ λ(xh,µ)2 ≤
(

1

2

)M2+1(
η

ρ1

)2

.

Therefore, the number of iterations, for obtaining accuracy fh(xh,µ)− fh(x∗h) ≤ ε,

must be at least

M2 = log2

(
1

ε

)
+ log2

[(
η

ρ1

)2
]
− 1.

Finally, combining the results of both phases we conclude that the total number of

iterations is bounded by

M = M1 +M2 =
1

γ
[fh(xh,0)− fh(x∗h)] + log2

(
1

ε

)
+ log2

[(
η

ρ1

)2
]
− 1,

as claimed.

To this end, in general, one should not expect for YAWN methods to converge in

fewer steps compared to the Newton method. Specifically, our analysis suggests

that we should expect a difference in the number of iterations between YAWN and

Newton methods when assuming that the Hessian matrix does not possess any kind

of structure (general case). This fact would yield poor approximations of YAWN

decrement compared to the Newton one and thus smaller values of ρ1 will suffice for

the coarse direction to be taken. On the other hand, if the Hessian matrix possesses a

structure as in Assumption 4.4.6 and, further, the valuable second-order information
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is concentrated in the first few eigenvalues, we should expect YAWNSVD to provide

effective approximations and thus, for any ρ1 ∈ (0, 1), no fine step will be taken.

This means that, even if ρ1 approaches 1, YAWN methods will always perform

coarse correction steps and thus the bound in Theorem 4.5.3 approaches the Newton

one in [45]. Therefore, we come up with a method with a rate that approaches the

quadratic rate of Newton method with much cheaper cost per-iteration. Specifically,

the total iteration cost, when only the coarse direction is taken, is O(mN + (p +

m)n2). In practical problems we, typically, have p � n so that the total cost per-

iteration approximately isO((N +n2)m) which, in such cases, indicates a very fast

performance for YAWNSVD. This behavior is illustrated in the next section through

numerical experiments.

4.6 Numerical Results

In this section we verify our convergence results on extensive numerical results.

To validate the efficacy of our algorithms we consider the `2-regularized logistic

regression example

min
xk,h∈RN

1

m

m∑
i=1

log(1 + exp(−bixTk,hai)) + `‖xk,h‖22,

Table 4.1: Datasets and Algorithms used in the experiments, available from https:
//www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/ and
http://archive.ics.uci.edu/ml/index.php

Algorithms References
Newton [45]
Sub-Newton [43]
NewSamp [68]

Datasets m N ` p
MNIST 60, 000 784 1/m 60
BlogFeedback 52, 396 280 1/m 60
CT Slices 53, 500 385 1/m 60

Datasets m N ` p
HAR 7, 352 561 1/m 60
HAPT 7, 767 561 1/m 60
GISETTE 6, 000 5, 000 1/m 360
Epsilon Normalized 100, 000 2, 000 0 200

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://archive.ics.uci.edu/ml/index.php
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Table 4.2: Comparison of optimization algorithms over various datasets.

MNIST
Algorithms Iterations CPU Time(sec)
YAWNSVD 22 26.14
YAWN 22 26.65
Newton 22 36.82
Sub-Newton 150 271.75
NewSamp 34 62.07

BlogFeedback
Algorithms Iterations CPU Time(sec)
YAWNSVD 97 29.18
YAWN 118 41.54
Newton 201 137.85
Sub-Newton 89 50.37
NewSamp 102 65.79

CT Slices
Algorithms Iterations CPU Time(sec)
YAWNSVD 24 8.71
YAWN 23 9.34
Newton 22 15.70
Sub-Newton 30 17.03
NewSamp 21 14.02

HAR
Algorithms Iterations CPU Time(sec)
YAWNSVD 22 2.02
YAWN 24 1.85
Newton 17 2.17
Sub-Newton 19 1.81
NewSamp 17 2.20

