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Abstract: The aim of this thesis was to develop a technique to carry out non-

invasive cytometry in tumours using diffusion MRI, by measuring water exchange

across the cell membrane. My thesis is built on previous work done to charac-

terise tumour micro-structure in-vivo, using Vascular Extracellular and Restricted

Diffusion for Cytometry in Tumours (VERDICT) MRI by E. Pangiotaki and S.

Walker-Samuel et al. [81], and work on Diffusion Exchange Spectroscopy (DEXSY)

by Dr Bernard Siow [93] and P. T. Callaghan who first developed DEXSY as

a technique for studying porous media [18]. In particular I aimed to develop

DEXSY to measure cell membrane permeability. These advanced diffusion MRI

techniques could reduce the need for invasive tissue biopsies, enable earlier di-

agnosis and better monitoring of disease progression in cancer, through in-vivo

characterisation of tissue micro-structure. These advanced diffusion techniques

could also be used to gain a better understanding of barriers to drug delivery in

mouse models of cancer. I have developed a biological phantom for validating dif-

fusion MRI techniques, and used physical phantoms to demonstrate the accuracy

of diffusion measurements made with DEXSY. My computational simulations sug-

gest that DEXSY can be used to provide a quantitative indicator of cell membrane

permeability, as I observe a monotonic relationship between Diffusion Exchange

Index (DEI) and permeability in-silico, for a range of permeabilities greater than

the physiological range. The DEXSY data acquired from yeast phantoms con-

firm that we can observe diffusion exchange in-vitro with this technique. Further

work to evaluate the technique in-vivo suggests that DEXSY is sensitive to dif-

fusion exchange and tissue micro-structure in tumours. The work in this thesis

demonstrates that DEI could be used as a quantitative indicator of cell membrane

permeability, and as a potential imaging biomarker in cancer.
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Impact statement: The findings presented in this thesis suggest that DEXSY

may be used to make in-vivo measurements of diffusion exchange, and that Diffu-

sion Exchange Index (DEI) could be used as a quantitative indicator of cell mem-

brane permeability, in a range of pathologies including neurological disorders and

cancer. If DEXSY can be successfully adapted for preclinical and clinical imaging,

then DEI can be used as an imaging biomarker in cancer. As such it is possible

that in the future DEXSY could be applied in clinical radiology to diagnose and

stage cancer. It is also clear that DEXSY can be used for research, in the fields of

neuroscience and cancer research, to evaluate variations in cell membrane per-

meability in health and disease. The biological phantom presented in this thesis

could be used by other researchers as a tool to validate new MRI techniques. The

research impact of the work that contributed towards this thesis can be seen in

the 5 international conference abstracts which have been published and the jour-

nal article that has been accepted for publication. In addition to this one journal

article is currently in preparation, and one new international conference abstract

has been submitted.
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Chapter 1

Introduction

1.1 Background

Cancer is one of the world’s leading causes of death, responsible for 11.8 %

of female and 13.4 % of male deaths globally [106]. Cancer is characterised by

uncontrolled cell growth and proliferation, which can lead to the eventual spread

of the disease, through the invasion of neighbouring tissue and metastasis [41].

Early diagnosis is vital in order to effectively treat cancer [29]. However the iden-

tification of clinically insignificant disease or over-diagnosis, may lead to over-

treatment [92]. Structural imaging techniques such as planar X-ray, X-ray CT,

ultrasound and structural MRI are used to locate potential tumours and to identify

the response of a tumour to treatment. However these techniques are typically

only used to identify the gross structural changes that occur in tumours, such as

changes in size and shape. X-ray imaging works by measuring the attenuation of

X-rays travelling through the body, whilst structural MRI works through the detec-

tion of a spatially localised NMR signal [14]. Functional techniques such as nu-

clear medicine procedures, including FDG-PET are often used to track the spread

of the disease through metastasis, as they are sensitive to metabolic changes that

occur in cancer such as the Warburg effect [29].

Although there has been great progress in the field of medical imaging the

information provided by imaging techniques is still limited, and in many cases

37



38 CHAPTER 1. INTRODUCTION

biopsies are still required in order to make a diagnosis. However biopsies are

invasive and only extract a small tissue sample, which can result in false negatives

[1]. A non-invasive imaging technique for characterising tissue microstructure,

could enable accurate diagnosis of cancer with fewer invasive biopsies.

Diffusion MRI is a technique that probes tissue micro-structure through the mo-

tion of water [22]. Recently a new diffusion MRI technique has been developed

specifically to quantify tissue micro-structure, this technique is called VERDICT

(Vascular Extracellular and Restricted Diffusion for Cytometry in Tumours) MRI.

VERDICT provides estimates of cell size and intracellular volume fraction, but it

does not account for cell membrane permeability [81]. The aim of this thesis was

to develop Diffusion Exchange Spectroscopy (DEXSY) as a technique for mea-

suring diffusion exchange across the cell membrane. Cell membrane permeability

alters through cell death via apoptosis, oncosis and necrosis [58, 7, 28]. Aquapor-

ins regulate water transport in and out of the cell, and aquaporin expression also

alters between healthy cells and cancer cells [65]. A quantitative indicator of cell

membrane permeability could help differentiate healthy and diseased tissue, as

well as monitor response to cancer therapy. Measurement of diffusion-diffusion

exchange across the cell membrane with DEXSY could be used to calculate a

quantitative indicator of cell membrane permeability. A quantitative indicator of

cell membrane permeability could also serve as a potential biomarker in cancer.

There is a clinical need for more comprehensive microstructure measurements,

and DEXSY could help fulfil this need.

1.2 Purpose

There is currently a clear need to understand how diffusion MRI acquisitions,

can be confounded by diffusion exchange across the cell membrane. There is

also a clear scientific and clinical need to quantify water transport across the cell

membrane and cell membrane permeability. This is because water transport in

and out of the cell is a vital physiological process, that alters in health and disease.
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Measuring water transport across the cell membrane is necessary, to understand

cellular physiology and could be required to characterise certain pathologies. Any

quantitative measure of cell membrane permeability is also a potential biomarker

in cancer. The comprehensive measurement of diffusion exchange in-vivo, could

also enable the robust measurement of cell membrane permeability. As such

there is currently a need for a method to make comprehensive measurements

of diffusion exchange in tumours, in-order to provide a quantitative indicator of

cell membrane permeability, in cancer. The purpose of the work presented in

this thesis is to fulfil these needs and to develop DEXSY as a method for making

comprehensive measurements of diffusion exchange across the cell membrane

in tumours, and to use these measurements to produce a quantitative indicator

of cell membrane permeability in cancer. A quantitative indicator of cell mem-

brane permeability could potentially enable earlier diagnosis, assist in monitoring

treatment response and enable the characterisation of cells in malignant disease.

In this thesis there are nine chapters, the first three are introductory. The struc-

ture of the thesis is such that phantom work and simulation work, carried out to

validate DEXSY are presented first. In-vitro work in yeast suspensions is then

presented as the final step before in-vivo validation of DEXSY. In the fourth chap-

ter the aim of the work presented is to develop a biological phantom for validating

diffusion MRI techniques. Significant progress is made towards this goal. In

chapter five the aim is to make diffusion exchange measurements using DEXSY

in chemical and physical phantoms. The experiments with chemical phantoms

demonstrate the accuracy of diffusion measurements made using DEXSY. In

chapter six the aim is to use numerical simulations to demonstrate the feasibility

of measuring diffusion exchange across the cell membrane. The results of the

simulations presented demonstrate that DEXSY can measure diffusion exchange

in a nervous tissue substrate and a yeast substrate in-silico. The results also

demonstrate that the Diffusion Exchange Index (DEI) can be used as a quanti-

tative indicator of cell membrane permeability in-silico. In chapter seven in-vitro

diffusion exchange measurements made in a yeast suspension provide in-vitro
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validation of the yeast substrate simulations. In chapter eight the final experimen-

tal chapter DEXSY is evaluated in-vivo. The in-vivo DEXSY data acquired from

tumour xenograft models suggests that DEXSY can measure diffusion exchange

in-vivo. Chapter nine is the final chapter and the thesis concludes by suggesting

that DEXSY can measure diffusion exchange in tumours in-vivo, and that DEI

is a quantitative indicator of cell membrane permeability and a potential imaging

biomarker in cancer.



Chapter 2

Cancer Imaging

2.1 Introduction

The introduction explained the purpose of this thesis, and this chapter gives an

overview of cancer imaging and provides context for our application of DEXSY

to cancer. In section 2.1 cancer is introduced and in section 2.2, the cell mem-

brane is described and the potential of any quantitative indicator of cell membrane

permeability to serve as a biomarker in cancer is discussed. Whilst section 2.3

gives a brief overview of cancer imaging techniques which leads on to section

2.4, which explains how diffusion MRI can be applied to cancer in order to pro-

vide information about tissue micro-structure and potentially even cell membrane

permeability. The next chapter covers diffusion MRI.

2.2 Cancer

Cancer is a group of diseases including breast cancer, prostate cancer, and

Hodgkin’s lymphoma, that develop from seemingly normal tissue. In cancer, the

body attacks itself, and malignant disease can emerge from any of the body’s

tissues. Tumours are formed from uncontrolled cell growth and proliferation, a

tumour that is able to invade neighbouring tissue is malignant, and a tumour that

is unable to invade neighbouring tissue is benign. The spread of this pathology

throughout the body is known as metastasis. Malignant tumours are cancerous
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but there are also other forms of metastatic disease such as leukaemia. Carci-

nomas are the most common form of tumour and these form from epithelial cells

[105].

Tumours form from colonies that grow from cells that have undergone muta-

tions causing uncontrolled cell growth [75]. Cancer cells are characterised by a

number of properties, including an increased rate of cell growth, an increased

rate of cell proliferation, and a decreased rate of cell death [41]. As a result we

find that cancer cells are often larger than the healthy cells found in neighbour-

ing tissue [55], and that there is often an increased cell density in tumours [56].

These properties are due to alterations in a number of important cell signalling

pathways regulating cell growth, proliferation and cell death. The cell signalling

pathways affected include the Ras pathway which affects cell proliferation [30].

Other cell signalling pathways affected include the p53 pathway associated with

the regulation of cell death through apoptosis [28], and the pathways controlling

cell growth such as the mTORC pathway, which also regulates cell size [55, 41].

These cells evolve, with the most rapidly proliferating cells dominating the colony.

As a colony evolves it grows to form a mass known as a tumour. The process

of clonal evolution is known as tumourogenesis [75]. Tumours typically have dis-

rupted vasculature which, in many tumours, results in hypoxia. The extracellular

matrix also differs in tumours and the tumour stroma is often stiffer than in healthy

tissue [35].

Invasion and metastasis are the processes by which cancer spreads through-

out the body. During invasion cancer cells emerge from a primary tumour and

grow into neighbouring tissue. Metastasis occurs when some of these cells break

off and enter into the blood stream or lymphatics (and other routes), which trans-

ports the cells into another part of the body, where cells settle and grow into a

colony of cells that form a secondary tumour [31]. Certain cancers are more likely

to form secondary tumours in specific organs, for example, colorectal cancer is

more likely to form metastases in the liver. As with primary tumours angiogene-
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sis can occur enabling tumours to grow so large that they can kill their host, the

majority of cancer deaths are due to metastases [8].

2.3 Cell membrane permeability in cancer

The cell membrane consists of a lipid bilayer, which is considered to be al-

most impermeable to water-soluble molecules, although it is possible for water

to diffuse across the lipid bilayer. The cell membrane is punctuated by trans-

membrane transport proteins that allow water and larger molecules in and out

of the cell. Lipids with a hydrophobic tail and a hydrophilic head form the lipid

bilayer as the heads face the cytoplasm and the extracellular fluid whereas the

hydrophobic tails face each other. There are trans-membrane proteins respon-

sible for regulating ion-channels and the transport of water soluble molecules in

and out of the cell. The trans-membrane proteins responsible for water transport

are called aquaporins [3]. Thus water exchange across the cell membrane occurs

through diffusion across the lipid bilayer or water transport through the aquapor-

ins. Without these two mechanisms the cell membrane would be impermeable to

water molecules.

Whilst there is little variation in the structure of the lipid bilayer between dif-

ferent cells, there are at least 10 different aquaporin isomers. Aquaporins are

formed of a polypeptide chain that traverses across the cell membrane, crossing

the lipid bilayer multiple times, forming a hydrophilic path through the cell mem-

brane, enabling water to be transported in and out of the cell [96]. Differences

in the aquaporin isomers present in cells result in differences in the rate at which

water is transported across the cell membrane, and this causes variations in cell

membrane permeability. There is a wide range of water exchange rates found in

different cell types ranging from 1 m/s in nervous tissue to 170 m/s for red blood

cells [86]. Aquaporins play a role in cell migration [91], and carcinogenesis with

AQP 5 being involved in cell proliferation in colorectal cancer [47], however it is

unclear how aquaporins play a role in these processes. Aquaporin expression
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differs between colorectal cancer cells and colonic epithelial cells [32, 103]. The

cell undergoes a number of changes during cell death due to necrosis, apoptosis

and oncosis which alter cell membrane permeability [58, 7, 28]. The variation in

cell membrane permeability between healthy tissue, carcinoma and necrotic tis-

sue suggests that any quantitative indicator of cell membrane permeability, could

be used as a potential biomarker in cancer.

2.4 Imaging in cancer

Medical imaging can be used in order to aid diagnosis, assessment and man-

agement of cancer. Imaging biomarkers in cancer can be identified radiologi-

cally using certain well established imaging modalities [76]. In a recent review

a number of classic imaging biomarkers in cancer were identified. These in-

cluded radiological tumour, node, metastasis (TNM) staging as staged clinically

using structural imaging and nuclear medicine procedures, and a range of nu-

clear medicine procedures specific to metabolic processes and organs affected

by metastatic disease. Whilst, other measures such as left ventricular ejection

fraction calculated using functional imaging modalities, act as biomarkers for the

safe management of cancer patients [76]. Structural imaging techniques were

the first to be used to verify the presence of tumours clinically, as certain tumours

may be easily identified with planar X-ray imaging. Whilst structural imaging can

acquire certain anatomical information, functional imaging techniques such as nu-

clear medicine procedures enable clinicians to acquire physiological information

[15].

The first functional imaging modalities were nuclear medicine procedures and

X-ray flouroscopy, and these were followed by doppler ultrasound and early forms

of MRI [29]. Nuclear medicine procedures use the signal from radio pharmaceu-

ticals to target specific physiological processes, which are disturbed by disease.

There are a wide variety of radio pharmaceuticals used which target different or-

gans and metabolic processes, these are know as radio tracers. Radio tracers
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synthesised using Technetium 99m or Iodine 131m are available which target

the thyroid, parathyroid and adrenal system. There are also radio tracers that

act as markers of liver function and that are used to measure perfusion in the

brain. These radio tracers are typically imaged using gamma cameras or single

photon emission tomography (SPET) systems [15]. Both produce an image of

the distribution of a radio tracer by recording the intensity and distribution of the

gamma rays emitted. Other radio tracers have been used to target metabolic pro-

cesses disturbed by metastatic disease. The Warburg effect causes tumours to

have a higher glucose metabolism than healthy tissue. This effect forms the ba-

sis of flourodeoxyglucose positron emission tomography (FDG PET) which uses

a glucose based radio tracer, and is commonly used to stage and monitor the

progression of metastatic disease. The PET detector works by recording the sig-

nal from photons, that are emitted simultaneously as a result of the annihilation

of positrons emitted from the Flourine-18 radio-isotope in the flourodeoxyglucose

radio tracer [29]. X-ray/CT flouroscopy uses a barium contrast agent and images

its flow through the digestive system whilst other contrast agents are used to im-

age venous blood flow, and dual energy radiological procedures can also be used

for X-ray angiography [104]. Doppler ultrasound can be used to measure blood

flow in and around tumours [15]. Certain forms of MRI can provide information

on human physiology, and Dynamic Contrast Enhanced MRI can determine if the

presence of a tumour has disturbed vascular perfusion. Dynamic Contrast En-

hanced - MRI (DCE-MRI) works through imaging a gadolinium contrast agent as

it flows around the body after the administration of a bolus of the contrast agent

[63].

Structural imaging modalities used in cancer imaging include X-ray/CT, ultra-

sound and MRI. These techniques are sensitive to different sorts of anatomical

abnormalities, with X-ray/CT being more sensitive to fractures and calcification,

ultrasound being more sensitive to cysts, and MRI being more sensitive to edema

and haematoma. X-ray/CT relies on the contrast caused by different types of

tissue having different X-ray attenuation factors. Bone and soft tissue differ sig-
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nificantly in terms of their X-ray attenuation, however there is less variation in

X-ray attenuation in soft tissues resulting in less soft tissue contrast. Neverthe-

less CT imaging is capable of producing high resolution images (1mm resolution

or better). CT has demonstrated the ability to identify the invasion of neighbouring

tissue by prostate tumours, bladder tumours, bronchial tumours. CT imaging has

also demonstrated the ability to clinically stage numerous solid tumours [104]. Ul-

trasound can be used clinically to identify cysts and tumours in kidneys, bladder,

prostate, ovaries and can be used to guide needle biopsies [104]. MRI has ex-

cellent soft tissue contrast, and this enables the identification and staging of solid

tumours. Other MRI techniques such as, chemical shift imaging and magnetic

resonance spectroscopy can provide information about the metabolites present

in the tissue being imaged [104]. Susceptibility imaging can be used for MRI

venography [38]. Diffusion MRI can provide information about the tissue micro-

structure and is already established as a technique for assisting in the diagnosis

of prostate cancer [97]. The next section covers the application of diffusion MRI

to cancer in more detail.

2.5 Diffusion MRI in cancer

Diffusion MRI is an imaging technique that has demonstrated sensitivity to

changes that occur in cancer, including cell density [22, 24, 27, 34, 44, 45, 56,

90, 95, 108]. Diffusion MRI developed from the initial work of Stejskal and Tanner

published in 1965, which demonstrated that the diffusion properties of a sam-

ple can be measured in an NMR experiment [94]. The next chapter will give an

overview of diffusion MRI theory. Later work carried out in 1983, demonstrated

the sensitivity of diffusion NMR to the diffusion of water within cells [98]. Diffusion

MRI was first applied to studying cell density in cancer, as it seemed likely that

the apparent diffusion coefficient (ADC) would correlate with the cell density and

the necrotic fraction of tumours, two properties which are useful in determining

how advanced a tumour is and how well it will respond to therapy [95, 56]. The
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highly cellular nature of some cancers is expected to result in more restricted dif-

fusion due to decreased interstitial space, which results in reduced ADC, when

compared to less advanced tumours and normal tissue [95]. Cell necrosis should

have the opposite effect resulting in increased interstitial space and cell mem-

brane permeability, which would be expected to result in an increase in ADC [22].

More recently a number of authors have found a relationship between cellularity

and ADC [24, 27, 45, 90, 108].

Tissue biopsies have traditionally been used to confirm a diagnosis of prostate

cancer, with histology confirming the micro-structural abnormalities characteris-

tic of cancer [79]. However more recently Vascular Extracellular and Restricted

Diffusion for Cytometry in Tumours (VERDICT) MRI, has been developed, as a

potential alternative to tissue biopsies [79]. VERDICT is a technique which can

probe tumour micro-structure, measuring a range of properties including cell size

and intracellular volume fraction [81, 79]. The first VERDICT study used two col-

orectal cancer cell lines in mouse models, and found that VERDICT was sensitive

to changes occurring in response to therapy with a cytoxic agent. The study also

found that the model parameters corresponded to different properties of the can-

cer cells [81]. A latter study showed that VERDICT could be used to differentiate

between cancerous and normal tissue in the prostate, and that it could provide

useful information about tissue microstructure in the prostate [79]. This model

provides some of the information that could traditionally only be acquired from

histology. However one important property that VERDICT does not consider is

cell membrane permeability, which alters during cell death due to necrosis, apop-

tosis and oncosis [58, 7, 28]. Other techniques such as Filter Exchange Imaging

(FEXI) [50, 51, 70, 71] and Diffusion Exchange Spectroscopy (DEXSY), [93] may

enable the measurement of cell membrane permeability with diffusion MRI. In the

next chapter these techniques are explained in more detail.

A number of different diffusion MRI techniques have been used to look at cell

membrane permeability. Diffusion weighted MRI has been used to identify differ-
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ences in aquaporin expression in modified cell lines [67]. FEXI has been used

to investigate diffusion exchange in the brain [71], and to identify changes in dif-

fusion exchange due to modified urea transporter gene expression [88]. These

studies suggest that a quantitative indicator of cell membrane permeability could

be used as a potential biomarker for use in cancer diagnosis, or to asses response

to therapy.

2.6 Conclusion

This chapter introduces cancer and explains how structural and functional imag-

ing techniques play a role in the diagnosis and management of cancer. These

techniques include diffusion MRI which demonstrates sensitivity to changes in

cancer micro-structure, and is capable of identifying changes in cell membrane

permeability. Any quantitative indicator of cell membrane permeability is a poten-

tial imaging biomarker in cancer. In the next chapter diffusion MRI is discussed in

more detail.



Chapter 3

Diffusion MRI

3.1 Introduction

This chapter introduces the theory behind diffusion MRI. The application of dif-

fusion MRI to cancer forms the focus of this thesis. MRI theory is introduced in

3.2, whilst diffusion MRI is introduced in 3.3. Section 3.4 covers advanced dif-

fusion MRI. In section 3.5 we give an in depth overview of DEXSY, FEXSY and

compartment models of diffusion exchange. Section 3.6 gives an overview of

methods used to evaluate MRI techniques.

