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ABSTRACT
Performance prediction has emerged as one of the most pop-
ular approaches to leverage large volume of online learning
data. In the majority of current works, performance pre-
diction is based on students’ past activities in graded learn-
ing resources (such as problems and quizzes), while their
activities in non-graded resources (such as reading mate-
rial) are ignored. In this paper, we introduce an approach
that can take advantage of students’ work with non-graded
learning resources, as auxiliary data, in order to predict stu-
dents’ performance in graded resources. This approach can
discover the hidden inter-relationships between learning re-
sources of different types, only using student activity data.
Based on our experiments, the proposed approach can signif-
icantly reduce the error of student performance prediction,
compared to baseline algorithms, while discovering meaning-
ful and surprising relationships among learning resources.
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1. INTRODUCTION AND RELATED WORK
The learning data abundance, due to popularity of Massive
Open Online Courses (MOOCs), introduces new opportuni-
ties and challenges for the educational data mining (EDM)
field. On one hand, larger volumes of student data can
increase performance of traditional EDM approaches. For
example, a performance prediction approach that is popu-
lar in the area of intelligent tutoring systems, offers a good
basis for learning personalization. If the data-driven per-
formance model predicts that some problem will be solved
by the current student with a high probability, this prob-
lem could be skipped in favor of a more challenging one.
If the expected performance is low, students could be of-
fered some help and supplementary material. MOOC-scale
data can help improving performance prediction making this
approach more usable. On the other hand, data coming
from modern MOOCs is usually more heterogeneous and

too complicated for traditional EDM approaches. Unlike
conventional Intelligent Tutoring Systems (ITS), that are
mostly based on problem-solving, MOOCs offer students to
learn and assess their knowledge using a variety of learning
resources, such as reading materials, lecture videos, assign-
ments, exams, graded quizzes, and discussions. This leads to
various types of learning activities for students. With that
heterogeneity, come interesting challenges: how to use infor-
mation about student work with diverse learning resources
to assess student knowledge or predict student performance?
what is the relationship between concepts that are offered
in different learning resource types?

A number of research projects, focused on alternative learn-
ing resources, demonstrated that many kinds of resources
could considerably contribute to student learning. For ex-
ample, Najar et al. studied effect of adaptive worked exam-
ples versus unsupported problem solving and showed that
adaptive worked examples can lead to faster and more effec-
tive learning [Najar et al. 2014]. Also, Agrawal et al. showed
that enriching textbooks with additional forms of content,
such as images and videos, increases the helpfulness of learn-
ing material [Agrawal et al. 2014]. This indicates that ig-
noring the interaction between various types of resources
limits our understanding of students’ learning behavior and
the efficiency of mining and analytical tasks, such as stu-
dent knowledge modeling or performance prediction. Addi-
tionally, understanding inter-relationships between different
resource types and student activities can help instructors
in having more well-informed decisions on their course de-
sign. Modeling such inter-relationships in students’ data can
provide a unified view to data heterogeneity and present a
better understanding of student learning, by modeling these
different resource types that present student activities.

While there are some studies in the literature on impact
of various learning resources on learning, the relationship
between learning resource types and their effect on predict-
ing student performance is under-investigated. For example,
Wen and Rosé studied student patterns across different ac-
tivity types and concluded that these patterns can provide
insights into different activity distributions between high-
grade and low-grade students [Wen and Rosé 2014]. How-
ever, their goal was not to predict student grades from their
activities. Velasquez et al. [Velasquez et al. 2014] identi-
fied learning aid use patterns using cluster analysis. They
showed that high use of learning aids is significantly corre-
lated with students’ exam performance. But, they did not
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predict student performance. Sao Pedro et al. [Sao Pedro
et al. 2013] extended Bayesian Knowledge Tracing by condi-
tioning the learning on whether the students received scaf-
folding in a topic or not. This model uses extra context infor-
mation (topics) in addition to student performance, does not
discover the relationship between learning resource types,
and does not distinguish between different learning resources.
Jǐŕı and Pelánek studied learning resource similarities [Jǐŕı
and Pelánek 2017], but it was on graded resources, not con-
sidering resource types, and not predicting student perfor-
mance.

One reason for unpopularity of using heterogeneous resources
for predicting student performance is their potential conflict-
ing effects. For example, Beck et al. investigated if provid-
ing assistance (help) to students benefits them using experi-
mental trials, Bayesian Evaluation and Assessment frame-
work, and learning decomposition [Beck et al. 2008]. In
their studies, experimental trials and learning decomposi-
tion showed that assistance hurts students’ learning. How-
ever, the Bayesian Evaluation and Assessment framework
found that assistance promoted students’ long-term learn-
ing. More recently, Huang et al. discovered that adaptation
of their framework (FAST) for student modeling by includ-
ing various activity types may lead researchers to contra-
dictory conclusions [Huang et al. 2015]. More specifically,
they studied the impact of example usage on student learn-
ing. In one of their formulations student example activity
suggests a positive association with model parameters, such
as probability of learning, while in another formulation this
type of activity has a negative association with model pa-
rameters. Also, Hosseini et al. concluded that annotated
examples show a negative relationship with students’ learn-
ing, because of a selection effect: while annotated students
may help students to learn, weaker students may study more
annotated examples [Hosseini et al. 2016].

