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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the Degree of Doctor of Philosophy.

A NEW CLASSIFIER BASED ON COMBINATION OF GENETIC
PROGRAMMING AND SUPPORT VECTOR MACHINE IN SOLVING

IMBALANCED CLASSIFICATION PROBLEM

By

MUHAMMAD SYAFIQ BIN MOHD POZI

February 2016

Chairperson : Associate Professor Md Nasir Sulaiman, PhD
Faculty : Computer Science and Information Technology

In supervised learning, class imbalanced data set is a state where the class distribution
is not uniform among the classes. Many classifiers fail to properly identify pattern that
belongs to minority class due to most of those classifiers are built in order to minimize
error rate. Hence, a biased classification model is highly anticipated as higher accuracy
can always be represented by majority class.

There are two methods in dealing with imbalanced classification problem, which are
based on data or algorithmic level. Data level based methods are meant to solve the
imbalanced classification problem based on the idea of making both classes equal in
number. However, by changing the distribution of both classes, the original classes dis-
tribution that are followed by that particular data will be violated. Algorithmic level
based methods however are based on introducing new optimization task to improve the
minority class classification rate, without changing the data characteristics. Nevertheless,
the optimization task requires specific care in order to prevent the issue of overfitting
classification model.

Therefore, a new classifier based on genetic programming (GP) and support vector ma-
chine (SVM) is proposed in this thesis in order to solve the imbalanced classification
problem without changing the data properties. The idea is to use GP to optimize the SVM
decision function such that the minority class classification rate is increased without sac-
rificing the accuracy rate for both classes. In addition, the classifier is also optimized
such that it has a good generalization property. The main keys of the new classifier are
based on the new kernel method, new learning metric and a new optimization algorithm
in order to optimize the SVM decision function. The proposed classifier is called Support
Vector Genetic Programming Machine, SVGPM.

In order to evaluate the performance of SVGPM against current methods in solving im-
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balanced classification task, three experiments are conducted such as on selected stan-
dard class imbalanced benchmark data sets, intrusion detection system (IDS) data set
and remote sensing data set. The SVGPM performance is compared against SVM and
cost-sensitive SVM due to the superiority of SVM in dealing with imbalanced classifi-
cation problem. The second experiment is by evaluating the SVGPM performance on
detecting anomalous rare attacks from network intrusion data set. The SVGPM perfor-
mance is compared against current methods in developing a prediction model for IDS. In
the third experiment, SVGPM is evaluated on wilt disease data set from remote sensing
study, to identify wilt diseased trees in high-resolution image. The SVGPM performance
is compared against the previously proposed methods in mapping the regions that are
covered by wilt diseased trees in Japan.

The carried out experimentation shown that SVGPM gives a very good classification rate
in classifying minority class without sacrificing the accuracy rate for both classes. This
is because, in the training stage, the introduced optimization task in SVGPM ensures that
each minority class example is generalized into one learning concept and both classifica-
tion rate for majority and minority classes are similar.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
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PENGKELAS BERDASARKAN KOMBINASI PENGATURCARAAN GENETIK
DAN MESIN SOKONGAN VECTOR DALAM MENYELESAIKAN MASALAH

KETIDAKSEIMBANGAN KLASIFIKASI

Oleh

MUHAMMAD SYAFIQ BIN MOHD POZI

Februari 2016

Pengerusi : Profesor Madya Md Nasir Sulaiman, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Dalam konteks pembelajaran diselia, ketidakseimbangan kelas data adalah suatu keadaan
di mana taburan kelas tidak seragam di dalam data. Oleh itu, banyak pengkelas gagal
untuk mengenali corak yang berasal daripada kelas minoriti dengan tepat kerana ke-
banyakan pengkelas dibina untuk mengurangkan kadar kesilapan dalam mengelas sesu-
atu data. Oleh itu, pengkelas yang berat sebelah amatlah dijangka disebabkan ketepatan
yang tinggi boleh hanya diwakili oleh kelas majoriti.