3.2 Basic MRI theory

MRI is an imaging technique using spatially localised Nuclear Magnetic Reso-

nance (NMR). NMR was first discovered by Rabi in molecular beams passing

through a magnetic field in 1938 [87], and NMR in condensed matter was dis-

covered by Bloch and Purcell in 1946 [13, 84]. Spin is a quantum mechanical

property in which a particle’s angular momentum is quantized. However, a quan-

tum mechanical approach is not needed to understand the basics of MRI theory

[16]. A nuclear spin subject to a magnetic field precesses round a ’longitudinal’

axis aligned in the direction of the magnetic field. The spin precesses at a rate

known as the Larmor frequency, and this is also the spin’s resonant frequency.

Equation 3.1 gives the relationship between the Larmor frequency f , the mag-

49
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netic field applied B, and γ, the gyromagnetic ratio [15] ( γ
2π

= 42.6MHzT−1 for

hydrogen nuclei [16]).

f =
γ

2π
B (3.1)

In an ensemble of spins subject to a magnetic field the ensemble’s net magneti-

sation vector will be aligned in the direction of the magnetic field. However, the

majority of spins will have random orientations, and only a minority of spins will

be aligned in the direction of the magnetic field due to thermal energy present in

the ensemble. The proportion of spins in alignment with the net magnetisation

vector determines the vector’s magnitude [16].

The NMR effect occurs in an ensemble of spins subject to a fixed magnetic

field, when the ensemble’s net magnetisation vector is rotated away from the

longitudinal axis by a resonant radio frequency pulse applied in a direction per-

pendicular to the fixed magnetic field [13]. This process is illustrated using two

diagrams shown in figure 3.1 a) and b). This results in the net magnetisation

vector moving into the transverse plane. However, the net magnetisation vector

continues to precess round the longitudinal axis producing a rotating net magnetic

moment which creates a rapidly rotating magnetic field in the transverse plane.

This rapidly altering magnetic field induces current in a radio frequency coil with

an axis perpendicular to the fixed magnetic field. After the radio frequency pulse

has been applied, the spins constituting the ensemble relax.

There are two types of relaxation referred to as longitudinal or T1 relaxation and

transverse or T2 relaxation. Longitudinal relaxation can be understood classically

as a result of the interaction of the ensemble of spins with the local environment.

The thermal motion of molecules affects the ensemble of spins by perturbing the

orientation of the individual spins. These perturbations result in the net magneti-

sation of the ensemble of spins rotating back towards the longitudinal axis whilst

the spins attempt to establish thermal equilibrium [59]. Transverse relaxation oc-

curs due to variations in the local magnetic field experienced by the ensemble of
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spins. Minor variations in the local magnetic field, result in small differences in

the rate at which the spins forming the ensemble precess, which results in the

spins dephasing (precessing out of phase with each other) causing a decrease

in the net magnetisation in the transverse plane [16]. There is a decay in the

current induced in the radio frequency coil as the net magnetisation in the trans-

verse plane diminishes while the spins relax, and this decay is known as a free

induction decay (FID) [59]. Figure 3.1 c) illustrates the change in magnetisation

in the transverse plane during the free induction decay. The decay in transverse

magnetisation MT due to relaxation is described by equation 3.2, where TE is the

echo time, TR is the repetition time, T1 is the longitudinal relaxation time and T2 is

the transverse relaxation time [16].

MT = M0(1− e−TR/T1)e−TE/T2 (3.2)

The rates of T1 and T2 relaxation differ in different tissues, and this can be used

to help identify certain pathologies [104]. Relaxation can occur very rapidly and

MRI data is usually acquired using a spin or gradient echo rather than a single

excitation. A spin echo is an induction decay formed as a result of constructive

interference due to a series of radio frequency pulses. Each pulse in a spin echo

acts to rotate the net magnetisation vector into the transverse plain. The first

pulse rotates the net magnetisation vector through 90◦ whilst the second rotates

the net magnetisation vector through 180◦ this counteracts the de-phasing that

occurs between the first and second pulse resulting in the spins re-phasing at the

echo time. The spin echo was first discovered by Hahn in 1950, the spin echo

enables longer acquisitions, and this results in an NMR experiment which can

gather more information about the spin’s environment [39, 16].
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Figure 3.1: a) An ensemble of spins’ net magnetisation vector precessing at the
Larmor frequency as seen from the laboratory frame of reference. b) The en-
semble of spins’ net magnetisation vector processing immediately after a 90◦ RF
pulse seen from the laboratory frame of reference. c) The FID that occurs after
the RF pulse has been applied. Figure adapted from [104].
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3.2.1 Spatially localised NMR

Spatially localised NMR, or Magnetic Resonance Imaging (MRI), relies on spa-

tial encoding of the NMR signal using applied imaging gradients. Mansfield and

Lauterbur pionered this work independently and received the Nobel prize for

medicine in 2003. They developed the work that forms the basis of slice se-

lection and frequency encoding and the gradient echo technique was translated

into clinical use in the 1980s, whilst Edelstein went on to develop phase encoding

in 1980 [83, 60, 52, 73, 25]. In this chapter we refer to the slice encoding direction

as z, the frequency encoding direction as x and the phase encoding direction as

y. In an MRI machine there is a fixed B0 field. Slice selection works by apply-

ing an additional gradient in the z direction (z can take any orientation relative to

the B0 field) and this then alters the resonant frequency of the spins dependent

on their position on the z-axis. As a result, a radio frequency pulse will only ro-

tate an ensemble of spins away from the longitudinal axis at a position along the

slice selective gradient where the ensemble’s resonant frequency matches that of

the radio frequency pulse. Even when the imaging gradients are applied the net

magnetic field will be in the direction of B0. Equation 3.3 gives f the frequency

required for a slice selected at position z along an applied magnetic field gradient

Gz, B0 is the magnitude of the fixed magnetic field and γ is the gyromagnetic ratio.

f =
γ

2π
(B0 + zGz) (3.3)

A frequency encoding gradient is applied when the NMR signal is being acquired.

This encodes the x position in terms of frequency, due to the change in frequency

of the NMR signal that results from the variation in the rate at which the spins pre-

cess along the length of the applied gradient. Equation 3.4 gives f the frequency

of the signal acquired from an ensemble of spins at position x along an applied

magnetic field gradient Gx, B0 is the magnitude of the fixed magnetic field and γ

is the gyromagnetic ratio [83].

f =
γ

2π
(B0 + xGx) (3.4)
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In phase encoding, a series of gradients are applied orthogonally to the slice

select and frequency encoding gradients over a series of acquisitions. The phase

encoding occurs in-between slice selection and frequency encoding. Each phase

encoding gradient is applied for a duration of time, and this phase encoding step

alters the phase of the spins. When data is acquired, only the spins that are

precessing in phase contribute toward the signal acquired. The data acquired

after each phase encoding step represents a line in frequency space, and when

the data is 2D Fourier transformed a 2D image is produced. Equation 3.5 relates

the phase encoding step n to the other phase encoding parameters including Ly

the field of view in the phase encoding direction, τ the duration for which the

phase encoding gradient Gy is applied, and γ is the gyromagnetic ratio [25].

2πn = γLy

∫
τ
dtGy (3.5)

3.3 Diffusion MRI

Diffusion MRI uses the diffusion of water to probe tissue micro-structure which

can restrict or hinder the diffusion of water molecules [80]. The free diffusion

of water is the process by which water diffuses due to the random motion of

molecules as a result of the kinetic energy in the water molecules and this phe-

nomenon was first described by Einstein in 1905. The relationship between mean

displacement λ and the free diffusion coefficient D in a time period t is given in

equation 3.6 [26].

λ =
√

2Dt (3.6)

Diffusion MRI is sensitive to how the diffusion of water in tissue differs from the

free diffusion described by Einstein. The fundamental basis of diffusion MRI was

developed by Stejskal and Tanner in 1965 [94]. They developed a technique for

measuring the diffusion of liquids with NMR using a spin-echo experiment and a

pair of diffusion encoding gradients [94]. The greater the diffusion in the direc-

tion of an applied bipolar gradient the greater the reduction in signal magnitude
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due to the applied diffusion encoding graidient. This means a series of diffusion

encoding gradients can be applied to determine the diffusivity of a sample [94].

Stejskal and Tanners research built on work by Hahn, Carr and Purcell who

discovered the effects of diffusion on NMR measurements, [20, 39]. Later, Tor-

rey developed a formal framework for incorporating diffusion effects into NMR

measurements by adding a diffusion term to the Bloch equation [99]. The Bloch

equations gives the relationship between nuclear induction, magnetisation and

the applied magnetic field in an NMR experiment [13]. Equations 3.7-3.9 give the

Bloch-Torrey equations [99].

∂Mx

∂x
= γ(M ×B)x −Mx/T2 +∇ ·D∇(Mx −Mx0) (3.7)

∂My

∂y
= γ(M ×B)y −My/T2 +∇ ·D∇(My −My0) (3.8)

Bx = −1

2
Gx, By = −1

2
Gy, Bz = B0 +Gz (3.9)

Equation 3.10 shows the solution to the Bloch-Torrey equations describing the

decay in signal due to diffusion following a 90◦ RF pulse [99].

S = S0e
(− 1

3
Dγ2G2t3) (3.10)

The decay in signal is due to the spins of the diffusing molecules dephasing,

as a result of their motion in the direction of the applied diffusion gradients [53].

The decay in signal in the case of isotropic unrestricted diffusion is given by the

following equation:

C = e(−b·D) (3.11)

where C is the attenuation factor, D is the diffusion coefficient and the b is the

b-value which represents the diffusion weighting of the pulse sequence [54], this

equation takes the same form as equation 3.10. In isotropic unrestricted diffu-

sion we can assume Brownian motion, where diffusion can be assumed to occur

through a series of random movements [53]. The diffusion coefficient, D, is given
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by the following equation

D =
lv

6
. (3.12)

where l is the mean distance travelled and v is the mean velocity of the particle

[54].

3.3.1 Restricted and hindered diffusion

In biological tissue it is unreasonable to assume unrestricted diffusion as the

tissue is composed of cells, which restrict or hinder diffusion. In addition to this

we can also expect diffusion effects to be confounded by perfusion effects that

occur because of the blood supply from the microvasculature [54]. This means

that the diffusion coefficient measured in tissue will only be an Apparent Diffusion

Coefficient (ADC), as its measurement will be confounded by other factors. In

order to provide a summary measure of diffusion in tissue, Le Bihan developed

an intravoxel incoherent motion (IVIM) MRI imaging experiment which measures

both perfusion and diffusion, and separates perfusion and diffusion effects to give

a measure of the ADC [53]. In the original IVIM experiment the diffusivity D was

believed to be equivalent to ADC2 which is calculated by the following equation:

ADC2 =
log(S1/S2)

(b2 − b1)
(3.13)

whilst ADC1 which represents both diffusion and perfusion is calculated by the

following equation:

ADC1 =
log(S0/S1)

(b0 − b1)
(3.14)

and a pure perfusion image can then be calculated by the following equation:

f = 1− e−b1 (̇ADC1−ADC2) (3.15)

where f is the fraction of blood perfusing in the tissue, S is the signal intensity and

b is the b-value [53]. Restricted diffusion occurs when a barrier prevents diffusion

across the barrier entirely, whereas hindered diffusion occurs when diffusion is
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hindered by a permeable membrane or another obstacle. In hindered diffusion

ADC is related to the free diffusion coefficient D by the following equation:

ADC =
D

λ2
(3.16)

where λ is the coefficient of ’tortuousity’ that signifies the degree to which diffusion

is impeded [54].

3.3.2 Diffusion anisotropy

It is often unreasonable to assume isotropic diffusion in biological samples, on

the same grounds that it is unreasonable to assume unrestricted diffusion. In the

case of anisotropic diffusion, a three dimensional model is required. Diffusion

tensor imaging achieves this using a diffusion tensor model [54]. The diffusion

tensor model relies on representing diffusion using a second order tensor. This

accounts for the multi-dimensional nature of unrestricted anisotropic diffusion,

but requires much more intensive post-processing. The relationship between the

amplitude of the signal S and the diffusion tensor, D, is given by the following

relationship:

ln(
S(b)

S(0)
) = −Σ3

i=1Σ
3
j=1bijDij (3.17)

where b is the b-value of the pulse sequence and i,j represent elements of the

b-matrix used to encode the b-vector [54].

The diffusion tensor can then be used to provide two measures of diffusivity;

the fractional anisotropy (FA) and the mean diffusivity (MD), which provide an

indication of the degree of anisotropy in the diffusion tensor and the average

diffusivity of a voxel [9]. However, the diffusion tensor still only accounts for the

average properties of the sample being imaged. Even in the case of the most

simple biological sample there will be a distribution of diffusivities, as the diffusion

environment in the intracellular and extracellular space is different [54]. In these

cases a model consisting of the summation of a number different diffusion models,



58 CHAPTER 3. DIFFUSION MRI

can be used to represent the signal due to different compartments of the tissue

sample [54].

3.4 Advanced diffusion MRI

All of the work reviewed so far uses relatively simple measures of diffusion, and

fails to account for the origin of different components of the diffusion MRI signal

in different parts of the tissue micro-structure. The work reviewed so far demon-

strates a relationship between ADC and other measures of diffusion and cellular-

ity, and fails to demonstrate a strong enough correlation to be able to predict cell

properties from the ADC, or to accurately discriminate between cancerous tissue

and normal tissue. Recently research has been conducted to develop diffusion

MRI techniques that are sensitive to cell properties. Some of this research has

been conducted using compartment models of the signal obtained from diffusion

MRI. Xu et al. used simulations of the diffusion in cells involving a compartment

model of diffusion to compare oscillating gradient spin echo (OGSE) and pulse

gradient spin echo (PGSE) pulse sequences, in a study which showed that ADC

fails to take account of many cellular properties [107]. Recently a three compart-

ment model of diffusion has been developed by Pangiotaki and Walker-Samuel et

al., called vascular extracellular and restricted diffusion for cytometry in tumours

(VERDICT) [81]. The VERDICT model is a compartment model using a one

directional diffusion tensor model to model the vascular compartment, a spheri-

cal diffusion tensor to model the extracellular-extravascular compartment and an

isotropic spherical restricted diffusion model for the intracellular compartment.

The study used two colorectal cancer cell lines in mouse models, and found that

VERDICT was sensitive to changes occurring in response to therapy with a cy-

toxic agent. The study also found that the model parameters corresponded to

different properties of the cancer cells, including cell size and cell density [81].

In another study Pangiotaki et al showed that VERDICT could be used to differ-

entiate between cancerous and normal tissue in the prostate, and that it could
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provide useful information about tissue microstructure in the prostate [79]. How-

ever the model does not account for cell membrane permeability, intracellular

compartments and cell shape [81].

However it became clear that VERDICT has a number of limitations. In par-

ticular it does not take account of cell membrane permeability. As such diffusion

exchange across the cell membrane could effect the estimation of cell size, in-

tracellular volume fraction and the other VERDICT model parameters. Diffusion

exchange across the cell membrane will influence a PGSE acquisition in a num-

ber of ways, but the main effect would be signal loss [71], which could confound

the estimation of all VERDICT parameters. However diffusion exchange across

the cell membrane could also effect the estimation of cell size by violating the as-

sumption underling the use of the sphere compartment in VERDICT, namely that

the cell membrane fully restricts the motion of intracellular water to the intracellu-

lar compartment. This prompted my interest in diffusion exchange across the cell

membrane.

3.5 DEXSY, FEXSY and compartment models of dif-

fusion exchange

Cell membrane permeability alters during the course of cell death due to apop-

tosis, necrosis and oncosis [58, 7, 28]. In addition, aquaporins, which control wa-

ter transport across the cell membrane, differ between healthy cells and cancer

cells [65, 103]. The physiological importance of cell membrane permeability has

motivated the development of techniques aimed at measuring cell membrane per-

meability, such as FEXSY (Filter Exchange Spectroscopy)/FEXI (Filter Exchange

Imaging) developed by Nilson et al [71]. The first attempt to quantify cell mem-

brane permeability using NMR, was done using the Kärger framework developed

in 1985 [48]. The Kärger framework uses a two compartment model, with the

signal explained by a combination of two exponentials [48]. Models such as the
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Kärger model have been used with Pulse Field Gradient (PFG) acquisitions to

study the properties of cell membranes with NMR spectroscopy [101]. A num-

ber of different techniques have been developed to study diffusion and exchange

in NMR spectroscopy including VEXSY (Velocity Exchange Spectroscopy) [19],

DOSY (Diffusion Ordered Spectroscopy) [66] and DEXSY (Diffusion Exchange

Spectroscopy) [18]. In this thesis the term diffusion exchange is used to describe

the exchange of diffusing spins across the cell membrane, between different com-

partments and between different populations of diffusing spins.

3.5.1 DOSY

DOSY is a spectroscopic technique which acquires an NMR spectrum, with a

range of diffusion encoding gradients. It produces a 2D data set with a diffusion

dimension and a spectroscopic dimension. Different chemical groups have dif-

ferent spectral peaks, which allows for different chemicals to be discerned in the

spectral dimension, whilst the diffusivity of each chemical group can be measured

in the diffusion dimension. The technique allows for the diffusivities of different

substances in a solution or a mixture to be measured [66].

3.5.2 DEXSY and FEXSY

DEXSY is a double diffusion encoding technique [18]. The data acquired is 2-D

inverse Laplace transformed to give a diffusion-diffusion exchange plot [18]. The

diffusion-diffusion exchange plot compares the diffusion measurements made us-

ing the two pairs of diffusion encoding gradients. Diffusion-exchange can be

observed when the two diffusion measurements differ [18]. DEXSY measures

diffusion exchange over a range of diffusivities, which can result in lengthy ac-

quisition times. In order to measure diffusion exchange in-vitro and in-vivo, a

FEXSY sequence was developed from a modified DEXSY sequence [6]. In a

FEXSY/FEXI sequence one pair of diffusion encoding gradients are fixed whilst

the other pair of diffusion encoding gradients and the mixing times used are var-

ied, thus producing a limited subset of the information available in a full DEXSY
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sequence [6]. In FEXSY/FEXSY the first pair of diffusion gradients act as a fil-

ter and cause the fast diffusing water signal to drop out. Whilst the second pair

of diffusion gradients are used to measure an apparent diffusivity. A range of

mixing times are then used to separate the first and second pair of gradients so

that the relationship between the mixing time and the apparent diffusivity of the

filtered signal can be determined. In FEXSY it is assumed that the filtered appar-

ent diffusivity will return to a value equivalent to the unfiltered measurement as a

result of equilibrium being established between the intracellular and extracellular

space due to diffusion-exchange. FEXSY/FEXI provides a more limited measure-

ment of diffusion-exchange than DEXSY, as the first pair of gradients are fixed.

FEXSY/FEXI also relies on a two compartment diffusion exchange model using a

monoexponential model of diffusion exchange, between the two compartments,

producing a single apparent exchange rate (AXR) coefficient [50, 93].

The DEXSY pulse sequence (Figure 3.2) consists of two pulsed gradient spin

echo (PGSE) blocks each incorporating a pair of diffusion-encoding gradients, G1

and G2. The two PGSE blocks are separated by a mixing time, tm, which allows

for diffusion exchange to occur. The two PGSE blocks encode the diffusion mea-

sured before and after the mixing time. Once the data has been processed these

measurements can be compared. A difference in the measurement encoded by

each block, indicates that the diffusing spins environment has changed during

the mixing time. DEXSY’s ability to detect a change in the diffusing spins envi-

ronment enables the technique to detect diffusion-exchange [17, 33]. Data are

processed using a 2D inverse Laplace transform. The signal from the DEXSY

acquisition is 2D inverse Laplace transformed to produce a distribution of diffu-

sion coefficients; producing a 2D spectrum in which diffusivities encoded with G1

are plotted against diffusivities encoded with G2. Peaks that lie along the diag-

onal of these diffusion-diffusion exchange spectra represent spins exhibiting the

same diffusivity during both sets of diffusion encoding gradients, whereas the

off-diagonal peaks represent spins that have exchanged between two different
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diffusion environments [17, 33]. The signal equation for the DEXSY sequence is:

S

S0

= Σp(D1, D2)e
(−b1D1)e(−b2D2) (3.18)

where subscripts correspond to parameters associated with either G1 or G2. The

summation is across all spins in the system. For a pair of gradient pulses, b =

γ2δ2G2(∆ − δ/3), where γ is the gyromagnetic ratio, G is the gradient strength,

δ is the duration of the diffusion encoding gradient, ∆ is the diffusion time; D is

the distribution of diffusivities, S is the acquired signal S0 is the signal acquired

with no diffusion encoding gradients and p is the probability of the contribution

to the signal from D1 and D2 [33]. An inverse Laplace transform, can transform

the multi-exponential decay of the DEXSY signal into into the probability of the

contribution to the signal from D1 and D2. In other words in DEXSY the 2D

inverse Laplace transform, transforms S
S0

to p(D1, D2) when b1 and b2 are known

[33]. A true inverse Laplace transform can not be calculated using computational

methods. However, computational methods can be used to calculate a so-called

inverse Laplace transform, which is an approximation to the true inverse Laplace

transform. It is these so-called inverse Laplace transforms which are used to

process DEXSY data.