Another complication for considering heterogeneous resources
is the difficulty in interpreting students’ observed activities.
In graded resource types, such as assignments and quizzes,
a student’s score explicitly represents her knowledge on the
topic. Whereas in other resource types, such as reading ma-
terial, there is no direct evaluation or explicit observation
of student’s knowledge. Hence, measuring the effect of such
learning resources on students’ knowledge, and thus predict-
ing their future performance, would be a challenging task.

In this paper we propose an approach motivated by canon-
ical correlation analysis (CCA) to discover the interaction
between different learning resource types, using student ac-
tivities, and to predict student performance on different
learning resources. Our proposed approach can uncover la-
tent relationships among subsets of learning recourses from
different types and can quantify these relationships. Our
analysis on two real-world datasets demonstrates that the
discovered relationships are meaningful and can be used for
course design and adaptive learning purposes. Addition-
ally, the proposed approach can use student interactions
with one auxiliary learning resource (such as examples) to
predict students performance on another target learning re-
source type (such as problems). Our experiments on four
real-world datasets show that our approach can efficiently
use the extra information provided by auxiliary learning re-

sources and significantly improve the student performance
prediction error over the baseline models.

2. THE APPROACH
Our proposed approach is inspired by Canonical Correla-
tion Analysis (CCA) [Hotelling 1936], which is a multi-
variate statistical model that studies the interrelationships
among sets of multiple dependent and independent vari-
ables. CCA’s goal is to find linear projections of these vari-
able sets into a shared latent space such that the correlation
between these projections are maximized. In this research,
we use CCA as our main tool: we propose to find the rela-
tionship between students’ ungraded activities (as indepen-
dent variables) and students’ graded activities (as dependent
variables) using CCA. Our final goal is to propose a model
for predicting student performance using pairs of resource
types, motivated by the discovered relationships.

Our reason for choosing CCA as inspiration is twofold. First,
CCA provides different views to the same data samples.
Since we have the same students interacting with multiple
resource types (e.g., examples and problems), we need to
have a tool to model these interactions at the same time,
while distinguishing between distinct resource types (as dif-
ferent views). Other factor analysis models, such as Princi-
pal Component Analysis (PCA), operate on one single view
of the data and are not appropriate for our problem. Second,
because of having multiple learning resources within each re-
source type (e.g., multiple problems and multiple examples)
and several students (as datapoints) we need a multi-variate
statistical model to capture the two-dimensional variability
in the data. Bivariate or simpler multivariate models such as
correlation or regression analysis can only capture the data
variance for one dependent variable at a time and thus miss
the variability of either students or learning material. We
first give a brief background on CCA and then explain how
to model and solve our problems using it.

CCA. If matrix Xm×n represents n data samples and m
variables and matrix Yp×n contains the values for p variables
of same n data samples, CCA aims to find linear transfor-
mations, wx and wy, such that the correlation between pro-
jections of X and Y through wx and wy (reflected as ρ in
Equation 1) is maximized.

ρ =
wT

xXY
Twy√

(wT
xXXTwx)(wT

y Y Y Twy)
(1)

Since multiplication of wx and wy by a constant does not
change the value of ρ in Equation 1, the problem of finding
wx and wy can be formulated as in Equation 2.

max
wx,wy

wT
xXY

Twy

subject to wT
xXX

Twx = 1, wT
y Y Y

Twy = 1
(2)

Adding the regularization parameters to Equation 2, for con-
trolling over-fitting of ρ, Sun et al. show that this regularized-
CCA problem can be represented as in Equation 3, and
solved using a least squares approach [Sun et al. 2008]. The
formulation for wy is a symmetrical version of Equation 3.

XY T (Y Y T )−1Y XTwx = η(XXT + λI)wx (3)

In addition to wx and wy that produce the maximum corre-
lation ρ, there can be other projection vector pairs that can



map X and Y matrices with correlations less than or equal
to ρ. The optimization problem in Equation 4 finds these
multiple projection vectors for X (in matrix Wx).

max
Wx

Trace(WT
x XY

T (Y Y T )−1Y XTWx)

subject to WT
x XX

TWx = I
(4)

2.1 Relation Discovery between Learning Re-
source Types

As students work with various learning resources that are
provided in an online course or a tutoring system, they gain
more knowledge about the concepts presented in the course
and can tackle more complicated problems. Knowing the
relationship between different learning resource types and
the way they interact in affecting students’ knowledge can
help better course design.Having the learning material from
one resource type (e.g., problems) as one set of variables and
learning material from another type (e.g., examples) as the
other set of variables, we can interpret canonical correlation
as a measure of relatedness between resource types.

More specifically, to map our problem to the CCA setting,
we suppose that there are n students that have at least one
activity in each of the resource types. For example, these
students may have tried some problems and studied some
examples in the course. We represent the students’ perfor-
mance on problems as a matrix Yp×n, with n students, p
problems, and Yi,j representing the student j’s score in quiz
i. This score can be a grade or pass/fail indicator. Similarly,
students’ example activities can be represented as another
matrix Xm×n, with n students, m examples, and Xi,j as an
indication that user j has read example i. Given these two
activity matrices, we use CCA to find linear transformations
Wx and Wy and canonical correlations P as in Equation 4.

Formulating our problem as an instance of CCA, Wx and
Wy can represent linear transformation matrices that map
the original activity matrices X and Y into a shared latent
space. These projections are scaled based on the canoni-
cal correlation values in a diagonal matrix Pc×c, in which
each of the diagonal elements are equivalent to the canoni-
cal correlation value ρi for each projection vector pair Wx:,i

and Wy:,i . Meanwhile, the projection matrices Wxm×c and
Wyp×c are representations of learning resources, projected
into the shared space. Having this shared component space,
we can compare and relate activities that are present in the
two resource types.