Terdapat dua kaedah dalam menyelesaikan masalah klasifikasi yang tidak seimbang,
sama ada berdasarkan tahap data atau tahap algoritma. Kaedah berasaskan tahap data
adalah untuk menyelesaikan masalah klasifikasi yang tidak seimbang berdasarkan idea
membuat jumlah data untuk kedua-dua kelas sama. Walaubagaimanapun, menukar tabu-
ran untuk kedua-dua kelas, taburan asal kelas yang diikuti oleh data tersebut akan ter-
cemar. Kaedah berasaskan tahap algoritma pula adalah berdasarkan dengan pengenalan
tugas pengoptimum yang baru untuk meningkatkan kadar klasifikasi ke atas kelas mi-
noriti tanpa mengubah sifat data tersebut. Walaupun begitu, tugas pengoptimum yang
baru perlu dibuat secara berhati-hati untuk mengelakkan masalah model klasifikasi yang
terlebih pemadanan.

Oleh itu, satu pengkelas berasaskan pengatucaraan genetik (GP) dan sokongan mesin
vektor (SVM) telah diusulkan di dalam tesis ini bagi menyelesaikan masalah klasifikasi
yang tidak seimbang. Ideanya ialah untuk menggunakan GP bagi mengoptimumkan
fungsi keputusan SVM di mana kadar klasifikasi kelas minoriti meningkat tanpa mengor-
bankan kadar ketepatan bagi kedua-dua kelas. Tambahan lagi, pengkelas tersebut juga
dioptimumkan bagi membuatkan ia mempunyai sifat generalisasi yang bagus. Kunci
utama bagi pengkelas ini ialah berdasarkan kaedah kernel yang baru, ukuran pembela-
jaran yang baru dan algoritma optimum yang baru, bertujuan untuk mengoptimumkan
funsi keputusan SVM. Pengkelas tersebut dipanggil sebagai sokongan pengaturcaraan
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genetik mesin vektor. Secara ringkasnya, pengkelas terbaru, dikenali sebagai SVGPM.

Bagi menilai keupayaan SVGPM dengan kaedah-kaedah terkini dalam menyelesaikan
masalah klasifikasi yang tidak seimbang, tiga ujikaji telah dijalankan. Eksperimen per-
tama berdasarkan set-set data yang digunakan sebagai penanda aras dalam menentukan
keupayaan pengkelas. Ujikaji yang kedua adalah untuk menganalisis keupayaan setiap
pengkelas dalam membuat sistem pengesanan pencerobohan dalam talian. Ujikaji yang
ketiga pula adalah untuk menganalisis keupayaan setiap pengkelas dalam memetakan
kawasan hutan yang mempunyai setiap pokok yang berpenyakit di kawasan pergunun-
gan Jepun.

Ujikaji-ujikaji yang telah dijalankan menunjukkan keupayaan SVGPM yang sangat baik
dalam mengklasifikasikan kelas minoriti tanpa mengorbankan kadar ketepatan untuk
kedua-dua kelas. Ini kerana, dalam peringkat latihan SVGPM, tugas pengoptimuman
dalam SVGPM memastikan bahawa setiap contoh kelas minoriti adalah umum kepada
satu konsep pembelajaran dan kedua-dua kadar klasifikasi untuk kelas majoriti dan kelas
minoriti adalah sama.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Machine learning is aimed at developing a system that learn. The theoretical foundation
of machine learning and its application in real world domains have been immensely ex-
plored in the last decades (Gonzalez-Abril et al., 2014; Chatrath et al., 2014; Kotsiantis,
2013; Loh, 2011; Gu et al., 2014; Chen et al., 2014).

In general, machine learning tasks can be classified into two basic categories, which
are supervised learning (Garcia et al., 2013; Jordan and Jacobs, 2014) and unsupervised
learning (Mirkin, 2012; Karaboga and Ozturk, 2011; Zimek et al., 2014, 2013). However,
the focus of this thesis is solely on supervised learning.

