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Toward Robust and Efficient Interpretations of Idiomatic Expressions in Context

Changsheng Liu, PhD

University of Pittsburgh, 2019

Studies show that a large number of idioms can be interpreted figuratively or literally depend-

ing on their contexts. This usage ambiguity has negative impacts on many natural language pro-

cessing (NLP) applications. In this thesis, we investigate methods of building robust and efficient

usage recognizers by modeling interactions between contexts and idioms.

We aim to address three problems. First, how do differences in idioms’ linguistic properties

affect the performances of automatic usage recognizers? We analyze the interactions between con-

text representations and linguistic properties of idioms and develop ensemble models that predict

usages adaptively for different idioms. Second, can an automatic usage recognizer be developed

without annotated training examples? We develop a method for estimating the semantic distance

between context and components of an idiom and then use that as distant supervision to guide

further unsupervised clustering of usages. Third, how can we build one generalized model that re-

liably predicts the correct usage for a wide range of idioms, despite of variations in their linguistic

properties? We recast this as a problem of modeling semantic compatibility between the literal

interpretation of an arbitrary idiom and its context. We show that a general model of semantic

compatibility can be trained from a large unannotated corpus, and that the resulting model can be

applied to an arbitrary idiom without specific parameter tuning.

To demonstrate that our work can benefit downstream NLP applications, we perform a case

study on machine translation. It shows that our model can help to improve the translation quality

of sentences containing idioms.
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1.0 Introduction

1.1 Motivation

”If natural language had been designed by a logician, idioms would not exist. ”

-Johnson-Laird, 1993

Much of human knowledge is contained in and communicated through our languages. Natu-

ral Language Processing (NLP) is concerned with developing computational methods to capture

this knowledge. A major challenge for computers lies in automating the processing of figurative

expressions, such as metaphors and idiomatic expressions. To be able to comprehend the implicit

semantics of figurative expressions represents a current frontier in NLP, or more generally, in Ar-

tificial Intelligence [Gagliano et al., 2016].

Idiomatic expressions, as a special type of figurative devices, are widely used in different

literary genre. A corpus study shows that three out of ten sentences contain idioms [Moon, 1998].

The most significant property of an idiom is that its figurative sense is not simply the combination

of the senses of its components (e.g., the idiom “shoot the breeze” means “to chat”, which is hard

to infer from its component words “shoot” and “breeze”). Idioms often behave idiosyncratically.

For example, an idiom may involve the violation of selectional preferences, i.e., a word’s tendency

to co-occur with words that belong to certain lexical sets (as in “The U.N. is playing with fire”).

Meanwhile, idioms exhibit properties of both words and phrases. On the one hand, idioms can

be considered as a single fixed semantic unit and their meanings can be comprehended by direct

memory retrieval [Cacciari et al., 1993], which are, in a sense, similar to words. On the other

hand, idioms are usually multiword expressions, which demonstrate different degree of syntactic

flexibility, such as passivizability and tense inflection [Stone and Ann, 2016] (as in ”looks like the

beans have been spilled on one of our portrait artists” or ”old motherboard was slowly dying,

finally kicked the bucket yesterday”).

Due to their abundance and idiosyncratic behaviors in natural language, idioms have long

been recognized to play a crucial part in NLP. The early literature about the automated process-

ing of idioms was mainly dedicated to idiom type classification, which aims to classify whether
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an expression is an idiom or not without considering their contexts [Fazly and Stevenson, 2006,

Venkatapathy and Joshi, 2005, Katz and Giesbrecht, 2006]. However, idiom type classification is

still insufficient for more sophisticated NLP applications. Studies have shown that many idioms

can be used both figuratively and literally, depending on the context [Fazly et al., 2009]. For ex-

ample, “break the ice” is used literally in the first instance but figuratively in the second:

(1) When they finally punched through the Arctic ice cap just shy of the North Pole, it took them
five hours to break the ice off their submarine’s key hatches so they could reach the fresh air.

(2) US President Barack Obama and Cuba’s Raul Castro will have a historic face-to-face en-
counter at the Summit of the Americas this week, breaking the ice after decades of glacial rela-
tions.

This ambiguity poses special challenges for various NLP applications. For instance, when we

use an advanced information retrieval system to search for some information related to ”ice” in

physical domain (i.e., the literal sense of ”ice”), the system should be able to exclude the second

example from our results due to its non-literal interpretation of ”ice”. In sentiment analysis, idioms

have been proven to impose discernible negative impact due to the models’ inability to distinguish

the literal or figurative senses of idiom [Williams et al., 2015]. In machine translation, previous

work [Salton et al., 2014] has shown that a typical statistical machine translation system might

achieve only half of the BLEU score [Papineni et al., 2002] on sentences that contain idiomatic

expressions than on those that do not.

The inefficiency of NLP applications dealing with this ambiguity makes automatic idiom usage

recognition in context, or more generally referred as idiom token classification, an indispensable

part of NLP research [Fazly et al., 2009]. According to [Jackendoff, 1997], it is estimated that

there are 25,000 idioms in the English language alone. Prior efforts on determining the usages of

idioms in context fall short when applied to idioms at such a scale. The reasons are twofold:

1. Large Performance Variance across Idioms: Different context features have varied pre-

dictive power across idioms; while lexical cues are sufficient to distinguish different usages

for some idioms (e.g., certain prepositions appearing after “break the ice”), others might

need deeper semantic inference. Since these inferences involve processing at different levels

of language, it generally requires different representation methods to capture the underlying

cues. However, the effectiveness of different representations of context is under-studied in
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this task; models proposed in the literature mainly rely on single representation of context and

have large performance variances across idioms [Rajani et al., 2014, Birke and Sarkar, 2006,

Peng et al., 2014, Sporleder and Li, 2009]. For example, the method of [Fazly et al., 2009]

achieves an overall accuracy of 98% on the idiom ”take heart”, but only gets 35% for the id-

iom ”pull * leg”. This performance variance makes current models problematic if we have a

large set of idioms to classify. In the context of this thesis, we refer robustness as a model’s

ability to perform consistently across different idioms.

2. Intensive Human Labor and Computational Cost: Idioms vary in form and their contexts

of different usages do not follow a set of patterns that can be easily characterized. Hence, a

common practice is to train a separate model for each idiom on a large amount of annotated

examples [Rajani et al., 2014, Peng et al., 2014]. This is not optimal: (1) annotation needs

extensive human effort; (2) a per-idiom model is computationally expensive when we have a

large number of idioms. In this thesis, we define efficiency as performing the desired idiom

usage recognition task with minimal human supervision and computational resource. To ad-

dress the efficiency problem, we need either some general knowledge about idiom usages to

reduce the need of human supervision, or training the models on generalized features across

idioms so that they can be applied to different idioms. As it is hard to find universal patterns

from context and idiom in isolation, their interactions tend to exhibit some common behav-

iors across different idioms, e.g., the components of idiom being semantically distant from the

context often signals figurative usage. Such types of interactions, while offering a promising

opportunity to address the non-efficient problem of current approaches, are less-studied in the

literature.

The central goal of this thesis is to address the problems mentioned above and build robust and

efficient computational models to recognize an idiom’s usage in context.

1.2 Thesis Statement

With appropriate representations of context and idiomatic expression, linguistic-informed com-

putational models which aim to capture the interactions between these representations can help
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build robust and efficient idiom usage recognizers. In this thesis, we aim to test the following

hypotheses:

H1. Addressing the interaction between context representations and linguistic properties of

idioms can help to train a robust idiom usage recognizer.

H2. Modeling the interaction between contexts and idioms by calculating their semantic dis-

tance and further using it as distant supervision can help to reduce the need of human supervi-

sion.

H3. Modeling the interaction between contexts and idioms by assessing their semantic com-

patibility can help to train a generalized model to reduce computational cost.

1.3 Thesis Overview

This thesis presents three parts of work with a unifying goal of recognizing an idiom’s usage

in context. Each part, however, emphasizes a different aspect of the problem. In the first part, we

investigate the advantages and limitations of different context representations so as to build more

robust idiom usage recognizers by effectively drawing knowledge from these representations. The

second and third parts focus on the efficiency problem. To reduce the need of human annotation,

we present an unsupervised idiom usage recognizer in the second part. The semantic similarity

between context and idiom is used as a distant supervision in our proposed models. Continuing on

this work, the third part presents a generalized idiom usage recognition model by evaluating the

semantic compatibility between context and the literal sense of the idiom. The generalized model

can reduce the computational cost because there is no need to train the model for each individual

idiom. The following is an overview of our work.

1.3.1 Robust Idiom Usage Recognizer

Previous works on idiom usage recognition did not focus on its robustness, so they tend to have

large performance variances among different idioms. As noted by [Bengio et al., 2013], the perfor-

mance of machine learning models is heavily dependent on the choice of data representation. In our
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task, we believe that the choice of context representation can significantly impact robustness due to

their interactions with linguistic properties of idioms. We summarize the context representations

into three main categories: Lexical Representation, Topical Representation and Distributional Se-

mantic Representation. Our studies show that these three representations have different advantages

and limitations toward idiomatic expressions. Therefore, how to integrate these representations to-

gether and how to incorporate linguistic knowledge of idioms into our model are essential to build

a robust idiom usage recognizer. In Chapter 3, we present ensemble models to combine these con-

text representations adaptively for different idioms which can achieve better stability without loss

of accuracy.

1.3.2 Unsupervised Idiom Usage Recognizer

Apart from robustness, reducing the need of human supervision is also an important aspect in

idiom usage recognition. Most of the success of existing work comes from supervised models,

which require human effort to annotate training examples. In this part of the work, we focus on

building an idiom usage recognition model without annotated training examples.

Our strategy is to find an alternative form of supervision to automatically replace the supervi-

sion signal from human annotation. To achieve this goal, the new form of supervision should be

built on features that are abstract enough, such that they are invariant across idioms. For example,

lexical features are not optimal since the distribution of context words are specific to each idiom. In

Chapter 4, we show how distributional semantic feature comes to the rescue in providing a distant

supervision for idiom usage recognizer. We calculate the semantic similarity between context and

idiom and use this information to guide downstream unsupervised clustering methods, achieving

competitive results compared to state-of-the-art supervised models.

1.3.3 Generalized Idiom Usage Recognizer

While reducing human effort in idiom usage recognition is important, reducing the computa-

tional cost is also of great significance, considering the number of idioms in language. A particular

challenge of automatic idiom usage recognition is that idioms, by their very nature, are idiosyn-

cratic in their usages; therefore, most previous work on idiom usage recognition mainly adopted a
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“per idiom” classifier approach, i.e., a classifier needs to be trained separately for each idiomatic

expression of interest. In Chapter 5, we propose to build generalized idiom usage recognizers to

reduce computational cost. As discussed above, when building an unsupervised model, we model

the interaction between idiom and its context by calculating their semantic similarity and use it

as a type of distant supervision. We push this interaction further by measuring the semantic com-

patibility between context and the literal sense of idiom and use this information to determine the

idiom’s usage. The concept of semantic compatibility is closely related but different with semantic

similarity: it captures an even more generalized and sophisticated pattern of interaction between

a context and an idiom. Our work is based on the observation that most idioms, when taken liter-

ally, would be somehow semantically at odds with their context. We have successfully trained a

model of semantic compatibility on a large raw corpus and seamlessly apply it to the idiom usage

recognition task.

1.4 Contributions

Humans’ ability to interpret figurative language, such as inferring the usage of idiom in con-

text, feels so effortless. It can be easy to underestimate how difficult this task is for a computer. The

challenge partially lies in the fact that current computational models, as well as the representations

of natural language, are not sophisticated enough to capture the complicated semantic relations

in language and thus not optimal for high-level semantic tasks such as interpreting figurative lan-

guage. To understand the nuance and resolve the ambiguity introduced by idiomatic expressions,

computers need better semantic representations and more efficient algorithms to make inferences

about what they (the idiomatic expressions) are communicating.

From the modeling perspective, this thesis presents models which can recognize the usages of

idioms robustly and efficiently.

(1) To build robust idiom usage recognizers [Liu and Hwa, 2017],

• We analyze the advantage and limitation of different context representations quantitatively

• We study two linguistic properties of idioms: semantic analyzability and context diversity. We

define two metrics to quantify these properties and explore their interactions with different
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representations of context.

• We present an ensemble method based on a variant of averaged perceptron learning method

[Collins, 2002] which can effectively integrate different context representations for different

idioms.

(2) To build unsupervised idiom usage recognizers [Liu and Hwa, 2018],

• We propose a novel literal usage metric based on the semantic similarity between the context

and the idiom to estimate the likelihood that the idiom is intended literally.

• We transform the literal usage metric into soft labels and present learning algorithms in which

the soft label is served as a distant supervision to guild our learning process. We explore

two representative probabilistic latent variable models: Latent Dirichlet Allocation (LDA)

[Blei et al., 2003] and unsupervised Naive Bayes (NB), in which the usage of idiom is rep-

resented as a mixture of linguistically motivated features.

(3) To build generalized idiom usage recognizers [Liu and Hwa, 2019],

• We propose a novel model of semantic compatibility by adapting the training of a Continu-

ous Bag-of-Words (CBOW) model for the purpose of idiom usage recognition. The model

is trained on a large raw corpus and there is no need to annotate idiom usage examples for

training.

• We successfully apply the model on idiom usage recognition and results show that the proposed

model achieves competitive results compared to state-of-the-art per-idiom models.

From a practical point of view, our model can alleviate the negative impact caused by idioms in

tasks such as machine translation [Salton et al., 2014], sentiment analysis [Williams et al., 2015].

To show the application of our model, we present a case study in which we integrate the usage

information of idiom captured by our generalized model into the modern machine translation sys-

tems. Results suggest that we can achieve better performance on sentences containing idioms.

The contribution of this thesis is not limited to the automated processing of idioms. First,

our linguistically informed ensemble model provides evidence that linguistic is essential to build

intelligent and robust models. The experience of our work may serve as an example for bridging

the gap between computational models and linguistic theory to other NLP tasks. Second, both the

unsupervised learning framework and the semantic compatibility models presented in this thesis
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may benefit the NLP community beyond their immediate applications to idiom usage recognition.

The idea of soft label as distant supervision can be generalized to other unsupervised learning

tasks such as text classification; the concept of semantic compatibility can be applied to detection

of other figurative languages such as metaphor and irony.
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2.0 Background

In this chapter, we review the literature of research on idioms from a linguistic perspective.