In other words, each learning material i from the auxiliary
learning resource in matrix X, will be represented as a 1× c
vector Wxi,: and each learning material j from the target
learning resource in matrix Y , will be represented as a 1× c
vector Wyj,: . So, we can find the most similar resources from
different types by looking at the cosine similarity between
those vectors in the shared component space.

Note that this is different from simply comparing matrices X
and Y in the shared student space by calculating their cosine
similarity. Here, we have the canonical correlation effect on
finding similar learning resources. To be more clear, if we
suppose that wT

xXX
Twx = 1 and wT

y Y Y
Twy = 1 (by which

we transformed Equation 1 to Equation 2), then we have:

ρ̂ = wT
xXY

Twy (5)

ρ̂ in Equation 5 is equivalent to ρ in Equation 1, scaled
by its denominator. Now, if we left-multiply both sides of

Equation 5 by wT
x

−1
, and right-multiply both sides of it by

wy
−1, we achieve XY T = wT

x
−1
ρwy

−1. Equivalently, when
having multiple canonical correlations, we can see that:

XY T = WT
x

−1
PWy

−1 (6)

Equation 6 shows the relationship between the projection
matrices with the cosine similarity of X and Y (XY T ).
Clearly, Y XT and WyW

T
x are not equal.

2.2 Inter-Activity Performance Prediction
Predicting how a student performs on a problem can help
teachers to adjust the course material based on students’
predicted performance and can lead to personalized learn-
ing. Also, it can guide students towards a structured and
effective learning. As in many prediction problems, educa-
tional data is usually incomplete: not all students try all
resources. We focus on predicting students’ scores for the
first time that they try a problem. Thus, the problem of
predicting students’ performance can be interpreted as es-
timating the missing values in the student activity matrix
(Y ) that is described in the beginning of Section 2.

As proposed in Section 2.1, we can find the relationship be-
tween sets of learning resources of two types using CCA.
Thus, if we know students’ performance on auxiliary learn-
ing resources in matrix X and their performance in the tar-
get learning resource in matrix Y , we can understand how
students’ activities on auxiliary learning resources affect the
same students’ performance on the target learning resources.
When the student activity matrix (Y ) is incomplete, we can
estimate wx and wy by calculating the canonical correlations
between the auxiliary activity matrix X and the incomplete
target activity matrix Y to achieve the estimated projection
vectors ŵx and ŵy. Using these projection vectors, we can

estimate a complete activity matrix Ŷ as in Equation 7.

Ŷ = ŵyρŵx
TX (7)

Here, student activities in the auxiliary learning resource are
mapped to the shared latent space, scaled by the canonical
correlation factor ρ, and then mapped back to the target
learning resource space. In case of calculating multiple (c)

projection vector pairs (Ŵxm×c and Ŵyp×c), with canoni-
cal correlations represented in Pc×c, we estimate students’
performance (Ŷ ) as in Equation 8.

Ŷ = ŴyPŴ
T
x X (8)

3. DATASETS
We use four datasets from two online platforms for our
experiments. The anonymized data represent log files of
student interaction with course resources (activities), and
their performance in them. Each of these platforms allow
their students to learn from multiple learning resource types
that calls for modeling inter-activity relations. The first two
datasets are richer since they have learning resource names,
topics, and contents although we do not use them for the
discovery and prediction purposes. The third and fourth
datasets are larger, from a MOOC platform, with more vari-
ation in learning resource types. However, we do not have



access to these learning resources beyond their assigned IDs.
In the following sections, we describe each of these datasets.

Table 1: Statistics of Mastery Grids datasets

students prob.
Parsons
prob.

annot.
exam.

anim.
exam.

Python
number 319 37 43 58 53
average
activity
records

65.5 147.5 112.3 97.2 93.8

density 0.34 0.46 0.35 0.30 0.29

Java
number 206 113 - 101 50
average
activity
records

127.2 108.3 - 93.9 89.7

density 0.78 0.53 - 0.47 0.44

Table 2: Statistics of Canvas Network datasets

students
quiz-
assign.

assign.
discus.
topics

Business and
Management

number 232 32 38 34
average
activity
records

62.7 208.1 190.8 18.9

density 0.60 0.89 0.82 0.08

Professions and
Applied Sciences

number 1160 18 26 70
average
activity
records

16.25 427.3 372.5 21.1

density 0.14 0.37 0.32 0.02

3.1 Mastery Grids Datasets
Our first two datasets are collected from an online intelli-
gent tutoring system, Mastery Grids [Loboda et al. 2014].
This system provides personalized access to three types of
interactive content for Java programming and four types of
content for Python programming. Parameterized semantic
problems, annotated examples (code snippets with explana-
tions), and animated examples (interactive simulations that
visually demonstrate the runtime behavior of a code snip-
pet) are the three types of resources that are available for
both Java and Python courses. In addition to those, Python
course includes the so-called Parsons problems originally in-
troduced in [Parsons and Haden 2006].