HAPT
Algorithms Iterations CPU Time(sec)
YAWNSVD 23 2.33
YAWN 24 2.21
Newton 18 3.26
Sub-Newton 32 4.21
NewSamp 17 3.06

GISETTE
Algorithms Iterations CPU Time(sec)
YAWNSVD 15 22.76
YAWN 27 41.81
Newton 13 67.55
Sub-Newton - -
NewSamp - -

Epsilon Normalized, ε = 10−3

Algorithms Iterations CPU Time(sec)
YAWNSVD 10 42.71
NewSamp 6 35.10

Epsilon Normalized, ε = 10−7

Algorithms Iterations CPU Time(sec)
YAWNSVD 41 137.54
NewSamp 23 150.07

where ` > 0 is the regularization parameter and {ai, bi} the training set, with ai ∈
RN and bi ∈ R. The gradient and Hessian of the above example can be written

explicitly

∇f(xk,h) =
1

m

m∑
i=1

biai (pi(xk,h)− 1) ,

and

∇2f(xk,h) =
1

m

m∑
i=1

b2i pi(xk,h) (1− pi(xk,h)) aia
T
i ,

respectively, where pi(xk,h) = 1/ (1 + exp(−bixk,hai)).

Table 4.1 presents the optimization methods to be compared with YAWN and

YAWNSVD and the set-up parameters for each example we consider. Specifically,

for YAWN, the Armijo step-size rule is used, and the user-defined parameter ρ1,

which controls the number of coarse and fine steps, is taken equal to 0.1 to ensure
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Table 4.3: Comparison of YAWN of different values in ρ1 on Gisette dataset.

YAWN Total Iterations Coarse Iterations CPU Time(sec)
ρ1 = 0.1 27 27 33
ρ1 = 0.3 27 27 33
ρ1 = 0.5 27 27 33
ρ1 = 0.7 18 11 50
ρ1 = 0.9 14 0 66

that in all experiments no fine step will be taken. Next, the prolongation operator

P is selected according to the Definition 4.4.1 with N = n/2. For the sub-sampled

Newton methods m/2 samples are taken to form the Hessian. We used a tolerance

of ε = 10−5.

The total performance between the optimization methods can be found in Table

4.2 (see also Figure 4.2 for the convergence behavior). The results were obtained

using a standard desktop computer using a Python implementation. In all cases both

YAWN and YAWNSVD outperform their counterparts. In particular, we observe

that even in the cases where m � N , where sub-sampled Newton methods are

particularly well suited for, there are instances that both YAWN variants provide an

improvement of more than 50% in CPU time. The only case where NewSamp was

found to be comparable with YAWN is on the Epsilon Normalized dataset when low

accuracy is required. We note that for many applications in machine learning such

as background extraction from video and face recognition, much higher accuracy

is required (see [8]). When high accuracy is required, YAWNSVD is faster even

for the Epsilon Normalized dataset. On the other hand, when m � N does not

hold, the performance of state-of-the-art sub-sampled Newton methods is poor even

compared to the standard Newton method. In fact, Sub-Newton and NewSamp

failed for the GISETTE dataset because they could not reach the required tolerance.

Furthermore, note that even in the cases where YAWN methods require more itera-

tions to converge, they are still better against their competitors since the computa-

tional bottleneck arises from the size of the Hessian. For the example we consider

here, i.e., m/2 samples, Sub-Newton and NewSamp require O(mN2/2 + N3) and
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O(mN2/2 + pN2), respectively, to form and compute the inverse of the Hessian,

while, for N/2, YAWN and YAWNSVD O(mN2/4 +N3/8) and O((m+ p)N2/4),

respectively, which is a clear advantage. Finally, Figure 4.1 illustrates the conver-

gence behavior of YAWN for different values of ρ1. In particular, observe that for

values ρ1 < 0.7 the coarse step is always taken and thus the convergence is identi-

cal. This shows that λ̂(xk) is a good approximation over λ(xk) such that condition

(4.22) is not activated, see Table 4.3 for exact details. As discussed in Sections

4.3.3 and 4.4, this implies large enough region of super-linear convergence which

explains the fast behavior of YAWN we see in this section.

