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1. Motivation

To motivate and illustrate our methods we consider
a specific example: a thermal fin. The fin, shown
in Figure 1, consists of a central “post” and four
“subfins;” the fin conducts heat from a prescribed
uniform flux “source” at the root, Γroot, through
the large-surface-area subfins to surrounding flow-
ing air. The fin is characterized by seven design
parameters, or “inputs,” µ ∈ D ⊂ IRP=7, where
µi = ki, i = 1, . . . , 4, µ5 = Bi, µ6 = L, and µ7 = t.
Here ki is the thermal conductivity of the ith sub-
fin (normalized relative to the post conductivity); Bi

is the Biot number, a nondimensional heat transfer
coefficient reflecting convective transport to the air
at the fin surfaces; and L and t are the length and
thickness of the subfins (normalized relative to the
post width). The performance metric, or “output,”
s ∈ IR, is chosen to be the average temperature of
the fin root normalized by the prescribed heat flux
into the fin root. In order to optimize the fin de-
sign, we must be able to evaluate s(µ) repeatedly
and rapidly.

Figure 1

We can express our input-output relationship as
s = `O(u(µ)), where `O(v) is a (continuous) lin-
ear functional — `O(v) =

∫

Γroot
v — and u(µ) is

the temperature distribution within the fin. (The
temperature field is of course a function of the spa-
tial coordinate, x; we explicitly indicate this depen-
dence only as needed.) The temperature distribu-
tion u(µ) ∈ Y satisfies the elliptic partial differential
equation describing heat conduction in the fin,

a(u, v;µ) = `(v),∀v ∈ Y ; (1)

a(u, v;µ) is the weak form of the Laplacian, and
`(v) reflects the prescribed heat flux at the root.
Here Y is the appropriate Hilbert space with associ-
ated inner product (·, ·)Y and induced norm ‖ · ‖Y

2.
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2Here Y = H1(Ω), the space of functions that are square integrable and that have square integrable first (distributional)
derivatives over the fin reference domain Ω. The inner product (w, v)Y may be chosen to be

∫

Ω
∇w · ∇v + wv.
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a(v, w;µ),∀w, v ∈ Y 2,∀µ ∈ D; uniformly continu-
ous, |a(w, v;µ)| ≤ γ‖w‖Y ‖v‖Y ,∀w, v ∈ Y 2,∀µ ∈ D;
and coercive, α‖v‖2

Y ≤ a(v, v;µ),∀v ∈ Y,∀µ ∈ D.
Here α and γ are strictly positive real constants. Fi-
nally, the form `(v) is a linear bounded functional;
for our choice of scaling and output, `O(v) = `(v),
which we will exploit to simplify the exposition.

It can further be shown for our problem that a
can be expressed as

a(w, v;µ) =
Q
∑

q=1

σq(µ)aq(w, v),∀w, v ∈ Y 2,∀µ ∈ D,

(2)
for appropriately chosen functions σq:D → IR and
associated µ-independent bilinear forms aq:Y ×Y →
IR, q = 1, . . . , Q. Note that we pose our problem on
a fixed fin reference domain Ω in order to ensure that
the parametric dependence on geometry — L and t
— enters through a(·, ·;µ) and ultimately the σq(µ).
For our particular problem, Q = 15; if we freeze (fix)
all parameters except L and t (such that Peff = 2),
Q = 8; if we freeze only L and t (such that Peff = 5),
Q = 6.

In the context of design, optimization, and con-
trol, we require very rapid response and many out-
put evaluations. Our goal is thus to construct an
approximation to u(µ), ũ(µ), and hence approxima-
tion to s(µ), s̃(µ) = `O(ũ(µ)), which is (i) certifiably

accurate, and (ii) very efficient in the limit of many

evaluations. By the former we mean that the error
in our approximate output, |s(µ) − s̃(µ)|, is guar-

anteed to be less than a prescribed tolerance ε; by
the latter we mean that, following an initial fixed

investment, the additional incremental cost to eval-
uate s̃(µ) for any new µ ∈ D is much less than the
effort required to directly compute s(µ) = `O(u(µ))
by (say) standard finite element approximation.