We then review the literature of idiom processing from computational perspective. Finally, we

describe computational resources (e.g., the shared task and idiom corpora) that are related to this

dissertation.

2.1 A Linguistic View of Idioms

Figurative language, such as idiom, metaphor, irony and sarcasm, is ubiquitous in language.

Figurative language is generally considered as a creative linguistic device; it is an effective way to

convey various meaning such as humor, affection, and express deeply-felt sentiments. As a special

type of figurative language, idioms have been studied comprehensively in the linguistic literature.

However, there is surprisingly little consensus about the formal definition of idioms. In general,

an idiomatic expression can be loosely defined as a combination of words that has a figurative

meaning that is hard to infer from the expression’s individual components. In this section, we

will discuss some linguistic properties of idioms. Since contexts hold clues to resolve the usage

ambiguity of idioms, we will have a short discussion about the contexts in which an idiom occurs.

Finally, we will briefly review the relationship between idioms and metaphors.

2.1.1 Linguistic Properties of Idiom

Linguists often characterize idioms by certain properties from different perspectives: semantic,

syntactic, rhetorical, etc [Nunberg et al., 1994, Cacciari and Levorato, 1998]. We summarize some

basic but essential properties of idioms as shown below [Nunberg et al., 1994]:

Conventionality: it refers to the degree to which the figurative meanings of an idiom are not

predictable based upon knowledge of its constituents in isolation.

Derivation: the meaning of an idiom might evolve over time. For example, spill the beans was
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used in horse-racing as early as 1902 and meant ”to cause an upset”. Nowadays, the expression is

mainly used to describe the action of revealing a secret.

Inflexibility: the syntactic configurations in which an idiom occurs tend to be relatively fixed.

Concretely, an idiomatic expression tends to occur in a small number of canonical form(s). For

example, ”break a leg” is a way of wishing good luck before a performance while ”a leg is broken”

loses the idiomaticity.

Figuration: idioms often involve metaphor, hyperbole or other types of figuration. For example,

the idiom ”I could eat a horse” is an exaggerated way to express that the speaker is extremely

hungry. In Section 2.1.3, we discuss the relationship between idioms and metaphors since these

two types of figurative language are closely related.

Semantic Analyzability: this measures the extent to which the meanings of the words forming an

idiom contribute to its figurative interpretation. Some idioms are completely opaque in terms of

semantic, such as ”buy the farm”; a significant amount of idioms are partially transparent, as in

”spill the beans” where ”spill” corresponds to ”divulge” and ”the beans” represents the secret that

has been divulged.

What makes idioms interesting and challenging for NLP is that they vary greatly in degrees of

these properties. As we have discussed above, idioms have different degree of semantic analyz-

ability. This observation also applies to inflexibility. For example, we have seen that ”break a leg”

would lose its idiomatic meaning if it is used in passive voice, whereas some idioms might not,

such as ”spill the beans”. Further, it is still an open question to quantify these properties. We find

that the measurement of these properties is very subjective and there is no agreed criterion, espe-

cially the semantic analyzability. For example, the idiom ”kick the bucket” is generally considered

to have low semantic analayzability because the words ”kick”, ”the” and ”bucket” contribute little

to its figurative meaning. Nonetheless, [L. Hamblin and Gibbs, 1999] argued that the verb ”kick”

conveys a meaning of quickness or suddenness such that ”kick the bucket” means “to die sud-

denly” rather than “to die slowly.” They suggested that even semantically-opaque idioms are not

truly frozen; their figurative meanings are partially shaped by the particular verbs used in these

expressions. Due to these reasons, scholars in linguistics have struggled to provide an accurate and

predictive model of idiom behaviors. We argue that the automated idiom processing should take

the properties of idioms into consideration. We will have more discussion on this point in later

10



chapters.

2.1.2 The Context of Idiom

The context in which an idiom occurs is essential for determining an idiom’s usage. In partic-

ular, we find two aspects of context are crucial: Context Word Distribution and Context Diversity.

Context Word Distribution: literal and figurative usages of idiom generally co-occur with

different words. More specifically, we find that when an idiom is used literally its contextual

words tend to be semantically close to the constituents of the idiom. The intuition is that literal

meaning of an idiom is somewhat compositional [Katz and Giesbrecht, 2006]. Literal usages of

“get wind”, for instance, are more likely to occur with words like “rain”, “storm” or “weather”

which are related to the constituent “wind”. In addition, we find that context word distribution is

closely related to semantic analyzability. For idiom with a high degree of semantic analyzability,

its figurative meaning is semantically close to its constituent words, thus the overall figurative

context would also be close to its literal context.

Context Diversity: this measures how diversified the context of an expression can be. For

some idioms, the figurative or literal usage might be closely related to a small range of topics.

This is somewhat related to the origin of the idiom. For example, the figurative use of “break the

ice” is not very diverse; it is often associated with political topics, so its contexts are likely to

contain words such as “country”, “nation”, “relation” and “war”. Other idioms, such as “under the

microscope”, might be used figuratively with a wider range of topics.

2.1.3 Idioms and Metaphors

Similar to idioms, metaphors are a type of figure of speech which constituent a significant part

of human language. A metaphor is formally defined as a conceptual mapping between a source

and a target domain [Lakoff and Johnson, 1980]. In other words, it occurs when one concept is

regarded as representative or symbolic of another concept from a different domain. For example,

consider the metaphor life is a box of chocolate, the target (i.e., life) refers to an abstract entity, and

the source (i.e., a box of chocolate) refers to a concrete type of food. These two seemly unrelated

concepts usually share some hidden similarities so human can build the metaphorical mapping
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of the two concepts automatically. Scholars found that this metaphorical mapping preserves the

structural characteristics of the source concept [Lakoff, 1990], so people’s knowledge of the source

concept can help them better understand and conceptualize the target domain.

Metaphors exhibit a great variety, ranging from conventional metaphors, which are com-

monly used in everyday language, to poetic and creative ones. For conventional metaphors,

people use them but pay little attention to which features are mapped from source to target do-

main, simply because they are widely accepted and become standardized in the language system.

On the contrary, it usually requires additional cognitive effort to understand creative metaphors

comparing to conventional metaphors [Gibbs Jr, 1992, Gentner and Wolff, 1997, Shutova, 2010b].

[F Bowdle and Gentner, 2005] argued that metaphors undergo an evolutionary path from novel to

conventional figurative statements. They referred this path as the “career of metaphor”; the more

conventionalized a metaphor becomes, the less thought people pay to its actual mapping.

One widely held belief is that idioms are a type of ”dead” metaphors. In other words, they

are expressions what were once metaphors but have lost their metaphorical nature over time

[Gibbs Jr, 1992]. Early researchers generally assumed that idioms are frozen semantic devices

within the speaker’s mental lexicons. Their figurative meaning will be retrieved when the literal in-

terpretation is rejected as it is not compatible with the context [A Bobrow and M Bell, 1973]. The

dead metaphor view of idiomaticity was questioned by [Gibbs Jr, 1992], who argued that numerous

idioms are not ”simple, dead metaphors, but actually retain a good deal of their metaphoricity”. For

example, the figurative meanings of idioms such as blow your stack, flip your lid and hit the ceiling

are closely linked to two existing metaphors: MIND IS A CONTAINER and ANGER IS HEATED

FLUID IN A CONTAINER. However, the authors only experimented with a small set of idioms,

it is not clear whether this argument can still hold when applied to a wider range of idioms. While

the relationship between idioms and metaphors is not as straightforward as commonly assumed,

they do share the property of being figurative and have overlapping patterns. As such, we review

the computational models of metaphor processing in the subsequent section, which provides some

context for the studies conducted in this dissertation.
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2.2 Computational Background of Idiom Processing

We have now discussed idioms from the linguistic perspective. We have highlighted the prop-

erties of idioms and its context. We have also discussed the relationship between idioms and

metaphors. The present section provides an overview of computational models of metaphor pro-

cessing. Since idiom usage recognition can be considered as a type of phrase sense disambigua-

tion problem, which is closely related to word sense disambiguation (WSD), we also present an

overview of models of WSD.

2.2.1 Models of Metaphor Processing

Among all different types of figurative language, metaphors have been extensively studied in

both NLP and other related fields such as psycholinguistics. We find that the computational models

of metaphor processing can be categorized into two groups: metaphor recognition and metaphor

interpretation.

2.2.1.1 Metaphor Recognition Metaphor recognition aims to distinguish between literal and

metaphorical language in text. The work in this area is pioneer by [Fass, 1991], in which the au-

thor presented a system called met* which can recognize metaphor in text using hand-coded pat-

terns such as selectional preference violations. [Mason, 2004] exploited a similar idea to recognize

metaphors by finding systematic variations in domain-specific selectional preference. For example,

they find that the verb pour has a strong selectional preference toward liquid in LAB domain but

in FINANCE domain it tends to select money. Based on this observation they suggest money and

liquid is a metaphorical mapping. As pointed out by Fass, using selectional preference violations

as an indicator of metaphor could lead to high false positive; other types of figurative language

such as metonymies also frequently involve violations of selectional preferences. Alternatively,

[Goatly, 1997] created a set of linguistic cues to recognize metaphors. For example, lexical pat-

terns such as metaphorically speaking, so to speak usually signal the presence of metaphorical

expression. However, this method suffers from low recall. On the one hand, it is challenging to

build a comprehensive set of linguistic cues which are indicators of metaphors. On the other hand,
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numerous metaphors occur without explicit linguistic cues.

Apart from selectional preferences violation and linguistic cues, previous work also suggest

that the abstractness of context is also an effective indicator of metaphors [Turney et al., 2011,

Tsvetkov et al., 2014]. Abstract words refer to things which are hard to perceive directly with our

senses. The intuition underlying this line of work is that metaphor can be considered as a method

for transferring knowledge from ”a familiar, well-understood, or concrete domain to an unfamiliar,

less understood, or more abstract domain” [Turney et al., 2011]. Thus, the degree of abstractness

in a word’s context is correlated with the likelihood that the word is used metaphorically.

2.2.1.2 Metaphor Interpretation Metaphor interpretation aims to explain the intended mean-

ing of metaphorical expressions. Concretely, a large body of work in this area aim to investigate the

intuition behind the mapping between the target and source domains. For example, [Kintsch, 2000]

proposed a method called Predication Algorithm to find the common features between the target

and source domains. Given a predicate P and an argument A (both P and A are represented as

vectors in a semantic space using Latent Semantic Analysis [Landauer and Dutnais, 1997]), the

method proceeds as follows:

1. Find n closest neighbours of P. Let S denote this set of neighbours.

2. Find k vectors in S that are closest to the argument A and within a threshold t.

3. Calculate the centroid of P, A and the k vectors in step 2.

4. Interpret the centroid by comparing it with a set of suitable landmarks.

Kintsch used ”my lawyer is a shark” as an example to illustrate the algorithm. Specifically, the

algorithm needs to find the features that are shared by both lawyer and shark. This is challenging

because the most obvious features of a shark, e.g., a fish, are not salient to this metaphor. When

the centroid is produced in Step 3 above, the paper compared it with six landmarks: three were

chosen to be related to lawyer (i.e., lawyer, justice and crime) and three were related to shark (i.e.,

shark, fish, viciousness). Results suggested the centroid is close to landmark ”viciousness” and far

from other landmarks, which is an intuitively reasonable interpretation of the metaphor.

[Veale and Hao, 2008] proposed a model called Talking Point, which utilize fluid knowledge

representation to interpret metaphor. They build a logic path between the definition of source and

target concept by operations such as substitution, insertion and deletion; the logic path is then
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considered as an explanation of the metaphorical mapping. For example, to explain the metaphor

Make-up is a Western burqa, Talking Point establishes a link between make-up and burqa by in-

sertions and substitutions on the definitions of these two concepts (as illustrated in Figure 1).

Figure 1: Interpretation of metaphor ”Make-up is a Western burqa.”

[Shutova, 2010a] defined m etaphor i nterpretation a s a  p araphrasing t ask, w hich a ims t o au-

tomatically derive the literal paraphrases for metaphor. For example, their system can translate 

the metaphorical expression ”brush aside accusation” into ”reject accusation”. They first gener-

ate a list of possible paraphrases induced from the statistics in a large corpus and ranked them 

by their likelihood. Then the selectional preference information is applied to select those literal 

paraphrases.

2.2.2 Word Sense Disambiguation

The finding that human process idioms much faster than literal phrases has led to the hypothesis 

that idioms must be comprehend by chunks instead of word by word [A Bobrow and M Bell, 1973, 

A. Swinney and Cutler, 1979]. So an idiom can be viewed as a large word or ”word-with-spaces”. 

This suggests that the idiom usage recognition task can be potentially formulated as a word sense 

disambiguation (WSD) problem, i.e., the literal and figurative interpretations of an idiom are two 

coarse senses to be disambiguated.
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The majority of WSD models can be categorized into three main groups: knowledge-based

models [Mohammad and Hirst, 2006, Patwardhan and Pedersen, 2006], supervised (semi super-

vised) models [Mihalcea and Faruque, 2004, Ando, 2006, Zhong and Ng, 2010], and unsupervised

models [Agirre et al., 2006, Di Marco and Navigli, 2013].

Knowledge-based models rely on existing lexical resources, such as semantic networks (e.g.,

WordNet [Fellbaum, 1998]), to identify the most suitable sense. The general idea of this line of

work is to measure the relatedness of the senses of the target word to those context words. The

most related sense of the target word is selected as the intended sense in the context. For example,

[Patwardhan and Pedersen, 2006] used the gloss and structure information in WordNet to build a

vector representation for each concept in the WordNet. The sense of a word and the context are

represented based on these vectors and their relatedness is measured via cosine similarity.

Since constructing semantic networks is extremely expensive, researchers generally prefer sta-

tistical models over knowledge-based models. Supervised statistical models are based on extract-

ing local features from the words surrounding the target, and then training a classifier on annotated

examples for each target word. These features include n-grams of nearby words, bag of words,

parts-of-speech and syntactic features [Ando, 2006, Zhong and Ng, 2010]. Since sense annotation

is time-consuming, semi-supervised methods are often used to alleviate this problem, e.g., a small

manually annotated corpus is usually used as seeds for bootstrapping a larger annotated corpus

[Mihalcea and Faruque, 2004].