The parameterized semantic problems (problems, for short)
are generated by QuizJet and QuizPet system [Hsiao et al.
2009] from a pool of parameterized questions on Java and
Python programming. As a result, the same problem can be
attempted multiple times by students with various parame-
ters. We only consider students’ first attempt on each prob-
lem for our experiments. Annotated examples presented
by WebEx allow students to interactively explore line-by-
line explanation of code snippets [Brusilovsky and Yudelson
2008]. Working with animated examples, which are gener-
ated using Jsvee library [Sirkiä 2016], students can execute a
Java or Python program visually, observing internal opera-
tion, such as variable assignments and printing on a console.
In Parsons problems, students are asked to solve a program-
ming task by selecting and sorting provided code lines.

Mastery Grids groups different learning resources into mul-
tiple learning topics. Although this system offers a recom-
mended topic sequence in its interface, the students are free

to select and work on any of the topics and learning resources
at any given time. The Java dataset from this system is
collected from Fall and Spring semesters of 2016. Among
all of the students, we selected the ones who have at least
one activity in each of the problems, annotated examples,
and animated examples. A summary of statistics for these
datasets are shown in Table 1. The Python dataset about
two times sparser than the Java dataset in terms of num-
ber of all activities per student. Among different resource
types, the density of student activities on problems are the
closest between the two datasets. In both of the datasets,
student activities on problems are the densest and activities
on animated examples are the most sparse.

3.2 Canvas Network Datasets
Our third and fourth datasets are publicly available from
Canvas Network (http://canvas.net) [Network 2016]. Can-
vas Network hosts many freely available open online courses
in which it offers multiple leaning resource types. More
specifically, in addition to learning modules, each course can
have different types of assignments, discussions, and pop-
quizzes. Participants are not limited to a specific sequence of
learning material or assignments. Categories of the learning
resources include “assignments”, “quiz-assignments”, “pop-
quizzes”,“discussions”, and“wikis”. The dataset is anonymized
such that student IDs, course names, discussion contents,
submission contents, and course contents are not available.

Course assignments can be quiz-style (“quiz-assignment”) or
in longer format, for which students submit a text or video
file (“assignments”). We choose two of the offered courses
in Canvas Network as the third and fourth datasets for our
experiments. These two courses are selected because they
provide multiple learning resource types and have more ac-
tive students in all of these resource types. The first course
is in the “Professions and Applied Sciences” field and the
second course is in the “Business and Management” field.

Since assignments, quiz-assignments, and discussions have
the most activities, we focus on these resource types in our
experiments. Among these three, assignments and quiz-
assignments are graded. For consistency, we normalize stu-
dents’ grades between zero and one based on their maximum
possible grade. For discussions, we consider a binary vari-
able representing if a student has posted a message or not.
We select the students who have at least one activity in each
of these learning resources. A summary of statistics for these
datasets is shown in Table 2. Discussion topics have the least
dense activity matrices in the two datasets. They are very
sparse compared to student activities on assignments and
quiz-assignments. Comparing the two datasets from Canvas
Network, overall student activities in professional and ap-
plied sciences domain course is very sparse. But, the density
of student activities on all resources in business and manage-
ment domain course is comparable with the datasets from
Mastery Grids system. However, the distribution of student
activities among various resource types are more skewed in
the Canvas Network datasets.

4. EXPERIMENTS
4.1 Experiment Setup
Per the proposed model in Section 2, element Xi,j in activity
matrix X represents the result of student j’s first attempt
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on learning resource i. This activity result can be different
for different learning resource types. For graded learning re-
sources, such as assignments and quiz-assignments, we use
the normalized score of students; for problems and Parsons
problems with success or failure feedback, we use binary
scores; and for non-graded activities, such as reading an an-
notated example or posting in a discussion forum, we use a
binary indicator that shows the students’ attempt. We use
average imputation for missing values.

For prediction experiments, we follow a 5-fold user strati-
fied separation of the student performance data to perform
cross-validation on it. Particularly, in each round of exper-
iments, we select 20% of students as test students, 15% of
them for validation purposes, and 65% of them as train. Our
task is to predict test students’ performance on activities in
a target learning resource type, observing 20% of these stu-
dents’ activities, and the training data. In the CCA-based
proposed approach, the training data includes all students’
activities in the auxiliary learning resource type, in addition
to observed activities of students in the target resources. We
repeat each round of the experiments for 5 times.

Since only quiz-assignments and assignments are graded in
the Canvas Network datasets, and only problems and Par-
sons problems are graded in the Mastery Grids datasets, we
define the prediction tasks on these resource types. Discus-
sions from the Canvas Network datasets and examples (an-
notated and animated) from the Mastery Grids datasets are
only used as auxiliary resources. Note that each of graded re-
source types (quiz-assignments, assignments, problems, and
Parsons problems) can also be used as an auxiliary resource
for another type of graded resource in the same dataset.

Baselines. In previous works, collaborative filtering meth-
ods have been proved successful in predicting students per-
formance [Thai-Nghe et al. 2011, Sahebi et al. 2014]. Since
our proposed approach is similar to these approaches in
discovering latent relationships among learning resources,
through factorizing activity matrices, we choose two settings
of SVD++ algorithm [Koren et al. 2009] as our baselines.
To study if adding student activities in auxiliary resource
type would help better estimation of students performance
in the target resource type, we compare our approach with
single-resource SVD++ algorithm. In this setting we run
SVD++ algorithm only on the target learning resource ma-
trix, assuming that we do not have the information on stu-
dent activities in the auxiliary resource types, and compare
the results with our proposed method. To understand our
CCA-based method’s efficiency on capturing important rela-
tionships between different learning resource types, we com-
pare it with a paired-resource setting of SVD++ algorithm.
Particularly, we merge the two auxiliary and target learning
resource types into one set of learning materials (represented
by one matrix) and run the SVD++ algorithm on this aug-
mented matrix. Note that our proposed method factorized
two separate matrices at the same time but SVD++ can
only factorize one matrix.