1.2 Supervised Learning

Supervised learning is a type of learning where an input-output relation is learned from
input-output samples, which is also known as training samples. Then, the learned rela-
tion will be validated on unseen input-output samples, which also known as validation or
testing samples. Two common tasks in supervised learning are classification and regres-
sion. The objective of classification task is to determine the correct discrete output given
a vector of input while the objective of regression task is to predict the correct continuous
value as the output given a vector of input.

Formulating a good learning algorithm for those tasks is the main research focus in su-
pervised learning. Beyond that, there are several recent research issues in supervised
learning that are quite challenging to solve such as model selection, active learning and
dimensionality reduction.

Model selection revolve around on controlling the complexity of the learned function
induced by learning algorithm to obtain good prediction performance. Here, a model is
a set of functions where the best performing learning function is learned from, whereby
the complexity of the learning function is directly related with the number of variables
utilized by the function. Either way, a good learning function should generalize well on
unseen input-output samples. However, this cannot be achieved if the complexity of the
learned function is not controlled properly. A learning function with high complexity
will result in high variance in prediction performance while a learning function with low
complexity will result in high bias in prediction performance. Figure 1.1 illustrates three
learning functions with different degree of complexities applied on the training samples.
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(a) (b)

(c)

Figure 1.1: The effect of various degree of complexity of the learning function in
approximating the true function.
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Figure 1.1a, with degree of 1, the learning function is not sufficient to fit the samples.
Figure 1.1b, with degree of 5, the learning function almost fit all the samples while
Figure 1.1c, with degree of 15, the learning function unnecessary learns the samples
noise, resulting the learning function significantly deviated from the sample true function.
Hence, from Figure 1.1 it can be concluded that the increased complexity of learning
function does not guarantee the function is closely related to the true function even though
it fits all the training samples. Moreover, blindly increasing the complexity of the learning
function will only increase the training time by large margin without any real benefit.
This is why model selection is an important factor that need to be properly taken care of
when formulating a new learning algorithm.

However, most of real world problems are not as simple as it seems in Figure 1.1. The
complexity in finding the true function can be affected by two main factors which are
the nature of the samples that need to be modelled and the formulation of the learning
algorithm. This is because, there are two basic principles in supervised learning (Moreno-
Torres et al., 2012; He and Garcia, 2009; Mitchell, 2009) which are:

1. Assumption 1: Both training and future samples have similar distribution and
characteristic. In order to perform any supervised learning task, it is assumed
that that the distribution of training and future samples is stationary, that is, the
future samples will not change over time. Hence, the task at hand is simply to
estimate the distribution of training samples. However, almost all the time, this
assumption is rarely fulfilled, for example, when the area outside of the training
region is extrapolated because of the nature of the data producer has been changed
significantly.

2. Assumption 2: Common objective function for learning algorithms is to mini-
mize error rate. Most standard learning algorithms are build based on empirical
risk minimization, such that, the main objective function of learning algorithms is
to minimize the error rate of the learning function. However, the learning func-
tion does not have the ability to differentiate between important input points and
useless or less important input points such as noises or outliers. Depending on
the samples, this important input points might be represented by lower number of
points compare to useless input points. As a result, the resulting learning function
performance is largely contributed by useless input points, which result in a biased
learning function. In classification task, this problem is closely associated with
imbalanced classification problem. Hence, imbalanced classification which is the
main focus of this thesis.

            
            
            
              
          
          
               

            
            
            
             
          
           
               

Hence, several frameworks have been designed to help researcher to determine the ex-
pected performance of each learning function inside the specified learning model when 
one or both assumptions mentioned before are violated, especially in high dimensional 
samples, among other, such as Cross Validation (CV) (Arlot et al., 2010), Aikake Infor-
mation Criterion (AIC) (Hu, 2007), and Structural Risk Minimize Vapnik-Chervonnenkis       
dimension (SRMVC) (Buhmann and Gronskiy, 2013). CV requires each learning func- 
tion inside the model to be trained by the same settings. Then the learning functions are
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validated on the testing samples in order to determine the performance of the learned
function, which is basically to minimize the empirical error rate. On the contrary, AIC
and SRMVC only need the training samples which select the best learning function based
on certain criteria. AIC values requires the learning algorithm to define the maximum
likelihood function and the number of free parameters. The free parameters will be pe-
nalized based on the increasing function, for each learning function in the model. The
best learning function is the one that has the lowest AIC value.