Unsupervised models try to induce word senses directly from the corpus. It is based upon the

assumption that similar senses occur in similar contexts, therefore it is possible to cluster word

usages according to their context distributions. The clustering algorithms in WSD fall into two

categories: vector space model [Pantel and Lin, 2002, Pur and Pedersen, 2004] and graph model

[Véronis, 2004, Agirre et al., 2006]. When the clusters (i.e., senses) are induced, the new occur-

rences of the target word will be compared to these clusters; the most similar cluster will be selected

as the intended sense. Note that these methods still need manual intervention to map their induced

senses into a sense inventory.

While context is important for WSD in general, many current models ignore the order of

words in the context. In the latest development, researcher has used advanced neural networks

such as Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] or bidirectional-
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LSTM [Graves and Schmidhuber, 2005] to capture the order information in the context for WSD

[Kågebäck and Salomonsson, 2016, Pasini and Navigli, 2017]. These methods consider each tar-

get word as a separate classification problem and their output layers (i.e., softmax) need to be

parameterized for each target word. This practice is similar to “per-idiom” usage recognition mod-

els in which we need to train the models for each idiom separately.

It should be clear that the ”word-with-spaces” view of idiom is inadequate to account for the

complicated behaviors of idioms. Essentially, idioms are different with words in many aspects. As

we have discussed in Section 2.1, idioms have their own unique properties such as semantic analyz-

ability and inflexibility. A sophisticated idiom processing model should take these properties into

consideration. The above mentioned models of WSD, however, provide important background

knowledge for the work in this dissertation.

2.3 Computational Models of Idiom Processing

In NLP, idioms have long been the focus of many research work in the area of figurative

language processing. Early research work mainly focus on idiom type classification, i.e., the au-

tomatic identification of idioms in large corpora. Later research has showed that a potentially

idiomatic expression can be used both figuratively and literally, which contradicts the common

perception that idioms always have figurative interpretation. We thus see the shift of focus to id-

iom usage recognition (or idiom token classification) in recent years. In this section, we first briefly

discuss the work of idiom type classification. We then review the previous work on idiom usage

recognition that our work directly compare with, in which robustness and effectiveness have been

largely overlooked.

2.3.1 Idiom Type Classification

Idiom type classification aims to determine whether a phrase could be used as an idiom or not,

without considering any specific context. A large body of work in idiom type classification focus

on the properties of idioms that differentiate them from the other multiword expressions. These
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properties include non-compositionality, lexical fixedness (e.g., ”shoot the breeze” is an idiom but

”shoot the wind” is not) and syntactic fixedness (e.g., ”break a leg” is an idiom but ”a leg is broken”

is not). [Tapanainen et al., 1998] proposed a distributed frequency function to determine the non-

compositionality in verb-noun collocations. The intuition is that ”if an object only appears with a

few verbs, it is highly likely that it has an idiomatic nature”. [Lin, 1999] presented a method to

detect non-compositional phrases by checking the mutual information [Church and Hanks, 1990]

of phrases obtained by replacing one of the component words with similar words. The main idea

is that the mutual information of a non-compositional phrase should differs significantly from the

mutual information of phrases obtained by substituting one of the word in the original phrase with

a similar word. [Bannard, 2007] presented a method to collect potential idioms by quantifying the

syntactic fixedness of phrases. They considered three types of syntactic variations that a phrase

can undergo to measure its syntactic fixedness: addition or dropping of a determiner, modification

of the noun phrase and passivization of verb phrase. [Fazly and Stevenson, 2006] combined both

lexical and syntactic fixedness of verb-noun collocations to gather idioms from large corpora. In

terms of lexical fixedness, they measured the deviation between the pointwise mutual information

(PMI) [Church et al., 1991] of target expression and the average PMI of its variants (i.e., replacing

the noun with similar words). In terms of syntactic fixedness, they use the Kullback Leibler(KL)-

divergence between the distributions of the target verb-noun pair and its variants(e.g., passivization

and pluralization)

2.3.2 Idiom Usage Recognition

In contrast to idiom type classification, idiom usage recognition (or idiom token classification)

aims to determine whether an idiom is meant literally or figuratively in a specific context. A

number of idiom usage recognition methods have been proposed: unsupervised [Fazly et al., 2009,

Sporleder and Li, 2009, Li and Sporleder, 2009], weakly supervised [Birke and Sarkar, 2006] and

supervised [Rajani et al., 2014, Peng et al., 2014].

[Cook et al., 2007] and [Fazly et al., 2009] proposed a method which relies on the concept of

canonical form. It hypothesizes that in most cases, idioms tend to be somewhat fixed with respect

to the syntactic configurations in which they occur, thus idiomatic usages of an expression tend to
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occur in a small number of canonical form(s) for that idiom. In contrast, the literal usages of an

expression are less syntactically restricted, and are expressed in a greater variety of patterns. This

method might be problematic since there are a variety of idiomatic usages of expressions can also

occur in non-canonical forms.

[Sporleder and Li, 2009] presented an unsupervised method building on the concept of co-

hesion graph. They build the undirected graph including all content words in the instances. If

removing the idiom improves cohesion, they assume the instance is figurative. Continuing on this

work, [Li and Sporleder, 2009] used the unsupervised classifier to label a subset of the test data

with high confidence. This subset was then passed on as training data to the supervised classifier,

which then labeled the remainder of the dataset.

[Birke and Sarkar, 2006] proposed TroFi (Trope Finder), a weakly supervised method to sep-

arate literal and nonliteral usages of verb. It reduced the figurative and literal usage recognition

problem to word sense disambiguation by redefining literal and figurative as two different senses

of the same word. The core of the algorithm is adapted from word sense disambiguation approach

developed by [Karov and Edelman, 1998]. It compares a target expression with two automatically

constructed seed sets(one with literal interpretation and one with nonliteral interpretation), assign-

ing the label of the closest set.

When annotated data are available, supervised classifiers are effective. [Rajani et al., 2014]

extracted all non-stop-words in the context and used them as ”bag of words” features to train a L2

regularized Logistic Regression (L2LR) classifier [Fan et al., 2008]. [Peng et al., 2014] trained a

supervised classifier using the topical features of the context. They also experiment with adding

feature of intensity of the emotions in context and find it can provide marginal improvement over

the topical feature.

It is worth noting that, apart from the model presented in [Sporleder and Li, 2009], all the

models discussed above are not generalized models, which means that they need to be trained for

each idiom separately.

19



2.4 Resource: Shared Task and Corpora

Idioms, or figurative language in general, have become an increasingly prominent part of

semantic-oriented applications. In NLP, shared tasks that provide benchmarks for participants

to evaluate their systems have greatly boosted the discussion within the community. It is important

to emphasize that the quality of the evaluative data is crucial, which is especially true for idioms.

Due to their peculiar behavior, it is not as straightforward as other tasks to build appropriate data

resources. We think two criteria are important to allow a meaningful evaluation of the success

of idiom usage recognizer. First, idioms with highly skewed distribution of figurative and literal

usages are not optimal since always choosing the predominant usage can already yield good result.

Second, idioms exist in different forms of construction (e.g., verb-noun, noun-noun), so the data

should include different types of idioms, or at least include the most representative types which

constitute a large amount of idioms. We find three corpora satisfy these requirements: the dataset

in SemEval 2013 Task 5B [Korkontzelos et al., 2013], the corpus used in [Fazly et al., 2009] and

idiom usage corpus presented in [Sporleder and Li, 2009]. However, the last corpus is not publicly

available online, so we mainly use the first two corpora in this dissertation.

2.4.1 SemEval 2013 Task 5B

SemEval (Semantic Evaluation) is an international workshop that conducts evaluations on se-

mantics at different levels. In SemEval 2013 Task 5B, participants were required to make a binary

decision whether a target idiom is used figuratively or literally within a given context. For each

idiom, several instances extracted from the ukWaC corpus [Baroni et al., 2009] are provided cor-

responding to its literal and figurative usages. The majority of the instances contains 5 sentences,

where the sentence with the target idiom appears in a random position. There are different types

of idioms in this task, such as verb-noun combination (V+NN), preposition-noun combination

(PP+NN), etc.

In this thesis, we use the following ten idioms from the shared task to evaluate our idiom usage

recognition models. These idioms have reasonably large amount of literal and figurative instances,

which allows for reliable models to be trained. Note that there are 4 instances labeled as “both”
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which could lead to ambiguity are removed and we get 2371 instances in total, among which 1185

instances are literal usages and 1186 instances are figurative.

Table 1: Corpus statistics of SemEval 2013 Task 5b. #Lit denotes the number of literal usages,

#Fig denotes the number of figurative usages.

Expression #Lit #Fig All
at the end of the day 102 195 297

bread and butter 148 158 306
break a leg 87 29 116

drop the ball 135 62 197
in the bag 145 156 301

in the fast lane 33 79 112
play ball 157 144 301
rub it in 32 89 121

through the roof 141 170 311
under the microscope 205 104 309

2.4.2 Verb Noun Combination Corpus

A large number of idiomatic expressions are formed by the combination of a verb and a noun

(VNC). [Cook et al., 2008] released an idiom usage dateset containing exclusively VNCs. The

usage instances are extracted from the British National Corpus (BNC) [Burnard, 2007]. Unlike

SemEval corpus, each instance in this corpus contains only 1 sentence. Some idioms from the VNC

dataset have very few figurative (or literal) instances, which presents a problem for supervised

baselines. To facilitate full comparisons, we select the subset of idioms from the VNC corpus

whose number of literal and figurative instances are both higher than 10.
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Table 2: Statistics of VNC corpus.

Expression #Lit #Fig All
blow whistle 51 27 78
make scene 20 30 50
lose head 19 21 40
take heart 20 61 81
make face 14 27 41
pull plug 20 45 65

have word 11 80 91
make mark 13 72 85
get wind 16 13 29
pull leg 40 11 51

take root 15 83 98
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3.0 Context Representations for Robust Idiom Usage Recognizer

3.1 Introduction

Although there are a number of models proposed in the literature which can recognize an

idiom’s usage in different context, the robustness of these models has received relatively less at-

tention. Reviewing the performance of previous works, we observe that they tend to have large

performance variances among different idioms. The objective of this section of the work is to

study this problem in depth and investigate the feasibility of building robust idiom usage recogniz-

ers.

As noted by [Bengio et al., 2013], the performance of machine learning models is closely re-

lated to the choices of data representation. While the local context of an idiom holds clues for

discriminating between its literal and figurative usages [Katz and Giesbrecht, 2006], we believe

that the choice of context representation can significantly impact robustness of idiom usage recog-

nition. However, the effectiveness of different representations of context is under-studied; we find

that models proposed in literature mainly rely on a single representation of context. For exam-

ple, [Rajani et al., 2014] proposed a supervised model trained on solely on lexical features. As

idioms exhibit idiosyncratic behaviors and have varied linguistic properties, relying on a single

representation of context is not optimal when applied to a larger set of idioms.

We advocate that in order to fully exploit the information offered by the local context, an id-

iom usage recognizer ought to leverage knowledge from different types of representation and take

the linguistic properties of the idioms into considerations. Among those properties we have re-

viewed in the background chapter (§ 2.1), we find context diversity and semantic analyzability

significant for usage recognition. Context diversity mainly measures how diversified the context

of an expression can be. As we have mentioned previously, if an expression has a low context

diversity, a small set of training examples may be sufficient for developing automatic usage rec-

ognizer. But for expressions with a high context diversity, however, supervised learning may be

unrealistic due to sparsity of training data. Another property semantic analyzability measures the

extent to which the meanings of the words forming an idiom contribute to its figurative interpre-
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tation [Cacciari and Levorato, 1998]. For idiom with a high degree of semantic analyzability, its

figurative meaning is semantically close to its constituent words, thus the overall figurative con-

text would also be close to its literal context. This could make the usage recognition difficult for

methods using distributional semantics such as that of [Sporleder and Li, 2009]. Although some

previous works do make use of local context, they have not sufficiently taken into account the

impact of context diversity and semantic analyzability.

In terms of representations of the context, we find that they can be characterized into three

categories: Lexical Representation [Rajani et al., 2014, Birke and Sarkar, 2006], Topical Repre-

sentation [Peng et al., 2014] and Distributional Semantic Representation [Sporleder and Li, 2009].

Each representation has its own advantages and limitations. Consequently, previous systems tend

to perform better for some idioms than others. This thesis hypothesizes that a more flexible and

adaptable representation of the context is necessary to account for both context diversity and se-

mantic analyzability. To the best of our knowledge, this work is the first to quantitatively ana-

lyze the impact of context diversity and semantic analyzability from a computational perspective.

Comparing leading methods against a diverse set of idioms and analyzing the effects of contextual

representations, we find that by drawing knowledge from multiple representations and adapting to

different idioms, an automatic recognizer can achieve better stability without loss of accuracy.

3.2 Representation of the Usage Context

In this section, we briefly review Lexical Representation, Topical Representation and Distribu-

tional Semantic Representation of context. We focus on their limitations and advantages in terms

of usage recognition, with an emphasis on their communications with properties of idioms.

3.2.1 Lexical Representation

A straightforward representation is to extract surface words from the context. The assumption

is that the contexts of an expression used in the same way should have many words in common. The

exact range of the context varies from methods to methods. For example, [Byrne et al., 2013] ex-
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tracted only the left and right boundary words of a target phrase to train Naive Bayesian classifiers.

On the other hand, [Rajani et al., 2014] extracted all non-stop-words and used them as “bag of

words” features to train an L2 regularized Logistic Regression (L2LR) classifier [Fan et al., 2008].

One potential drawback for methods using Lexical Representation is that shared context words

are not very strong indicators. Expressions with different usages may nonetheless share some

words in common in their contexts; and conversely, even when two contexts do not share any

common words, an expression may still have the same usage. Another drawback is that if an idiom

has a high degree of context diversity, its contexts would contain too many surface words for them

to serve as reliable features.

3.2.2 Topical Representation

Instead of directly setting surface words as the feature space, Topical Representation models a

context as a point in an idiomatic expression’s topic space. The assumption is that even if an idiom

is used in different contexts, if the contexts have similar topics, their usage should be similar.

One example of a method in this category is the work of [Li et al., 2010], in which the context is

represented as a mixture over latent topics. Another example is the work of [Peng et al., 2014], in

which the context is represented as a set of topic words extracted by Latent Dirichlet Allocation

(LDA) [Blei et al., 2003].