Since the student activity datasets are biased towards stu-
dent success (e.g., average grade for problems in the Python
dataset is 0.67 out of 1), we compare the methods with an
average baseline. To do this, we use the training dataset

average as the predicted performance for all of the students
in each of the 5 data splits.

4.2 Discovering Relationships between Learn-
ing Resource Types

One of our goals in this paper is to understand relationships
and interactions between sets of learning resources with var-
ious types. CCA has the ability to represent each pair of
learning resource types in the same latent space. This en-
ables us to relate learning material of different types only
based on student activities, without relying on their content
or presented concepts. Since the Mastery Grid datasets pro-
vide learning resource names and topics we can confirm the
discovered relationships by comparing them with learning
resource topic similarities. These topics have been manu-
ally assigned to learning resources by experts, during course
design in Mastery Grids. In order to take a deeper look at
the discovered similarities, we study the top similar learning
resources of different types in the same course (as shown in
Table 3). To calculate these similarities, we look at projec-
tions of each learning resource in the shared latent space, Wx

and Wy and calculate the cosine similarity between them, as
mentioned in Section 2.1. We look at the most similar learn-
ing resources of each course in the following.

The Java Dataset. For the Java dataset, we can calcu-
late the cosine similarity of problems with animated exam-
ples and problems with annotated examples. We can see
the most similar problems and animated examples in rows
1-4 of Table 3. As we can see, three of these four learn-
ing resource pairs are from the same expert-labeled topic.
For example, both problem“jWhile1”and animated example
“ae while demo”are about“while loops” in Java. This shows
that our approach can accurately figure out the most similar
problems and animated examples, only based on student ac-
tivities and their performance, not knowing about their topic
or content. However, the resources in row 3 are from differ-
ent expert-labeled topics“boolean expressions”and“switch”.
While these two are not exactly the same, the switch expres-
sions in Java use boolean expressions in their conditional
statements. So these two topics are closely related to each
other: if a student cannot understand the “boolean expres-
sions” topic, understanding the “switch” topic would be dif-
ficult for this student.

The most similar Java annotated examples and problems,
found by CCA projection matrices, are listed in rows 5-8.
Here, we do not see the obvious similarities that was ap-
parent between animated examples and problems. In row
5, there is topic similarity between the problem with “loops
do-while” topic and the annotated example with “loops for”
topic: both of them are about loops in Java. For row 8, we
know that Java for loops use “arithmetic operations” in their
conditional statement. However, topics for similar resources
discovered in rows 6 and 7 look irrelevant. Row 6’s prob-
lem is labeled by experts with the “interfaces” topic, while
the similar annotated example is labeled with the“variables”
topic. Likewise, the problem topic in row 7 is “interfaces”,
while the topic of similar annotated example is “objects”.

To gain more insight about these learning resources, we
looked at their contents. We discovered that although the
general topics for these problems and their discovered anno-



Table 3: Most similar learning materials of different types, from Java and Python courses, according to their
similarity using CCA projection vectors.

course
material
type

row

Java

prob.
&
anim.
exam.

prob.
ID

prob. name prob. topic anim. exam. topic anim. exam. name
anim.
exam.
ID

1 14 jArrayList5 ArrayList ArrayList ae arraylist2 v2 3
2 18 jBoolean Operators Boolean expressions Switch ae switch demo2 44
3 65 jMathFuc2 Arithmetic operations Arithmetic operations ae arithmetic v2 1
4 100 jWhile1 Loops while Loops while ae while demo 49

prob.
&
annot.
exam.

prob.
ID

prob. name prob. topic annot. exam. topic annot. exam. name
annot.
exam.
ID

5 37 jDowhile1 Loops do while Loops for for1 v2 28
6 57 jInterfaces1 Interfaces Variables PrintTester 78
7 61 jInterfaces5 Interfaces Objects AccessorMutatorDemo 1
8 63 jMathCeil Arithmetic operations Loops for JavaTutorial 4 6 8 57

Python

prob.
&
annot.
exam.

prob.
ID

prob. name prob. topic annot. exam. topic annot. exam. name
annot.
exam.
ID

9 3 q py arithmetic1 Variables Variables pyt1.3 5
10 21 q py nested if elif1 if statements values references pytt10.25 58
11 23 q py obj account1 classes objects Lists pyt7.2 53

prob.
&
anim.
exam.

prob.
ID

prob. name prob. topic anim. exam. topic anim. exam. name
anim.
exam.
ID

12 7 q py dict access1 dictionary loops ae adl while 39
13 29 q py output1 output formatting variables ae adl arithmetics2 1
14 10 q py fun car1 functions exceptions ae adl tryexcept2 34

prob.
&
pars.
prob.

prob.
ID

prob. name prob. topic pars. prob. topic pars. prob. name
pars.
prob.
ID

15 10 q py fun car1 functions exceptions ps python try adding 38
16 12 q py if elif1 if statements loops combo python while 9
17 35 q py swap1 variables variables combo swap 11

pars.
prob.
&
annot.
exam.