Figure 3.2: DEXSY pulse sequance without imaging gradients

Much of the data acquired in DEXSY experiments has been processed using

so-called Laplace inversion software developed at the university of Wellington

[36, 17, 33]. For 2D data the software uses a singular value decomposition (SVD)

to reduce the the 2D data into a vector, that is then regularised before a non-

negative least squares (NNLS) fit is applied [36, 100].
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Regularisation is required to perform a so-called inverse Laplace transform, as

signal noise results in non-unique solutions to the transform when the NNLS is

applied to noisy data. However, if too much smoothing is applied important in-

formation that would be represented in smaller peaks such as diffusion exchange

peaks, can disappear. There are also non-unique solutions to Laplace transforms

at 0, which means that so-called inverse Laplace transforms can not process

signal from points where the exponents of the multi-exponential function are 0

[36, 100].

The use of so-called inverse Laplace transforms such as the one developed by

the university of Wellington, are dependent on using the right regularisation pa-

rameter. It is recommended that a Chi squared plot is used to identify the values

of the regularisation parameter above which the data has not been regularised,

and below which the data has been over smoothed [36, 100].

3.6 Methods used to evaluate MRI techniques

This section gives a brief introduction to methods used to evaluate MRI tech-

niques.

3.6.1 MRI phantoms

Phantoms are used for sequence development and quality assurance. The

most common phantoms are physical phantoms which are often used for quality

assurance, these are often made of glass and silica and are frequently used

to validate new techniques [63]. Chemical phantoms can be used to validate

techniques involving exchange processes [88]. Biological phantoms consisting

of nerve cells or cancer cells in-vitro have been used to study the relationship

between ADC and cell size and density in nervous tissue and cancer [12, 61, 5].

These phantoms can help sequence development to a point where the technique

can be translated into in-vivo imaging.
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3.6.2 Simulations

Diffusion MRI problems were initially treated analytically [53], however many

problems involving applying diffusion MRI to tissue micro-structure are too difficult

to deal with analytically and in order to resolve the problems Monte Carlo simula-

tions have been used [64]. Monte Carlo simulations have been applied to resolve

problems involving diffusion imaging of nervous tissue [64, 42, 74, 40, 4]. Monte

Carlo simulations have also been applied to simulate diffusion MRI acquisitions

in cancer [77, 82]. Monte Carlo methods involve random sampling of probability

distributions [43]. In Monte Carlo simulations of diffusion MRI acquisitions, spins

move through a substrate following a random walk and their magnetisation varies

with time, position and magnetic field [40]. The signal generated is the sum of

the signal from each spin [40]. Monte Carlo simulations can be used to validate

new sequences and a diffusion simulation packages such as CAMINO can use

or generate substrates to act as in-silico phantoms, enabling in-silico validation of

new diffusion MRI sequences [23].

3.6.3 Animal models

Animal models are used extensively in preclinical neuroscience [2], whilst xenograft

models formed from the inoculation of mice with cancer cells have been used in

cancer imaging. Xenograft models consisting of subcutaneous tumours resulting

from the subcutaneous injection of carcinoma cells into nude mice with compro-

mised immune systems, have been successfully used to model human tumours

in imaging experiments [102]. The carcinoma cell lines used in xenograft models

are often derived from human carcinoma cells, and they produce tumours that

are similar to the human carcinomas from which they are derived.

3.7 Conclusion

This chapter introduces the theory behind diffusion MRI, and gives an overview

of VERDICT, DEXSY and FEXSY/FEXI. In the next five chapters experimental
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work and simulations using the ball and sphere model (cellular and extracellular

component of VERDICT), FEXSY and DEXSY are presented. The application of

diffusion MRI to cancer forms the main focus of this thesis.
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Chapter 4

Biological phantoms for diffusion

MRI

4.1 Introduction

This chapter is focused on developing a biological phantom to test and eval-

uate diffusion MRI techniques for cytometry in cancer. Initially we focused on a

diffusion MRI technique called VERDICT MRI [81]. This technique is intended to

provide some of the information that could traditionally only be acquired from his-

tology. Concerns regarding the accuracy of the estimates of cell size made using

the VERDICT model, suggest that predictions of cell size made using the extra-

cellular and intracellular component of the VERDICT model need to be evaluated.

The ball and sphere model provides the extracellular and intracellular component

of the VERDICT model. The initial aim of the work presented in this chapter

was to evaluate the predictions of cell size and intracellular volume fraction made

using the ball and sphere model.

The work presented in this chapter demonstrates that progress was made in

evaluating the predictions made by the ball and sphere model using a biological

phantom. However, further work did not seem sensible as ex-vivo validation of

VERDICT [46], rendered it unnecessary. Ex-vivo tumour xenograft model studies

using perfusion fixed tissue provide a tumour model with no vascular compart-

67
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ment which can be represented by the ball and sphere model. However, the

fixation process reduces the size of the cells. The study demonstrated that the

VERDICT model could be applied to in-vivo data acquired from a subcutaneous

tumour xenograft model and the ball and sphere model could be applied to data

acquired ex-vivo from the same tumour after perfusion fixation. The results show

that the difference in predicted cell size and intracellular volume fraction between

the in-vivo and ex-vivo data is consistent with the change in cell size due to tissue

fixation [46]. However, it is also clear that VERDICT has a number of limitations.

In particular, it does not take account of cell membrane permeability. Diffusion ex-

change across the cell membrane can result in signal loss in PGSE acquisitions

[72], which could confound the estimation of all VERDICT parameters. However,

diffusion exchange across the cell membrane could also affect the estimation of

cell size by violating the assumption underling the use of the sphere compart-

ment in VERDICT, namely that the cell membrane fully restricts the motion of

intracellular water to the intracellular compartment over the time course of the

MRI measurement. This prompted my interest in diffusion exchange across the

cell membrane. Whilst my initial interest was prompted by the effects of diffusion

exchange on diffusion MRI measurements, it soon became clear that this would

be a phenomenon worth studying in its own right. As mentioned in chapter 2,

water transport across the cell membrane is an important physiological process,

and cell membrane permeability alters in health and disease. Any quantitative

indicator of cell membrane permeability is also a potential biomarker in cancer.

Once it was established that there was no longer a need to evaluate the ball and

sphere model, and that measuring diffusion exchange across the cell membrane

could provide information about an important physiological process, my attention

turned towards DEXSY. I aimed to measure diffusion exchange across the cell

membrane in a biological phantom using DEXSY. In this chapter the sections are

split into separate subsections. The first uses biological phantoms to evaluate the

ball and sphere model’s prediction of cell size and intracellular volume fraction,

and the second uses biological phantoms to evaluate DEXSY’s measurements of
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diffusion exchange across the cell membrane.

4.2 Methods

In this section we present methods used to evaluate diffusion MRI techniques

using biological phantoms. The first subsection covers the methods used to eval-

uate the ball and sphere model estimates of cell size and intracellular volume

fraction using a biological phantom. The second subsection covers the methods

used to evaluate measurements of diffusion exchange across the cell membrane

in a biological phantom acquired using DEXSY.

4.2.1 Methods used to evaluate the ball and sphere model

In this subsection the methods used to evaluate the ball and sphere model esti-

mates of cell size and intracellular volume fraction using a biological phantom are

presented. I used a similar methodology to that which was used by Anderson et

al. and Matsumoto et al. [61, 5] to look at the relationship between cell properties

and ADC. The biological phantom was produced from cells that came from the

SW1222 and LS147T colorectal carcinoma cell lines. We used luciferase positive

cells as these can be imaged using biouminescence imaging. In our final version

of the protocol used to evaluate the ball and sphere model 5 T-175 cell culture

flasks of either luciferase positive SW1222 or LS147T cells were washed with 7

ml of PBS (Phosphate Buffer Solution), before being trypsinised (detached from

the flasks) using 3 ml of trypsin each, and incubated at 37 ◦ C in 5% CO2 for 5

minutes. Each flask was then neutralised using 5 ml of media. The media and

cells were transferred to a 50 ml centrifuge tube. The cells were counted using

a cell counter slide and trypan blue, whilst the 50 ml centrifuge tube was cen-

trifuged for 5 minutes at 1290 rpm. The media and trypsin were aspirated out of

the centrifuge tube leaving a cell pellet. Then 50 ml of PBS was added to the cell

pellet, which was broken down and mixed with the PBS using a pipette gun before

being centrifuged for another 5 minutes at 1290 rpm. The PBS was aspirated out
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of the centrifuge tube leaving a cell pellet.

Before the experiment the extracellular matrix gel (ECM -gel) was left in the

refrigerator at 5 ◦ C to defrost overnight. The ECM-gel was placed on ice along-

side the 0.5 ml micro-centrifuge tube and the 1000 micro-litre Gilson pipette tips,

before being transferred to the biological safety cabinet (all tissue culture has to

be conducted in a biological safety cabinet). The centrifuge tube with the cell pel-

let was then placed on ice inside the biological safety cabinet. Ice is required to

ensure that the ECM-gel, cells, media and pipettes are chilled so that the ECM-

gel can be manipulated without it solidifying. The ECM-Gel and media were then

added to the cell pellet using the Gilson pipette. The mixture was mixed with the

1000 micro-litre Gilson pipette before 0.75 ml of the mixture was transferred to

the micro-centrifuge tube. We intended to produce a mixture that consisted of 3/5

cell pellet, 1/5 Dubulcos Modified Eagle Media (DMEM media) and 1/5 ECM-Gel

in order to create a phantom with an intracellular volume fraction of 60 %. This

experiment was conducted twice as the the number of cells harvested from the

T-175 flasks in the first experiment conducted using this protocol was less than

expected. A second experiment was then conducted using this protocol and the

expected number of cells, were harvested from the T-175 flasks.

The micro-centrifuge tube containing the cells, ECM-gel and media was imaged

in a 15 ml centrifuge tube full of paper and water to keep it stable and reduce arti-

facts. Ideally the cells would have been scanned at 37 ◦ C however the cells were

scanned at room temperature 21 ◦ C. The MRI data used to evaluate the ball

and sphere model was acquired using a 9.4 T Varian MRI scanner (Agilent tech-

nologies) using a 26 mm RF coil (Rapid MR International). A diffusion weighted

SEMS (Spin Echo Multi Slice) sequence was used with a range of ∆ = 10, 20,

30, 40 ms and δ = 3 for all values of ∆ and δ = 10 ms for ∆ = 30, 40 ms to give

6 diffusion weighted shells, with an additional 42 direction diffusion tensor shell

with ∆ = 10 ms and δ = 3 ms. The gradient strength varied in 10 even increments

between 40 mT/m and 400 mT/m for δ =3 and it was 44.4 mT/m, 88.9 mT/m and
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133.3 mT/m for δ =10 ms, the maximum gradient strength for the diffusion tensor

shell was 400 mT/m. The TE used was close to the minimum in each case and

the TR used was 350 ms. This is a slightly modified version of the acquisition

scheme used in the original VERDICT study [81].

After the scan was finished, 15 micro-litres of luciferin, an enzyme that causes

luciferase positve cells to release light, was added to the micro-centrifuge tube

containing the cells. The bioluminescence emited from the cells was imaged with

the AMI-X (Spectral Instruments) to measure the distribution of viable cells. Once

this was done the contents of the micro-centrifuge tube were scraped into a 50 ml

centrifuge tube and 2 ml of dispase without calcium, magnesium and EDTA at a

concentration of 0.6 units per ml were added. This mixture was then incubated for

30 minutes, before being neutralised with 8 ml of media. A cell count and viability

measurement was then carried out with a hemocytometer slide and trypan blue,

using a trypan blue exclusion assay. Some of the cells were then diluted with

DMEM media and plated up on a 6 well plate before being imaged using a Zeiss

Axio Observer Z1 microscope.

The image processing was all done in MATLAB, using the CAMINO [23]

package produced by UCL’s Microstructure Imaging Group to fit the ball and the

ball and sphere model [81], with in house MATLAB software. The ball model is

a subset of the ball and sphere model consisting of the ball compartment alone.

The ball model can be used to estimate ADC. The ball and sphere model con-

sist of a ball compartment which represents an isotropic diffusion tensor which

gives a signal model for isotropic hindered diffusion and the sphere compartment

which represents a signal model describing isotropic restricted diffusion. The in-

tracellular volume fraction is determined by the proportion of signal coming from

the sphere compartment. The predicted cell radius is the radius of the sphere

compartment [80, 68, 81]. Hindered and restricted diffusion are covered in more

detail in chapter 3.



72 CHAPTER 4. BIOLOGICAL PHANTOMS FOR DIFFUSION MRI

4.2.2 Methods used to evaluate DEXSY

The biological phantoms used to evaluate DEXSY were produced from cells

that came from the SW1222 colorectal carcinoma cell line. Two protocols were

used to produce biological phantoms to evaluate DEXSY, ECM-gel biological

phantoms were used for biological phantoms 1-5, and collagen gel biological

phantoms made using the RAFT 3D Culture kit were used for biological phan-

toms 6 and 7.

In our final version of the protocol, 7 T-175 flasks of luciferase positive SW1222

cells were used to produce each ECM-gel biological phantom. The flasks were

washed with 7 ml of PBS (Phosphate Buffer Solution), before being trypsinised

using 3 ml of trypsin each, and incubated at 37 ◦ C in 5% CO2 for 5 minutes.

Each flask was then neutralised using 5 ml of media. The media and cells were

transferred to a 50 ml centrifuge tube. The cells were counted using a hemocy-

tometre slide and trypan blue, whilst the 50 ml centrifuge tube was centrifuged

for 5 minutes at 1290 rpm. The media and trypsin were aspirated out of the cen-

trifuge tube leaving a cell pellet. Then 50 ml of PBS was added to the cell pellet,

which was broken down and mixed with the PBS using a pipette gun before being

centrifuged for another 5 minutes at 1290 rpm. The PBS was aspirated out of the

centrifuge tube leaving a cell pellet.

Before the experiment ECM-gel, was left in the refrigerator to defrost overnight.

The ECM-gel was placed on ice alongside the 0.5 ml filtered micro-centrifuge tube

and the 1000 micro-litre Gilson pipette tips before being transferred to the biolog-

ical safety cabinet. The centrifuge tube with the cell pellet was placed on ice,

inside the biological safety cabinet. The ECM-Gel and media were then added

to the cell pellet using the Gilson pipette. The mixture was mixed with the 1000

micro-litre Gilson pipette, before 0.75 ml of the mixture was transferred to the

micro-centrifuge tube. We intended to produce a mixture that consisted of 3/5

cell pellet, 1/5 DMEM media and 1/5 ECM-Gel. The micro-centrifuge tube con-
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taining the cells, ECM-gel and media was placed in a 15 ml centrifuge tube filled

with DMEM media to keep the cells viable for the duration of the experiment. The

biological phantoms used to evaluate DEXSY have been numbered 1-7 in table

4.1 and this protocol was used to create biological phantoms 1-5. According to

our protocol biological phantoms 1-5 should be identical.

Two phantoms were produced using the RAFT 3D Culture kit [21], consisting

of SW1222 cells placed into a collagen gel that is then compressed to give a high

cell density. The micro-centrifuge tube containing the cells in collagen-gel was

placed in a 15 ml centrifuge tube filled with DMEM media to keep the cells viable

for the duration of the experiment. This protocol was used to create biological

phantom 6 and 7. This protocol was trialled as it is faster and simpler to produce

phantoms using the RAFT 3D Culture Kit than with ECM-Gel.

The biological phantoms held inside a 15 ml centrifuge tube were inserted into

the MRI scanner. The data were acquired using a 9.4 T Varian MRI scanner (Ag-

ilent technologies) using a 26 mm RF coil (Rapid MR International). We used a

slice-selective DEXSY sequence created by adding slice selective imaging gra-

dients to the basic DEXSY pulse sequence shown in figure 3.2. The biological

phantoms were scanned using the DEXSY scan parameters listed in table 4.1,

with 4 averages and a duration of 102 minutes for each scan. A variety of pa-

rameters were used to determine which diffusion times and diffusion gradient

strengths are sensitive to the intracellular diffusion in the cancer cells, and to de-

termine which mixing times are sensitive to diffusion-exchange across the cell

membrane.

2D inverse Laplace software was used to generate diffusion-diffusion exchange

plots from the raw data and the applied b-values [17, 100]. The contribution due

to imaging gradients was incorporated into the calculation of the b-values. The
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Phantom δ ∆ tm TR G1&G2 in 16×16 steps
1 15 ms 17 ms 100 ms 3000 ms 0-720 mT/m
2 5 ms 23 ms 100 ms 3000 ms 0-800 mT/m
3 15 ms 17 ms 100 ms 3000 ms 0-800 mT/m
4 15 ms 17 ms 100 ms 3000 ms 0-800 mT/m
5 scan 1 15 ms 17 ms 200 ms 3000 ms 0-800 mT/m
5 scan 2 9 ms 14 ms 200 ms 3000 ms 0-800 mT/m
6 15 ms 17 ms 200 ms 3000 ms 0-640 mT/m
7 15 ms 17 ms 200 ms 3000 ms 0-640 mT/m

Table 4.1: Table of biological phantom DEXSY scan parameters

Diffusion Exchange Index (DEI) is defined as the ratio of the volume of exchange

peaks to non-exchange peaks and could be used as a quantitative indicator of

cell membrane permeability.

4.3 Results

4.3.1 Results from the final protocol used to evaluate the ball

and sphere model

The earliest versions of the protocol used to produce a biological phantom to

evaluate the ball and sphere model, used a 1.5 ml micro-centrifuge tube before

we decided to use a 0.5 ml micro-centrifuge tube, the number of cells used for

these was between 4×107 - 8×107 cells as counted using trypan blue and a

hemocytometre slide. In each attempt there was a high cell viability of greater

than 95 %, demonstrating that I could keep the cells mixed with ECM-gel viable

in a micro-centrifuge tube. I have not included information about the phantoms

produced using the earliest versions of the protocol as the main difference be-

tween the final protocol and the earliest versions of the protocol is the number

of flasks of cells used to produce the phantom, as the earliest versions of the

protocol failed to produce enough cells.

In the first experiment, carried out using the final protocol used to evaluate

the ball and sphere model, the phantom consisted of a 0.5 ml micro-centrifuge
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tube. In the first experiment the number of cells harvested was significantly less

than expected. A total of 7.3×107 SW1222 cells at greater than 95 % viability

were harvested for the experiment. The data acquired by the MRI scanner from

the first experiment using the final protocol used to evaluate the ball and sphere

model is shown in figures 4.1-4.4. Figures 4.1 shows a plot of the normalised

signal from the biological phantom, plotted against the b-value at which it was

acquired. The normalised signal (S/S0) for the biological phantom is taken from

a region of interest drawn around the micro-centrifuge tube in a single slice of

our MRI acquisition. The parameters are then calculated from the area within

the ROI for all three slices acquired. In order to fit the right model only the sim-

plest model that fits the data should be used in accordance with Occam’s razor.

The normalised signal from the biological phantom, appears to follow a mono-

exponential decay in signal with increasing b-value. This is what we would expect

if the ball model of unrestricted diffusion is applicable, as it is characterised by a

simple mono-exponential decay in signal intensity with increasing b-values. The

simple mono-exponential relationship is what would be expected if the phantom

consisted of a mixture of media and ECM-gel alone. The results of a prelimi-

nary biological phantom experiment suggest that this is the case in a mixture of

ECM-gel and media, with the mixture having an ADC = 2.3 m−9/s. Figure 4.2

confirms that the ball model is an appropriate model, as the measured signal

marked by blue crosses matches with the ball model predicted signal marked by

the red boxes. The ball model predicted signal for each b-value was calculated

by in house MATLAB software using the ADC estimated using the ball model

for the MRI data acquired. When using compartment models of diffusion MRI.

The simplest model that describes the data is always used, which means that the

ball model is an appropriate model for this data set [80]. Figure 4.3 shows the b

= 0 image which was acquired with no diffusion weighting. There are no obvious

artifacts present in the b = 0 image and relatively little variation in signal intensity

across the biological phantom, showing that the data is sound. Figure 4.4 shows

the apparent diffusion coefficient (ADC) map generated from the data acquired
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from the biological phantom using the ball model.

Figure 4.1: Plot of the normalised signal from the cells and ECM-gel, plotted
against b value for our first experiment using the final protocol used to evaluate
the ball and sphere model. The different colours represent the 12 directions for
each of the shells as well as the 42 directions for the DT42 shell

Figure 4.2: Plot showing mean normalised signal represented by the blue crosses
and ball model predicted signal represented by the red boxes for the cells and
ECM-gel, from our first experiment using the final protocol used to evaluate the
ball and sphere model
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Figure 4.3: B=0 from our first experiment using the final protocol used to evaluate
the ball and sphere model

Figure 4.4: ADC map from our first experiment using the final protocol used to
evaluate the ball and sphere model
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Figure 4.5: Bioluminescence image, for the first experiment using the final proto-
col used to evaluate the ball and sphere model. This Image shows the intensity
of the light emitted from the luciferase positive cells in the phantom when luciferin
is added.