SRMVC however prioritize the simplest learning function over the training error. In con-
trast with CV and AIC, SRMVC requires some principles (Zhang, 2010) to be adhered
such as follows:

1. Based on the domain prior information, pick a class of capacities, for example,
polynomials of degree n, neural systems having n hidden layer neurons, an ar-
rangement of splines with n hubs or fuzzy logic models having n rules.

2. Partition the functions into a progression of settled subsets in place of expanding
multifaceted nature, for example, polynomials of increasing degree.

3. The empirical risk minimization is performed on each subset.

4. Finally the function in the series whose sum of empirical risk and Vapnik- Cher-
vonenkis confidence is minimal, is selected as the learning function.

Nonetheless, it is almost an infeasible process to evaluate each subset in order to com-
ply with SRMVC principles, especially when some learning functions are based on
very complex learning algorithm which requires high processing computational power
to make it as a feasible process. Therefore, in order to overcome this problem, a SRMVC
based learning algorithm that adhere to the SRMVC principles has been developed which
is called as Support Vector Machine (SVM) and its regression type which is known as
Support Vector Regression (SVR).

Other research issues in formulating a learning algorithm are related to active learning
and dimensionality reduction. Active learning is a type of learning where users are allow
to design the location of training input points in order to maximize the performance of the
learning function while dimensionality reduction is a process to reduce the complexity of
input-output samples under assumption that some points in the samples are redundant or
useless due to noises or outliers. Both of these issues are beyond the scope of this thesis.

4
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1.3 Imbalanced Classification Problem

The issue of imbalanced classification problem appears often on data mining applications
due to many reasons such as direct result of the nature of the dataspace, time and storage
issue (He and Garcia, 2009) which make learning the distinction between classes, i.e.,
the true function or concept for each class, difficult.

One of the domain that always dealing with imbalanced classification problem is when
modelling medical problem. For example, Gil et al. (2012b) has develop a learning
model for seminal quality based on life factor. However, the accuracy of the model
cannot properly discriminate bad sperm quality due to insufficient bad sperm data. As a
result, even though the classification accuracy is high, but the model is bias since high
accuracy can solely be represented by majority class or good sperm data.

1.4 Problem Statement

Several learning algorithms have been proposed to solve imbalanced classification prob-
lem. However, recent review on many proposed learning algorithms such as C4.5 (Quin-
lan, 2014), Naive-Bayes (Jiang et al., 2014; Zhang, 2004), and Neural Network (Maren
et al., 2014) with respect to the mentioned learning strategies seems to suggest that they
are susceptible to class imbalance. This is because, it is hard to control the generalization
property of those classifiers. Both C4.5 and Neural Network are very easy to overfit,
while Naive-Bayes requires the user to specify the best attributes as it can’t learn the
relation among the data attributes.

Several works based on SVM (Gonzalez-Abril et al., 2014; Maratea et al., 2014; Imam
et al., 2006) have shown that SVM is the classifier paradigm that is less affected by class
imbalance, being almost insensitive to all but the most imbalanced distributions (Prati
et al., 2014). This is because, based on the SRMVC (Zhang, 2010) principles, SVM
learning function has a strong generalization property as it can be represented by a
smaller subset of patterns, hence, making SVM a usually preferred classifier when deal-
ing with imbalanced classification problem.