2. Reduced-Basis Approximation

Reduced-basis methods (e.g., [5, 6, 7]) are
a “parameter-space” version of weighted-residual
(here Galerkin) approximation. To define our
reduced-basis procedure, we first introduce a sam-
ple set in parameter space, SN = {µ1, . . . , µN}, and
associated reduced-basis space W N = span{ζn ≡
u(µn), n = 1, . . . , N}, where u(µn) satisfies (1) for

µ = µn ∈ D (note µi refers to the ith component of
the P–tuple µ, whereas µn refers to the nth P–tuple
in SN ). We then require our reduced-basis approxi-
mation to u(µ) for any given µ, uN (µ) ∈ W N ⊂ Y ,
to satisfy

a(uN (µ), v;µ) = `(v),∀v ∈ W N ; (3)

the reduced-basis approximation to s(µ) can subse-
quently be evaluated as sN (µ) = `O(uN (µ)).

It is a simple matter to show that

‖u(µ)−uN (µ)‖Y ≤

√
γ

α
min

wN∈W N
‖u(µ)−wN‖Y , (4)

which states that our approximation is optimal in
the Y norm. It can also be readily shown for our
particular problem that

s(µ) = sN (µ) + a(eN (µ), eN (µ);µ), (5)

where eN = u− uN . It follows from (4),(5), and the
continuity of a that

|s(µ) − sN (µ)| ≤
γ2

α
( min
wN∈W N

‖u(µ) − wN‖Y )2; (6)

thus our output approximation is also optimal.

We must, of course, also understand the extent
to which the best wN in W N can, indeed, approx-
imate the requisite temperature distribution. The
essential point is that, although W N clearly does
not have any approximation properties for general

functions in Y , simple interpolation arguments in
parameter space suggest that W N should approx-
imate well u(µ) even for very modest N ; indeed,
exponential convergence is obtained in N for suf-
ficiently smooth µ-dependence (e.g., [6, 7]). It is for
this reason that, even in high-dimensional (large P )
parameter spaces, reduced-basis methods continue
to perform well — indeed, thanks to (6), much bet-
ter than ad hoc, uncontrolled “non-state-space” fits
of (µ, s(µ)) input-output pairs.

We now turn to the computational issues. We
first express the reduced-basis approximation as

uN (x;µ) =
N∑

j=1

uN
j (µ)ζj(x) = (uN (µ))T ζ(x), (7)
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We then insert these representations into (3) to yield
the desired algebraic equations for uN (µ) ∈ IRN ,

N∑

j=1

a(ζj , ζi;µ)uN
j = `(ζi), i = 1, . . . , N. (8)

Equation (8) can be written in matrix form as

A(µ)uN (µ) = L, (9)

where A(µ) ∈ IRN×N is the SPD matrix with entries
Ai,j(µ) = a(ζj , ζi;µ), 1 ≤ i, j ≤ N , and L ∈ IRN is
the “load” vector with entries Li = `(ζi), 1 ≤ i ≤ N .

We now invoke (2) to note that

Ai,j(µ) = a(ζj , ζi;µ) =
Q
∑

q=1

σq(µ)aq(ζj , ζi)

=
Q
∑

q=1

σq(µ)Aq
i,j , (10)

where the matrices Aq ∈ IRN×N are given by Aq
i,j =

aq(ζj , ζi), 1 ≤ i, j ≤ N, q = 1, . . . , Q. The off-
line/on-line decomposition is now clear. In the off-

line stage, we construct the Aq , q = 1, . . . , Q. In the
on-line stage, for any given µ, we first form A from
the Aq according to (10); we next invert (9) to find
uN (µ); and we then compute sN (µ) = `O(uN (µ)) =
`(uN (µ)) = (uN (µ))T L. As we shall see, N will typ-
ically be O(10) for our particular problem. Thus,
as required, the incremental cost to evaluate sN (µ)
for any given new µ is very small: O(N 2Q) to form
A(µ); O(N 3) to invert (the typically dense) A(µ)
system; and O(N) to evaluate sN(µ) from uN (µ).

The above a priori results tell us only that we
are doing as well as possible; it does not tell us how

well we are doing. Since the error in our output is
not known, the minimal number of basis functions
required to satisfy the desired error tolerance can
not be ascertained. As a result, either too many
or too few functions are retained; the former results
in computational inefficiency, the latter in unaccept-
able uncertainty. We thus need a posteriori error
bounds as well.