4.7 Conclusion and Perspectives

We proposed YAWN, a second-order variant of the Newton algorithm. We per-

formed the convergence analysis of YAWN with the theory of self-concordant func-

tions. We addressed two significant weaknesses of existing second-order methods

for machine learning applications. In particular, the lack of scale-invariant analysis

and super-linear convergence rates without restrictive assumptions. Our proof tech-

nique draws on insights from a coarse-grained model, called the Galerkin model,

from the literature of multi-grid methods. Our primary contribution is the conver-

gence analysis of YAWN. Our analysis closes the theoretical gap between the re-

cent variants of second-order methods for machine learning and the standard New-

ton method. Beyond the improved theoretical convergence analysis, our prelimi-

(a) Gisette

Figure 4.1: Behavior of YAWN for different values of ρ1.



4.7. Conclusion and Perspectives 147

(a) CT Slices (b) Gisette

(c) Blog BlogFeedback (d) HAPT

(e) Mnist (f) HAR

(g) Epsilon Normalized, ε = 1e− 3 (h) Epsilon Normalized, ε = 1e− 7

Figure 4.2: Experiment of different algorithms over various datasets. Error vs Iterations.

nary numerical results suggest that YAWN significantly outperforms state-of-the-art

second-order methods.

Recall that our convergence analysis depends on the user-defined parameter ρ1

which controls the number of fine and coarse iterations to be taken by YAWN.

For the general case (see Section 4.3.3), where the problem does not possess any

particular structure, one may not expect for the YAWN decrement to be a good

approximation of the Newton one, and thus, for always performing the efficient

coarse iterations, smaller values in ρ1 should be selected. As discussed, this fact
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may increase the number of steps of the first-phase. In Section 4.4, we discuss how

the structure of the problems affects the super-linear rate. In particular, when the

Hessian matrix admits a low-rank approximation and, further, the important second-

order information is concentrated in the first eigenvalues we should expect that ρ1

will not affect the region of super-linear rate due to the fact that YAWN decrement

will produce effective approximations.

To this end, our primary future goal is to provide a convergence analysis which

does not depend on ρ1, but on parameters arising directly from the structure of the

problem —see for instance Theorem 4.4.5 where the rate is governed by λp+1. This

means that, as in Theorem 4.4.5, we are required to estimate the following quantity

ck =
∥∥∥IN×N − [∇2fh(xh,k)]

1/2 Q̂ [∇2fh(xh,k)]
1/2
∥∥∥
2
.

Thus, the main task would be: select the coarse correction step d̂h,k with some

choice of matrix Q̂ such that ck < ε, where 0 < ε < 1. Hopefully, using statistical

theory (e.g., concentration bounds), this task can be accomplished by making as-

sumptions on the structure of the Hessian matrix and then by carefully selecting the

approximated matrix Q̂ to obtain an efficient bound ε. Finally, an interesting direc-

tion would be to perform sub-sampling techniques within the multilevel framework.

That is, assuming that the objective function is written as a sum of functions, sample

data points and then build the Galerking (coarse) model by Nyström method. This

yields an algorithm with much cheaper iterations. However, the analysis of such a

method might be a difficult task.



Chapter 5

Discussion

In this thesis we study optimization algorithms for solving structured problems that

arise in machine learning applications. We discuss how such structures can be ex-

ploited such that they now lead to improved convergence rates and highly accurate

solutions in prediction problems.