pars.
prob.
ID

pars. prob. name pars. prob. topic annot. exam. topic annot. exam. name
annot.
exam.
ID

18 1 combo avg variables variables pyt2.1 32
19 14 ps python addition variables variables pyt1.2 4
20 41 ps return bigger or none functions functions pyt10.7 30

pars.
prob.
&
anim.
exam.

pars.
prob.
ID

pars. prob. name pars. prob. topic anim. exam. topic anim. exam. name
anim.
exam.
ID

21 1 combo avg variables variables ae python assignment 40
22 12 ps hello variables variables ae adl arithmetics2 1
23 43 ps simple params functions functions ae adl returnvalue 29

Figure 1: Content of problem with“Interfaces” topic
(row 6 of Table 3)

tated examples are not the same, they include very sim-
ilar concepts. For example, Figure 1 shows the content
for problem “jInterfaces1” (topic: “interfaces”), and Figure
2 shows the content for annotated example “PrintTester”
(topic: “variables”). As we can see, the concept of printing
an output in the console is very important in both of these
learning resources. Interestingly, it appears that although

the designers of Java course were interested in the mentioned
topics while designing these learning resources, we are dis-
covering other possible “latent topics” for them. Another
factor in these newly-found relations can be the mixed rela-
tionship of annotated examples with students performance.
Hosseini et al. have studied the use and impact of annotated
and animated examples in the same online tutoring system
and concluded that students are likely to learn more from
animated examples [Hosseini et al. 2016]. Particularly, they
showed that although more views of animated examples is
associated with a higher course grade, the number of views
on annotated examples has a negative effect on it. A possible
reason is the negative process of associating examples with
poor knowledge: students with poor knowledge are more
likely to study annotated examples. This association can
potentially overcome the positive impact of learning from
annotated examples and lead to a negative impact. Also,
they show that animated examples provided better impact
on problem solving success and post-test scores.

The Python Dataset. We study 5 pairs of resource types
and the cosine similarities between Wys and WT

x s in the
Python dataset: problems vs. animated examples, problems
vs. annotated examples, Parsons problems vs. animated



Figure 2: Content of annotated example with “Vari-
ables” topic (row 6 of Table 3)

Figure 3: Content of problem with “classes objects”
topic (row 11 of Table 3)

examples, Parsons problems vs. annotated examples, and
problems vs. Parsons problems. Samples of discovered sim-
ilar learning resources are shown in Table 3.

As shown in rows 9-11, the first problem and its matched
annotated example have the same topic of “variables”. But,
the next two pairs do not have a common topic. We study
the content of these learning resources to understand the
nature of their similarity. For example, if we look at row 11,
we see that annotated example “pyt7.2” has topic of “lists”.
Now if we look at problem“q py obj account1”with topic of
“classes objects” in Figure 3, we can see that this problem
uses lists (accounts variable) in it. We avoid showing the
content for the pair in row 10 due to space limits.

Rows 12-14 show similar animated examples and problems
in the Python dataset. To show the similarities between
concepts used in these animated examples and problems, we
look at one pair: problem “q py fun car1” with topic “func-
tions” (Figure 4) and animated example “ae adl tryexcept2”
with topic “exceptions” (Figure 5). We can see that there

is a function call and a function definition in this animated
example (Figure 5). Consequently, although this animated
example is not designed to teach the“function”topic and de-
spite of it being labeled with the “exceptions” topic only, the
discovered similarities show the associations between stu-
dents’ learning of functions and this animated example.

The most similar problems and Parsons problems are shown
in rows 15-17 of Table 3. Two of the top similar pairs are
from the same (“variables”) or related (“if statements” and
“loops”) topics. The resources in row 15 are from different
topics: a “functions” problem and an “exceptions” Parsons
problem. But, as can be seen in Figures 4 and 6 the Parsons
problem includes a function definition. So, students can
learn about functions while executing this animated example
that is about exceptions.

Figure 4: Content of problem with “functions” topic
(rows 14 and 15 of Table 3)

Figure 5: Content of animated example with “ex-
ceptions” topic (row 14 of Table 3)

Figure 6: Content of Parsons problem with “Excep-
tions” topic (row 15 of Table 3)

Finally, as we can see in rows 18-23, analogous samples of
Parsons problems vs annotated examples, and Parsons prob-
lems vs animated examples are all from the same topics.



One may think that the discovered similarities are a result
of topic arrangements in the course design and conclude that
we can find these similar learning resources by only looking
at the co-occurrence of student activities in two learning
resource types, e.g., by calculating the cosine similarities
between learning resources in the original student-space, or
matrices X and Y . However, looking at some of the discov-
ered similarities, such as the second row of Table 3, reassures
us that our approach can find the relationships beyond their
trivial co-occurrence. As we have mentioned, the “switch”
and “boolean Expressions” topics are not the same, but are
very related. In the Mastery Grids interface, these two top-
ics are not placed right next to each other. But, another
topic (“if-else” topic) is placed between them. This means
that the discovered similarity is not solely based on activity
co-occurrence due to topic placement in Mastery Grids.