3. Output Bounds

To begin, we assume that we may find a function
g(µ):D → IR+ and a symmetric continuous coercive

bilinear form â:Y × Y → IR such that

c‖v‖2
Y ≤ g(µ)â(v, v) ≤ a(v, v;µ),∀v ∈ Y,∀µ ∈ D,

(11)
for some real positive constant c; for our thermal fin
problem we can readily find a g(µ) and â(w, v) such
that (11) is satisfied. The procedure is then simple:
we first compute ê(µ) ∈ Y solution of

g(µ)â(ê(µ), v) = R(v;µ),∀v ∈ Y, (12)

where R(v;µ) ≡ `(v)−a(uN , v;µ) is the residual; we
then evaluate our bounds as

sN
−

(µ) = sN(µ), sN
+ (µ) = sN (µ) + ∆N (µ), (13)

where ∆N (µ), the bound gap, is given by

∆N (µ) = g(µ)â(ê(µ), ê(µ)). (14)

The notion of output bounds is not restricted to
reduced-basis approximations: it can also be applied
within the context of finite element discretization as
well as iterative solution strategies [8, 9].

We can then show that

sN
−

(µ) ≤ s(µ) ≤ sN
+ (µ), ∀N ; (15)

we thus have a certificate of fidelity for sN — it is
within ∆N (µ) of s(µ). To prove the left inequality we
appeal to (5) and the coercivity of a. To demonstrate
the right inequality we first note that R(eN (µ);µ) =
`(eN (µ)) − a(uN (µ), eN (µ);µ) = a(eN (µ), eN (µ);µ),
since `(eN (µ)) = a(u, eN (µ);µ) from (1) for v =
eN (µ); we next choose v = eN (µ) in (12) to obtain
g(µ)â(ê(µ), eN (µ)) = a(eN (µ), eN (µ);µ); then from
the right inequality of (11) we have

∆N (µ) ≡ g(µ)â(ê, ê)

= g(µ)â(ê − eN , ê − eN ) + 2a(eN , eN )

− g(µ)â(eN , eN )

≥ g(µ)â(ê − eN , ê − eN ) + a(eN , eN );

from the left inequality of (11) we thus conclude that
∆N (µ) ≥ a(eN , eN ); a comparison of (5) and (13)
then completes the proof.

We can now ascertain, through ∆N , the accu-
racy of our output prediction, which will in turn
permit us to adaptively modify our approximation
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However, it is also critical that ∆N (µ) be a good

error estimator; a poor estimator will encourage us
to unnecessarily refine an approximation which is,
in fact, adequate. To prevent the latter the effectiv-
ity ηN (µ) ≡ ∆N (µ)/|s(µ) − sN (µ)| should be order
unity. For our problem it is simple to prove that
ηN (µ) ≤ γ/c, independent of µ and N ; in practice,
effectivities are typically less than 10, which is ade-
quate given the rapid convergence of reduced-basis
approximations.

We now turn to the computational issues. From
(2) and (7), (12) can be re-written as

â(ê(µ), v) =

1

g(µ)

(

`(v) −
Q
∑

q=1

N∑

j=1

σq(µ)uN
j (µ)aq(ζj , v)

)

,

∀v ∈ Y.

We thus see from simple linear superposition that
ê(µ) can be expressed as

ê(µ) =
1

g(µ)
(ẑ0 +

Q
∑

q=1

N∑

j=1

σq(µ)uN
j (µ)ẑq

j ),

where ẑ0 ∈ Y satisfies â(ẑ0, v) = `(v),∀v ∈ Y,
and ẑq

j ∈ Y, j = 1, . . . , N, q = 1, . . . , Q, satisfies
â(ẑq

j , v) = −aq(ζj, v),∀v ∈ Y. It then follows that

we can express ∆N (µ) of (14) as

∆N (µ) =
1

g(µ)

[

â(ẑ0, ẑ0)
︸ ︷︷ ︸

c0

+

2
Q
∑

q=1

N∑

j=1

σq(µ)uN
j (µ) â(ẑ0, ẑ

q
j )

︸ ︷︷ ︸

Λ
q

j

+

Q
∑

q=1

Q
∑

q′=1

N∑

j=1

N∑

j′=1

σq(µ)σq′(µ)uN
j (µ)uN

j′ (µ) â(ẑq
j , ẑ

q′

j′ )
︸ ︷︷ ︸

Γ
qq′

jj′

]

;

(16)

sN
+ (µ) then directly follows from (13).