Figure 4.6: Cells extracted from the ECM-gel imaged with a Zeiss Axio Observer
Z1 during the first experiment using the final protocol used to evaluate the ball
and sphere model
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Figure 4.5 shows the AMI-X bioluminescence image acquired after the cells in

the micro-centrifuge tube were scanned using the MRI scanner. This shows what

looks like a slightly uneven distribution of viable cells. The cells extracted from

the ECM-gel using dispase were over 95 % viable. However we were unable to

extract all of the cells using dispase and there were groups of cells still in ECM-

gel. Because they were still in ECM-gel the number of cells in the groups could

not be determined. An image of the cells taken with the Zeiss Axio Observer Z1

is shown in figure 4.6. The average cell radius measured using the Zeiss Axio

Observer Z1 microscope was 5.9 ± 0.1 microns as measured manually. The av-

erage cell radius as measured manually is the mean cell size as calculated from

the cell diameter measured by an untrained user for each of the cells in figure

4.6. The diameter of each cell can be measured manually using the Zeiss Axio

Observer Z1 software in which the user can identify a cell by eye and draw a

line across the cell. The software provides the user with the length of the line

and this can be recorded as the cell diameter. The average cell radius measured

using the Zeiss Axio Observer Z1 microscope was 8.8 ± 0.4 microns measured

automatically using FIJI [89]. The discrepancy in the measurement seems to

be due to the automated method measuring the radius of the halo surrounding

the cell in the phase contrast images, rather than measuring the radius of the

cell. The Halo is the bright ring around the cells caused by the contrast between

the cell and the background, and it is a common artifact in phase contrast mi-

croscopy images [78]. This would give an estimated intracellular volume fraction

of 0.09 according to the manual cell size measurement and 0.3 according to the

automatic cell size measurement. The cell size reported here is smaller than that

published in the original VERDICT study [81]. This may be due to a difference

in the size of cells grown in-vitro and in-vivo. Alternatively, the process used to

extract cells from the ECM-gel may have extracted a larger proportion of smaller

cells. Another possibility is that the protocol may have altered the cell’s size as

the cells are trypsinised at the start of the protocol and extracted from ECM-gel

with dispase at the end of the protocol.
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In the second experiment using the final protocol used to evaluate the ball

and sphere model, the number of cells harvested was as expected. A total of

1.166×108 - 2.56×108 SW1222 cells were harvested for the experiment. Figures

4.7 -4.10 show the data acquired from the MRI scanner. We can see in figure 4.7

that there is a poor match between the ball predicted values marked by the red

boxes, and the mean normalised signal marked by the blue crosses. In contrast,

in figure 4.8 there is a good match between the ball and sphere model predicted

values marked by the red boxes and the mean normalised signal marked with

the blue crosses. The ball and ball and sphere model predicted signal for each

b-value was calculated by in house MATLAB software for the model parameters

(ADC, cell size and intracellular volume fraction) estimated using the ball and ball

and sphere model for the MRI data acquired. This shows that the ball and sphere

model is an appropriate model for this data.

Figure 4.7: Plot showing mean normalised signal from the cells and ECM-gel
represented by the blue crosses and ball model predicted signal represented by
the red boxes, for the second experiment using the final protocol used to evaluate
the ball and sphere model
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Figure 4.8: Plot showing mean normalised signal from the cells and ECM-gel rep-
resented by blue crosses and ball and sphere model predicted signal represented
by red boxes, for the second experiment using the final protocol used to evaluate
the ball and sphere model

Figure 4.9: Image showing cell size as predicted by the ball and sphere model
for the second experiment using the final protocol used to evaluate the ball and
sphere model
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Figure 4.10: Image showing intracellular volume fraction as predicted by the ball
and sphere model for the second experiment using the final protocol used to
evaluate the ball and sphere model

Figure 4.11: Biouminescence image, for the second experiment using the final
protocol used to evaluate the ball and sphere model. This Image shows the
intensity of the light emitted from the luciferase positive cells in the phantom when
luciferin is added
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Figure 4.9 shows a cell size map, and figure 4.10 shows an intracellular vol-

ume fraction map. Both were produced using the ball and sphere model from

MRI data acquired from the cells in ECM-gel. Figure 4.11 shows the AMI-X bio-

luminescence image from the same experiment. The intensity of the signal from

the bioluminescence is much less than would be expected if all of the cells were

viable. The viability of the cells after they had been imaged with the AMI-X was

around 50%. Unfortunately we were unable to measure cell size on this occasion

as the Zeiss Axio Observer Z1 microscope was out of service. However, we as-

sume that the cell size would have been similar to that measured previously. This

means that the cell size predicted by the ball and sphere model, is less than a

third of the actual size of that would be expected with viable SW1222 cells. The

intracellular volume fraction predicted with the ball and sphere model is approx-

imately half what we would have expected had all of the cells remained viable

(0.15 as opposed to 0.3). This would suggest that the ball and sphere model is

valid.

4.3.2 Results from the biological phantoms used to evaluate

DEXSY

The ability of the revised biological phantom to maintain cell viability was eval-

uated with a 5 hour long bioluminescence experiment. In this experiment luciferin

was added hourly to a phantom made from 559 million cells. The intensity of the

bioluminesence signal was greater after 5 hours than it was at the start of the

experiment. An increase in bioluminescence should correspond to an increase

in cell viability and this suggests that the experiment’s design had failed to ac-

count for the build up of luciferin that occured in the course of the experiment.

However, the results also suggest that the cells in the biological phantom that

were viable at the start of the experiment remained viable for the duration of the

5 hour long experiment (greater than 90% of the cells were viable at the start of

the experiment).
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Figures 4.12-4.17 show diffusion-diffusion exchange plots produced from the

ECM-Gel biological phantoms used to evaluate DEXSY and composed of ECM-

gel and SW1222 cells. The number of cells used are 635 ± 5, 108 ± 5, 526 ± 5,

133 ± 5 and 298 ± 5 million cells per phantom. According to our protocol, and

assuming the measured cell size reported for the SW1222 cells in the histological

results from the published in-vivo VERDICT study [81], we can expect an intracel-

lular volume fraction of 0.6, for each of the biological phantoms shown in figures

4.12-4.17. However, this assumption may be incorrect as the cell size measured

from the image in figure 4.7, is smaller than that measured in the VERDICT study.

In diffusion-diffusion exchange plots, diagonal peaks represent diffusion within

different compartments (here, intracellular and extracellular) and off diagonal peaks

represent diffusion exchange between compartments. No diffusion exchange

peaks are present in figures 4.12-4.19. Nevertheless, based on the diffusivity

of the diagonal peaks observed, likely intracellular and extracellular peaks are

present in figure 4.12, 4.14 and 4.16. However, these peaks can not be separated

completely, and there is a third peak which probably represents free diffusion in

media due to the high diffusivity of that peak, in figure 4.12. In the diffusion-

diffusion exchange plot in figure 4.13, 4.15 and 4.17 there is a single peak, even

though figure 4.15 has the same DEXSY scan parameters as figure 4.14. The

diffusion-diffusion exchange plot shown in figure 4.14 looks much more consis-

tent with a biological phantom peak and a media peak, than an intracellular and

extracellular compartment peak. This is inferred because the media surrounding

the biological phantom would have a much higher diffusivity than the intracellular

and extracellular space in the biological phantom.

Figures 4.18-4.19 shows diffusion-diffusion exchange plots produced from col-

lagen gels with 1.92 million cells and 5.61 million cells. Only a single peak is

present in these two plots. The number of cells in these phantoms was insufficient

to achieve the intracellular volume fraction required for the intracellular diffusion

to be discernible with diffusion MRI.



4.3. RESULTS 85

Figure 4.12: Diffusion-diffusion exchange plot from phantom 1, which is made
from cancer cells in ECM-gel

Figure 4.13: Diffusion-diffusion exchange plot from phantom 2, which is made
from cancer cells in ECM-gel
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Figure 4.14: Diffusion-diffusion exchange plot from phantom 3, which is made
from cancer cells in ECM-gel

Figure 4.15: Diffusion-diffusion exchange plot from phantom 4, which is made
from cancer cells in ECM-gel
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Figure 4.16: Diffusion-diffusion exchange plot from phantom 5 acquisition 1,
which is made from cancer cells in ECM-gel

Figure 4.17: Diffusion-diffusion exchange plot from phantom 5 acquisition 2,
which is made from cancer cells in ECM-gel
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Figure 4.18: Diffusion-diffusion exchange plot from phantom 6, which is made
from cancer cells in collagen gel

Figure 4.19: Diffusion-diffusion exchange plot from phantom 7, which is made
from cancer cells in collagen gel
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4.4 Discussion

4.4.1 Discussion of the results from the final protocol used to

evaluate the ball and sphere model

The values of the intracellular volume fraction and cell size predicted by the ball

and sphere model shown in figures 4.9 and 4.10 are not what would have been

expected had the cells been 100 % viable at the end of the experiment. Approxi-

mately 50 % of the cells were not viable at the end of the experiment. Our initial

hypothesis was that the ball and sphere model describes the diffusion MRI signal

produced from the intracellular and extracellular space in our biological phantom.

Thus we did not expect that it would describe the signal from cells undergoing

cell death. During cell death the cell membrane becomes more permeable and

there are changes in the size of the cell and, as a consequence the modelling

assumptions underlying the ball and sphere model can break down. The intra-

cellular volume fraction predicted by the ball and sphere model was half of that

which we estimated had all of the cells remained viable, whilst the cell size was

less than a third of what we would have expected. This suggests that the intra-

cellular volume fraction predicted by the ball and sphere model may have been

close to the intracellular volume fraction at the end of the experiment, whilst the

predicted cell size is probably incorrect. As we stated before, our model was not

expected to describe a situation with such a high degree of cell death, so we

would not necessarily expect our results to be accurate in this situation. In the

next section this problem is addressed in more detail. This means in order to at-

tempt to evaluate the model we would have to repeat the experiment with a higher

intracellular volume fraction of 60 % and a cell viability of 95 % or higher at the

end of the experiment. The good fit between the values of the signal predicted by

the ball and sphere model and the normalised signal in figure 2.8 is encouraging.

However, the predicted cell size is probably incorrect, suggesting that the model

may have been over-fitted.
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In order to carry out biological phantom experiments with a larger intracellular

volume fraction and a higher degree of cell viability, we have refined the protocol

for carrying out the experiment. The cells remained viable for the duration of the

experiment in our initial experiments, which were carried out with relatively few

cells. There were no differences in the conditions of the first and second exper-

iment using the final protocol used to evaluate the ball and sphere model, apart

from the number of cells present. Thus the decrease in cell viability that occurred

in the second experiment can probably be attributed to an inadequate supply of

glucose and oxygen. A revised protocol for producing a biological phantom was

developed to remedy this but it was only used for DEXSY.

4.4.2 Discussion of the results from the biological phantoms

used to evaluate DEXSY

The revised protocol uses a micro-centrifuge tube, with a filter unit consisting

of a semi-porous membrane. The semi-porous membrane keeps the mixture of

cells, ECM-gel and DMEM media inside the micro-centrifuge tube, whilst allowing

glucose and oxygen to diffuse across the semi-porous membrane. Our prelimi-

nary bioluminescence experiment suggests that the revised protocol produces a

phantom that can keep cells viable.

The biological phantoms used in this chapter to evaluate and develop DEXSY,

as a technique to measure diffusion exchange across the cell membrane in can-

cer require an intracellular volume fraction of approximately 0.6 in order to model

tumours. If the assumptions made regarding cells size in the revised protocol are

correct then the biological phantoms made using ECM-gel; phantoms 1-5 have

the required intracellular volume fraction. However, in the collagen phantoms;

phantoms 6 and 7 there were insufficient cells to achieve the required intracellu-

lar volume fraction. As such we would need to develop a means of maintaining

a higher intracellular volume fraction in the collagen phantoms, before they could

be used to evaluate DEXSY.
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It is clear from figures 4.12-4.19 that no diffusion exchange peaks are present,

and that the intracellular and extracellular peaks are not clearly differentiated. The

results of biological phantom 1 shown in figure 4.12 suggest that the diffusion

gradients chosen are incorrect, as the two peaks are very close together. This

suggests that we need to use a smaller maximum diffusion gradient strength.

If our assumptions regarding cell size and cell viability, are correct and there

are no significant partial volume effects. Then it would seem likely that all of the

DEXSY scan parameters trialled lack sensitivity to the cancer cells intracellular

diffusion and diffusion-exchange across the cell membrane. However, if our as-

sumptions regarding cell size and viability are incorrect, there could have been a

smaller than expected intracellular volume fraction. This could have resulted in

too little signal coming from the intracellular compartment for that signal to make

a significant contribution to the DEXSY diffusion-diffusion exchange plots. Never-

theless, the biological phantom was positioned in a centrifuge tube full of media

and given that a slice selective sequence was used it is likely that the DEXSY

data presented in this chapter has been effected by partial volume effects.

Figures 4.12-4.16 show diffusion-diffusion exchange plots which may suffer

from a combination of sub-optimal DEXSY scan parameters and a sub-optimal

experimental design with regards to the positioning of the phantom. It is likely

that the study suffers from partial volume effects as the position of the slice is

such that it would have cut across the centrifuge tube and the micro-centrifuge

tube with the filter containing the cells mixed with ECM-gel and media. There-

fore, there would be some media in between the micro-centrifuge tube and the

centrifuge tube wall. This, combined with the small volume of the phantom would

have resulted in a small proportion of the total signal originating from cells in the

phantom. The contribution from the rest of the set up could also have had a sub-

stantial impact on the acquisition. Also, the mixing time used for biological phan-

tom 1-4 was also 100 ms which may be too short to capture diffusion exchange

across the cell membrane. The intracellular volume fraction of the cells may also
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be less than expected. As explained in the results section, and this would also

reduce the likelihood of seeing clear intracellular and extracellular compartments.

It is clear from the results presented in this chapter that partial volume effects

need to be eliminated and the mass/volume of cells used for each experiment

has to be controlled. If, we are to eliminate all variation in our in-vitro experiments

other than those caused by altering the DEXSY scan parameters. Given we are

using a slice selective DEXSY sequence this could only be achieved by filling

a centrifuge tube with a known volume/mass of cells in a suspension/mixture.

Yeast is the obvious choice for in-vitro work as it is easy to work with and it is

a well established model for eukaryotic cells [57]. Yeast has also been used to

evaluate FEXSY in the past [6].

4.5 Conclusion

Biological phantoms have been produced with the required intracellular vol-

ume fraction according to the protocol. However, the protocol requires a large

amount of time to produce a single biological phantom. The Centre for Advanced

Biomedical Imaging has also lost some of its bioluminescence imaging capabili-

ties, as such it is no longer possible to asses the viability of biological phantoms

in-vitro. It also takes two weeks of preparation to produce a single biological phan-

tom, whilst it takes up to 6 hours to conduct an experiment with the phantom. It

also seems clear that the slice selective DEXSY sequence may have difficulty

capturing the biological phantom using a single slice, as the mixture of cells and

ECM-gel takes up such a small volume. The intracellular volume fraction accord-

ing to the protocol may also be incorrect as the cells used to produce the phantom

may be smaller than the cell size assumed. The amount of time required to pro-

duce biological phantoms and the practical difficulties in conducting diffusion MRI

experiments using biological phantoms, make it impractical for them to be used to

develop DEXSY as an imaging technique in a timely fashion. As such, alternative

techniques to evaluate DEXSY are needed before moving on to in-vivo valida-
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tion of DEXSY as a means to measure cell membrane permeability in tumour

xenograft models.

Prior to applying DEXSY to in-vivo xenograft models, it must be established,

that the DEXSY sequence makes accurate measurements of diffusion, that DEXSY

produces measurements that provide a quantitative indicator of cell membrane

permeability, and that DEXSY can measure diffusion-diffusion exchange in living

cells. If these criteria are fulfilled, then DEXSY should be able to measure diffu-

sion exchange and provide a quantitative indicator of cell membrane permeability

in-vivo. The following chapters show work with physical and chemical phantoms

which demonstrate that DEXSY can measure diffusion accurately. Simulations

demonstrating that DEXSY can provide a quantitative indicator of cell membrane

permeability in-silico, and experimental data demonstrating the measurement of

diffusion exchange in-vitro in yeast with DEXSY. Yeast is used for in-vitro work

as it is easy to work with and it is a well established model for eukaryotic cells

[57]. The work presented prior to the final experimental chapter demonstrates

that there is sufficient evidence presented in this thesis to justify the application

of DEXSY in-vivo. The final experiential chapter presents DEXSY data acquired

in-vivo from tumour xenograft models.
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Chapter 5

Chemical and Physical DEXSY

Phantoms

5.1 Introduction

As is stated in the previous chapter, it must be established that DEXSY can

make accurate measurements of diffusion. Chemical and physical phantoms can

prove a useful means of validating the technique before moving onto biological

samples. Once we demonstrate the accuracy of diffusion measurements using a

physical or chemical phantom, we can move onto using simulations which eval-

uate DEXSY in-silico demonstrating that DEXSY can be used to measure cell

membrane permeability in an idealised situation. We can then move onto biolog-

ical samples and in-vitro DEXSY acquisitions in yeast suspensions.

DEXSY is an established technique for studying soft matter [17, 37, 85], how-

ever, the diffusion measurements have not been verified with another established

technique. Thus we needed to demonstrate the accuracy of diffusion measure-

ments made with DEXSY. We initially considered a range of physical phantoms,

but none of the phantoms considered would have simulated a two compartment

exchange model. Then we looked at chemical phantoms involving substances

with different diffusivities and with chemical exchange of hydroxyl protons be-

tween them. In order to evaluate the DEXSY sequence as a technique for mea-
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suring diffusion exchange we used a sucrose water phantom, which simulates

a two compartment diffusion exchange model. The fast diffusing water and the

slow diffusing sucrose act as two separate compartments, whilst the chemical ex-

change of a hydroxyl proton between the sucrose and water simulates diffusion

exchange. The sucrose has a lower diffusivity than water because it is a larger

molecule. This method has previously been used by Schilling et al. to validate

FEXI [88].

In this chapter I present experimental work in which measurements of the diffu-

sivity of sucrose and water made using a DEXSY scan acquired from a chemical

phantom are validated independently using DOSY. When we conduct a DEXSY

experiment on a sucrose water phantom we would expect to observe four peaks

on a diffusion-diffusion exchange plot; a slow diffusion peak due to the slow dif-

fusing sucrose molecules, a fast diffusion peak due to the fast diffusing water

molecules, and two diffusion exchange peaks due to the exchange of the hy-

droxyl proton between the hydroxyl group on the sucrose molecules and the wa-

ter molecules. However, there are a number of properties of the phantom which

may influence the DEXSY acquisition. These include a difference in relaxation

times between the sucrose and water, and an unknown hydroxyl proton chemical

exchange rate (Schilling did not have a ground truth value). The DEXSY se-

quence I am validating was written by my tertiary supervisor Dr Siow, and based

on Callaghan’s work [17]. Whilst the DOSY sequence was also written by Dr

Siow and based on work by Morris [66]. DOSY is a well established technique

for measuring the diffusivity of different chemicals, by measuring the diffusivity of

different spectral peaks. Both DOSY and DEXSY are covered in more detail in

chapter 3.
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5.2 Method

Here we present the method used to acquire diffusion-diffusion exchange plots

and diffusion spectra using DEXSY and DOSY, in order to validate the measure-

ment of diffusivity using DEXSY.

As a pilot study, a DEXSY sequence was trialled on 4 different concentrations

of 0, 0.5, 1, and 1.5 molar sucrose in 1 ml syringes placed in a 25 ml syringe.

However because DOSY is a purely spectroscopic technique the different con-

centrations of sucrose had to be scanned separately for our DOSY acquisitions.

Our DEXSY and DOSY data were acquired from 0, 0.5, 1.0, 1.5 and 2.0 molar

sucrose solutions in 15 ml centrifuge tubes scanned with the DEXSY and DOSY

sequences using the 26 mm RF coil (Rapid MR International) in the 9.4 T Varian

MRI scanner (Agilent Technologies) the phantom was scanned at room temper-

ature (21 ◦ C). A range of parameters were used and a number of different data

sets were acquired before we got an informative data set (the results of the pilot

study are in the appendix 10.1-10.5). As there were a number of problems with

the existing sequence, the DEXSY pulse sequence was re-written. The problems

included a 9 hour acquisition time, concerns regarding the sequences timing and

uncertainty about how the diffusion encoding would be affected by the combina-

tion of imaging gradients and crushers. These concerns motivated Dr Siow to

write a new DEXSY sequence which was slice selective, with no frequency or

phase encoding. The re-written slice selective DEXSY sequence was also used

to acquire the DEXSY data in chapter 4, the chapter covering diffusion MRI ex-

periments in biological phantoms.

In order to determine an appropriate maximum diffusion encoding gradient

strength. NMR spectra were acquired at a range of diffusion encoding strengths,

in a sample consisting of a 2 molar sucrose water solution. The smallest dif-

fusion encoding gradient strength in which the NMR spectrum acquired was in-

discernible from noise, was used as the maximum diffusion encoding gradient
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strength in the DEXSY acquisitions. The DEXSY data were acquired using the

following parameters ∆ = 23 ms, δ = 21 ms, tm = 100 ms, TE = 150 ms, the TR

= 3000 ms, G1 and G2 = 0-800 mT/m in 16 × 16 steps. The DOSY data were

acquired using ∆ = 23 ms, δ = 21 ms, TE = 200 ms, the TR = 3000 ms and

the diffusion gradients were set to vary between 0 and 800 mT/m in 256 even

increments. The data acquired using this combination of parameters produced

a data matrix dominated by noise, so the data were reacquired. The data were

reacquired using a log spacing of the diffusion encoding gradients for the DEXSY

sequence, and the maximum gradient strength used for each concentration of

sucrose were 800 mT/m, 465.6 mT/m, 309.36 mT/m, 231.28 mT/m and 231.28

mT/m for the 2.0, 1.5, 1.0, 0.5 and 0.0 molar sucrose. A range of maximum gra-

dient strengths were used as it was clear that the variation in physical properties

between the different concentrations was such that different parameters were re-

quired to capture the necessary information from each scan. The DOSY data

were reacquired without any change in the acquisition parameters. The water

peak in the NMR spectra was not present in the reacquired DEXSY data. The

reacquisition was repeated, however, due to time constraints only the 1.5 molar

sucrose water solution was scanned. The T2 of the water peak was measured

and it was found to be very short (188ms). As a consequence the timings were

adjusted in our optimised DEXSY sequence, in order to capture the water signal.