An advantage of Topical Representation over Lexical Representation is that it could filter out

words that are unrelated to the main topics of the context. The discriminative power of words in the

context are different; Lexical Representations generally treat all the words equally. Topical Repre-

sentation extracts the most critical words for the relevant topics. It can be seen as a refined version

of Lexical Representation. For example, Topical Representation would extract the most informa-

tive words such as Freedom, Democracy and President in the following sentence to help determine

the usage of break the ice. These words are generally related to political topics, indicating break

the ice is more likely to be used figuratively.

(1) President Obama, who started his approach toward the radical Islamists ruling Iran by extending
a hand, turning his back on the Iranian people with their aspirations for freedom and democracy,
hoped that he could be the first U.S. president to break the ice with the Jihadists in Tehran.

A possible drawback of Topical Representation is that it might overlook some syntactic informa-
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tion which could be used in the usage recognition for some idioms. For example, a figurative

usage of break the ice may be indicated by the occurrence of the prepositions over or between

after it [Li and Sporleder, 2010]. These words are generally ignored by methods using Topical

Representations, whereas methods using Lexical Representation may include them. Also, simi-

lar to Lexical Representation, the context diversity will also influence the effectiveness of Topical

Representation.

3.2.3 Distributional Semantic Representation

Methods using the previous two representations essentially rely on the calculation of common

words between contexts, which is problematic for idioms with a high degree of context diversity.

Distributional Semantic Representation can overcome this problem by using external resource or

knowledge base to calculate words similarity. For instance, the following sentence has no word

overlap with example (1). However, the word monarch is semantically close to the word president

in example (1), which suggests they might have the same usage.

(2) Edwards usually manages to break the ice with the taciturn monarch.

One method in the literature that used Distributional Semantic Representation is the work

of [Sporleder and Li, 2009]. They used distributional semantic similarity to calculate the lexical

cohesion [Halliday and Hasan, 2014] between constituent words of an idiom and its contextual

words. The hypothesis of this method is that if the constituents of a potentially idiomatic expression

do not ‘fit’ in any lexical chains, it is highly likely that the expression is used figuratively.

Despite its advantage, Distributional Semantic Representation still has its limitations. First,

for some idioms, it is more effective to just use the surrounding words to detect its usage, such as

the preposition over or between after break the ice. Second, since the approach assumes that the

overall literal context and figurative context is semantically distant, it is poor at handling idioms

with a high degree of semantic analyzability.
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3.3 Our Model

We treat literal and figurative usage recognition as a special word sense disambiguation prob-

lem in the same spirit as [Birke and Sarkar, 2006]. Specifically, we use similarity-based models

because they have been shown to be effective in the general problem of word sense disambiguation

[Abdalgader and Skabar, 2012, Karov and Edelman, 1998]. In this section, we describe two vari-

ants of our model for integrating different contextual representations within our similarity-based

framework.

Representation fusion strategies To fuse different context representations, one straightfor-

ward strategy is to concatenate all the features using the three representations and build a single

similarity based classifier that applies to the concatenated feature (early fusion) [Bruni et al., 2014].

Another option is a per-representation strategy; different classifiers are trained independently on

the three representations, and afterwards, the results are combined to generate a final output (late

fusion). We have experimented with both strategies.

3.3.1 The Late Fusion Model

In this model, three classifiers are developed based on Lexical similarity, Topical similarity

and Distributional semantic similarity; and a variant of averaged perceptron learning is applied to

learn the weights for each classifier according to its discriminative power over different idioms.

Lexical similarity: Given two contexts Ti and Tj of a target expression, we use cosine sim-

ilarity to calculate their similarity as shown in the Equation 4.3, where T ibow and T jbow denote the

bag of word vector of the two contexts. We remove all the stop words in the context except the

preceding and following words of the target expression, which tend to be useful for some idioms

[Byrne et al., 2013].

Sim1(Ti, Tj) =
T ibow · T

j
bow

|T ibow| · |T
j
bow|

(3.1)

Topical similarity: For an idiom, we first run LDA to all the instances and get a set of m topics.

For each instance, we represent the context using its probabilities over these topic set. Given two

contexts Ti and Tj , we use T itopic and T jtopic to denote their Topical Representations. Their topic

similarity is calculated also using cosine similarity.
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Topics = {t1, t2, ...., tm} (3.2)

Ttopic = {P (t1), P (t2), ...., P (tm)} (3.3)

Sim2(Ti, Tj) =
T itopic · T

j
topic

|T itopic| · |T
j
topic|

(3.4)

Distributional semantic similarity: Given two contexts Ti and Tj , we calculate their semantic

similarity Sim3(Ti, Tj) using doc2vec [Le and Mikolov, 2014]. In detail, we use gensim toolkit

[Řehůřek and Sojka, 2010] and train our model on Wikipedia articles1. We empirically set the

dimensionality of vector to 200.

Sim3(Ti, Tj) = doc2vec sim(Ti, Tj) (3.5)

We distinguish the usage of the target expression by calculating its average similarity (using

one of the similarity metrics) to both the literal and figurative example set and assign the label of

the set which has higher similarity. Since we have three types of similarity metrics, we now have

three “voters”. We use vi to denote the voting vector with each entry representing the voting results

for the ith instance of a idiom.

Because idioms vary in properties that may impact each representation differently, we propose

to learn the weight for each voter by applying a variant of averaged perceptron learning method

[Collins, 2002]. In addition, we augment the weight learning algorithm by incorporating a novel

confidence measure [Schapire and Singer, 1999]. In our case, the confidence is related to the sim-

ilarity difference. Let Simf be the similarity between the context of the target expression and

figurative example set, Siml be the similarity between the context of the target expression and lit-

eral example set (using any of the three similarity metrics). The ratio between the two similarities

is a reasonable confidence measure at first glance. The intuition is that the bigger the difference

between the two similarities Simf and Siml, the more confident the voter is. However, both

our empirical evidence and observation from [Schapire and Singer, 1999] suggest such confidence

measure could lead to large and overly confident predictions and ultimately increases the possibil-

ity of overfitting. To overcome such issue, we use a smoothed ratio between the two similarities

as the confidence value shown in Equation 3.6. Similar to voting vector vi, we construct the confi-
1

https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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c = 1 + ln
max(Simf , Siml)

min(Simf , Siml)
(3.6)

dence vector ci for the ith instance; the confidence rated voting vector xi is the point-wise product

of vi and ci. Then we apply the voting weight learning algorithm to get the weight w for each voter

and classify the target expression usage using Equation 3.7.

y∗ = sign(wxi) (3.7)

3.3.2 The Early Fusion Model

In this case, we perform L-2 normalization and simply concatenate the vectors of the three

representations and then apply cosine similarity metric. The classification process is identical to

the single classifier in late fusion strategy.

3.4 Experiment

To verify our hypothesis that robust idiom usage recognition depends on addressing the in-

teractions between properties of idioms (i.e., context diversity and semantic analyzability) and

contextual representations, we conduct a comparative study across four representative state-of-the-

art methods: two for Lexical Representation [Rajani et al., 2014, Birke and Sarkar, 2006]2; one

for Topical Representation [Peng et al., 2014]; and one for Distributional Semantic Representa-

tion [Sporleder and Li, 2009]. We then compare our proposed methods against these four. The

experiments address the following questions:

• To what extent can usage recognizers reliably predict figurative versus literal usages for a wide

variety of idioms?

• For some of the comparative methods, contextual information is only a portion of many other

features, what is the relative contribution from contextual information compared to other fea-

tures?
2

We include Rajani et al.’s method because it achieves the best performance on the SemEval 2013 task 5B corpus.
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• Does our proposed model of adapting multiple contextual representations succeed in capturing

the interactions between representational choices and context diversity and semantic analyz-

ability?

Evaluative Data We use the SemEval 2013 Task 5B corpus described in Chapter 2. We do not

use the VNC corpus in this study because the number of instances for each idiom in VNC corpus

is not enough for us to quantitatively measure its linguistic properties. On average, each idiom

in SemEval corpus has more 200 instances, while the idioms in VNC corpus only have about 60

instances.

Evaluation Metric We rely on the standard F1 score for the recognition of the figurative usage.

The overall accuracy of both figurative and literal usage is not ideal for analysis because it can be

misleading for idioms with unbalanced usage distribution.

3.4.1 Implementation

We reimplemented the four methods with two minor changes. First, Sporleder and Li used

Normalized Google Distance (NGD) to measure the semantic relatedness between two words

[Cilibrasi and Vitanyi, 2007], but the API of NGD has a restriction on the number of queries it

can make; therefore, we use word embeddings for calculating the distributional semantic simi-

larity [Mikolov et al., 2013b]. Second, we did not encode Birke and Sarkar’s SuperTags feature

because they reported that the overall gain was only 0.5%. We do not expect these two changes to

have significant impact on the findings.

We run ten fold cross validation for the supervised methods (Rajani et al., Peng et al. and our

full models). In each round of the cross validation, we randomly select half of the training sample

as the example set; the remaining half of the training sample is used to learn the weight for the

three representations.

3.4.2 Results and Observations

Table 3 reports the performances of the four comparative state-of-the-art methods. As ex-

pected, the supervised classifier by Rajani et al.’s achieves the best performance while the unsu-

pervised method by Sporleder and Li has the lowest scores for most idioms.
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Comparing across different idioms for each method, we observe large performance variances.

For Rajani et al., the Ffig is as low as 0.54 for break a leg and as high as 0.83 for through the roof.

Similarly, Peng et al., the lowest Ffig is 0.46 for under the microscope and the highest is 0.75 for

at the end of the day.

Table 4 shows the performances of the two supervised methods limited to just the contextual

features. Compared to their full model counterparts in Table 3, we see that the contribution from the

additional features is limited, and its impact varies from idiom to idiom. For some, the additional

features might have negative effect on the performance (cf. in the bag). These results suggest that

contextual features are essential to the idiom usage recognition task.

Table 5 reports the performances of our proposed models (both early fusion and late fusion),

each of the three component representations in the late fusion model, and the best of the com-

parative methods for each idiom. The performance of our full late fusion model is competitive;

most of our Ffig are higher than the best results from the other methods. The late fusion model

is more stable than the other methods, with a narrow range of Ffig scores, from 0.68 (under the

microscope) to 0.85 (at the end of the day).

3.4.3 Discussion: Performance Variance

We have hypothesized that the variance in performance is partially due to context diversity. In

general, methods using surface representation (Rajani and Birke) expect a large training set or seed

set with a good distribution which could include sufficient decisive contextual words for a given

target expression. This also applies to methods using topic representation since text is modelled

as a mixture over latent topics, which are also represented by a distribution over word. For some

idioms, the figurative or literal usages might be closely related to a small range of topics. Take the

idiom break the ice as an example, it has a figurative meaning:

to relax a tense or unduly formal atmosphere or social situation.

This is most frequently used in political topics. So the figurative cases are often found in a context

containing words such as country, nation, relation, and war. To train a recognition model for

this type of idioms, even a small amount of training examples could be sufficient to capture a fairly

complete semantic features. However, we note that it is infeasible to annotate enough number of
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Table 3: Result of different methods. Ffig denotes F1 score of figurative usage recognition and A

denotes the overall accuracy. For each idiom, the boldfaced number shows the best performance

among the four methods while underlined shows the worst.

Rajani et al. Peng et al. Sporleder and Li. Birke and Sarkar

Idiom Ffig A Ffig A Ffig A Ffig A

at the end of the day 0.81 0.73 0.75 0.63 0.72 0.59 0.69 0.63
bread and butter 0.81 0.8 0.75 0.70 0.66 0.58 0.67 0.70

break a leg 0.54 0.8 0.49 0.63 0.67 0.7 0.61 0.65
drop the ball 0.61 0.79 0.58 0.67 0.45 0.32 0.52 0.76

in the bag 0.72 0.71 0.68 0.66 0.65 0.50 0.64 0.71
in the fast lane 0.78 0.67 0.72 0.69 0.52 0.61 0.68 0.65

play ball 0.75 0.72 0.68 0.67 0.51 0.40 0.73 0.75
rub it in 0.67 0.69 0.5 0.47 0.55 0.46 0.44 0.49

through the roof 0.83 0.81 0.68 0.69 0.61 0.51 0.69 0.74
under the microscope 0.55 0.74 0.46 0.64 0.42 0.41 0.55 0.79

Table 4: Result of two supervised methods using only contextual features. Ffig denotes F1 score

of figurative usage recognition and A denotes the overall accuracy.

Rajani et al. Peng et al.

Idiom Ffig A Ffig A

at the end of the day 0.8 0.71 0.73 0.61
bread and butter 0.85 0.84 0.74 0.69

break a leg 0.57 0.77 0.46 0.60
drop the ball 0.59 0.77 0.59 0.68

in the bag 0.75 0.75 0.66 0.62
in the fast lane 0.78 0.68 0.68 0.64

play ball 0.84 0.82 0.64 0.61
rub it in 0.66 0.67 0.51 0.49

through the roof 0.78 0.77 0.67 0.62
under the microscope 0.5 0.74 0.51 0.66
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examples for some idioms since they can be used in a wide variety of topics, among which their

semantic context could be significantly different with each other.

To measure the diversity of contextual words for a target idiom is essentially similar to mea-

suring the diversity of topics in which the idiom can be used. We can manually annotate each

example using a predefined topic set. Nevertheless, it’s difficult to define a topic set with appropri-

ate granularity. A small set of high level topics is too general to distinguish different examples and

thus cannot fully assess the diversity of topics. On the other hand, a large set of specific topics can

lead to an inflated diversity measurement. It also might result in low inner annotation agreement

since an example can be labelled with different topics if the topic set is too detailed. In addition,

it’s labor intensive to annotate all the examples. LDA is a potential method to automatically gen-

erate the set of topics based on probability which maybe more desirable. So alternatively, we run

LDA method to the examples for a given idiom by varying the number of topics. For each topic

number, a log-likelihood value is calculated, indicating how well the generated topic model fits the

example set. We select the number of topics with the highest log-likelihood value to approximate

the measurement of diversity of topics for the idiom (see Formula 3.8, D denotes the example set,

Mn denotes the generated model with n as the topic number).

argmax
n

logP (D|Mn) (3.8)

We randomly select 32 literal instances and 29 figurative instances (the minimum number

of instances among all the target idioms) for each idiom from the corpus and run the process

mentioned above. The results are shown in Table 6.