In the third chapter, we concentrate on solving the Temporal Difference (TD) learn-

ing problem in off-line Reinforcement Learning (RL). In this domain, as our nu-

merical results also suggest, current state-of-the-art algorithms (e.g. LARS-TD)

have been unable to provide accurate solutions in the context of policy evaluation

and improvement; this is mainly due to the fact that the TD optimization prob-

lem (`1-regularized fixed-point problem) does not reduce to a convex optimization

problem. We propose ADMM-TD for solving the `1-regularized fixed-point prob-

lem. We discuss how the proposed method can take advantage of the structure of the

problem (separability) which leads to an efficient algorithm in terms of, both, time

complexity and accuracy. In particular, our preliminary numerical results indicate

an accurate and stable performance even when aiming for optimal policies.

In the fourth chapter, we concentrate on unconstrained convex programs. Building

upon the multilevel framework we propose a general optimization method (YAWN),

variant of the Newton method, with analysis undertaken using the theory of self-



5.1. Future Work 150

concordant functions. In particular, we address the following issues that arise in

the analysis of randomized-based variants of Newton method (such as sketching

and sub-sampling): (a) the analysis of the iterates is not scale-invariant, and, (b)

lack of global fast convergence rates without making assumptions on the input data.

Therefore, we argue that with the analysis undertaken in this chapter we close the

theoretical gap between the recent variants of second-order methods for machine

learning and the classical Newton method. In addition, we discuss how typical

spectral structures of the Hessian matrix can be exploited, i.e., we show connec-

tions between Singular Value Decomposition (SVD) methods and the multilevel

framework and we demonstrate how YAWNSVD can capture such structures (effec-

tive rank) to further improve the convergence rates. Finally, our preliminary numer-

ical results suggest that the proposed method is several times faster compared the

state-of-the-art methods.

5.1 Future Work

There are many research direction to be considered regarding this thesis. Here, we

discuss the main future goals:

In the third chapter, as discussed earlier, the underlying optimization problem in TD

learning reduces to a non-convex problem which implies that a proof of convergence

of ADMM-TD is difficult task. For this reason, we have not yet been able to come

up with a complete analysis of our proposed method. Therefore, our primary goal

is to accomplish this task. The satisfying numerical performance of ADMM-TD

in the context of policy evaluation and improvement suggests that we can possibly

establish a proof of convergence without restrictive assumptions. Further, we aim to

test the efficiency of ADMM-TD on machine learning problems using real datasets.

In the fourth chapter, we show the super-linear convergence rate of YAWN method.

Specifically, recall the existence of the user-defined parameter ρ1 in the analysis of

YAWN which, as has been discussed, plays a crucial role for the behavior of the
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proposed method. Our main goal is to establish an analysis which is independent of

the parameter ρ1. This will help providing more meaningful interpretations about

the region of the super-linear convergence. Next, we aim to develop YAWN to

incorporate sub-sampling techniques. This can be accomplished by assuming that

the objective function can be written as a sum of functions. Therefore, the idea is to

sample data points and then build coarse models. It is evident that the computational

cost of a method with such iterates will be significantly decreased.

In conclusion, we believe that YAWN can be efficiently applied to various struc-

tured problems. In particular, we would like to draw connections between the `1-

regularized fixed-point problem in RL and the YAWNSVD algorithm. Recall that

for the `1-regularized fixed-point in the context of policy iteration, the positive-

definiteness assumption of the matrices does not hold. This is the main draw-

back in this domain and results in non-convergent algorithms. However, recall that

YAWNSVD developed in this thesis for capturing the effective rank of the second-

order information by replacing all the last (n− p) eigenvalues with a small positive

eigenvalue. To this end, we conjecture that, when the matrices which arise in the `1-

regularized fixed-point problem exhibit such structure, YAWNSVD can be efficiently

applied to solve the TD learning problem. We argue that YAWNSVD will always

be convergent in the policy iteration context since it will replace the ill-conditioned

matrices with positive-definite ones. Therefore, our primary goal is to perform ini-

tial numerical experiments to test the behavior of YAWNSVD in the context of policy

iteration.
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