To discover what we can gain from trivial co-occurrences,
without using our proposed method, we looked at samples
of the most similar learning resources, based on the cosine
similarity between student activities in the original student
space (similarity between matrices X and Y ). In this case,
the most similar discovered learning resource pairs are ei-
ther placed closely in the same topic (and thus, may happen
due to the students following the sequence imposed by learn-
ing resource arrangements in the interface), or do not have
any meaningful content-based relationship. For example,
the most similar animated example that is discovered in stu-
dent space for the “jBoolean Operators” problem (problem
in row 2 of Table 3) is labeled with the“primitive data types”
topic, demonstrating “Double” and “Short” data types.

To summarize, the discovered CCA-based similarities in both
datasets are meaningful. Some of the related learning re-
source pairs are from the same topics, others are related in
the concepts or sub-topics that they present. In general,
this is a very promising result, especially for applications in
which the learning resource contents are difficult to analyze
and compare. Discovering these similarities, instructors can
rearrange their learning material in ways that most bene-
fits students’ learning. Also, it can be used for multi-source
knowledge modeling of students. Namely, we can model stu-
dent knowledge in shared concepts between problems and
animated examples and understand how a student’s abil-
ity in a learning recourse type (e.g., to solve a problem)
increases by trying another learning resource of a different
type (e.g., a related animated example).

4.3 Predicting Student Performance Using Aux-
iliary Resource Types

Using the formulation proposed in Section 2.2, our goal here
is to predict students’ performance using auxiliary learn-
ing resource types and compare it with similar baseline ap-
proaches. We measure performance of the proposed and
baseline approaches using Root Mean Squared Error (RMSE).
This measure quantifies the average difference between ac-
tual students’ score and their predicted performance.

Mastery Grids Datasets For the Java programming dataset,
we run two sets of experiments. The first set of experi-
ments is on predicting students performance on problems,
using their activities on annotated examples as auxiliary
data (“annotated examples → problems”). In the second

set of experiments, we use animated example activities as
the auxiliary resource for predicting students performance
on problems (“animated examples → problems”). As men-
tioned before, we compare the results of our proposed ap-
proach with single-resource SVD++ –only using student logs
on problems– and paired-resource SVD++ –with the same
input as our proposed approach–.

For the Python programming dataset, we run six sets of
experiments. Having problems and Parsons problems as
target learning resource types, we use annotated examples
and animated examples as the auxiliary learning resources.
Additionally, problems may help us in predicting students’
performance in Parsons problems, and vice versa.

Table 4 shows the RMSE of CCA-based and baseline ap-
proaches for these sets of experiments on both of Mastery
Grids datasets. The numbers in parentheses report the 95-
percentile confidence interval for the reported errors. As
we can see here, our CCA-based approach performs signifi-
cantly better than the baselines in all of the experiment se-
tups in both datasets. As our proposed approach performs
better than single-resource SVD++, we can conclude than
adding the auxiliary data significantly improves student per-
formance prediction. On the other hand, we can see that the
proposed CCA-based approach works better than SVD++
in the multi-recourse setting using the same set of auxil-
iary and target data. Therefore, we can conclude that our
approach is a better fit for effectively using auxiliary data.

Comparing the two settings for SVD++, in the Python
dataset single-resource SVD++ performs as good as, or sig-
nificantly better than paired-resource SVD++. Specifically,
for combinations “animated examples→ problems” and “an-
notated examples→ problems”, paired-resource SVD++ has
a significantly higher error than single-resource SVD++.
This confirms our findings in Section 4.2 about smaller simi-
larities between problems and examples in the Python dataset.
As expected in biased datasets, we can see that average base-
line is working very well. Comparing with paired-resource
SVD++, its error is significantly lower in four of the exper-
iments on the Python dataset. Single-resource SVD++ is
significantly better than (in “animated examples → prob-
lems”, “annotated examples→ problems”, and “problems→
Parsons problems”) or similar to the average baseline.

In contrast, in the Java dataset, the average baseline has
slightly, but significantly, higher error than the proposed ap-
proach and the other two baselines for “annotated examples
→ problems”. For“animated examples→ problems”, the av-
erage baseline has better predictions compared to the other
two baselines. Also, paired-resource SVD++ works signif-
icantly better than single-resource SVD++ for “annotated
examples → problems”. This shows that paired-resource
SVD++ is not consistent on different datasets, even if sim-
ilar learning resource types are used, and to be able to take
advantage of auxiliary information, a more advanced ap-
proach, such as the proposed one, is needed.

Canvas Network datasets. Canvas Network datasets give
us the opportunity to test our approach on more varied
data of MOOCs and in different domains. Notably, “Profes-
sions and Applied Sciences” data has more users and is very



Table 4: RMSE for student performance prediction task on Mastery Grids datasets.
anim. example
→ problem

annot. example
→ problem

pars. prob.
→ problem

anim. example
→ pars. prob.

annot. example
→ pars. prob.

prob.
→ pars. prob.