The off-line/on-line decomposition is now clear.
In the off-line stage we compute ẑ0 and ẑq

j , j =
1, . . . , N, q = 1, . . . , Q, and then the inner products

c0,Λ
q
j , and Γqq′

jj′ defined in (16). In the on-line stage,

for any given new µ, and given sN (µ) and uN (µ) as

computed in the on-line stage of the output predic-
tion process (Section 2), we evaluate ∆N (µ) as

∆N (µ) =
1

g(µ)

[

c0 + 2
Q
∑

q=1

N∑

j=1

σq(µ)uN
j (µ)Λq

j +

Q
∑

q=1

Q
∑

q′=1

N∑

j=1

N∑

j′=1

σq(µ)σq′(µ)uN
j (µ)uN

j′ (µ)Γqq′

jj′

]

,

and then evaluate sN
+ (µ) = sN (µ) + ∆N (µ). The in-

cremental cost to evaluate sN
+ (µ) for any given new

µ is very small: O(N 2Q2).

4. Numerical Algorithm

In the simplest case we take our field and output ap-
proximations to be ũ(µ) = uN (µ) and s̃(µ) = sN (µ),
respectively, for some given N , and then compute
∆N (µ) to assess the error. However, we can im-

prove upon this recipe: we take ũ(µ) = uÑ (µ)

and s̃(µ) = sÑ (µ), where uÑ (µ) and sÑ (µ) are the
reduced-basis approximations associated with a sub-
space of W N , W Ñ , in which we select only Ñ of
our available basis functions. In practice, we include
in W Ñ the basis functions corresponding to sample
points µn closest to the new µ of interest; we con-
tinue to (say) double our space until ∆Ñ (µ) ≤ ε

(and hence |s(µ) − sÑ (µ)| ≤ ε). If we satisfy our
criterion for Ñ ≤ N the adaptive procedure is en-
tirely contained within the on-line stage of the pro-
cedure, and the complexity of this stage is reduced
from O(N 2Q+N3+N2Q2) to O(Ñ2Q+Ñ3+Ñ2Q2).
Note the critical role that our error bound plays in
effecting this economy.

In practice — to ensure that the ζn, ẑ0, ẑ
q
j

are actually calculable — we replace the infinite-
dimensional space Y with a very high-dimensional
“truth” space YT (e.g., a finite element space as-
sociated with a very fine triangulation). It follows
that we obtain bounds not for s, but rather for
sT = `O(uT ), where uT ∈ YT satisfies a(uT , v;µ) =
`(v),∀v ∈ YT . The essential point is that YT may
be chosen very conservatively — and hence the dif-
ference between sT and s rendered arbitrarily small
— since (i) the on-line work and storage are in fact
independent of the dimension of YT , N , and (ii) the
off-line work will remain modest since N will typi-
cally be quite small.
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We first demonstrate the accuracy of the reduced-
basis output prediction and output bounds by con-
sidering the case Peff = 5 in which L = 2.5
and t = 0.25 are fixed; the remaining parameters
k1, k2, k3, k4,Bi vary in Deff ≡ [0.1, 10]4 × [0.01, 1].
The sample points for SN are chosen randomly (uni-
formly) over Deff; the new value of µ to which
we apply the reduced-basis approximation is k1 =
0.5, k2 = 1.0, k3 = 3.0, k4 = 9.0,Bi = 0.6 (similar
results are obtained at other points in Deff). We
present in Table 1 the actual error |s(µ) − sN (µ)|;
the estimated error ∆N (µ) (our strict upper bound
for |s(µ) − sN (µ)|); and the effectivity ηN (µ) (the
ratio of the estimated and actual errors). We ob-
serve the high accuracy and rapid convergence of
the reduced-basis prediction, even for this relatively
high-dimensional parameter space; and the very
good accuracy (low effectivity) of our error bound
∆N (µ). The combination of high accuracy and cer-
tifiable fidelity permits us to proceed with an ex-
tremely low number of modes.