We observe that under the microscope has the highest topic number, suggesting that it has a

high context diversity; it is an idiom that is difficult for all four methods. In contrast, the optimal

topic numbers for bread and butter is the lowest, suggesting that it has a low context diversity;

accordingly, methods using Lexical Representation and Topical Representation performed well on

it. We also calculate the Pearson correlation between Ffig and the total topic number.3 The r

value is -0.86 for Rajani et al., which suggests strong negative correlation; while the r values for

Peng et al. and Birke and Sarkar are -0.72 and -0.62 respectively, suggesting a more moderate

3

For methods from Rajani et al. and Peng et al, we use the Ffig from Table 4 (the implementation without additional
features).
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Table 5: The comparison between our method and competing methods. The ”Best other” column

shows the best result from the other methods. ∗ indicates the difference between the ”Late fusion”

and ”Best other” is statistically significant, χ2 text, p = 0.05. The boldfaced number shows the

best performance.

Best other Lexical Topical Distributional Early fusion Late fusion

Idiom Ffig A Ffig A Ffig A Ffig A Ffig A Ffig A

at the end of the day 0.81 0.73 0.82 0.75 0.81 0.74 0.72 0.69 0.79 0.73 0.85∗ 0.81∗
bread and butter 0.81 0.8 0.83 0.79 0.84 0.80 0.57 0.61 0.82 0.71 0.84 0.83

break a leg 0.67 0.7 0.58 0.7 0.56 0.63 0.69 0.71 0.66 0.7 0.73∗ 0.71
drop the ball 0.61 0.79 0.65 0.81 0.59 0.77 0.51 0.69 0.67 0.82 0.72∗ 0.85∗

in the bag 0.72 0.71 0.67 0.66 0.67 0.69 0.74 0.71 0.73 0.65 0.75∗ 0.74
in the fast lane 0.78 0.67 0.68 0.69 0.70 0.73 0.59 0.65 0.54 0.69 0.72∗ 0.74∗

play ball 0.75 0.72 0.76 0.77 0.71 0.76 0.61 0.71 0.78 0.74 0.82∗ 0.81∗
rub it in 0.67 0.69 0.65 0.68 0.73 0.71 0.62 0.71 0.7 0.71 0.78∗ 0.76∗

through the roof 0.83 0.81 0.81 0.8 0.71 0.69 0.65 0.72 0.81 0.66 0.81 0.85
under the microscope 0.55 0.79 0.64 0.73 0.47 0.66 0.52 0.69 0.58 0.75 0.68∗ 0.75

negative correlation. Although the r value for Sporleder and Li is -0.72, which also suggests a

moderately negative correlation, its trend is less reliable. For example, through the roof has the

lowest topic number (12), but the Ffig score (0.61) is well below the best result (0.72); break

a leg has a relatively high topic number (18), but the Ffig score (0.67) is better than the other

three methods. These observations suggest that context diversity does influence performances,

especially for methods using Lexical or Topical Representation.

Performance variance may also be due to semantic analyzability, especially for methods using

Distributional Semantic Representation. We quantify semantic analyzability in the following way.

For an idiom, we prepare two sets of instances; one consists of literal instances and the other

consists of figurative instances. Then we approximate the semantic analyzability of the idiom by

measuring the averaged semantic similarity between the two sets. We use L and F to represent the

literal and figurative set respectively. The averaged similarity of F and L is calculated using the

following Formula:

Sset(F,L) =
1

|F |
∑
∀Tf∈F

max
∀Tl∈L

doc2vecsim(Tf , Tl) (3.9)
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Table 7 shows our semantic analyzability measure on the 10 idioms. The idiom with the high-

est similarity score is drop the ball, indicating that literal and figurative usages are hard to separate.

This corresponds to the poor performance of Sporleder and Li’s method on it. In contrast, break

a leg has the lowest similarity score, which corresponds to the high Ffig using Sporleder and Li’s

method. We also calculate the Pearson correlation coefficient between the Ffig and Sset(F,L);

the r value is -0.77 for Sporleder and Li’s method, which suggests moderate negative correlation

between the two variables; the r values for the other three methods are -0.03, 0.17, 0.06, respec-

tively. These findings lend credence to our argument that semantic analyzability influences the

effectiveness of Distributional Semantic Representation.

Table 6: Optimal topic numbers for different idiom instances. TFig means the topic number of

figurative set, TLit means the topic number of literal set.

Idiom TFig TLit Total
at the end of the day 9 4 13

bread and butter 7 5 12
break a leg 12 6 18

drop the ball 13 8 21
in the bag 11 6 17

in the fast lane 9 7 16
play ball 9 7 16
rub it in 12 5 17

through the roof 8 4 12
under the microscope 16 7 23

3.4.4 Discussion: Combining Different Representations

Throughout this chapter, we have argued for the importance of combining different representa-

tions of the context. As shown in Table 5, the stability of the late fusion model did improve. But do

the results of the individual components corroborate our arguments about the interactions between

linguistic properties and specific representations?

Consider break a leg, which has a higher context diversity (18 topics) but lower semantic ana-

lyzability (0.27 similarity score). Our model’s Lexical Representation and Topical Representation

components are not as effective as the Distributional Semantic Representation component; they
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Table 7: A measure of Semantic Analyzability.

Idiom Similarity
at the end of the day 0.28

bread and butter 0.32
break a leg 0.27

drop the ball 0.37
in the bag 0.29

in the fast lane 0.35
play ball 0.34
rub it in 0.28

through the roof 0.32
under the microscope 0.34

have an Ffig score of 0.58, 0.56, and 0.69 respectively. Similarly, for an idioms with a higher se-

mantic analyzability but a lower context diversity like bread and butter, our model’s Distributional

Semantic Representation component performed worse individually than the Lexical Representa-

tion and Topical Representation components.

In both cases, our method has effectively adapted to the particulars of the idioms and increased

the contributions from the well performing components. For break a leg, the weights of the com-

ponents are [0.23, 0.19, 0.58], favoring the Distributional Representation to obtain an Ffig of 0.73.

For bread and butter, the weights are appropriately shifted to the Lexical Representation and Top-

ical Representation components ([0.4, 0.43, 0.17]) for an overall Ffig of 0.84.

3.4.5 Limitations

We have discussed the interaction between linguistic properties of idioms and context repre-

sentations. However, some limitations should be noted. First, the number of idioms used in the

experiment is fairly small due to the expensive cost of data collection and usage annotation. In-

cluding more idioms would make the conclusion more reliable. A second limitation concerns the

measurement of the linguistic properties, especially semantic analyzability. Although this property

has been discussed intensively in the linguistic literature, there is no standard way to represent it

quantitatively; we use the averaged semantic similarity between the literal and figurative instances
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as an indirect measurement. As we can see from Table 7, the range of semantic analyzability is

somewhat narrow, which might not accurately reflect the distinction among idioms. An alternative

solution is to manually rate the semantic analyzability of idioms. However, as this property is

highly subjective, it is therefore prone to rater bias.

3.5 Chapter Summary

To build a robust idiom usage recognizer, we have argued for the importance of two linguistic

properties in idioms (context diversity and semantic analyzability) and analyzed their impact on

context representations. Experimental results show that leading methods with fixed representations

do not perform equally well on different types of idioms. We have proposed a supervised ensemble

approach to adaptively combine multiple contextual semantic representations for different idioms.

Evaluated on a diverse set of idioms, we find that our method can achieve better stability without

loss of accuracy.
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4.0 Heuristically Informed Unsupervised Idiom Usage Recognition

4.1 Introduction

We have presented a supervised method for building a robust idiom usage recognizer in the

previous chapter. The model requires appropriately annotated examples, which is time-consuming.

To process idioms on a large scale, effectiveness is as important as robustness. In this chapter, we

focus on reducing the need of human supervision in idiom usage recognition.

Some previous unsupervised models tried to exploit linguistic differences in usages. For exam-

ple, [Fazly et al., 2009] observed that an idiom appearing in its canonical form is usually used figu-

ratively; [Sporleder and Li, 2009] relied on the break in lexical coherence between the idioms and

the context to signal a figurative usage. These heuristics, however, are not always applicable be-

cause the distinctions they depend upon may not be present or obvious. To improve generalization

across different idioms and usage contexts, we need a more reliable heuristic, and appropriately

incorporate it into an unsupervised learning framework.

We propose a novel heuristic that differentiates an idiom’s usages based on distributional se-

mantics [Harris, 1954, Turney and Pantel, 2010]. Our key insight is that when an idiom is used

literally, its relationship with its context is more predictable than when it is used figuratively. This

is because the literal meaning of an idiom is compositional [Katz and Giesbrecht, 2006], and the

constituent words that make up the idiom are also meant literally. For example, in the following

sentence,

Spill the beans, flip the fruit, bust open a box of hot pockets. Make a general mess of the kitchen.1

spill is meant literally and can take on objects other than beans; moreover, one of the context words,

mess, can often be seen to co-occur with spill in other text, even without beans. Our strategy is

to represent an idiom’s literal usage in terms of the word embeddings of the idiom’s constituent

words and other words they frequently co-occur with. Then, for any instance in which the idiom’s

usage is not known, we only need to determine the semantic similarity between that instance and
1

https://twitter.com/DukeRaccoon/status/477530732173471744
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the idiom’s literal representation. We expect a high similarity score generally indicates a high

probability of literal usage. The raw scores may be difficult to interpret since different idioms

can have wildly varying score ranges. We propose a literal usage metric which transforms the raw

scores into a probabilistic interpretation – the likelihood that an instance would be labeled ”literal”.

Having a metric with a probabilistic interpretation also affords us a greater flexibility in terms of

using it to inform downstream learning processes.

While the literal usage metric captures the distributional semantic information of the context,

we find that some other linguistic cues are also significant for usage detection (such as whether

the subject of the sentence is a person); therefore, we allow our model to further refine through

unsupervised methods. Specifically, we treat the usage (figurative or literal) as a hidden variable in

probabilistic latent variable models, and we define a set of features that are linguistically relevant

for idiom usage detection as observables. We integrate our literal usage metric with the latent

variable models by treating the metric outputs as soft labels to guide the latent variable models

toward grouping by usages.

We hypothesize that unsupervised learning in a more linguistically motivated feature space,

informed by soft labels from a semantically driven metric, will produce more robust classifiers.

We conduct experiments comparing our approach against other supervised and unsupervised base-

lines. Results suggest that our approach achieves performances that are competitive to supervised

models.

4.2 Our Approach

Given a target idiomatic expression and a collection of instances in which the idiom occurs, our

proposed system determines whether the idiom in each instance is meant figuratively or literally,

without using idiom specific resources such as a dictionary or an annotated corpus.

An overview of our approach is illustrated in Figure 2. We first build a Literal Usage Rep-

resentation for each idiom by leveraging the distributional semantics of its constituents (§ 4.2.1).

Given an instance of idiom, we can determine its usage by the semantic similarity between the

context of the instance and the Literal Usage Representation. We define a Literal Usage Metric
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Figure 2: An overview of our unsupervised idiom usage recognition model.

to transform the semantic similarity score into soft label, i.e., an initial rough estimation of the 

instance’s usage (§ 4.2.2). Finally, we treat the soft labels as distant supervision for downstream 

probabilistic latent variable models, in which the usages are considered as the hidden variables and 

are represented over a set of features.

4.2.1 Literal Usage Representation

An idiom co-occurs with different sets of words depending on whether it is meant literally or 

figuratively. For example, when used literally, get wind is more likely to co-occur with words such 

as rain, storm or weather; in contrast, when used figuratively, it frequently co-occurs with rumor 

or story, etc. Comparing the two sets of words associated with the idiom, we see that the literal 

set of words also tend to co-occur with just wind, a constituent word within the idiom. Therefore, 

even without annotated data or dictionary, we may still approximate a representation for the literal 

meaning of an idiom by the idiom’s constituent words and their semantic relationship to other 

words. To do so, we begin by initializing a literal meaning set to just the idiom’s main constituent 

words2; we then grow the set by adding two types of semantically related words. First, we look for

2

We observe that the nouns tend to be the most indicative of the idiom’s literal meaning, but if the idiom does not
contain any noun, we back off to any constituent word that is not a stop word.
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co-occuring words in a large textual corpus (e.g., [David et al., 2005]): for each constituent word

w, we randomly sample s sentences that contain w from the corpus; we extract the top n most

frequent words (excluding stop words) and add them to the literal meaning set. Second, we look

for words that are semantically close in a word embedding space: we train a continuous bag-of-

words (CBOW) embedding model [Mikolov et al., 2013b] and add additional t words that are the

most related to w using cosine similarity.

All together, the literal usage representation is a collection of vectors, i.e., the embeddings of

the words in the final extended literal meaning set. The size of the set depends on parameters

s, n, and t; if the chosen values are too small, we do not end up with a word collection that is

representative enough; if the numbers are too large, we would only be wasting computing resources

chasing Zipfian tails. Parameter setting choices are discussed further in the experiment section.

4.2.2 Literal Usage Metrics

Among all the instances to be classified, we expect the context words of the literal cases to be

more semantically close to the literal usage representation we just formed. Let L denote the set of

words in the literal usage representation for the target idiom. For each instance, let C be the set of

non-stop context words in the instance. We calculate s, the semantic similarity score between the

context of the instance and the literal usage representation as follows:

s =
1

|C|
∑
c∈C

1

|L|
∑
l∈L

sim(c, l) (4.1)

where c denotes a word in C, l denotes a word in L and sim(c, l) refers to the cosine similarity

between the word embeddings of c and l.

Let S = {s1, s2, ...sn} be the set of semantic similarity scores for all the instances we wish

to classify. Instances with higher scores are more likely to use the idiom literally. A naive literal

usage metrics is to choose a predefined threshold for all idioms and label all the instances with

score above the threshold as literal usages. This approach is unlikely to work well in practice. As

noted by previous work, idioms have different levels of semantic analyzability [Gibbs et al., 1989,

Cacciari and Levorato, 1998]. When an idiom has a high degree of semantic analyzability, its
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contextual words will be more semantically close to the literal usage representation, thus a higher

threshold is needed.

In this work, we select a different decision threshold for each idiom adaptively based on the

similarity scores distribution. And most importantly, rather than generate a hard label, we trans-

form these scores into a probabilistic metric, where 0 means the usage in the instance is almost

certainly figurative while 1.0 means it is literal.