Java

paired-
resource
CCA

0.4148 (0.0097) 0.4159 (0.0057) - - - -

paired-
resource
SVD++

0.5304 (0.0127) 0.4696 (0.0047) - - - -

single-
resource
SVD++

0.5178 (0.0214) 0.4537 (0.0119) - - - -

average
baseline

0.4859 (0.0071) 0.4854 (0.0039) - - - -

Python

paired-
resource
CCA

0.4584 (0.0035) 0.4566 (0.0024) 0.4579 (0.007) 0.4122 (0.0081) 0.4098 (0.0043) 0.4105 (0.0075)

paired-
resource
SVD++

0.516 (0.0124) 0.5122 (0.0156) 0.5524 (0.0083) 0.5213 (0.022) 0.456 (0.0084) 0.4954 (0.0123)

single-
resource
SVD++

0.4921 (0.0147) 0.4921 (0.0147) 0.4921 (0.0147) 0.4409 (0.0059) 0.4409 (0.0059) 0.4409 (0.0059)

average
baseline

0.4961 (0.0024) 0.4972 (0.0036) 0.4957 (0.0014) 0.4724 (0.0056) 0.4716 (0.0047) 0.4723 (0.0072)

Table 5: RMSE for student performance prediction task on Canvas Network datasets, using discussions,
quiz-assignments, and assignments as auxiliary resources.

quiz-assignments
→ assignments

discussions
→ assignments

assignments →
quiz-assignments

discussions →
quiz-assignments

Business and
Management

paired-resource
CCA-based

0.1073 (0.0209) 0.1093 (0.0163) 0.0911 (0.0124) 0.1207 (0.0109)

paired-resource
SVD++

0.1871 (0.0143) 0.1569 (0.0115) 0.1696 (0.0111) 0.1903 (0.0085)

single-resource
SVD++

0.1890 (0.0208) 0.1890 (0.0208) 0.1532 (0.0125) 0.1532 (0.0125)

average
baseline

0.1741 (0.0182) 0.1741 (0.0182) 0.1752 (0.0118) 0.1752 (0.0118)

Professions and
Applied Sciences

paired-resource
CCA-based

0.1264 (0.0085) 0.1252 (0.0049) 0.1252 (0.0035) 0.1287 (0.0105)

paired-resource
SVD++

0.2070 (0.0112) 0.1897 (0.0140) 0.2039 (0.0211) 0.3254 (0.0171)

single-resource
SVD++

0.5235 (0.0196) 0.5235 (0.01960) 0.2057 (0.0176) 0.2057 (0.0176)

average
baseline

0.4596 (0.0019) 0.4596 (0.0019) 0.3838 (0.0037) 0.3838 (0.0037)

sparse compared to all other datasets. For Canvas Network
datasets we run four sets of experiments. In the first two
sets, we use quiz-assignments and discussions as auxiliary
resources to predict students’ performance in assignments.
In the third and fourth sets of experiments we predict stu-
dents’ grade in quiz-assignments using general assignments
and discussions as auxiliary resources.

Table 5 shows RMSE of all approaches on both “Profes-
sions and Applied Sciences”and“Business and Management”
datasets. Similar to our results on the Mastery Grids dataset,
we can see that the proposed approach can effectively use
auxiliary resources to provide better estimation of student
performance in all resource pairs. Comparing paired-resource
SVD++ to single-resource SVD++, we can see that in most
of the experiments their error is not significantly different.
Only for “quiz-assignments→ assignments” and “discussions
→ assignments”, in“Professions and Applied Sciences”dataset,
paired-resource SVD++ is significantly better than single-
resource SVD++. Comparing the average baseline results,
it’s error is significantly higher than (in“Professions and Ap-
plied Sciences”dataset) or similar to paired-resource SVD++.
Whereas compared to single-resource SVD++, it works bet-

ter in predicting assignments, and worse in predicting quiz-
assignments. This is because there is more variation in stu-
dents’ scores in quiz-assignments.

In addition to the way different courses are designed and
learning resources are prepared, one of the reasons behind
the different results between the two datasets can be due
to the variations between two course datasets. For exam-
ple, having more students and being sparser may lead to
added value of auxiliary information in the “Professions and
Applied Sciences” dataset (Table 2). In other words, effec-
tiveness of adding auxiliary data for the task of performance
prediction depends on the dataset and its characteristics.

5. CONCLUSIONS
We proposed an approach inspired by canonical correlation
analysis for discovering interrelationships between learning
resources of different types, only using student performance
in them. This approach can also be used to predict students’
performance. That is to say, we can predict students’ per-
formance in one type of learning resources, with the help of
student activities in another resource type. We evaluated
the proposed approach with four datasets and two tasks.



For the task of finding learning resource interrelationships,
we evaluated our approach on the Java programming dataset
with three resource types, and the Python programming
dataset with four resource types. Finding the most simi-
lar resources of different types, only based on student ac-
tivities, we showed that our approach is very promising in
detecting these similarities, especially for learning resources
that have been proved to have a positive effect on students’
learning. Also, we found that our approach goes beyond the
designated topics for learning resources and discovers latent
similarities that provide clues of their content similarity.

Having four datasets from two online learning systems, we
ended up with 16 total experiment sets for predicting stu-
dent performance in paired resource types. We compared
our proposed approach with an average baseline and two al-
gorithmic baselines: one using student activities in both aux-
iliary and target resource types (paired resource SVD++),
and one with using student activities in only target resource
type (single resource SVD++). The experiments showed
that our proposed approach can significantly improve esti-
mation of student grades in all setups and datasets. This
success is in part due to the extra information from the aux-
iliary resource types on students’ performance: in three out
of 16 setups, the baseline algorithm with auxiliary data per-
formed better than the baseline algorithm without auxiliary
data . However, in two of the setups the baseline with aux-
iliary data performed significantly worse than the baseline
without it. Meanwhile, the proposed approach performed
better than both baselines in all of the 16 experiments. It
showed that better performance of the proposed approach is
not only because of having extra information, but also be-
cause of its ability to use latent interrelationships between
auxiliary and target resource types, in a more efficient way.
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