N |s − sN | ∆N ηN

10 4.68 × 10−3 1.43 × 10−2 3.06
20 4.70 × 10−4 1.13 × 10−3 2.40
30 3.04 × 10−4 1.04 × 10−3 3.43
40 1.08 × 10−4 4.61 × 10−4 4.27
50 2.47 × 10−5 6.89 × 10−5 2.78

Table 1

As regards computational cost, in the limit of
“infinitely many” evaluations, the calculation of s̃(µ)
to within 0.1% of sT is roughly 24 times faster than
direct calculation of sT = `O(uT ); here uT is our un-
derlying “truth” finite element approximation. The
breakeven point at which the reduced-basis approxi-
mation first becomes less expensive than direct eval-
uation of sT is roughly 250 evaluations. These are
fair comparisons: our “truth” approximation here
is not overly fine, and our solution strategy for
uT ∈ YT (an ILU-preconditioned conjugate-gradient
procedure) is quite efficient. The reduced-basis ap-
proach is much faster simply because the dimension
of W N , N , is much smaller than the dimension of
YT , N (which more than compensates for the loss
of sparsity in A). For more difficult problems that
require larger N , or that are not as amenable to fast

solution methods on YT , the relative efficiency of the
reduced-basis approach is even more dramatic.

The obvious advantage of the reduced-basis ap-
proach within the design, optimization, and control
environment is the very rapid response. However,
the “blackbox” nature of the on-line component of
the procedure has other advantages. In particular,
the on-line code is simple, non-proprietary, and com-
pletely decoupled from the (often complicated) off-
line “truth” code. This is particularly important in
multidisciplinary design optimization, in which vari-
ous models and approximations must be integrated.

We close this section with a more applied ex-
ample. We now fix all parameters except L and t,
so that Peff = 2; (L, t) vary in Deff = [2.0, 3.0] ×
[0.1, 0.5]. We choose for our two outputs the vol-
ume of the fin, V, and the root average tempera-
ture, s. As our “design exercise” we now construct
the achievable set — all those (V, s) pairs associ-
ated with some (L, t) in Deff; the result, based on

many evaluations of (V, sÑ
+ ) for different values of

(L, t) ∈ Deff, is shown in Figure 2. We present the

results in terms of sÑ
+ rather than sÑ to ensure that

the actual temperature sT will always be lower than
our predictions (that is, conservative); and we choose

Ñ such that sÑ
+ is always within 0.1% of sT to en-

sure that the design process is not misled by inac-
curate predictions. Given the obvious preferences of
lower volume and lower temperature, the designer
will be most interested in the lower left boundary of
the achievable set — the Pareto efficient frontier; al-
though this boundary can of course be found without
constructing the entire achievable set, many evalua-
tions of the outputs will still be required.
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6. Generalizations and Issues

Many of the assumptions that we have introduced
are assumptions of convenience and exposition, not
necessity. First, the output functional `O need not
be same as the inhomogeneity `; with the introduc-
tion of an adjoint (or dual) problem [2], our results
above extend to the more general case. Second, the
function g(µ) need not be known a priori: g(µ) is
related to an eigenvalue problem which can itself
be readily approximated by a reduced-basis space
constructed as the span of appropriate eigenfunc-
tions (in theory we can now only prove asymptotic
bounding properties as N → ∞, however in prac-
tice the reduced-basis eigenvalue approximation con-
verges very rapidly, and there is thus little loss of
certainty). Third, these same notions extend, with
some modification, to noncoercive problems, where
g(µ) is now in fact the inf-sup stability parameter
[3, 4]. Finally, nonsymmetric operators are readily
treated, as are certain classes of nonlinearity in the
state variables (e.g., eigenvalue problems [1]).

Perhaps the most limiting assumption is (2),
affine dependence on the parameter functions. In
some cases (2) may indeed apply, but Q may be
rather large. In such cases we can reduce the com-
plexity and storage of the off-line and on-line stages
from O(Q2) to O(Q) by introducing a reduced-basis
approximation of the error equation (12) for a suit-
ably chosen “staggered” sample set SM

err and asso-
ciated reduced-basis space constructed as the span
of appropriate error functions. These ideas also ex-
tend to the case in which the parameter dependence
can not be expressed (or accurately approximated)
as in (2); however we now need to at least partially
abandon the blackbox nature of the on-line stage of
computation, allowing evaluation (though not inver-
sion) of the truth-approximation operator, as well
as storage of some reduced-basis vectors of size N .

These methods are currently under development.
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