In our most recent reacquisition of the DEXSY data, a slice selective DEXSY

sequence was used and the optimised parameters used were as follows ∆ = 11

ms, δ = 9 ms, tm = 300 ms, TE = 52.5 ms, the TR = 3000 ms, G1 and G2 = 0-600

mT/m in 16 × 16 steps. The parameters for the DOSY acquisition were as follows

the TE = 50.0 ms, ∆ = 10 ms, δ = 8 ms and the diffusion gradients were set to

vary between 0 and 800 mT/m in 256 even increments.

2D inverse Laplace software was used to generate diffusion-diffusion exchange

plots from the raw data and the applied b-values [17, 100]. The spectroscopic

data was Fourier transformed before the inverse Laplace transform was applied.
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The contribution due to imaging gradients was incorporated into the calculation

of the b-values. The DOSY data was 1D inverse Laplace transformed and the

DEXSY data was 2D inverse Laplace transformed. This gave a diffusion spectrum

for the DOSY acquisition and a diffusion-diffusion exchange plot for the DEXSY

acquisition.

5.3 Results

In a diffusion-diffusion exchange plot generated using DEXSY data acquired

from a sucrose water phantom we expect to see two peaks on the identity line

(diagonal peaks), a lower and a higher diffusivity peak corresponding to diffusing

sucrose and water molecules. Any off-diagonal peaks are attributed to protons

that exchange between the hydroxyl group on the sucrose molecule and the wa-

ter. The identity line on a diffusion-diffusion exchange plot is where diffusion is

measured to be equivalent by both diffusion encoding gradients.

Our initial DEXSY experiment had very little signal with higher concentrations of

sucrose. We had even less signal with the lower concentrations of sucrose. Thus

we decided to reacquire the data using a different set of parameters. The b=0

DEXSY chemical shift spectrum acquired without diffusion encoding gradients is

equivalent to the NMR spectrum produced by a slice selective NMR experiment.

The b=0 DEXSY chemical shift spectrum was first acquired for 2 molar sucrose

during the first experiment which is shown in figure 5.1, and the spectrum ac-

quired during the second experiment is shown in figure 5.3. The peaks with a

chemical shift of 0 are due to water. The peak with a negative chemical shift

is due to the hydroxyl group on a sucrose molecule and the peaks with positive

chemical shifts are due to hydrogen bound to the carbon on a sucrose molecule.

The DEXSY diffusion-diffusion exchange plot for the two experiments is shown in

figures 5.2 and 5.4. It is obvious from the figures that one of the spectral peaks

has disappeared; the water peak, which was also not present in the lower con-

centration samples. The most likely explanation for this is that the sucrose had
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not fully dissolved the first time the sample was scanned even though the sample

was prepared hours before the data were acquired. However, the sucrose would

have fully dissolved by the time the data were reacquired. We made a multi echo

T2 measurement of the water in the 1.5 molar sucrose sample and found out that

it was very short, being only 188 ms. Whilst adding sucrose to water reduces the

T2, we were not aware of any easily available substance, which we could add to

the phantom in small quantities to increase the T2. (Data not presented in this

chapter is present in the appendix 10.5-10.73)

Figure 5.1: DEXSY MR Chemical Shift spectrum acquired from a 2.0 M sucrose
phantom on the 27/11/2015 using non-optimal DEXSY scan parameters. The MR
chemical shift spectrum shows that there is signal from the hydroxyl group on the
sucrose molecules, water molecules, and the hydrogen bound to carbon in the
sucrose molecules.
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Figure 5.2: DEXSY Diffusion-Diffusion exchange plot acquired from a 2.0 M su-
crose phantom on the 27/11/2015 using non-optimal DEXSY scan parameters.
This shows diffusion-diffusion peaks consistent with the presence of sucrose and
water molecules.

Figure 5.3: DEXSY MR Chemical Shift spectrum acquired from a 2.0 M sucrose
phantom on the 20/01/2016 using non-optimal DEXSY scan parameters. The MR
chemical shift spectrum shows that there is signal from the hydroxyl group on the
sucrose molecules and the hydrogen bound to carbon in the sucrose molecules.
However, the signal from the water molecules is missing.
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Figure 5.4: DEXSY Diffusion-Diffusion exchange plot acquired from a 2.0 M su-
crose phantom on the 20/01/2016 using non-optimal DEXSY scan parameters.
This shows diffusion-diffusion peaks consistent with the presence of sucrose and
water molecules.

Figure 5.5: DEXSY MR Chemical Shift spectrum acquired from a 0.5 M sucrose
phantom on the 24/10/2016 using optimised DEXSY scan parameters.The MR
chemical shift spectrum shows that there is signal from the water molecules.
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Figure 5.6: DEXSY Diffusion-Diffusion exchange plot acquired from a 0.5 M su-
crose phantom on the 24/10/2016 using optimised DEXSY scan parameters. This
shows diffusion-diffusion peaks consistent with the presence of sucrose and wa-
ter molecules.

Figure 5.7: DEXSY MR Chemical Shift spectrum acquired from a 1.0 M sucrose
phantom on the 24/10/2016 using optimised DEXSY scan parameters. The MR
chemical shift spectrum shows that there is signal from the hydroxyl group on the
sucrose molecules, water molecules, and the hydrogen bound to carbon in the
sucrose molecules.
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Figure 5.8: DEXSY Diffusion-Diffusion exchange plot acquired from a 1.0 M su-
crose phantom on the 24/10/2016 using optimised DEXSY scan parameters. This
shows diffusion-diffusion peaks consistent with the presence of sucrose and wa-
ter molecules.

Figure 5.9: DEXSY Diffusion-Diffusion exchange plot acquired from a 1.0 M su-
crose phantom on the 12/09/2016 using optimised DEXSY scan parameters. This
shows diffusion-diffusion peaks consistent with the presence of sucrose and wa-
ter molecules.
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Figure 5.10: DOSY Diffusion spectra acquired from a 1.0 M sucrose phantom.
This shows diffusion peaks consistent with the presence of sucrose and water
molecules.

Figure 5.11: DOSY MR Chemical Shift spectrum acquired from a 1.0 M sucrose
phantom. The MR chemical shift spectrum shows that there is signal from the
hydroxyl group on the sucrose molecules, water molecules, and the hydrogen
bound to carbon in the sucrose molecules.
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The most recent DEXSY data acquired with optimised scan parameters from

the 0.5 molar and 1 molar sucrose are displayed in figures 5.5-5.9, with a DOSY

plot for the 1 molar sucrose displayed in figure 5.10.

Figure 5.5 shows the chemical shift spectrum from the 0.5 molar sucrose.

There is a very prominent water peak and very subtle traces of what might be

other peaks. However, these can be ignored as it is clear from their relative in-

tensity that these would contribute little to the the MRI signal. Figure 5.6 shows a

diffusion-diffusion exchange plot from this acquisition. There is a high diffusivity

water peak and a low diffusivity water peak. The low diffusivity water peak is likely

to represent water bound to sucrose by inter-molecular bonds. This is likely to be

the case, as the peaks diffusivity is closer to the diffusivity of sucrose than the

free diffusivity of water and inter-molecular bonds can form between sucrose and

water molecules.

Figure 5.7 and 5.8 shows the chemical shift spectrum and diffusion-diffusion ex-

change plot from a DEXSY acquisition acquired from a 1.0 molar sucrose phan-

tom. In the chemical shift spectrum there is a series of peaks and from their

position we establish that they correspond to the hydroxyl group on the sucrose,

the water, and the hydrogen bonded to a carbon on the sucrose. There is also

some overlap for the hydroxyl group and water. The diffusion-diffusion exchange

plot clearly shows a sucrose peak positioned at approximately [-1,-1] and water

peak at approximately [0,0], and there is also a possible exchange peak posi-

tioned at approximately [0,-1]. Figure 5.9 show another DEXSY acquisition from

this sample, with the same two diffusion peaks present, but no signs of an ex-

change peak. Figure 5.10 show an earlier DOSY diffusion spectra from the same

sample. It shows a sucrose peak at approximately -1 and a water peak just be-

low 0. However, the intensity of the water peak is less than 10 % of the intensity

of the sucrose peak. If the DOSY diffusion spectra are superimposed on the

the line of identity for the DEXSY diffusion-diffusion exchange plots, then the two

main DOSY diffusion peaks will lie inside the two main DEXSY diffusion peaks
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demonstrating that the DOSY and DEXSY diffusion measurements are equiva-

lent. Figure 5.11 shows the chemical shift spectrum from the DOSY acquisition

shown on figure 5.10. In the chemical shift spectrum there is a series of peaks

corresponding to the hydroxyl group on the sucrose molecule, the water, and the

hydrogen bound to carbon on the sucrose molecule.

5.4 Discussion

Our experiments initially demonstrated a relatively weak water signal resulting

from a short T2 for water due to the high sucrose concentration. One can see

that there is a relatively weak water signal in our initial DEXSY acquisition due

to the short T2. The DEXSY spectrum is shown in figure 5.1. A weak water

signal makes it unlikely that there would be enough signal to measure exchange

from the protons being exchanged between the hydroxyl group on the sucrose

molecule and the water molecule. This is because only a small proportion of the

water molecules will be involved in diffusion exchange. As such, when there is a

weak water signal there will be an even weaker exchange signal. The chemical

exchange rate in the sucrose and water phantoms is unknown, and although

previous work suggests otherwise [88], it may be too fast to detect with the mixing

times used for these experiments.

There is correspondence between DOSY and DEXSY measurements, shown

in figure 5.8, 5.9 and 5.10. It seems clear that if the DOSY diffusion spectra

are superimposed on the the line of identity for the diffusion-diffusion exchange

plots, then the two main DOSY diffusion peaks will lie inside the two main DEXSY

diffusion peaks. The correspondence is not however, exact as the position of

the centre of the water peaks is slightly different. However, this may be due to

T2 effects. It seems likely that DOSY measurements have been subject to T2

effects, as the water peak has a very small magnitude. However, the DOSY data
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were acquired with a much higher resolution diffusion spectra and this is why the

DOSY peaks are narrower, which may also have resulted in a more precise and

accurate measurement of diffusivity.

A range of other chemical and physical phantoms were initially considered but

none of the phantoms would have simulated a two compartment exchange model.

Preliminary work was performed involving visking tubing, ethanol and acetone.

However the preliminary results revealed that their physical or chemical properties

were such that I could not design a suitable experiment to validate DEXSY with

these materials.

5.5 Conclusion

The results presented in this chapter suggest that we can rely on the diffusion

measurements made using DEXSY, as there was a reasonable correspondence

with the DOSY diffusion measurements, and the minor inconstancies can be ex-

plained by the higher resolution of the DOSY diffusion spectra and T2 effects

influencing the DOSY diffusion measurement. However we were unable to ob-

serve any clear diffusion exchange peaks, this may be due to T2 effects or it may

be due to the chemical exchange rate. Nevertheless, the results provide sufficient

validation of the accuracy of the diffusion measurements made with DEXSY. Thus

we can move onto in-silico and in-vitro validation even though there were no con-

clusive observations of exchange in our chemical phantoms.



Chapter 6

Simulations of diffusion exchange

6.1 Introduction

In the previous chapter we demonstrated the validity of diffusion measurements

made using DEXSY in chemical phantoms. In this chapter we use simulations to

evaluate DEXSY as a technique for measuring diffusion exchange across the

cell membrane in-silico. The work presented in this chapter demonstrates that

DEXSY can be used to measure diffusion exchange across the cell membrane

in an idealised situation. In the next chapter we present in-vitro validation of our

simulation results using yeast, which will provide sufficient evidence to justify an

in-vivo DEXSY experiment.

Measurements of diffusion exchange across the cell membrane can be used to

generate a quantitative indicator of cell membrane permeability. Measuring the

diffusion exchange between populations of water diffusing inside and outside the

cell is feasible, as previous work has shown that intracellular and extracellular

diffusion can be differentiated. This is because extracellular water forms a fast

moving compartment due to its hindered diffusion environment and intracellular

water forms a slower moving compartment because of its semi-restricted diffusion

environment created by the cell membrane [81]. In this chapter we simulate dif-

fusion exchange across the cell membrane in-silico. In addition to this we trialled

some fluid exchange model simulations to model the sucrose water phantom.
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DEXSY could be used to measure the diffusion exchange of water across the

cell membrane, and this can be used to generate a quantitative indicator of cell

membrane permeability. Diffusion exchange across the cell membrane refers to

the exchange of water between diffusing populations of water inside and outside

the cell. It covers diffusion across the lipid bilayer and water transport in and

out of the cell through aquaporins. In this chapter we use numerical simulations

to assess the feasibility of using DEXSY to measure diffusion exchange across

the cell membrane in nerve bundles and yeast suspensions. We compare the

results with corresponding simulations for FEXSY (Filter Exchange Spectroscopy)

[17, 6]. We use yeast as it is a well-established model for cellular biology studies

in eukaryotes [57] . We expect that we should be able to extend this work to

measure cell membrane permeability in tumour xenograft models in-vivo, subject

to the yeast simulations being validated in-vitro in yeast.

6.2 Method

In this chapter we simulate the measurement of diffusion exchange across the

cell membrane using DEXSY and FEXSY in two substrates; a nervous tissue

substrate modelling nerve bundles, and a yeast substrate modelling a yeast sus-

pension. A yeast substrate is used as yeast is a well established model for eukary-

otic cells such as cancer cells [49] and we could validate our simulations through

in-vitro measurement of diffusion exchange in yeast. In addition to this we simu-

lated the measurement of diffusion-diffusion exchange in a fluid exchange model

and this served as a model of the sucrose water phantom. In the next chapter

we present in-vitro measurements of diffusion exchange in yeast using DEXSY in

order to validate our simulations.

In order to simulate diffusion exchange across the cell membrane in a nervous

tissue substrate mimicking a nerve bundle a substrate used by Alexander et al.

[4, 40] to simulate diffusion MRI measurements of the corpus callosum was mod-

ified to allow walkers (simulated water spins) to cross the cell membrane. The
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probability of a walker crossing the cell membrane was adjusted to correspond to

a wide range of cell membrane permeabilities, including the range of permeabili-

ties measured in the squid axon [86]. A gamma distribution of cylinder radii was

used in order to mimic bundles of nerve fibers with a shape parameter of 5.3316,

a scale parameter of 1.0242 × 10−7 with 100 cylinders and a lattice size of 1.65

× 10−5 m. Simulations were also carried out using a yeast substrate mimicking

a yeast suspension. The yeast substrate was created by Dr Damien McHugh us-

ing the Lubachevsky-Stillinger packing algorithm which packs spheres in order to

achieve a high packing fraction by seeding spheres randomly and then expand-

ing them [62]. The substrate used in our simulations consisted of a total of 500

spheres packed together with a volume fraction of 0.62 and a diameter of 5µm.

The Monte Carlo simulations were performed using CAMINO with 100,000

walkers, a duration of 0.400 s, a diffusivity of 2.0 × 10−9 m2/s and 16,000 time

steps. The duration used is longer than the duration of the DEXSY sequence.

The value of diffusivity used for CAMINO simulations in nervous tissue has been

established in previous studies [4]. Simulations were performed using the yeast

substrate and the nervous tissue substrate. Simulations were carried out with

DEXSY and FEXSY in order to determine the relationship between diffusion ex-

change measurements and permeability using these techniques. 25 different

probabilities of a walker crossing the cell membrane were used ranging between p

= 0.0 and 0.1. There is a linear relationship between cell membrane permeability

and the probability of a walker crossing the cell membrane [69]. The probabilities

were not spaced evenly as we focused around p = 0.0003 which corresponds to

a physiological cell membrane permeability of 1.0µm/s, which is similar to that

measured in the squid axon [86].

We also carried out simulations in a fluid exchange model which simulates two

fluids of differing diffusivity with spins exchanging between the two fluids. The

Monte Carlo simulations were performed using CAMINO with 1,000 walkers, a

duration of 0.400 s, a diffusivity of 1.0 × 10−9 m2/s in the fast fluid, and 1.0 ×
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10−12 m2/s in the slow fluid. There were 610 walkers in the slow and 390 in the

fast fluid with 16,000 time steps. The exchange probabilities were the same for

both fluids and we used a range of probabilities between p = 0 and 0.00055. Only

DEXSY acquisitions were simulated for the fluid exchange substrate.

The parameters of the DEXSY acquisition simulated were δ = 15 ms, ∆ = 17

ms, tm = 100 ms, G1 and G2 = 0-900 mT/m in 16 × 16 steps. The parameters

used for our simulations were chosen before any in-vitro DEXSY data were ac-

quired. The range of diffusion encoding gradients were chosen to sample the

widest range of b-values possible. Whilst, the mixing time was chosen because

FEXSY data already published [50], suggested that 100 ms would be long enough

to capture diffusion exchange. A DOSY (Diffusion Ordered Spectroscopy) acqui-

sition was also simulated with the following parameters δ = 15 ms, ∆ = 17 ms and

encoding gradients set to vary between 0 - 900 mT/m in 256 even increments. A

FEXSY acquisition is simulated using the following parameters: δ = 15 ms, ∆ =

17 ms and a filter gradient strength of 68 mT/m and an encoding strength varying

between 0-68 mT/m in 9 increments with tm = 0, 10, 100, 200, 300 ms.

The results of the DEXSY and DOSY simulations were inverse Laplace trans-

formed to give diffusion-diffusion exchange plots and diffusion spectra using 2D

inverse Laplace software [17, 100]. The Diffusion Exchange Index (DEI) is de-

fined as the ratio of the sum of the volume of the exchange peaks to the sum of

the volume of the intracellular and extracellular diffusion peaks and can be used

as a quantitative indicator of cell membrane permeability. The FEXSY simula-

tions were processed following a method similar to that used by Nilsson et al [71].

This consisted of calculating the ADC for the data acquired for each mixing time

and then fitting a mono-exponential recovery curve to the series of ADC values

acquired at each mixing time in order to calculate the apparent exchange rate

(AXR).
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6.3 Results

In the diffusion-diffusion exchange plots from the simulations carried out in a ner-

vous tissue substrate and the yeast substrate, peaks on the identity line (diagonal

peaks), A and B, correspond to diffusing water molecules that remained within

the same diffusion environment during both sets of diffusion encoding gradients.

Off-diagonal peaks, C and D, correspond to diffusion exchange between environ-

ments. As intracellular and extracellular compartments have different diffusivities

[80], off-diagonal peaks were interpreted as evidence of exchange between intra-

cellular and extracellular compartments.

The results of our simulations of diffusion exchange in the nervous tissue sub-

strate are shown in figure 6.1. Figure 6.1:a) shows a diffusion-diffusion exchange

plot from a simulation carried out in the nervous tissue substrate with p = 0.0

where there is no exchange. There are two peaks lying on the line of identity.

Peak B is identified as an intracellular diffusion peak, due to its lower diffusiv-

ity attributed to the semi-restricted intracellular diffusion environment. Peak A is

identified as an extracellular peak due to its higher diffusivity attributed to the

hindered extracellular diffusion environment. Figure 6.1:b) shows a diffusion-

diffusion exchange plot from a simulation carried out in the same substrate at

p = 0.0003 and an additional two peaks, C and D, are observed and these are

identified as diffusion exchange peaks. Figure 6.1:c) shows a diffusion-diffusion

exchange plot from a simulation carried out in the same substrate at p = 0.001.

Due to the high permeability the peaks all merge into a single diffusion peak D.

Figure 6.1:d) shows a DOSY plot from the same simulation shown in figure 6.1:a).

It demonstrates that the measurement of diffusivity made with DOSY and DEXSY

is equivalent. Figure 6.1:e) shows DEI plotted against permeability in the range

in which diffusion exchange can be observed. This corresponds to a range of p

=0.0001 to 0.00055, corresponding to a permeability of 0.365 − 2.008µm/s. The

relationship is clearly monotonic, with a Spearman’s rank correlation coefficient

of 1 (P < 0.05). (The full set of results for the simulations using the nervous tissue
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substrate are shown in the appendix)

The results of our simulations of diffusion exchange in a yeast substrate are

shown in figure 6.2. Figure 6.2:a) shows a diffusion-diffusion exchange plot from

a simulation carried out in the yeast substrate with p =0.0 where there is no ex-

change. There are two peaks lying on the line of identity. Peak B is identified as

an intracellular diffusion peak, due to its lower diffusivity attributed to the semi-

restricted intracellular diffusion environment. Peak A is identified as an extracel-

lular peak due to its higher diffusivity attributed to the hindered extracellular diffu-

sion environment. Figure 6.2:b) shows a diffusion-diffusion exchange plot from a

simulation carried out in the same substrate at p = 0.0003 and an additional two

peaks, C and D, can be observed. These are identified as diffusion exchange

peaks. Figure 6.2:c) shows a diffusion-diffusion exchange plot from a simulation

carried out in the same substrate at p = 0.1. Due to the high permeability the

peaks all merge into a single diffusion peak D. Figure 6.2:d) show a DOSY plot

from the same simulation shown in figure 6.2:a). It demonstrates that the mea-

surement of diffusivity made with DOSY and DEXSY is equivalent. Figure 6.2:e)

shows DEI plotted against permeability in the range in which diffusion exchange

can be observed which corresponds to a range of p = 0.0001 to 0.00055. The re-

lationship is clearly monotonic, with a Spearman’s rank correlation coefficient of

1 (P < 0.05). (The full set of results for the simulations using the yeast substrate

are shown in the appendix)

Figure 6.3: a) shows AXR plotted against permeability in the range p = 0.0001

to 0.00055 for the nervous tissue substrate. The relationship is also monotonic.