We propose a metric based on the principle of Minimum Variance (MinV). That is, we first

sort the scores in S and choose the threshold (from these scores) that minimizes the sum of vari-

ances of the two resulting clusters. For each instance i, we then apply the following metric to

estimate the probability that the idiom in instance i is meant literally based on its semantic simi-

larity score si :

Pri =
1

1 + e−k∗(si−t)
(4.2)

where k is a constant weighting factor and t indicates the learned threshold. The intuition is that

the larger the difference between si and the threshold is, the more likely the instance i is literal; the

probability of literal usage is not linearly correlated to the difference, we use the sigmoid function

to account for this non-linearity. We incorporate k to scale the value of the difference since it is

generally very small (close to 0). Without k, all the Pr values gravitate toward 0.5, rendering the

soft label being equivalent to random guess. We set k to 5 for all the idioms based on a development

set.

4.2.3 Heuristically Informed Usage Recognition

The soft label, generated by MinV (the literal usage metric), captures the distributional seman-

tic information of the context. In practice, there are a variety of other linguistic features which are

also informative of the intended usage of idiom. We explore probabilistic latent variable models

over a collection of features that are linguistically relevant for idiom usage detection. The soft

label is integrated into the unsupervised learning of hidden usages as a distant supervision. In this

section, we will describe the proposed features in the latent variable models and how we integrate

the soft label into the learning process.
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4.2.3.1 Latent Variable Models To predict an idiom’s usage in instances, we consider two

representative probabilistic latent variable models: unsupervised Naive Bayes (NB) and Latent

Dirichlet Allocation (LDA) [Blei et al., 2003]3 . For both models, the latent variable is the idiom

usage (figurative vs. literal); the observables are linguistic features that can be extracted from the

instances, described below:

Subordinate Clause We encode a binary feature indicating whether the target expression is

followed by a subordinate clause (the Stanford Parser [Chen and Manning, 2014] is used). This

feature is useful for some idioms such as in the dark. It usually suggests a figurative usage as in

You’ve kept us totally in the dark about what happened that night.

Selectional Preference Violation of selectional preference is normally a signal of figurative

usage (e.g., having an abstract entity as the subject of play with fire). We encode this feature if

the head word of the idiom is a verb and focus on the subject of the verb. We apply Stanford

Name Entity tagger [Finkel et al., 2005] with 3 classes (”Location”, ”Person”, ”Organization”) on

the sentence containing the idiom. If the subject is labeled as an Entity, its class will be encoded in

the feature vector. Pronouns such as ”I” and ”he” also indicate the subject is a ”Person”. However,

they are normally not tagged by Stanford Name Entity tagger. To overcome this issue, we add

Part-of-Speech of the subject into the feature vector.

Abstractness Abstract words refer to things which are hard to perceive directly with our

senses. Abstractness has been shown to be useful in the detection of metaphor, another type of

figurative language [Turney et al., 2011]. A figurative usage of an idiomatic phrase may have rel-

atively more abstract contextual words. For example, in the sentence She has lived life in the fast

lane, the word life is considered as an abstract word. This is a useful indicator that in the fast

lane is used figuratively. We use the MRC Psycholinguistic Database Machine Usable Dictionary

[Coltheart, 1981] which contains a list of 4295 words with their abstractness measure between 100

and 700. We calculate the average abstractness score for all the contextual words (with stop words

being removed) in the sentence containing the idiom. The score is then transformed into categor-

ical feature to overcome sparsity problem based on the following criteria: concrete (450 - 700),

medium (350 - 450), abstract (100 - 350).
3

Although originally conceived for modeling document content, LDA can be applied to any kind of discrete input
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Neighboring Words Words preceding and following the idiomatic expression can be very

informative in terms of usage recognition. For example, words such as relax or shower before the

idiom in hot water often signal a literal usage.

Part-of-Speech of the Neighboring Words Class of neighboring words might be useful as

well. For example, a pronoun preceding dog’s age generally indicates a literal usage, as in I think

my dog’s age is starting to catch up. She sometimes needs help to jump on to my bed, while a

determiner usually marks a figurative usage, as in It’s been a dog’s age since I’ve used Twitter.

4.2.3.2 Incorporating Soft Label into Usage Recognition Given a collection of instances and

their features, either LDA or NB can separate the instances into two groups (hopefully, by usages),

but it does not associate the right label (i.e., ”figurative” or ”literal”) to the groups. We do not

want to rely on any manual annotations for this step. Therefore, we integrate the automatically

generated soft labels (based on MinV, our literal usage metric) into the unsupervised learning

procedure as a weak form of supervision. Formally, we want to estimate each instance’s posterior

distribution over (literal/figurative) usages θdu and usage-feature distribution φuf . For LDA, we

derive a Gibbs sampling algorithm which incorporates the soft label into the learning procedure.

We refer it as informed Gibbs sampling (infGibbs). For unsupervised naive Bayes model, we

adapt the classical Expectation-Maximization algorithm to integrate the soft label. We refer it as

informed Expectation-Maximization (infEM).

Informed Gibbs Sampling The Gibbs sampling algorithm [Griffiths and Steyvers, 2004] used

in traditional LDA initializes each word token a random hidden topic. The system needs to inter-

pret the learned topics post-hoc, e.g., by human annotation. In our case, for each feature f in

each instance, an initial random usage biased by the instance’s soft label is assigned to f (i.e., a

Bernoulli trial). Since the soft label explicitly encodes an instance’s literal and figurative usage

distribution, we do not need to interpret the learned usages at the end of the algorithm. Based

on these assignments, we build a feature-usage counting matrix CFU and instance-usage counting

matrix CDU with dimensions |F | × 2 and |D| × 2 respectively (|F | is the feature size and |D| is

the number of instances): CFU
i,j is the count of feature i assigned to usage j; CDU

d,j is the count of

features assigned to usage j in instance d. Then for each feature f in each instance, we resample

a new usage for f and matrices CFU and CDU will be updated accordingly. This step will be
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repeated for T times. The resampling equation is:

p(ui = j|u−i, f) ∝ pj ·
C

fi
−i,j+β

C
(∗)
−i,j+|F |β

· C
di
−i,j+α

C
di
−i,∗+|U |α

(4.3)

where i indexes features in the instance d, j is an index into literal and figurative usages, ∗ indi-

cates a summation over that dimension and − means excluding the corresponding instance. The

first factor pj is the soft label encoding prior usage distribution. The second factor represents the

probability of feature f under usage j (Cfi
−i,j is the count of the feature f assigned to usage j,

excluding the current usage assignment ui). The third factor represents the probability of usage j

in the current instance (Cdi
−i,j is the count of linguistic features which are assigned to usage j in the

current instance, excluding the current feature f ). The value of |U | is 2, representing the number

of usages (i.e., figurative and literal). α and β are the hyper-parameters from the Dirichlet priors

(we set both of them to 1). The core idea of Equation 4.3 is to integrate both distribution semantic

information (soft label, the first factor) and linguistically motivated features (the second and third

factors) into the inference procedure.

The matrices of CFU and CDU from the last 10% ∗ T iterations are averaged and then nor-

malized to approximate the true usage-feature distribution φuf and instance-usage distribution θdu

respectively. The final result is determined by θdu, i.e., assigning each instance with the usage

of probability higher than 0.5. We do average to have a more stable result because an accidental

bad sampling would affect our model negatively if we only use the CFU and CDU from the last

iteration. This procedure is important for some idioms if their feature space is sparse. The iteration

number T is set to 500 based on a development set.

Informed Expectation Maximization Combining a Naive Bayes classifier with the EM algo-

rithm has been widely used in text classification and word sense disambiguation [Hristea, 2013,

Nigam et al., 2000]. In our case, we want to construct a model to recover the missing literal and

figurative labels of the instances of the target idiom. This section describes two extensions to the

basic EM algorithm for idiom usage recognition. The extensions help improve parameter estima-

tion by taking the automatically learned soft labels into consideration.

Our informed EM method extends a basic version for NB [Hristea, 2013], where the initial

parameter values θdu and φuf are chosen randomly. At each iteration, the E-step of the algorithm

estimates the expectations of the missing values (i.e. the literal and figurative usage) given the latest
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iteration of the model parameters; the M-step maximizes the likelihood of the model parameters

using the previously-computed expectations of the missing values. As we’ve done with extending

Gibbs sampling for LDA, we also perform two similar adaptations on conventional EM for NB

to incorporate soft labels. First, we assign each instance an initial usage distribution θdu directly

using the soft label, and then initialize the usage-feature distribution φuf using these assignments.

We refer it as informed initialization. Second, in the E-step, we multiply the expectation result of

the basic EM with the soft label as the new expected usage for each instance (i.e., updating θdu).

The M-step is the same as basic EM to update the usage-feature distribution φuf .

4.3 Evaluation

To verify our hypothesis that using the semantic distance between context and idioms as distant

supervision can help to reduce the need of human supervision, we conduct a comparative study to

address three questions:

1. How effective is our overall approach? How does it compare against previous work?

2. How effective is our literal usage metric (i.e., MinV) compared to other heuristics?

3. How effective is our literal usage metric at informing downstream learning processes?

4.3.1 Experimental Setup

Models Our full unsupervised model first uses MinV to generate prior usage probability for each

instance, which will then be integrated into the parameter estimation algorithms: informed Gibbs

and informed EM, in the downstream hidden variable models. Therefore, we have two full mod-

els: MinV+infGibbs and MinV+infEM. We report the average performance of our models over

5 runs. Performing multiple runs is necessary because we have a sampling process. They are

compared with three baseline unsupervised models: [Fazly et al., 2009], [Sporleder and Li, 2009]

and [Li and Sporleder, 2009]; and two baseline supervised models: [Rajani et al., 2014] and the

ensemble model we proposed in Chapter 3.

Parameter setting Recall that in order to build the literal usage representation of an idiom, we
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need to sample s sentences that contain each constituent word w from an external corpus; extract

from them the top n most frequently co-occurring words with w; then separately find t words that

are semantically similar to w using word embeddings. To set parameters with values in reasonable

ranges, we evaluated MinV on a small development set. We picked 10 idioms that are different

from the evaluation set, scraped 50 instances from the web for each idiom, and labeled them

ourselves. We find that s >= 100, n=10, and t=5 yield good results.

We use the gensim toolkit [Řehůřek and Sojka, 2010] and train our word embedding model

using the continuous bag of word model on Text8 Corpus4. Negative sampling is applied as the

training method; the min count is set to 2. For the other parameters, we use the default settings in

gensim.

Evaluative Data We compare all the methods using SemEval 2013 Task 5B corpus, which is used

by prior supervised methods [Rajani et al., 2014], and verb–noun combination (VNC) dataset,

which is used by a prior unsupervised method [Fazly et al., 2009]. However, there are some

methods-datasets conflicts that have to be resolved. Because the idioms in the SemEval dataset

are all in their canonical forms, and because the idioms are not restricted to the verb-noun com-

bination, we cannot evaluate the method by [Fazly et al., 2009] on this dataset (as their method is

tailored to verb-noun combination).

4.3.2 The Performance of Our Full Models

Table 12 shows the result of our models and the other comparative methods. Our proposed

models show consistent performance across the two corpora, outperforming the unsupervised

baselines from [Sporleder and Li, 2009], [Li and Sporleder, 2009] and the supervised model from

[Rajani et al., 2014]. Moreover, there is no statistical significance in the F-score difference between

our supervised ensemble model presented in the previous chapter and MinV +inf-Gibbs.

On the VNC corpus, our models have comparable average scores as that of [Fazly et al., 2009];

our scores are more stable across different idioms. While the method of Fazly et al. is nearly

perfect for some idioms (0.98 on ”take heart”), it performs poorly for others (e.g., 0.33 on ”pull

* leg”). Their algorithm has trouble with idioms whose canonical and non-canonical forms can

4

From http://mattmahoney.net/dc/text8.zip
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Table 8: The performances of different models. Avg. Ffig denotes average figurative F-score,

Avg.Acc denotes average accuracy. We report the range in the parenthesis. * indicates the

difference is significant with our MinV+ infGibbs model at the 95% confidence level. Since the

method from [Fazly et al., 2009] restricted their experiment to VNC type, we only report their

performance on the VNC corpus.

SemEval VNC

Type Model Avg. Ffig Avg.Acc Avg. Ffig Avg.Acc

Unsupervised Sporleder & Li 0.58* (0.42 ∼ 0.72) 0.52*(0.32 ∼ 0.7) 0.61* (0.46 ∼ 0.73) 0.57*(0.41 ∼ 0.75)

Li & Sporleder 0.64* (0.41 ∼ 0.76) 0.62*(0.43 ∼ 0.71) 0.67* (0.48 ∼ 0.77) 0.66*(0.52 ∼ 0.77)

Fazly et al. - - 0.73 (0.33 ∼ 0.98) 0.74 (0.35 ∼ 0.98)

Supervised Rajani et al. 0.71* (0.54 ∼ 0.83) 0.75(0.67 ∼ 0.81) 0.69* (0.49 ∼ 0.8) 0.7*(0.6 ∼ 0.79)

Our Ensemble Model 0.77 (0.68 ∼ 0.85) 0.77(0.71 ∼ 0.85) 0.75 (0.65 ∼ 0.88) 0.75(0.67 ∼ 0.89)

Our Model MinV + infGibbs 0.75 (0.64 ∼ 0.91) 0.74(0.63 ∼ 0.87) 0.73 (0.64 ∼ 0.86) 0.75(0.66 ∼ 0.83)

MinV + infEM 0.73 (0.58 ∼ 0.88) 0.73(0.61 ∼ 0.85) 0.72 (0.62 ∼ 0.87) 0.72(0.6 ∼ 0.84)

appear frequently both in literal and figurative usages.

4.3.3 Effectiveness of MinV

The core of our approach is MinV, the literal usage metric we developed to generate soft labels

to guide the unsupervised learning. This experiment examines its effectiveness by creating usage

classifications directly from it (i.e., if MinV predicts a probability of >0.5, predict ”literal”). We

compare MinV against two alternative heuristics.

MinV is based on two core ideas. First, if an idiom is used figuratively, we expect to see a big

difference (low similarity scores) between its context and the semantic representation of idiom’s

literal usage. The idea is similar to that of [Sporleder and Li, 2009], but they relied on lexical

chain instead of distributional semantics. Second, instead of choosing a predefined threshold to

separate the raw semantic similarity scores, we select a different decision threshold for each idiom

adaptively based on the distribution of the scores. So as an alternative, we compare MinV against

a Fixed-Threshold heuristic that labels an instance as ”literal” if its raw score is higher than some
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Table 9: A comparison of classifying by different heuristics. Results are averaged across all the

idioms in the two corpora.