However, the experimental results obtained from those SVM based techniques shown
that there is always a compromise between the total accuracy and precision of minority
class. In addition, when Assumption 1 is violated, the performance of those techniques
are significantly reduced in term of specificity value on minority class. This is proba-
bly because the proposed techniques (Gonzalez-Abril et al., 2014; Imam et al., 2006)
reduces the generalization property of SVM as the tradeoff that need to be paid to im-
prove the classification rate of minority class based on standard learning metrics such
as specificity or geometric mean. In addition, other proposals, such as designing a new
SVM kernel (Maratea et al., 2014; Zhang et al., 2014b) requires longer computing time in
the training stage due to the complexity introduced in tuning the appropriate parameters,
which is introduced in the new kernel.
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Thus, we are attempting to improve the classification performance on class imbalanced
data set, based on SVM, without paying a significant tradeoff between accuracy and
precision of the minority class without increasing the complexity in model selection,
and also to improve the generalization performance on unseen data that have different
distribution with training data. In this thesis, we refer the issue of data having different
classes distribution between training and future data as dynamic data.

1.5 Research Objective

The primary objective of this research is to propose a new classifier in order to improve
the classification rate on minority class without sacrificing the overall accuracy. In addi-
tion, the classification model from the proposed classifier can be generalized on unseen
data that have different classes distribution between training and future data. In order to
achieve the primary objectives, the following objectives are adopted:

1. To propose a new SVM kernel method that transform input data into higher dimen-
sional space to solve imbalanced classification problem. The SVM is chosen due
to its high generalization property, as previously mentioned in Section 1.1.

2. To formulate a new learning metric that need to be maximized in order to control
the classifier complexity.

3. To propose a new evolutionary optimization algorithm based on genetic program-
ming that use both of the proposed SVM kernel and formulated learning metric in
order to improve the precision of minority class without significantly sacrificing
the accuracy of the learning function and in addition to improve the generaliza-
tion performance on unseen data that have different classes distribution between
training and future data.

4. To show the applicability of the proposed classifier on real world application such
as intrusion detection system (IDS) and remote sensing researches.

1.6 Research Scope

The scope of this work is centered around binary classification problems with a static
training and validation samples. By static we mean they are fully known at the same
time, unlike time series problems where data measurements are made available step by
step.

In addition, negative and majority class are used interchangeably in this thesis, which
representing a class with highest number of instances in a given data set, while positive
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and minority class are used interchangeably in this thesis, which representing a class with
lowest number of instances in a given data set.

1.7 Research Contribution

Hence, the overall contribution of this research is to develop a new classifier based on
SVM to solve imbalanced classification problem. The contribution can be divided into
three main contributions such as follows:

1. A new kernel method for solving imbalanced classification problem.

2. A new learning metric that combines SVM internal structure in order to control the
SVM complexity while also improving the classification performance on minority
class.

3. A new evolutionary optimization algorithm for SVM in handling imbalanced clas-
sification problem which consists of the proposed kernel method and learning met-
ric. We present a new algorithm to optimize the SVM learning function in solving
imbalanced classification problem without significant reduction on the classifica-
tion accuracy and generalization property using genetic programming. The new
learning algorithm is called Support Vector based on Genetic Programming Ma-
chine (SVGPM).

1.8 Thesis Organization

In particular, Chapter 2 reviews the background study of imbalanced classification prob-
lem and different kinds of strategies that have been proposed recently in solving imbal-
anced classification problem. Some examples of imbalanced classification problem are
also presented in the chapter. Next, Chapter 3 explains the research methodologies that
are followed in this thesis in detail, such as the flow of the research, the detail of each
data set that is used in the experiment and also software and hardware requirements.
Then, Chapter 4 describes the new optimization algorithm based on SVM to improve the
learning performance on imbalanced classification problem, resulting to a new classifier
called Support Vector Genetic Programming Machine (SVGPM). Furthermore, Chapter
4 is the main contribution of the thesis. Next, Chapter 5 discusses the experimentation
design, result and analysis of the obtained result of the proposed classifier. Finally, Chap-
ter 6 concludes the thesis and suggested several improvement that can be done based on
this research contribution as future work.
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