However, it seems to break down at between p=0.0004 and 0.0005. Figure 6.3: b)

Shows AXR plotted against permeability within the range of p = 0.0001 to 0.00055

for the yeast substrate. The relationship is clearly monotonic.
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Figure 6.4:a) shows a diffusion-diffusion exchange plot for the fluid exchange

model with no exchange p = 0.0. Figure 6.4:b) shows a diffusion-diffusion ex-

change plot for the fluid model for an exchange probability of p = 0.0003. Fig-

ure 6.4:c) shows a diffusion-diffusion exchange plot for the fluid model for an

exchange probability of p = 0.00055. Figure 6.4:d) shows DEI plotted against ex-

change probability in the range p = 0.0001 to 0.00055. (The full set of results for

the simulations using the fluid exchange model are shown in the appendix)

In diffusion-diffusion exchange plots the angle of off diagonal peaks relative to

the diagonal peaks can be affected by diffusion exchange. This is due to the

nature of the experiment and the inverse Laplace transform. As a result, diffusion

exchange peaks often appear to be offset slightly [17]. This is can be seen in the

data presented in figure 6.1, 6.2 and 6.4.

Figure 6.1: Results of diffusion exchange simulations carried out in the nervous
tissue substrate at different permeabilities a) A diffusion-diffusion exchange plot
for p = 0.0 b) A diffusion-diffusion exchange plot for p = 0.0003 c) A diffusion-
diffusion exchange plot for p = 0.001. Peaks A and B are extracellular and in-
tracellular diffusion peaks whilst peaks C and D are diffusion exchange peaks.
d) Displays the DOSY diffusion spectra for p = 0.0 e) Shows DEI plotted against
permeability in the range of p = 0.0001 to 0.00055.
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Figure 6.2: Results of diffusion exchange simulations carried out in the yeast
substrate at different permeabilities a) A diffusion-diffusion exchange plot for p =
0.0 b) A diffusion-diffusion exchange plot for p = 0.0003 c) A diffusion-diffusion
exchange plot for p = 0.1. Peaks A and B are extracellular and intracellular dif-
fusion peaks whilst peaks C and D are diffusion exchange peaks d) Displays the
DOSY diffusion spectra for p = 0.0 e) Shows DEI plotted against permeability in
the range of p = 0.0001 to 0.00055.
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Figure 6.3: a) AXR plotted against permeability in the range of p = 0.0001 to
0.00055 for the nervous substrate. b) Shows AXR plotted against permeability in
the range of p = 0.0001 to 0.00055 for the yeast substrate.

Figure 6.4: Results of diffusion exchange simulations carried out in a two com-
partment fluid exchange model at different exchange probabilities a) A diffusion-
diffusion exchange plot for p = 0.0 b) A diffusion-diffusion exchange plot for p =
0.0003 c) A diffusion-diffusion exchange plot for p = 0.00055 d) Shows DEI plotted
against probability for the fluid exchange model.



118 CHAPTER 6. SIMULATIONS OF DIFFUSION EXCHANGE

6.4 Discussion

In this chapter we present numerical simulations that demonstrate the feasibility of

measuring diffusion exchange across the cell membrane using DEXSY (Diffusion

Exchange spectroscopy). The simulations demonstrate that diffusion exchange

can be observed with DEXSY, for a wide range of permeabilities in both a nervous

tissue substrate and a yeast substrate. These simulations suggest that we can

observe diffusion exchange over a range cell membrane permeabilities that can

be found in biological tissue (1.0µm/s− 1.4µm/s), using DEXSY. The simulations

demonstrate a monotonic relationship between cell membrane permeability (the

probability of a walker crossing the cell membrane) and DEI, in both the nervous

tissue substrate and the yeast substrate, with a Spearman’s rank coefficient of

1. Whereas the FEXSY simulations demonstrated a clear monotonic correlation

between AXR and permeability in the yeast substrate. However, the correlation

between AXR and permeability demonstrated in the FEXSY simulations in the

nervous tissue substrate was less clear as the relationship seemed to break down

between p=0.0004 and 0.00055. This suggests that DEI can be used as a quan-

titative indicator of cell membrane permeability and that it may be more robust

than AXR.

6.5 Conclusion

Our findings suggest that DEXSY may be used to make in-vivo measurements of

diffusion exchange and that DEI shows potential as a quantitative indicator of cell

membrane permeability in a range of pathologies including neurological disorders

and cancer. However, in-vitro yeast measurements of diffusion exchange using

DEXSY are required to validate our simulation results before we can move onto

in-vivo work. The next chapter will present work demonstrating in-vitro measure-

ment of diffusion exchange in yeast, validating the simulation results presented

here.



Chapter 7

Diffusion exchange measurements

in yeast

7.1 Background

In the previous chapters we demonstrated the accuracy of diffusion measure-

ments made in chemical phantoms using DEXSY and we used simulations to

evaluate DEXSY in-silico, demonstrating that DEXSY can measure diffusion ex-

change across the cell membrane in an idealised situation. The simulations also

demonstrate that DEI can be used as a quantitative indicator of cell membrane

permeability in-silico. As mentioned in previous chapters, cell membrane perme-

ability varies in both healthy and diseased tissue, and has particular significance

in oncology and neurology [50]. In this chapter we investigate the ability of DEXSY

to measure diffusion exchange across the cell membrane in-vitro in a yeast sus-

pension. We have used yeast as it is a well-defined and stable model for studying

eukaryotic cells in-vitro [57]. In this chapter we also carry out in-vitro validation

of the yeast substrate simulations. We expect that we should be able to extend

this work to apply DEI as quantitative indicator of cell membrane permeability in

tumour xenograft models in-vivo, following the yeast simulations being validated

in-vitro in yeast.
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7.2 Method

Experimental data were acquired to validate the in-silico DEXSY diffusion ex-

change measurements made in the yeast substrate simulations. Our experimen-

tal data were acquired using a 20 cm horizontal bore 9.4 T Varian MRI scanner

(Agilent Technologies) with a 26 mm RF coil (Rapid MR International).

The DEXSY data acquired from biological phantoms presented in chapter 4,

demonstrated that the signal acquired at gradient strengths greater than 720

mT/m is dominated by noise. The data presented in chapter 4, also suggests

that a mixing time of 100 ms is too short to capture diffusion-exchange in-vitro.

As a consequence the acquisition parameters used for the simulations have been

adapted for in-vitro yeast experiments using the knowledge gained from our ear-

lier experiments.

The first sample consisted of a 15 ml centrifuge tube containing a mixture of 22

g l’hirondelle cake yeast in 10 ml of PBS (kept at approximately 22◦ C). The sam-

ple was agitated to ensure an even suspension at the start of the experiment. We

used the same slice-selective DEXSY sequence as used in previous chapters.

The following parameters were used: number of averages = 4, δ = 15 ms, ∆ = 17

ms, tm = 200 ms, TR = 3000 ms, G1 and G2 = 0-720 mT/m in 16 × 16 steps. The

measurement was repeated three times, with a duration of 102 minutes for each

acquisition.

The second and third samples consisting of 15 ml centrifuge tubes full of a sus-

pension of l’hirondelle cake yeast in PBS, were scanned using different DEXSY

scan parameters sensitive to different diffusion lengths. Data were acquired from

sample 2 which was made from a suspension of 18g of yeast suspended in 10

ml of PBS, with DEXSY scan parameters of δ = 15 ms, ∆ = 17 ms, tm = 200 ms,

G1 and G2 = 0-640 mT/m in 16 × 16 steps. Data were also acquired separately

from sample 3, a suspension consisting of 22 g of yeast suspended in 10 ml PBS,
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with DEXSY scan parameters of δ = 9 ms, ∆ = 14 ms, tm = 200 ms, G1 and G2 =

0-640 mT/m in 16 × 16 steps.

2D inverse Laplace software was used to generate diffusion-diffusion exchange

plots from the raw data and the applied b-values [17, 100]. The contribution due

to imaging gradients was incorporated into the calculation of the b-values. The

Diffusion Exchange Index (DEI) is defined as the ratio of the sum of the volume of

the exchange peaks to the sum of the volume of the intracellular and extracellular

diffusion peaks and can be used as a quantitative indicator of cell membrane

permeability.

7.3 Results

Diffusion-diffusion exchange plots are shown in figure 7.1a). Peaks on the

identity line (diagonal peaks), A and B, correspond to diffusing water molecules

that remained within the same diffusion environment during both sets of diffusion

encoding gradients. Off-diagonal peaks, C and D, correspond to diffusion ex-

change between environments. As intracellular and extracellular compartments

have different diffusivities [80], off-diagonal peaks were interpreted as evidence

of exchange between intracellular and extracellular compartments.

Diagonal peaks corresponding to water molecules remaining in the intracellular

or extracellular compartments were assigned based on their measured diffusivity

(intracellular, (0.032 ± 0.006) × 10−9 m2/s labelled as B; extracellular, (1.0 ± 3.0)

× 10−9 m2/s labelled as A). Both diagonal peaks were evident at all three time

points (t = 0, 102 and 204 minutes). Interestingly, intracellular diffusion peaks

appeared to be split, which could correspond to vacuole and cytoplasm compart-

ments [49]. A peak is also evident in the lower left corner of the diffusion-diffusion

exchange plot, which could correspond to a dot compartment representing the

nucleus [80] or it could be an artifact of the inverse Laplace transform.
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Two exchange (off-diagonal) peaks, labelled as C and D in figure 7.1a) were

observed at the first two time points, but only one (D) was evident at t = 204

minutes. Peak C corresponds to exchange from extracellular to intracellular com-

partments; peak D corresponds to exchange from intracellular to extracellular

compartments. Figure 7.1b) shows measurements of peak areas, which reveal

changes with time. Peak C rapidly decreases with time, whilst D remains rela-

tively stable; peak B, remains relatively constant whereas A decreases gradually

with time. The apparent position of peak C moves with time, this is probably due

to a change in the rate of diffusion exchange between the two compartments over

time, affecting the inverse Laplace transform [17].

The changes in the diffusion-diffusion exchange plots observed over time in

figure 7.1a) were reflected in DEI measurements, which were DEI = 0.0461 ±

0.0006, 0.0371 ± 0.0007 and 0.0303 ± 0.00006 at t = 0, 102 and 204 minutes,

respectively, indicating a decrease in the diffusion exchange rate with time (see

figure 7.1c). The cause of these changes is unclear but it could be due to the

degradation of the sample.
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Figure 7.1: a) diffusion-diffusion exchange plots for the yeast suspension, at 0,
102 and 204 minutes into the experiment. Colour corresponds to the magnitude
of the data (arb. units), which is scaled uniformly across the spectra. b) A graph
showing the intensity of each peak assigned in (a) with time. c) A graph showing
DEI (a measure of diffusion exchange) in the yeast suspension with time.
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Figure 7.2: data acquired from two samples consisting of a yeast suspension
a) diffusion-diffusion exchange plot from sample 2 at time 0 b) diffusion-diffusion
exchange plot from sample 2 at time 102 minutes, c) diffusion-diffusion exchange
plot from sample 3 at time, 0 d) diffusion-diffusion exchange plot from sample 3
at time 102 minutes.
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Figure 7.2: presents data acquired from sample 2 and 3 which both contain

a yeast suspension. Figure 7.2:a) and b) show DEXSY scans from the first and

second acquisition from sample 2. Diffusion exchange peaks, intracellular and ex-

tracellular diffusion peaks labelled C, D, B and A are present in both scans. How-

ever, the relative size of the peaks changed between the first and second scan.

We measured the DEI = 0.0449 for the first acquisition and the DEI = 0.0445 for

the second acquisition. (No standard error is recorded for these measurements

from sample 2 and 3, as there was no variation in the DEI measurement when re-

peated for each diffusion-diffusion exchange plot and there was no obvious other

way of estimating the standard error). Figures 7.2:c) and d) show DEXSY scans

from the first and second acquisition from sample 3. Diffusion exchange peaks,

intracellular and extracellular diffusion peaks are present, labelled C, D, B and A

in both acquisitions. However, the size of the peaks changed between the first

and second scan. For the first scan the DEI = 0.0385 and for the second scan

the DEI = 0.0385. (No standard error is recorded for these measurements from

sample 2 and 3, as there was no variation in the DEI measurement when re-

peated for each diffusion-diffusion exchange plot and there was no obvious other

way of estimating the standard error). We can see that the values of DEI for the

first and second scans for both samples are relatively consistent, suggesting good

repeatability. (The data produced from all of my in-vitro DEXSY scans of yeast

suspensions are in the appendix, the three samples presented in this chapter are

not the only samples we scanned).

7.4 Discussion

The work presented in this chapter demonstrates that the diffusion exchange

of water between intracellular and extracellular compartments in yeast can be

observed in-vitro using DEXSY. Interestingly, our measurements of DEI in the first

sample indicated that the diffusion exchange rate decreased with time during the

experiment, presumably due to degradation of the sample resulting from either
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physiological changes in the yeast, sedimentation, or an as-yet undefined source

of variation.

The results demonstrate that we can observe diffusion exchange in-vitro in a

yeast suspension using DEXSY with two different sets of DEXSY scan param-

eters which are sensitive to two different diffusion lengths. The DEI measured

in the yeast suspensions in sample 2 and 3 varies between 0.0385-0.045 which

is within the range of DEI measured in-silico in a yeast substrate with cell mem-

brane permeabilities corresponding to those found in biological tissue. This can

be taken as validation of the results of our simulations. However, further work

could be done to demonstrate if the relationship between DEI and permeability

found in-silico is also found in-vitro. This could be achieved by conducting an ex-

periment in which the yeast’s permeability is altered with detergent before DEXSY

data is acquired.

I attempted to carry out just such an investigation to determine the relation-

ship between diffusion-diffusion exchange measurements made using DEXSY

and permeability in-vitro. I scanned a series of yeast suspensions treated with

varying strengths of detergent in order to alter the yeasts permeability. The re-

sults of this experiment were, however, inconclusive and as such I excluded these

results from the main text. (The results of the yeast permeability experiment are

however found in the appendix 10.3.3)

In-vivo validation is needed to test the feasibility of the technique in animal

tissue. Future studies using DEXSY to measure cell membrane permeability in

tumour xenograft models and the brain may demonstrate that DEI can be used as

a quantitative indicator of cell membrane permeability in-vivo. If the technique can

be implemented in-vivo it should be superior to FEXSY as it is better able to cope

with the complexity of animal tissue as it does not use a physiological model,

whereas FEXSY is limited by the assumptions underlying its two compartment

exchange model. This is supported by the simulations presented here.
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7.5 Conclusion

Our findings suggest that DEXSY may be used to make in-vivo measurements of

diffusion exchange. When the in-vitro data presented in this chapter is combined

with our in-silico results they suggest that DEI could be used as a quantitative

indicator of cell membrane permeability in a range of pathologies including neu-

rological disorders and cancer.
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Chapter 8

Diffusion exchange measurements

in-vivo

8.1 Background

In the previous chapters we have developed DEXSY as a technique for measur-

ing diffusion exchange across the cell membrane. However, in order for DEXSY to

become established as a technique for measuring diffusion exchange across the

cell membrane in-vivo, it needs to be evaluated in-vivo. In this chapter we present

tumour xenograft model experiments in which we attempt to evaluate DEXSY as

a technique for measuring diffusion exchange across the cell membrane in-vivo.

8.2 Method

All in-vivo experiments were performed in accordance with the UK Home Of-

fice Animals Scientific Procedures Act, 1986 and United Kingdom Coordinating

Committee on Cancer Research (UKCCCR) guidelines.

In an initial study 5 nude mice with compromised immune systems (CD-1 mice

provided by Charles River) were inoculated with 1 million SW1222 cancer cells

in-order to create a subcutaneous xenograft tumour model. However the tumours

failed to grow.
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One of the mice was scanned using an axial slice through the mouse skull

using a slice-selective DEXSY sequence. The following parameters were used:

number of averages n = 4, δ = 15 ms, ∆ = 17 ms, tm = 200 ms, TR = 3000 ms, G1

and G2 = 0-720 mT/m in 16 × 16 steps. The 9.4 T Varian MRI scanner (Agilent

Technologies) with the 39 mm RF coil (Rapid MR International) was used and

the mouse was scanned under anaesthetic with a mixture consisting of 1-2.5 %

Isoflurane in 1 L/min of oxygen. Unfortunately, we could only scan one mouse

as the pre-amplifier for the scanner malfunctioned and the mice had to be culled

before the scanner became available again.

In the second study 5 nude mice with compromised immune systems (CD-1

mice provided by Charles River) were inoculated with 3 million SW1222 cancer

cells suspended in PBS and injected into the left flank of the mice in-order to

create a subcutaneous tumour xenograft model. In the second study the inocu-

lations were successful and table 8.1, gives the dimensions of the tumours when

the mice were scanned. The mice were scanned using a slice-selective DEXSY

sequence. The following parameters were used: number of averages n= 4, δ =

15 ms, ∆ = 17 ms, tm = 200 ms, TR = 3000 ms, G1 and G2 = 0-640 mT/m in

16 × 16 steps. The 9.4 T Varian MRI scanner (Agilent Technologies) with the 39

mm RF coil (Rapid MR International) was used and the mice were scanned under

anaesthetic with a mixture consisting of 1-2.5 % Isoflurane in 1 L/min of oxygen.

Each DEXSY scan was acquired as a coronal slice through the tumour, the slice

was slightly thicker than the height of the tumour. The scans were planned using

a series of T2 weighted axial images. It was clear from these that the slices used

for the DEXSY acquisitions intersected with other parts of the animals anatomy in

all of the mice, apart from mouse 5 in which the slice captured the whole tumour

and little in the way of other tissue. Mouse 5, 3 and 1 were rescanned with a

slice profile capturing the entire tumour and little in the way of other tissue. We

managed to position the slices with greater ease in the rescans as the tumours

had grown significantly and we were more comfortable with the set up.
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Mouse Weight Tumour W Tumour L Tumour H Tumour volume
1 24.8 g 3.5 mm 5.7 mm 1.3 mm 108.6 mm3

2 26.6 g 4.7 mm 3.2 mm 1.1 mm 69.3 mm3

3 23.3 g 3.6 mm 3.7 mm 1.0 mm 55.8 mm3

4 24.0 g 3.8 mm 5.0 mm 3.6 mm 386.5 mm3

5 26.4 g 5.3 mm 5.3 mm 2.7 mm 317.7 mm3

5 rescan 26.5 g 7.1 mm 6.0 mm 3.0 mm 530.9 mm3

3 rescan 23.7 g 6.0 mm 9.0 mm 4.9 mm 1129.9 mm3

1 rescan 26.1 g 5.7 mm 8.4 mm 4.3 mm 849.9 mm3

Table 8.1: List of mice used for our in-vivo DEXSY scan of subcutaneous tu-
mours, they are listed in the order they were scanned alongside their weight and
the tumour size and volume at the time they were scanned as measured using
callipers.

2D inverse Laplace transform software was used to generate diffusion-diffusion

exchange plots from the raw data and the applied b-values [17, 100]. The con-

tribution due to imaging gradients was incorporated into the calculation of the

b-values.

8.3 Results

Figure 8.1 shows a diffusion-diffusion exchange plot from the axial slice ac-

quired in the mouse brain in the initial study. There is a peak at approximately

[-1.5,-1.5] which may correspond to an intracellular peak whilst at approximately

[0,0] we have what may correspond to an extracellular peak, and off diagonal to

these, is a possible diffusion exchange peak. The peaks between [0.5,1] and the

top corner are possibly due to the perfusion of blood. However this is taken over

a slice including the whole mouse head and not just the brain. As such no firm

conclusions can be drawn from this plot.(A structural image of this slice through

the mouse brain can be seen in the appendix)

Figures 8.2-8.6 show diffusion-diffusion exchange plots for DEXSY scans ac-

quired from a coronal slice through a subcutaneous tumour, for the 5 mice used

in the second study. The slices include the entire tumour in all 5 mice, however,

there is also a significant amount of healthy tissue in the slices taken through the
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Figure 8.1: In-vivo diffusion exchange plot from a mouse brain

tumours in the first scan acquired from mouse 1-4. The first scan acquired from

mouse 5 is the first case in which the slice captures the whole tumour and little in

the way of other tissue. Figures 8.7-8.9 show diffusion-diffusion exchange plots

for DEXSY rescans of mouse 5, 3 and 1 acquired using a slice which included the

whole tumour and little in the way of other tissue. Previous studies including our

own in-vitro work with DEXSY and published work with VERDICT [81], provide

information on what diffusivity to expect for different compartments, the data pre-

sented in published work with VERDICT suggests that intracellular, extracellular

and perfusion peaks are positioned at approximately [-1,-1], [-0.4,-0.4] and [1,1]

for tumours, whilst the in-vitro work suggest that intracellular and extracellular

peaks are positioned at approximately [-1.5,-1.5] and [0,0] for yeast suspensions.

In the diffusion-diffusion exchange plots generated in this study a peak positioned

near to [-1.5,-1.5] - [-1.0,-1.0] is considered a likely intracellular peak, a peak po-

sitioned near to [-0.4,-0.4] - [0.0,0.0] is considered a likely extracellular peak, and

a peak positioned near to [1,1] is considered to be a likely perfusion peak. Peaks

off-diagonal from the intracellular and extracellular peaks are likely diffusion ex-



8.3. RESULTS 133

change peaks. Figures 8.2-8.9 show diffusion-diffusion exchange plots from the

five mice. Figure 8.10 shows the four diffusion-diffusion exchange plots produced

from slices consisting of tumour and little in the way of other tissue with all of the

peaks labelled. Each of the figures are considered individually.