Model Avg. Ffig Avg.Acc

Fixed-Threshold 0.6 (0.23 ∼ 0.82) 0.62 (0.47 ∼ 0.83)

MinV 0.66 (0.43 ∼ 0.88) 0.65 (0.51 ∼ 0.89)

Sporleder & Li 0.59 (0.42 ∼ 0.73) 0.54(0.32 ∼ 0.75)

global threshold (set to 0.346 based on development data).

In Table 9, we observe that Minv outperforms both Sporleder and Li’s model as well as Fixed-

Threshold, but using MinV by itself is not sufficient. It has great fluctuations, e.g., the F-Score for

individual idioms varies from 0.43 to 0.88. Recall that MinV +infGibbs has a smaller fluctuation

across different idioms in Table 12. These results suggest that the subsequent learning process is

effective.

Through error analysis, we find two major factors contributing to the performance fluctuation.

First, the context itself could be misleading. An error case of play ball by MinV is:

All 10-year-old Minnie Cruttwell wants to do is play with the boys , but the Football Associa-

tion are not playing ball. She is a member of a mixed team called Balham Blazers , but the FA say

she must join a girls’ team when she is 12.

The context words in bold (which are related to the word ”ball”) mislead MinV to predict a

”literal” usage when it is actually a ”figurative” usage (since an organization such as the Football

Association cannot literally play ball). Second, the inclusion of all the content words in the context

is not intelligent enough; there are words that do not provide useful semantic information in terms

of distinguishing literal and figurative usages. Pruning the contextual words intelligently might

result in more reliable models. We will leave this as the future work.
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Table 10: The performance of MinV+NN and models without soft label on all the idioms in the 

two corpora.

Model Avg. Ffig Avg.Acc

Gibbs 0.58 (0.31 ∼ 0.78) 0.57 (0.4 ∼ 0.78)

EM 0.56 (0.31 ∼ 0.71) 0.6 (0.42 ∼ 0.77)

MinV+NN 0.68 (0.41 ∼ 0.83) 0.67 (0.55 ∼ 0.86)

4.3.4 Integration of MinV into Learning

We have argued that an advantage of using a metric with a probabilistic interpretation instead

of a binary class heuristic is that its scores can be incorporated into subsequent learning models as

soft labels. In this set of experiments, we evaluate the impact of the metric on the learning methods.

First, we consider unsupervised learning without input from the literal usage metric. We cluster the

instances with the original Gibbs sampling and EM algorithms and then label the two clusters with

the majority usage within the clusters. Second, we explore using the information from the literal

usage metric as ”noisy gold standard” to perform supervised training on a nearest neighbors (NN)

classifier. Specifically, the literal and figurative instances labeled by MinV with high confidence

(top 30%) are used as example set. Then for each test instance, we calculate its cosine similarity

(in feature space) to the literal and figurative example sets and assign the label of the closest set.

We refer this model as MinV +NN.

Table 10 shows the performances of the new models, which are all worse than our full models

MinV +infGibbs and MinV +infEM. This highlights the advantage of integrating distributional

semantic information and local features into one single learning procedure. Without the informed

prior (encoded by the soft labels), the Gibbs sampling and EM algorithms only seek to maximize

the probability of the observed data, and may fail to learn the underlying usage structure.

The model MinV +NN is not as competitive as our full models. It is too sensitive to the

selected instances. Even though the training examples are instances that MinV is the most confident

about, there are still mislabelled instances. These ”noisy training examples” would lead the NN
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Figure 3: The performance of MinV+infGibbs on the idiom ”break a leg.”

classifier to make unreliable predictions. In contrast, our unsupervised learning is less sensitive to 

the performance of MinV; it can achieve a decent performance for an idiom even when the quality 

of the soft labels is poor. For example, when using MinV as a stand-alone model for break a 

leg, its figurative F-score is only 0.43, but through further training, the full model MinV+infGibbs 

achieves 0.64. Fig. 3 shows the training curve. A possible reason for this phenomenon is that the 

soft label is integrated into the learning process by biasing the sampling procedure (see Equation 

3). We only encourage our model to follow the distributional semantic evidence captured by soft 

label and do not force it. So if there are strong evidences encoded by the linguistically motivated 

features in the instances to overcome the soft label it still has the freedom to do so. This is further 

supported by the fact that our full model MinV+infGibbs outperforms MinV on all the idioms.

4.3.5 Limitations

One limitation of this model concerns the literal usage representation. As we do not use any 

annotated labels, we approximate the literal usage representation by looking for words that are
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associated with main constituent words of the idiom. The parameters in this process, such as the

number of sentences sampled from Gigaword and the number of most frequently co-occurring

words, are set based on a developing data and therefore subject to corpus bias. In addition, we

mainly use nouns as the major constituent words. Although this strategy tends to work well on

the two evaluative corpora, future studies should include more data to investigate whether it can be

generalized to a broader range of idioms.

Another limitation of our model is that adapting it for resource-constrained languages would be

challenging. The syntactic features (i.e., the subordinate clause feature) used in the latent variable

models rely on robust syntactic parsers, which might be hard to get for low-resource languages.

Moreover, we rely on the MRC Psycholinguistic Database Machine Usable Dictionary to measure

the abstractness of the context. Due to the limited scope of application of abstractness measure-

ment, other languages might do not have this type of resource.

4.4 Chapter Summary

We have presented an unsupervised method for idiom usage recognition. Our approach consists

of two major parts. The first part defines a heuristic to predict the idiom’s usage; the second part

uses the heuristic to guide learning. Our heuristic is based on the idea that when an idiom is

used literally, it should be semantically more similar to its context. Therefore, we come up with

a representation for the idiom’s literal semantics so that it can be compared with the context. In

particular, we approximate the literal semantics with an aggregate group of words: words that are

similar to the content constituents of the idiom, and words that are frequently associated with these

constituents elsewhere. A second consideration in defining the heuristic is the score it outputs to

predict the idiom’s usage. Our solution is to consider all the raw similarity scores of instances for a

target idiom as a population and scale them so that they take on a probabilistic interpretation. This

allows the heuristic outputs to be used as soft labels that can then be integrated into a downstream

probabilistic latent variable model, which can learn further without supervision to improve the final

classification.
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5.0 Generalized Idiom Usage Recognition via Semantic Compatibility

5.1 Introduction

To achieve our research goal, we have presented a supervised ensemble model to improve its

robustness and an unsupervised model to reduce human effort. Although these two models have

pushed the frontier of idiom usage recognition greatly, they are still computationally intensive, i.e.,

we need to collect a large number of instances for an individual idiom, either labeled or unlabeled,

and train a specific model for that idiom. The abundance of idioms in text desperately calls for an

efficient generalized model. However, the heterogeneity of idioms’ behaviors makes a generalized

model much more challenging than idiom specific models. Concretely, in the task of idiom usage

recognition, different idioms could have varied context clues. For example, the idioms “play with

fire” and “get wind” are used differently in the instances below. The proposition “of” following

“get wind” often indicates the idiom is used figuratively (as in instance #4), while for idiom “play

with fire”, one might need more complicated linguistic clues to infer its usage, such as a violation

of selectional preference (as in instance # 2).

(1) [lit.]Kids playing with fire: experts warn parents to look out for danger signs.

(2)[fig.]The UN is playing with fire over North Korea crisis.

(3)[lit.]Here in Portland we’re just gonna get rain, the coast is gonna get wind. Stay safe!

(4)[fig.]FAA will get wind of that crooked airways’ shady dealings.

Given these varied properties of idioms, it should be obvious that we cannot simply rely on

superficial features (e.g., lexical feature) to build a generalized model. So alternatively, we resort

to features that are invariant across idioms. The method we present in this section is based on the

observation that when the literal interpretation of a potential idiomatic expression is not compatible

with the context, it typically indicates that the idiom is used figuratively. For instance, in example

#4 above, the word ”wind” is generally far away from the surrounding words; the literal sense of

”get wind” is not fit well with the context. In addition, early research work in psycholinguistics
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also suggested that an idiom’s figurative meaning will be retrieved from memory when the literal

interpretation is rejected as it is not compatible with the context [A Bobrow and M Bell, 1973].

Generally, this semantic incompatibility is a strong indicator that the idiom has a non-literal inter-

pretation in the context. It is at least possible, then, to build a generalized idiom usage recognizer

by determining the semantic compatibility between the literal meanings of idioms and their con-

texts.

One way to measure semantic compatibility is with probabilistic language models (LMs),

which assigns a probability to a sentence or a word sequence. In particular, n-gram with maxi-

mum likelihood estimation is often used. The most straightforward way to determine the intended

usage of an idiom in an instance using n-gram is to calculate the probability of the instance. In-

tuitively, the figurative instances would have lower probability since the constituents of idiom are

not compatible with the context; one can thus define a threshold for usage classification.However,

it is hard to define a general threshold using n-gram because the probability of a target instance

depends on the length of the sentence and the global frequencies of each word in it. Additionally,

n-gram models are count based, which can not handle unseen combinations of tokens.

Alternatively, we find that the notion of semantic compatibility is reminiscent of the training

objective of negative sampling in word2vec, which is originally used for learning low dimensional

word embeddings [Mikolov et al., 2013b, Mikolov et al., 2013a]. Its Continuous Bag-of-Words

(CBOW) variant internally tries to maximize the probability of positive(compatible) context-word

pairs and minimize the probability of randomly sampled negative (incompatible) pairs. Thus if the

CBOW can successfully capture the semantic compatibility feature in text, it is highly possible that

we can apply it to determine the semantic compatibility between an idiom and its context.

However, the CBOW model mainly uses semantic compatibility as a roundabout way to learn

useful vectors for words. The post-hoc evaluations of the model concentrate on the learned em-

beddings of words [Mikolov et al., 2013a, Levy et al., 2015], while whether the learned model can

be directly applied to measure semantic compatibility is understudied. In this work, we analyze

the potential limitations of the standard CBOW model in terms of semantic compatibility measure-

ment (see Section 3.1). We further propose a novel semantic compatibility model by adapting the

standard CBOW in two ways. First, we introduce several alternatives for context representation.

We exploit bidirectional LSTM [Graves et al., 2013] to model the sequential information in con-
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text and two self-attention mechanisms [Vaswani et al., 2017] to capture the critical context words.

Second, we add a multilayer perceptron layer to relax CBOW’s constraint on contextual similarity

and tailor it for capturing semantic compatibility.

The overview of our method is shown in Figure 4. In our solution, the semantic compatibility

model is used in a transfer learning fashion: (1) the model is first trained based on large raw

corpora (such as Wikipedia) with the aim of predicting the semantic compatibility between con-

text and a single word; (2) the learned model is then used to determine an idiom’s intended usage

by measuring the semantic compatibility between the idiom’s literal sense and the context. Since

idioms are multi-word expressions, we treat it as a single semantic unit and build a literal repre-

sentation of idiom, which enables seamlessly reusing the semantic compatibility model for usage

recognition. The advantages of our model are: (1) there is no need for annotated idiom usage ex-

amples since the core component of our usage recognition model (i.e., the semantic compatibility

model) is trained on raw corpora; (2) the model is generalized, i.e., it can be applied to different

idioms without further parameter tuning. We conduct experiments on two corpora; results sug-

gest that the proposed generalized model achieves competitive results compared to state-of-the-art

per-idiom models.

5.2 Background

Our model is built on the basis of CBOW and we explore attention mechanisms to capture the

critical context words. Thus, we have a brief review of CBOW and attention mechanisms before

proceeding to the model description.

5.2.1 Continuous Bag-of-Words

Neural language models which learn low dimensional vector word representation encoding

both semantic and syntactic information, are currently one of the most influential methods in NLP

[Bengio et al., 2003]. The probability of a sequence of words is calculated based on the learned

vector representations, which can generalize well to unseen sequences of tokens. The word2vec
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Figure 4: The overview of our idiom usage recognition model in a transfer learning fashion: the

CBOW is adapted for semantic compatibility measurement which can be trained on raw large

corpus; the learned representations and parameters are then used for idiom usage recognition. []

indicates target word or idiom.

[Mikolov et al., 2013a, Mikolov et al., 2013b] family of algorithms, developed from a shallow neu-

ral network, is an effective way to generate such embeddings.

The Continuous Bag-of-Words (CBOW) variant of word2vec internally tries to predict the

target word based on the context words (as shown in Figure 5). Due to large vocabulary size, the

training of CBOW is computational expensive. One widely applied strategy to speed up training is

negative sampling. In particular, it defines two sets of embeddings: the “official” word embeddings

and a second set of context embeddings, for each word in the vocabulary. The embeddings in

the two sets are K-dimensional vectors which are tuned iteratively by scanning huge amounts of

texts by a sliding window. For each observed pair of context and target word, the model samples

several ”negative” words which are not compatible with the context. The training objective is to

maximize the probability of positive (compatible) context-word pairs and minimize the probability

of negative (incompatible) pairs generated from a known noise distribution.

Specifically, the loss function used in CBOW is:

log σ(vc · vw) +
∑

wj∈Wneg

log σ(−vc · vwj
) (5.1)
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Figure 5: An working example of CBOW. Given the context ”The dog () at the mailman”, the

model aims to assign those words which are fit to the context with high scores.

where vc is the context embedding, vw and vwj
are the word embeddings of positive and negative

target words, respectively. Since the sliding window usually contains more than one words, vc

is represented as the average of context embeddings of words within the window. The sigmoid

function σ(vc · vw) can be considered as a semantic compatibility measurement; the model will

update the context embeddings and word embeddings iteratively so as to assign high score to

positive (compatible) pairs and lower score the negative (incompatible) pairs.

However, the goal of CBOW is limited to a smaller scope; its heavily trimmed network mainly

aims to learn useful vectors for words to capture their semantic similarity. As semantic compat-

ibility is essentially different with semantic similarity, we analyze the potential limitations of the

standard CBOW model and adapt it to better model semantic compatibility in the following section.
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5.2.2 Attention Mechanism

The fundamental task of neural networks is to allocate importance to input features through the

weights of the neural network’s model. In recent years, there has been a growing research interest

in attention mechanism in deep learning community. Instead of using all available information,

attention introduces a memory-access mechanism which can select the most important information

in the learning process.