Figure 8.2 shows the diffusion exchange plot from mouse 1. A likely extracellu-

lar peak is positioned at approximately [0,0], whilst the nature of the other peaks

is unclear.

Figure 8.3 shows the diffusion-diffusion exchange plot from mouse 2. Likely

and possible intracellular peaks are positioned at approximately [-1.5,-1] and [-2,-

2]. Possible extracellular peaks are positioned at approximately [-1,0] and [0,-1].

These are possible extracellular peaks because an extracellular peak would be

expected to lie between these two peaks.

Figure 8.4 shows the diffusion-diffusion exchange plot from mouse 3. Likely

intracellular and perfusion peaks are positioned at approximately [-1.5,-1.5] and

[1,0.5].

Figure 8.5 shows the diffusion-diffusion exchange plot from mouse 4. Likely

intracellular, extracellular and perfusion peaks are positioned at approximately

[-1.0,-1.0], [0.0,0.0] and [0.5,1.0].

Figure 8.6 shows the diffusion-diffusion exchange plot from mouse 5. Likely

intracellular, extracellular and possible perfusion peaks are positioned at approx-

imately [-1.5,-1.5], [-0.5,-0.25] and [0.5,0]. Likely diffusion exchange peaks are

positioned at approximately [-0.5,-1.5] and [-1.5,0.25]. This is the first slice in

which we managed to capture a whole tumour and little in the way of healthy

tissue, and it is also the first plot which captures likely diffusion exchange, intra-

cellular, extracellular and a possible perfusion peaks.
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Figure 8.7 shows the diffusion-diffusion exchange plot from the rescan of mouse

5. Likely intracellular, extracellular and possible perfusion peaks are positioned

at approximately [-2.0,-1.5] , [0.5, -0.5] and [1.0,0.5]. Likely diffusion exchange

peaks are positioned at approximately [1,-2] and [-1.5,0.5].

Figure 8.8 shows the diffusion-diffusion exchange plot from the rescan of mouse

3. Likely intracellular, extracellular and possible perfusion peaks are positioned

at approximately [-2.0,-1.5], [-0.5, -0.5] and [0.5,1.5]. A likely diffusion exchange

peak is positioned at approximately [-0.5,-1.5].

Figure 8.9 shows the diffusion-diffusion exchange plot from the rescan of mouse

1. Likely intracellular, extracellular and possible perfusion peaks are positioned

at approximately [-1.5,-1.5], [0.5, 0.5] and [1.0,1.5]. Likely and possible diffusion

exchange peaks are positioned at approximately [-1.0,0.5] and [0.5,-3.0]. (The

structural images used to plan the slices are in the appendix)

The diffusion-diffusion exchange plots shown in figures 8.6-8.9 are displayed

in figure 8.10, with likely diffusion exchange peaks labelled as A and B, whereas

likely intracellular and extracellular peaks labelled C and D. Likely or possible

perfusion peaks are labelled E. This is to enable easier identification of the peaks

by the reader.
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Figure 8.2: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 1, scanned 15/10/2018

Figure 8.3: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 2, scanned 15/10/2018
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Figure 8.4: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 3, scanned 16/10/2018

Figure 8.5: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 4, scanned 19/10/2018
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Figure 8.6: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 5, scanned 19/10/2018

Figure 8.7: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 5, scanned 29/10/2018
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Figure 8.8: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 3, scanned 29/10/2018

Figure 8.9: Diffusion-Diffusion exchange plot for a DEXSY scan acquired from a
coronal slice through a subcutaneous tumour in mouse 1, scanned 29/10/2018



8.3. RESULTS 139

Figure 8.10: a) shows the diffusion-diffusion exchange plot shown in figure 8.6,
b) shows the diffusion-diffusion exchange plot shown in figure 8.7, c) shows
the diffusion-diffusion exchange plot shown in figure 8.8, d) shows the diffusion-
diffusion exchange plot shown in figure 8.9. Likely diffusion exchange peaks are
labelled A and B, whereas likely intracellular and extracellular peaks labelled C
and D. Likely or possible perfusion peaks are labelled E.
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8.4 Discussion

The results of our second study demonstrate clearly that our DEXSY scans

can capture information about the micro-structure of our tumours, with what look

like intracellular, extracellular and perfusion peaks present. However, only four

of the eight scans shown in figure 8.6-8.9 show likely intracellular, extracellular

diffusion-exchange and perfusion peaks. However, these are the only cases in

which the DEXSY scan was acquired using a slice capturing the whole tumour

and little in the way of other tissue. However these limited results suggest the

technique is highly sensitive to tissue microstructure and capable of detecting

diffusion exchange in-vivo.

The DEXSY scans acquired using slices containing other tissue suffer from

partial volume effects. Whilst, the DEXSY data acquired from slices capturing

the whole tumour and little in the way of other tissue produce results which can

not be replicated reliably when the tumour is rescanned. This can be attributed

to variations in the experimental set up and the tissue micro-structure. When

the tumour is rescanned the mouse is not in exactly the same position as it was

in the first scan, and as a consequence the slice is not orientated or positioned

consistently. The tumours have also grown in-between scan and rescan, which

would also be accompanied by changes in the tissue micro-structure.

The second study suffered from a major limitation which was that we were only

able to acquire data from a whole tumour with little in the way of other tissue in

half of the scans. This is in part due to the size and location of four of the tumours,

and in part due to the use of a DEXSY sequence which was only slice selective.

In order to demonstrate conclusively that DEXSY can be used to consistently

capture intracellular, extracellular, diffusion-exchange and perfusion peaks, we

would need to repeat the xenograft experiment with a series of acquisitions in

which the data is only acquired from a tumour. This can be done by modifying the

set up so that the positioning of the tumour is such that it stands above all other
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tissue. However, this may be difficult to implement consistently, due to the nature

of the tumours and the variation in their position, size and shape when they grow.

Alternatively it could be done by adding spatial encoding and acquiring a single

voxel including the tumour with as little neighbouring tissue as possible. This

should be feasible, as the initial DEXSY sequence presented in 5.2 had spatial

encoding. The slice selective sequence has been used throughout the rest of our

work as there were some problems with the initial sequence which incorporated

imaging gradients. This led to the use of a slice selective sequence which was

easier to implement, the slice selective sequence used to acquire the data in this

chapter also incorporates eight step phase cycling (although we only use four

step phase cycling in this chapter) which was not in the original sequence.

8.5 Conclusion

This first application of DEXSY in-vivo suggests, that DEXSY is highly sensitive

to tissue microstructure and capable of detecting diffusion exchange, in subcuta-

neous tumour xenograft models.



142 CHAPTER 8. DIFFUSION EXCHANGE MEASUREMENTS IN-VIVO



Chapter 9

Conclusion

The purpose of the work presented in this thesis was to develop DEXSY as a

technique for making comprehensive measurements of diffusion exchange across

the cell membrane and to develop a quantitative indicator of cell membrane per-

meability derived from DEXSY measurements. A quantitative indicator of cell

membrane permeability could enable earlier diagnosis, assist in monitoring treat-

ment response, and enable the characterisation of cells in malignant disease.

In this thesis biological phantoms, physical phantoms, simulations, in-vitro yeast

suspensions and in-vivo subcutaneous tumour xenograft models have been used

to establish if DEXSY can be used to make comprehensive measurements of dif-

fusion exchange across the cell membrane, and if this can be used to produce

a quantitative indicator of cell membrane permeability. The work presented here

suggests that DEI, which is derived from DEXSY measurements, is a quantita-

tive indicator of cell membrane permeability. As such DEI is a potential imaging

biomarker in cancer.

Although I have managed to successfully produce biological phantoms with

the required intracellular volume fraction, the protocol requires a large amount of

time to produce a biological phantom and we have been unable to assess the

viability of the biological phantoms due to the centre for advanced biomedical

imaging losing some of its bioluminescence imaging capabilities. In addition to

this there appeared to be some inconsistency in the experimental set-up which

143
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may have caused variability in the results. This combined with a number of other

factors led to an alternative approach to validating DEXSY, which consisted of

chemical phantoms, simulations, and in-vitro work with yeast suspensions before

we moved onto in-vivo DEXSY scans.

The chemical phantom results presented in this thesis suggest that we can rely

on the diffusion measurements made using DEXSY, as there was a reasonable

correspondence with the DOSY diffusion measurements, and the minor incon-

stancies can be explained by T2 effects influencing the DOSY diffusion measure-

ment. However, the chemical phantom results failed to demonstrate the measure-

ment of exchange. There is no obvious alternative to the phantoms used in our

experiments.

The numerical simulations and experimental data presented in this thesis demon-

strate the feasibility of measuring diffusion exchange across the cell membrane

using DEXSY. The simulations demonstrate that diffusion exchange can be ob-

served with DEXSY, for a wide range of permeabilities, in both a nervous tissue

substrate and a yeast substrate. These simulations suggest we can observe dif-

fusion exchange over a range of physiologically meaningful cell membrane per-

meabilities ( 1.0µm/s − 1.4µm/s) using DEXSY. The simulations demonstrate a

monotonic relationship between cell membrane permeability (the probability of

a walker crossing the cell membrane) and DEI, in both the nervous tissue sub-

strate and the yeast substrate, with a Spearman’s rank coefficient of 1. Whereas

the FEXSY simulations do not show the same clear relationship between AXR

and permeability in both the yeast substrate and the nervous tissue substrate.

This suggests that DEI can be used as a quantitative indicator of cell membrane

permeability and that it may be more robust than AXR.

The simulations fail to take account of the relaxation times of the tissue be-

ing modelled. Repeating our simulations using a model that incorporates the

differences in relaxation time between different tissues and compartments could
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improve the accuracy of the simulations.

The data presented in this thesis demonstrate that we can observe diffusion ex-

change in-vitro in a yeast suspension using DEXSY with different sets of DEXSY

scan parameters, which are sensitive to different diffusion lengths. The DEI mea-

sured in the yeast suspensions using DEXSY falls within the range of DEI mea-

sured in-silico in a yeast substrate with cell membrane permeabilities correspond-

ing to those found in biological tissue. This can be taken as validation of the re-

sults of our simulations. There was some variability in our in-vitro yeast data due

to degradation of the samples resulting from either physiological changes in the

yeast, sedimentation, or an as-yet undefined source of variation.

Further work could be done to determine if the relationship between DEI and

permeability found in-silico is also found in-vitro. This could be achieved by con-

ducting an experiment in which the yeast’s permeability is altered with detergent

before DEXSY data is acquired. The DEI calculated from DEXSY data acquired

from yeast samples treated with different concentrations of detergent, is expected

to have a monotonic correlation with the strength of detergent used to treat the

yeast. Such a result would validate the in-silico findings and support the use of

DEI as a quantitative indicator of cell membrane permeability.

In-vivo validation is needed to test the feasibility of the technique in animal

tissue. Future studies using DEXSY to measure cell membrane permeability in

tumor xenograft models and the brain may demonstrate that DEI can be used as

a quantitative indicator of cell membrane permeability in-vivo. If the technique

can be implemented in-vivo effectively, it should be superior to FEXSY as it is

better able to cope with the complexity of animal tissue because it uses a model

free approach whereas FEXSY is limited by the assumptions underlying its two

compartment exchange model. This is supported by the simulations presented

here.
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We attempted to use DEXSY to measure cell membrane permeability in tumour

xenograft models. However, only a limited data set was acquired. The in-vivo re-

sults presented here suggest that DEXSY is highly sensitive to tissue microstruc-

ture and capable of detecting diffusion exchange in-vivo in subcutaneous tumour

xenograft models. However, further work needs to be conducted to confirm this.

Ideally using a spatially localised DEXSY acquisition covering the whole tumour

in a single voxel.

The DEXSY scans acquired using slices containing other tissue suffer from

partial volume effects. Whilst, the DEXSY data acquired from slices capturing the

whole tumour and little in the way of other tissue produce results which can not be

replicated reliably when the tumour is rescanned. This can be attributed to varia-

tions in the experimental set up and the tissue micro-structure. It is possible this

can be resolved by carrying out spatially localised DEXSY experiments, provided

the acquisition time is feasible.

One of the disadvantages of DEXSY compared to FEXSY that we have not

discussed is its lengthy acquisition time. Our DEXSY acquisitions currently take

102 minutes using a comprehensive acquisition consisting of a 16x16 acquisition

matrix. However, work has been published which advocates a new method for

reducing the acquisition time. The MADCO framework constrains the acquisition

parameters based on a 1D diffusion spectra in order to reduce the number of

data points acquired [11, 10]. In the MADCO experiments conducted to date an

initial acquisition is acquired in which the first pair of diffusion encoding gradients

are not applied, and as few as 10 gradient strengths are used for the second pair

of diffusion encoding gradients to acquire a 1D diffusion spectra. A second 2D

acquisition in which as few as 4 random gradient strengths are used for each pair

of diffusion encoding gradients, at each mixing time, are used to acquire data at

3 mixing times. The 1D diffusion spectra from the first acquisition is then used to

constrain the MADCO fitting which provides a 2D diffusion-diffusion exchange plot

from the data provided in the two acquisitions. This technique could reduce the
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acquisition time required to image the whole human brain with spatially localised

DEXSY to 22 minutes [11], which would make DEXSY a viable technique for

in-vivo and in-man imaging.

In summary there are a number of key findings contained within this thesis.

The phantom work presented in this thesis demonstrate that DEXSY can make

accurate measurements of diffusivity. The simulations demonstrate that DEI can

be used as a quantitative indicator of cell membrane permeability in-silico, in yeast

suspensions, and nerve bundles. In-vitro DEXSY acquisitions demonstrate that

we can observe diffusion exchange in yeast suspensions using DEXSY. Whilst

in-vivo data suggests that DEXSY can measure diffusion exchange in tumour

xenograft models.

Nevertheless, the results contained within this thesis have a number of key

limitations. The work presented here does not demonstrate that the relationship

between DEI and cell membrane permeability found in-silico is also found in living

tissue. In addition to this, the in-vivo results presented here are variable. As

such it is not clear how reliable the conclusions drawn from the in-vivo data are.

Another limitation to the work presented here is that the data were acquired using

a slice selective sequence over a lengthy acquisition period.

The results of this experiment suggest that DEXSY experiments could be used

to help estimate signal loss due to diffusion exchange in PGSE acquisitions. DEI

could be used estimate the proportion of signal loss in a PGSE acquisition that

can be attributed to diffusion exchange. A DEXSY experiment used for this pur-

pose would use the same diffusion parameters as the PGSE sequence being

investigated, and a mixing time equivalent to the PGSE sequence’s echo time.

This could enable the design of compartment models such as VERDICT, that

compensate for signal loss due to diffusion exchange.
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There are a number of avenues to pursue in order to extend the work presented

in this thesis. Further work is needed to reduce the acquisition time so that these

experiments can be carried out as imaging experiments. Further in-vitro work

is required to determine if the relationship found between DEI and permeabil-

ity in-silico is also found in-vitro. Further in-vivo work is needed to confirm that

DEXSY is sensitive to diffusion exchange in tumour xenograft models. However

the main avenue for further work is to build on our in-vivo experiments to develop

an imaging experiment to quantify changes in cell membrane permeability in-vivo

in tumour xenograft models treated with cytoxic drugs.

In conclusion the findings presented in this thesis suggest that DEXSY may

be used to make in-vivo measurements of diffusion exchange, and that DEI may

be used as a quantative indicator of cell membrane permeability, in a range of

pathologies including neurological disorders and cancer. If DEXSY can be suces-

fully adapted for preclinical and clinical imaging, then DEI can be used as an

imaging biomarker in cancer.
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Appendix

10.1 Sucrose Water figures

Figure 10.1: DEXSY Diffusion
exchange plot from the first
DESXY experiment with imag-
ing gradients, δ = 0.008s, ∆ =
0.015s, tm = 0.072s spectrum 0.0
M sucrose

Figure 10.2: DEXSY Diffusion
exchange plot from the first
DESXY experiment with imag-
ing gradients,δ = 0.008s, ∆ =
0.015s, tm = 0.072s spectrum 0.5
M sucrose
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Figure 10.3: DEXSY Diffusion
exchange plot from the first
DESXY experiment with imag-
ing gradients,δ = 0.008s, ∆ =
0.015s, tm = 0.072s spectrum 1.0
M sucrose

Figure 10.4: DEXSY Diffusion
exchange plot from the first
DESXY experiment with imag-
ing gradients,δ = 0.008s, ∆ =
0.015s, tm = 0.072s spectrum 1.5
M sucrose

Figure 10.5: DEXSY MR spec-
trum 2 M sucrose

Figure 10.6: DEXSY MR spec-
trum 1.5 M sucrose

Figure 10.7: DEXSY MR spec-
trum 1 M sucrose

Figure 10.8: DEXSY MR spec-
trum 0.5 M sucrose

Figure 10.9: DEXSY MR spec-
trum water

Figure 10.10: DEXSY MR spec-
trum 2 M sucrose
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Figure 10.11: DEXSY MR spec-
trum 1.5 M sucrose

Figure 10.12: DEXSY MR spec-
trum 1 M sucrose

Figure 10.13: DEXSY MR spec-
trum 0.5 M sucrose

Figure 10.14: DOSY MR spec-
trum 2 M sucrose

Figure 10.15: DOSY MR spec-
trum 1 M sucrose

Figure 10.16: DOSY MR spec-
trum 0.5 M sucrose

Figure 10.17: DOSY MR spec-
trum water

Figure 10.18: DOSY MR spec-
trum 2 M sucrose
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Figure 10.19: DOSY MR spec-
trum 1.5 M sucrose

Figure 10.20: DOSY MR spec-
trum 1 M sucrose

Figure 10.21: DOSY MR spec-
trum water

Figure 10.22: Diffusion-
Diffusion exchange plot 2 M
sucrose

Figure 10.23: Diffusion-
Diffusion exchange plot 1.5
M sucrose

Figure 10.24: Diffusion-
Diffusion exchange plot 1 M
sucrose

Figure 10.25: Diffusion-
Diffusion exchange plot 0.5
M sucrose

Figure 10.26: Diffusion-
Diffusion exchange plot water
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Figure 10.27: Diffusion-
Diffusion exchange plot 2 M
sucrose

Figure 10.28: Diffusion-
Diffusion exchange plot 2 M
sucrose hydroxyl peak

Figure 10.29: Diffusion-
Diffusion exchange plot 2 M
sucrose CH peak

Figure 10.30: Diffusion-
Diffusion exchange plot 1 M
sucrose

Figure 10.31: Diffusion-
Diffusion exchange plot 1.5
M sucrose

Figure 10.32: Diffusion-
Diffusion exchange plot 0.5
M sucrose

Figure 10.33: Diffusion-
Diffusion exchange plot water

Figure 10.34: Diffusion-
Diffusion exchange plot 2 M
sucrose for water peak
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Figure 10.35: Diffusion-
Diffusion exchange plot 2 M
sucrose for CH peak

Figure 10.36: Diffusion-
Diffusion exchange plot 1.5
M sucrose for hydroxyl peak

Figure 10.37: Diffusion-
Diffusion exchange plot 1.5
M sucrose for water peak

Figure 10.38: Diffusion-
Diffusion exchange plot 1.5
M sucrose for CH peak

Figure 10.39: Diffusion-
Diffusion exchange plot 1 M
sucrose hydroxyl peak

Figure 10.40: Diffusion-
Diffusion exchange plot 0.5
M sucrose for hydroxyl peak

Figure 10.41: Diffusion-
Diffusion exchange plot 1.5
M sucrose for water peak

Figure 10.42: Diffusion-
Diffusion exchange plot 1.5
M sucrose for CH peak
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Figure 10.43: Diffusion-
Diffusion exchange plot water,
main peak

Figure 10.44: Diffusion-
Diffusion exchange plot 2 M
sucrose hydroxyl peak

Figure 10.45: Diffusion-
Diffusion exchange plot 2 M
sucrose CH peak

Figure 10.46: Diffusion-
Diffusion exchange plot 1.5
M sucrose water peak

Figure 10.47: Diffusion-
Diffusion exchange plot 1.5
M sucrose CH peak

Figure 10.48: Diffusion-
Diffusion exchange plot 1.5
M sucrose hydroxyl peak

Figure 10.49: Diffusion-
Diffusion exchange plot 0.5
M sucrose hydroxyl peak

Figure 10.50: Diffusion-
Diffusion exchange plot 0.5
M sucrose CH peak
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Figure 10.51: Diffusion-
Diffusion exchange plot water
main peak

Figure 10.52: Diffusion-
Diffusion exchange plot 0.5
M sucrose hydroxyl peak

Figure 10.53: Diffusion-
Diffusion exchange plot 0.5
M CH peak

Figure 10.54: Diffusion spectra
2 M sucrose hydroxyl peak

Figure 10.55: Diffusion spectra
2 M sucrose water peak

Figure 10.56: Diffusion-
Diffusion exchange plot 2 M
sucrose CH peak

Figure 10.57: Diffusion spectra
1.5 M sucrose hydroxyl peak

Figure 10.58: Diffusion spectra
1.5 M sucrose water peak
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Figure 10.59: Diffusion spectra
plot 2 M sucrose CH peak

Figure 10.60: Diffusion spectra
0.5 M sucrose hydroxyl peak

Figure 10.61: Diffusion spectra
0.5 M sucrose water peak

Figure 10.62: Diffusion spectra
water

Figure 10.63: Diffusion spectra
2 M sucrose hydroxyl peak

Figure 10.64: Diffusion spectra
2 M sucrose CH peak

Figure 10.65: Diffusion spectra
2 M sucrose hydroxyl peak

Figure 10.66: Diffusion spectra
2 M sucrose CH peak
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Figure 10.67: Diffusion spectra
1.0 M sucrose hydroxyl peak

Figure 10.68: Diffusion spectra
1.0 M sucrose CH peak

Figure 10.69: Diffusion spectra
water

Figure 10.70: Diffusion spectra
0.5 M sucrose hydroxyl peak

Figure 10.71: 1 M sucrose
diffusion-diffusion exchange
plot, with log diffusion encoding

Figure 10.72: 0.75 M sucrose
diffusion-diffusion exchange
plot, with log diffusion encoding

Figure 10.73: 0.5 M sucrose
diffusion-diffusion exchange
plot, with log diffusion encoding
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10.2 Diffusion Simulation figures

10.2.1 Diffusion Simulation figures not used for figures in the

main text

Figure 10.74: Fit of a bi-
exponential to the diffusion sig-
nal from a simulation in a
gamma cylinder substrate

Figure 10.75: Fit of a bi-
exponential to the diffusion sig-
nal from outside the cylinders
from a simulation in a gamma
cylinder substrate

Figure 10.76: Fit of a mono-
exponential to the diffusion sig-
nal from inside the cylinders
from a simulation in a gamma
cylinder substrate

Figure 10.77: Diffusion spectra
acquired using DOSY from the
gamma distribution
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Figure 10.78: Diffusion spectra
acquired using DOSY from the
spins inside the cylinders in the
gamma distribution

Figure 10.79: Diffusion spectra
acquired using DOSY from the
spins outside the cylinders in the
gamma distribution

Figure 10.80: Histogram of
displacement for spins in the
gamma distribution

Figure 10.81: Histogram of dis-
placement for spins outside the
cylinders in the gamma distribu-
tion

Figure 10.82: Histogram of dis-
placement for spins inside the
cylinders in the gamma distribu-
tion

Figure 10.83: Plot showing how
ADC changes with sphere size
from a CAMINO simulation.
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Figure 10.84: ADC plotted
against tm for a FEXSY ac-
quisition for p=0.000274, p =
1.0µm/s in the nervous tissue
simulation, AXR = 7.0± 0.4s−1

Figure 10.85: Semi log plot
of FEXSY data for p=0.000274,
p = 1.0µm/s in the nervous tis-
sue simulation

Figure 10.86: ADC plotted
against tm for a FEXSY ac-
quisition for p=0.0003035, p =
1.2µm/s in the nervous tissue
simulation, , AXR = 7.9±0.4s−1

Figure 10.87: Semi log plot of
FEXSY data for p=0.0003035,
p = 1.2µm/s in the nervous tis-
sue simulation

Figure 10.88: ADC plotted
against tm for a FEXSY ac-
quisition for p=0.000383, p =
1.4µm/s in the nervous tissue
simulation, , AXR = 9.3±0.4s−1

Figure 10.89: Semi log plot
of FEXSY data for p=0.000383,
p = 1.4µm/s in the nervous tis-
sue simulation
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Figure 10.90: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0, p = 0.0µm/s

Figure 10.91: Diffusion ex-
change plot nervous tis-
sue simulation p=0.000274,
p = 1.0µm/s

Figure 10.92: Diffusion ex-
change plot nervous tissue sim-
ulation, p=0.0003035, p =
1.2µm/s

Figure 10.93: Diffusion ex-
change plot nervous tis-
sue simulation, p=0.000383,
p = 1.4µm/s

Figure 10.94: DOSY diffusion
spectra nervous tissue simula-
tion p = 0.0, p = 0.0µm/s

Figure 10.95: DOSY diffusion
spectra nervous tissue simula-
tion p = 0.000274, p = 1.0µm/s

Figure 10.96: DOSY diffusion
spectra nervous tissue simula-
tion p = 0.0003035, p = 1.2µm/s

Figure 10.97: DOSY diffusion
spectra nervous tissue simula-
tion p = 0.000383, p = 1.4µm/s
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10.2.2 Diffusion-diffusion exchange plots for the nervous tis-

sue substrate simulation

Figure 10.98: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0

Figure 10.99: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0000015

Figure 10.100: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0001

Figure 10.101: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00015

Figure 10.102: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0002

Figure 10.103: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00025
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Figure 10.104: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0003

Figure 10.105: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00035

Figure 10.106: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0004

Figure 10.107: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00045

Figure 10.108: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0005

Figure 10.109: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00055

Figure 10.110: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0006

Figure 10.111: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00065
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Figure 10.112: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0007

Figure 10.113: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00075

Figure 10.114: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0008

Figure 10.115: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00085

Figure 10.116: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.0009

Figure 10.117: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.00095

Figure 10.118: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.001

Figure 10.119: Diffusion ex-
change plot nervous tissue sim-
ulation p=0.01
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10.2.3 Diffusion spectra plots for the nervous tissue substrate

simulation

Figure 10.120: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0

Figure 10.121: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00001

Figure 10.122: DOSY diffusion
spectra nervous tissue simula-
tion p=0.000015

Figure 10.123: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0001

Figure 10.124: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00015
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Figure 10.125: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0002

Figure 10.126: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00025

Figure 10.127: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0003

Figure 10.128: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00035

Figure 10.129: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0004

Figure 10.130: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00045

Figure 10.131: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0005

Figure 10.132: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00055
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Figure 10.133: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0006

Figure 10.134: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00065

Figure 10.135: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0007

Figure 10.136: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00075

Figure 10.137: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0008

Figure 10.138: DOSY diffusion
spectra nervous tissue simula-
tion p=0.00085

Figure 10.139: DOSY diffusion
spectra nervous tissue simula-
tion p=0.0009

Figure 10.140: DOSY diffusion
spectra nervous tissue simula-
tion p=0p00095



10.2. DIFFUSION SIMULATION FIGURES 169

Figure 10.141: DOSY diffusion
spectra nervous tissue simula-
tion p=0p001

Figure 10.142: DOSY diffusion
spectra nervous tissue simula-
tion p=0p01
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10.2.4 Diffusion simulation figures for the yeast substrate

Figure 10.143: Diffusion ex-
change plot yeast simulation
p=0.0

Figure 10.144: Diffusion ex-
change plot yeast simulation
p=0.00001

Figure 10.145: Diffusion ex-
change plot yeast simulation
p=0.000015

Figure 10.146: Diffusion ex-
change plot yeast simulation
p=0.0001

Figure 10.147: Diffusion ex-
change plot yeast simulation
p=0.00015

Figure 10.148: Diffusion ex-
change plot yeast simulation
p=0.0002
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Figure 10.149: Diffusion ex-
change plot yeast simulation
p=0.00025

Figure 10.150: Diffusion ex-
change plot yeast simulation
p=0.0003

Figure 10.151: Diffusion ex-
change plot yeast simulation
p=0.00035

Figure 10.152: Diffusion ex-
change plot yeast simulation
p=0.0004

Figure 10.153: Diffusion ex-
change plot yeast simulation
p=0.00045

Figure 10.154: Diffusion ex-
change plot yeast simulation
p=0.0005

Figure 10.155: Diffusion ex-
change plot yeast simulation
p=0.00055

Figure 10.156: Diffusion ex-
change plot yeast simulation
p=0.0006
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Figure 10.157: Diffusion ex-
change plot yeast simulation
p=0.00065

Figure 10.158: Diffusion ex-
change plot yeast simulation
p=0.0007

Figure 10.159: Diffusion ex-
change plot yeast simulation
p=0.00075

Figure 10.160: Diffusion ex-
change plot yeast simulation
p=0.0008

Figure 10.161: Diffusion ex-
change plot yeast simulation
p=0.00085

Figure 10.162: Diffusion ex-
change plot yeast simulation
p=0.0009

Figure 10.163: Diffusion ex-
change plot yeast simulation
p=0.00095

Figure 10.164: Diffusion ex-
change plot yeast simulation
p=0.001
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Figure 10.165: Diffusion ex-
change plot yeast simulation
p=0.01

Figure 10.166: Diffusion ex-
change plot yeast simulation
p=0.1
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10.2.5 DOSY diffusion spectra for the yeast substrat simula-

tions

Figure 10.167: DOSY diffusion
spectra yeast simulation p=0.0

Figure 10.168: DOSY diffu-
sion spectra yeast simulation
p=0.00001

Figure 10.169: DOSY diffu-
sion spectra yeast simulation
p=0.000015

Figure 10.170: DOSY diffu-
sion spectra yeast simulation
p=0.0001

Figure 10.171: DOSY diffu-
sion spectra yeast simulation
p=0.00015

Figure 10.172: DOSY diffu-
sion spectra yeast simulation
p=0.0002
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Figure 10.173: DOSY diffu-
sion spectra yeast simulation
p=0.00025

Figure 10.174: DOSY diffu-
sion spectra yeast simulation
p=0.0003

Figure 10.175: DOSY diffu-
sion spectra yeast simulation
p=0.00035

Figure 10.176: Diffusion ex-
change plot yeast simulation
p=0.0004

Figure 10.177: Diffusion ex-
change plot yeast simulation
p=0.00045

Figure 10.178: DOSY diffu-
sion spectra yeast simulation
p=0.0005

Figure 10.179: DOSY diffu-
sion spectra yeast simulation
p=0.00045

Figure 10.180: DOSY diffu-
sion spectra yeast simulation
p=0.0005
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Figure 10.181: DOSY diffu-
sion spectra yeast simulation
p=0.00055

Figure 10.182: DOSY diffu-
sion spectra yeast simulation
p=0.0006

Figure 10.183: DOSY diffu-
sion spectra yeast simulation
p=0.00065

Figure 10.184: DOSY diffu-
sion spectra yeast simulation
p=0.0007

Figure 10.185: DOSY diffu-
sion spectra yeast simulation
p=0.00075

Figure 10.186: DOSY diffu-
sion spectra yeast simulation
p=0.0008

Figure 10.187: DOSY diffu-
sion spectra yeast simulation
p=0.00085

Figure 10.188: DOSY diffu-
sion spectra yeast simulation
p=0.0009
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Figure 10.189: DOSY diffu-
sion spectra yeast simulation
p=0.00095

Figure 10.190: DOSY diffu-
sion spectra yeast simulation
p=0.001

Figure 10.191: Diffusion ex-
change plot yeast simulation
p=0.01
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10.2.6 Plots showing the combined results of the diffusion ex-

change simulations

Figure 10.192: Shows the intensity of the peaks where all four peaks can be
found for the nervous tissue simulation

Figure 10.193: Shows the AXR for the simulations where all four peaks can be
found in the nervous tissue simulation
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Figure 10.194: Shows the DEI for the simulations where all four peaks can be
found for in nervous tissue simulation

Figure 10.195: Shows the intensity of the peaks where all four peaks can be
found in the yeast simulation

Figure 10.196: Shows the DEI for the simulations where all four peaks can be
found in the yeast simulation
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Figure 10.197: Shows the AXR for the simulations where all four peaks can be
found in the yeast simulation
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10.2.7 Diffusion Simulation figures not used from the fluid ex-

change model

Figure 10.198: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.00015

Figure 10.199: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.0001

Figure 10.200: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.00015

Figure 10.201: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.0002

Figure 10.202: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.00025

Figure 10.203: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.0003
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Figure 10.204: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.00035

Figure 10.205: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.0004

Figure 10.206: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.00045

Figure 10.207: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.0005

Figure 10.208: Diffusion ex-
change plot fluid exchange sim-
ulation p=0.00055

Figure 10.209: Diffusion ex-
change index plotted against
probability for the fluid exchange
model
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10.3 In-vitro DEXSY data acquired from yeast sus-

pensions

10.3.1 Preliminary data

Figure 10.210: Diffusion ex-
change plot Yeast 2:1 PBS δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.72T/m

Figure 10.211: Diffusion ex-
change plot Yeast 2:1 (10 micro-
gram digitonin / ml DPBS) δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.72T/m

Figure 10.212: Diffusion ex-
change plot Yeast 2:1 PBS δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.42T/m scan 1

Figure 10.213: Diffusion ex-
change plot Yeast 2:1 PBS δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.42T/m scan 2
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Figure 10.214: Diffusion ex-
change plot Yeast 2:1 PBS δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.42T/m scan 3

Figure 10.215: Diffusion ex-
change plot Yeast 2:1 (10 micro-
gram digitonin / ml DPBS) δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.42T/m

Figure 10.216: Diffusion ex-
change plot Yeast 2:1 PBS δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.72T/m

Figure 10.217: Diffusion ex-
change plot Yeast 2:1 PBS δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.72T/m scan 1
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10.3.2 In-vitro DEXSY data acquired from yeast suspensions

Figure 10.218: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 1

Figure 10.219: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 2

Figure 10.220: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 9ms, ∆ = 14ms, tm =
200ms, G = 0.64T/m scan 1

Figure 10.221: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 9ms, ∆ = 14ms, tm =
200ms, G = 0.64T/m scan 2
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Figure 10.222: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 9ms, ∆ = 14ms, tm =
200ms, G = 0.64T/m scan 3

Figure 10.223: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.72T/m scan 1

Figure 10.224: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.72T/m scan 2

Figure 10.225: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.72T/m scan 3

Figure 10.226: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 1

Figure 10.227: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 2
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Figure 10.228: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 3

Figure 10.229: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 1

Figure 10.230: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 2

Figure 10.231: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 3

Figure 10.232: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 1

Figure 10.233: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 2
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Figure 10.234: Diffusion ex-
change plot 22g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 3

Figure 10.235: Diffusion ex-
change plot 6g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m

Figure 10.236: Diffusion ex-
change plot 18g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 1

Figure 10.237: Diffusion ex-
change plot 18g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 2

Figure 10.238: Diffusion ex-
change plot 18g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 3

Figure 10.239: Diffusion ex-
change plot 24g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 1
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Figure 10.240: Diffusion ex-
change plot 24g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 2

Figure 10.241: Diffusion ex-
change plot 24g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 3

Figure 10.242: Diffusion ex-
change plot 36g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 1

Figure 10.243: Diffusion ex-
change plot 36g Yeast : 10 ml
PBS δ = 15ms, ∆ = 17ms, tm =
200ms, G = 0.64T/m scan 2
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10.3.3 In-vitro yeast permeability experiment DEXSY data

Figure 10.244: Diffusion ex-
change plot yeast 30g : 15 ml
PBS 2ml 10 % tween : 13 ml
yeast suspension δ = 15ms,
∆ = 17ms, tm = 200ms, G =
0.8T/m

Figure 10.245: Diffusion ex-
change plot yeast 30g : 15 ml
PBS 2ml 1 % tween : 13 ml
yeast suspension δ = 15ms,
∆ = 17ms, tm = 200ms, G =
0.8T/m

Figure 10.246: Diffusion ex-
change plot yeast 30g : 15 ml
PBS 2ml 0.1 % tween : 13 ml
yeast suspension δ = 15ms,
∆ = 17ms, tm = 200ms, G =
0.8T/m

Figure 10.247: Diffusion ex-
change plot yeast 30g : 15 ml
PBS 2ml 0.01 % tween : 13
ml yeast suspension δ = 15ms,
∆ = 17ms, tm = 200ms, G =
0.8T/m
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Figure 10.248: Diffusion ex-
change plot yeast 30g : 15 ml
PBS 2ml 2ml water : 13 ml yeast
suspension δ = 15ms, ∆ =
17ms, tm = 200ms, G = 0.8T/m
scan 1

Figure 10.249: Diffusion ex-
change plot yeast 30g : 15 ml
PBS 2ml 2ml water : 13 ml yeast
suspension δ = 15ms, ∆ =
17ms, tm = 200ms, G = 0.8T/m
scan 2

Figure 10.250: Diffusion ex-
change plot Yeast 30g : 15 ml
PBS 2ml 0.01 % tween : 13
ml yeast suspension δ = 15ms,
∆ = 17ms, tm = 200ms, G =
0.8T/m

Figure 10.251: Diffusion ex-
change plot Yeast 30g : 15 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m

Figure 10.252: Diffusion ex-
change plot Yeast 30g : 15 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m

Figure 10.253: Diffusion ex-
change plot Yeast 30g : 15 ml
PBS 15 ml yeast suspension δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.8T/m scan 1
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Figure 10.254: Diffusion ex-
change plot Yeast 30g : 15 ml
PBS 15 ml yeast suspension δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.8T/m scan 2

Figure 10.255: Diffusion ex-
change plot Yeast 30g : 15 ml
PBS 15 ml yeast suspension δ =
9ms, ∆ = 14ms, tm = 200ms,
G = 0.8T/m scan 3

Figure 10.256: Diffusion ex-
change plot Yeast 22g : 7 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 1

Figure 10.257: Diffusion ex-
change plot Yeast 22g : 7 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 2

Figure 10.258: Diffusion ex-
change plot Yeast 22g : 7 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 3

Figure 10.259: Diffusion ex-
change plot Yeast 22g : 7.5 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 1
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Figure 10.260: Diffusion ex-
change plot Yeast 22g : 7.5 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 2

Figure 10.261: Diffusion ex-
change plot Yeast 22g : 7.5 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 3

Figure 10.262: Diffusion ex-
change plot Yeast 30 g : 15 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 1

Figure 10.263: Diffusion ex-
change plot Yeast 30 g : 15 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 2

Figure 10.264: Diffusion ex-
change plot Yeast 30 g : 15 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.8T/m scan 3

Figure 10.265: Diffusion ex-
change plot Yeast 22 g : 10 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.72T/m scan 1
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Figure 10.266: Diffusion ex-
change plot Yeast 22 g : 10 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.72T/m scan 2

Figure 10.267: Diffusion ex-
change plot Yeast 22 g : 10 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.72T/m scan 3

Figure 10.268: Diffusion ex-
change plot Yeast 22 g : 10 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.72T/m scan 1

Figure 10.269: Diffusion ex-
change plot Yeast 22 g : 10 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.72T/m scan 2

Figure 10.270: Diffusion ex-
change plot Yeast 22 g : 10 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.72T/m scan 3

Figure 10.271: Diffusion ex-
change plot Yeast 22 g : 10 ml
PBS 15 ml yeast suspension δ =
15ms, ∆ = 17ms, tm = 200ms,
G = 0.72T/m
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10.4 In-vivo positioning scans

Figure 10.272: Slice of a mouse brain scanned in 8.1
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Figure 10.273: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 1, scanned 15/10/2018

Figure 10.274: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 2, scanned 15/10/2018
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Figure 10.275: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 2, scanned 15/10/2018

Figure 10.276: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 3, scanned 16/10/2018
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Figure 10.277: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 4, scanned 19/10/2018
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Figure 10.278: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 4, scanned 19/10/2018
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Figure 10.279: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 4, scanned 19/10/2018

Figure 10.280: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 5, scanned 19/10/2018
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Figure 10.281: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 5, scanned 19/10/2018

Figure 10.282: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 5, scanned 19/10/2018

Figure 10.283: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 5, scanned 29/10/2018

Figure 10.284: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 5, scanned 29/10/2018
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Figure 10.285: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 5, scanned 29/10/2018

Figure 10.286: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 3, scanned 29/10/2018
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Figure 10.287: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in mouse 3, scanned 29/10/2018

Figure 10.288: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in in mouse 1, scanned 29/10/2018

Figure 10.289: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in in mouse 1, scanned 29/10/2018
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Figure 10.290: Scan taken to position the slice used to acquire a DEXSY scan
acquired from a subcutaneous tumour in in mouse 1, scanned 29/10/2018
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[6] I. Åslund, S. Lasič, A. Nowacka, M. Nilsson, and D. Topgaard. Measuring

Molecular Exchange for Water in a Yeast Cell Suspension through NMR

Diffusometry. diffusion-fundementals.org, 11(69):1–2, 2009.

[7] A. I. Baba. Apoptosis and Necrosis. LUCRRI TIINłIFICE MEDICIN VET-

ERINAR VOL., XLII(2):3–5, 2009.

[8] A. Bardelli, S. Saha, J. A. Sager, K. E. Romans, B. Xin, S. D. Markowitz,

C. Lengauer, V. E. Velculescu, K. W. Kinzler, and B. Vogelstein. PRL-3

205



206 BIBLIOGRAPHY

Expression in Metastatic Cancers. Clinical Cancer Research, 9(15):5607–

5615, 2003.

[9] P. J. Basser. Inferring Microstructural Features and the Physiological State

of Tissues from Diffusion-Weighted Images. NMR in Biomedicine, Vol.

8:333–344, 1995.

[10] D. Benjamini and P. J. Basser. Use of marginal distributions constrained op-

timization ( MADCO ) for accelerated 2D MRI relaxometry and diffusometry.

Journal of Magnetic Resonance, 271:40–45, 2016.

[11] D. Benjamini, M. E. Komlosh, and P. J. Basser. Imaging Local Diffusive

Dynamics Using Diffusion Exchange Spectroscopy MRI. Physical Review

Letters, 118(15):27–31, 2017.

[12] S. J. Blackband, D. L. Buckley, J. D. Bui, and M. I. Phillips. NMR

microscopy–beginnings and new directions. Magnetic Resonance Mate-

rials in Physics, Biology and Medicine, 9(3):112–116, 1999.

[13] F. Bloch, W. W. Hansen, and M. Packard. Nuclear Induction. Physical

Review, 70(1938):474–485, 1946.

[14] K. Brindle. New approaches for imaging tumour responses to treatment.

Nature Reviews Cancer, 8(2):94–107, 2008.

[15] B. H. Brown. Biological and Medical Physics , Biomedical Engineering Bio-

logical and Medical Physics , Biomedical Engineering. 1999.

[16] R. W. Brown, Y. C. N. Cheng, E. M. Haacke, M. R. Thompson, and

R. Venkatesan. Magnetic Resonance Imaging: Physical Principles and

Sequence Design: Second Edition. 2014.
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