The application of attention in NLP is pioneered by [Bahdanau et al., 2014] in the task of ma-

chine translation. Before attention, state-of-the-art machine translation systems mainly used the

Encoder-Decoder models. The Encoder first reads a complete sentence and compresses all infor-

mation into one fixed-length vector. The Decoder then takes the vector as input and generates

the translated sentence word by word. However, translation systems often deal with inputs and

outputs of arbitrary length. A limitation of the Encoder-Decoder model is that it is has poor per-

formance when translating long sentences since encoding long sentences using one single vector

could lead to information loss. Attention mechanisms introduce a context vector in the Decoder.

When generating a target word, the context vector is used to search for the relevant words in the

source sentence. By utilizing this mechanism, it is possible for the Decoder to take into account

the whole input to capture global information, rather than solely to infer based on one vector.

Apart from machine translation, attention has successfully been applied to tasks such sen-

tence summarization [Rush et al., 2015] , question answering [Santos et al., 2016] and image cap-

tioning [Xu et al., 2015]. In these models, attentions have been typically used for alignment be-

tween two sources of information, e.g., the output and input sequences in machine translation

[Bahdanau et al., 2014], or two input sequences such as question answering [Xiong et al., 2016,

Lu et al., 2016].

For some tasks, however, there is no explicit alignment involved. For example, in sequence-to-

one learning task, the input is just a single sequence of tokens; the model needs to relate different

parts of the sequence in order to compute a representation of the same sequence for the purpose

of classification. Researchers introduced self-attention (or intra-attention) to address this problem

[Li et al., 2016, Lin et al., 2017, Cheng et al., 2016]. Notably, [Vaswani et al., 2017] showed that

the self-attention could also be applied directly on raw word embeddings (without using sequence-
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aligned recurrent architecture) for machine translation. The other applications of self-attention

include question answering [Li et al., 2016] and sentiment analysis[Lin et al., 2017].

5.3 A Generalized Idiom Usage Recognition Model

We want to develop a generalized model for idiom usage recognition based on semantic com-

patibility. In this section, we first analyze the potential limitations of CBOW for semantic com-

patibility measurement. Then we present how we adapt the CBOW for semantic compatibility.

Finally, we describe how we exploit the adapted model for idiom usage recognition.

5.3.1 Limitations of CBOW for Semantic Compatibility

As we have mentioned earlier, CBOW uses semantic compatibility as an auxiliary task to

learn useful vectors for words to capture their similarity in hidden semantic space. An important

question therefore is whether the learned context embeddings and the word embeddings, together

with the sigmoid function, can be directly applied as a measurement of semantic compatibility.

Although it seems plausible at first glance, we argue there are three potential limitations of CBOW

that impedes it for semantic compatibility measurement.

1) A lack of sequential information To represent the context, CBOW simply uses the average

of all the context embeddings, thus the order information is not preserved. Sequential models,

such as the standard Recurrent Neural Network (RNN), can construct phrase and sentence repre-

sentations in an order-sensitive way. They are becoming increasingly popular in NLP area because

sequential information has been proved to be an important aspect for many applications such as

text classification and sentiment analysis.

2) Not all words are equal In CBOW, all words contribute equally to the context representa-

tion. This limitation might not significantly impact the quality of the learned word embeddings,

but could be problematic for semantic compatibility. In many cases, a few key context words are

critical clues to determine the semantic compatibility between the context and a word.

3) A paradox of transitivity In CBOW, the direct dot product between context representation
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and target word embedding is used to model their semantic compatibility. We find this dot product

operation is not appropriate for encoding semantic compatibility relation; dot product aims to cap-

ture similarity relation (≈) between two embeddings, which could lead to a paradox of transitivity

in the case of semantic compatibility. In real world a word can appear in very different contexts.

For example, in John Lennon wrote a [song] called ”Working Class Hero” and I like to listen to

the same [song] on repeat, the semantics of the two contexts of ”song” are very different. Let C1

and C2 denote embeddings of two different contexts, i.e., C1 6≈ C2. A target word B could be

compatible with both C1 and C2 (as shown in the above example). If we use the direct dot product

to model their compatibility, we can get B ≈ C1 and B ≈ C2 in the embedding space since B is

compatible with both C1 and C2. Based on the transitive property of similarity relation, C1 ≈ C2

can be inferred, which contradicts with the premise C1 6≈ C2.

5.3.2 Adapting CBOW for Semantic Compatibility

We have discussed the potential limitations of CBOW for semantic compatibility. The first

two limitations are related to context representations, while the third limitation is about the dot

product operation. We propose to adapt the CBOW model to better capture semantic compatibility

relation. In terms of context representation, we additionally use a special bidirectional Long Short-

Term Memory network (LSTM) [Hochreiter and Schmidhuber, 1997] to encode sequence infor-

mation. Meanwhile, we exploit self-attention mechanism [Lin et al., 2017, Vaswani et al., 2017,

Li et al., 2016] to give more weight to important words when encoding context. Finally, instead

of the simple dot product, a semantic evaluation layer is used to overcome the aforementioned

paradox of transitivity.

5.3.2.1 Context Representation In standard CBOW, the context representation is the average

of the embeddings of context words (denoted as ACE). Apart from ACE, we also exploit bidirec-

tional LSTM for context representation, which has been shown effective for modelling sequential

data [Graves et al., 2013, Melamud et al., 2016, Peters et al., 2018]. The overview of our architec-

ture is illustrated in Fig. 6

Our architecture is not the same as standard Bidirectional LSTM [Graves et al., 2013]. In our
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Figure 6: Bidirectional LSTM for context representation.

model, the two LSTMs gravitate toward the target words: a forward LSTM will generate a hidden 

representation for each word before the target word and a reversed LSTM will generate a hidden 

representation for each word following the target word; we do not feed the LSTMs with the target 

word itself. Let h be the hidden representation of word w (i.e., the output of the LSTMs), the con-

text representation of the target word at position i is the concatenation of the hidden representations 

of the two neighboring words, i.e.,

ci = [hi−1;hi+1] (5.2)

Attention Layer In both ACE or the LSTM based context representation, we do not explicitly

consider the importance of words. In this work, we exploit attention mechanism to enable our

model to automatically identify those important words for semantic compatibility.

Attention mechanisms have generally been used to allow for an alignment of the input and out-

put sequence, e.g. the source and target sentence in machine translation [Bahdanau et al., 2014],

or for an alignment between two input sentences as in question answering [Santos et al., 2016,
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Xiong et al., 2016]. In our work, we apply the idea of attention to a rather different kind of sce-

nario, in which we only have the raw input sentence. We propose two self-attention (or intra-

attention) models: global attention and local attention. The first one uses a vector to capture all the

words that are important globally. As semantic compatibility usually involves the local interaction

between words, our second attention model captures those words that have strong semantic relation

with the other words in the context.

Figure 7: The global attention architecture when using bidirectional LSTM for sequential 

encoding.

Global Attention Figure 7 illustrates the global attention architecture when using bidirectional 

LSTM for context encoding. Assume v is the attention vector. The attention layer will gener-

ate an importance score gi for each word wi based on the dot product between v and its hidden 

representation hi:

gi = v · hi + b (5.3)

Here the attention vector v is a parameter to be learned in the training process, which can be
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considered as a global variable trying to ”memorize” those critical words in a sentence based on

the current context. The importance score is then normalized using softmax:

ai =
egi∑n
p=1 e

gp
. (5.4)

The attention-based context representation is a weighted sum of hidden states of LSTMs:

vc =
n∑
i=1

hiai. (5.5)

Note that this global attention models can also be applied to the ACE for context representation.

The only difference is the input to the attention layer: we only need to replace hi in Equation 5.3

and 5.5 with the word embedding wi.

Local Attention while global attention is useful, we argue it might not fully capture the seman-

tic compatibility information in a sentence. A word that is important for semantic compatibility

globally or in other sentences might not be important for the target sentence. Semantic compati-

bility usually involves the interactions among words within the sentence. We introduce a diagonal

relevance matrixA with valuesAi,j = f(wi, wj) to characterize the strength of semantic interaction

between words wi and wj . The scoring function f is computed as the inner product between the

embeddings of wi and wj . If a word has strong semantic relation with another word, it is highly

possible that this word is important. So we apply a max operation over the row of A (excluding

the value in the diagonal because it is the relevance score between a word and itself) to select the

largest value as the importance score for each word, i.e., ,

li = max
j
Ai,j (5.6)

Following the global attention, a softmax layer is applied to normalize the raw score li; the

final context representation is a weighted sum of hidden states of LSTMs. The overview of local

attention is illustrated in Figure 8. Similarly, when applying local attention to ACE, the final

context representation is a weighted sum of word embeddings.

5.3.2.2 Semantic Compatibility Evaluation Layer To quantify the semantic compatibility be-

tween a context and a target word, standard CBOW uses the direct dot product between context
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Figure 8: The local attention architecture when using bidirectional LSTM for sequential encoding.

embedding and target word embedding as the metric. We argue the direct dot product operation 

could lead to paradox of transitivity. To address this limitation, we apply a multilayer perceptron 

(MLP) with a ReLU nonlinearity over the context representation. The MLP is shown below in 

which the f1 and f2 denote fully connected layer.

L(vc) = f2(relu(f1(vc))) (5.7)

We use the following formula to measure the semantic compatibility between a context and a

word:

σ(L(vc) · vl) (5.8)

Recall the main reason of paradox of transitivity is that a word can appear in very different con-

texts; the direct dot product between word embedding and context representation would, however,

force these different contexts being similar to each other. This paradox is avoid by the multilayer

perceptron L since it relaxes the contextual similarity constraints, i.e., it can map the context repre-

sentations which are different originally to similar embeddings which are close to the target word.

We refer the whole mapping and measuring schema as the semantic compatibility evaluation layer.

64



5.3.2.3 Training We train our adapted CBOW on wikipedia corpus using negative sampling.

The loss function is:

log σ(L(vc) · vw) +
∑

wj∈Wneg

log σ(−L(vc) · vwj
) (5.9)

The model is trained end-to-end using the Adam optimizer [Kingma and Ba, 2015]. Standard

CBOW scans the whole corpus using a sliding window of a fixed size. Alternatively, we train

the model sentence by sentence because using all the context words in a sentence can yield more

precise context representation, which is essential for semantic compatibility.

5.3.3 Idiom Usage Recognition based on Semantic Compatibility

We have introduced how we adapt the standard CBOW for semantic compatibility measure-

ment and train it on large corpus. Given a context representation and a word embedding, the learned

model is expected to tell us whether they are compatible. However, we want to measure the se-

mantic compatibility between a context and an idiom, which is usually a multi-word expression.

To reuse the learned model, we first build a representation of the literal sense of the idiom. Then

we use the semantic compatibility layer to evaluate whether the literal representation is compatible

with the context.

5.3.3.1 Literal Representation of Idiom We experiment with the following two representa-

tions of the literal sense of idiom:

AWE, the average of the embeddings of words forming the idiom. The intuition is that the

literal sense of idiom is compositional.

AKWE, the average of the embeddings of keywords in the idiom. Recall that when we built the

literal usage representation in our unsupervised model (§ 4.2.1), we did not use all the constituents

of the idiom. The intuition is that one or two words in idiom will be the crucial clue that indi-

cates whether a figurative or literal sense was intended. Consider the figurative example of ”get

wind” at the beginning of this chapter, the word ”wind” does not fit well to the context and this

incompatibility servers as a strong signal of the intended usage, while the word ”get” provides less

information. In this work, for verb-noun combination, we only choose the noun as the keyword;
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for noun-noun combination, we choose both nouns as the keywords; for the other types of idiom,

the non-stop words are selected as the keywords. Although this representation might lose partial

information of the literal interpretation of idiom, we hypothesize it could benefit our task.

5.3.3.2 Usage Classification Given a context representation vc and the literal representation of

idiom vl, we calculate their compatibility score using the following formula:

σ(L(vc) · vl + bu) (5.10)

where bu is a bias term, which is tuned based on a development dataset. If the score is larger than

0.5, the instance will be classified as literal usage. Otherwise, it will be labeled as figurative usage.

5.4 Evaluation

To verify our hypothesis that using the semantic compatibility between contexts and idioms

can help to train a generalized model, we conduct experiments to address the following questions:

1. How effective is our overall approach? How does it compare against previous work, espe-

cially the per-idiom models?

2. How effective is the standard CBOW for idiom usage recognition?

3. Does our model effectively address the limitations of CBOW?

5.4.1 Experimental Setup

Baselines We compare our models with four unsupervised models: [Sporleder and Li, 2009],

[Li and Sporleder, 2009], [Fazly et al., 2009] and the model we presented in Chapter 4. For su-

pervised model, we compare our models with [Rajani et al., 2014] and the ensemble model we

presented in Chapter 3. All these models are per-idiom models except the one presented in

[Sporleder and Li, 2009].

Our models We experiment with two base context representations: ACE and bidirectional LSTM,

over which we additionally propose two attention models: local and global attention. Therefore
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we have four variants for context representations. In terms of the representation of literal sense of

idiom, we experiment with AWE and AKWE. So our full models have eight variants.

Parameter setting To train the adapted CBOW, we follow the standard training procedure in

word2vec using negative sampling. To increase the training speed, we uniformly sampled a set

of sentences from the Wikipedia 1 to build a corpus of 100M tokens. We find using corpus of this

size is sufficient to train a reliable model so we do not use the full corpus. All those tokens with

frequency less than 50 are trimmed. The hyperparameters are summarized in Table 11.

When applying the adapted CBOW model to idiom usage recognition, we need to set the bias

term bu in Equation 5.10 with value in a reasonable range. We picked 10 idioms that are different

from the evaluation set, collected 50 instances from the web for each idiom, and labeled them

ourselves. We find that bu in the range of [0.06, 0.15] yield good results.

Table 11: Hyperparameters of our network.

Parameter Value

word embedding size 200

context embedding size 200

LSTM hidden size 200

f1 input/output size 200/400

f2 input/output size 400/200

negative samples 15

epoch 10

batch size 500

learning rate 0.001

Following the experiment presented in Chapter 4, we compare all the methods using SemEval 2013

Task 5B corpus and Verb-Noun Combination (VNC) dataset.

1

https://dumps.wikimedia.org/
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5.4.2 Experimental Result

The result is shown in Table 12. We can observe that ACE+LocalAtt+AKWE gets an F-

score of 0.76 (accuracy of 0.75) on SemEval corpus and 0.75 (accuracy of 0.73) on VNC corpus,

which outperforms the per-idiom models from [Rajani et al., 2014], [Li and Sporleder, 2009] and

the generalized model from [Sporleder and Li, 2009]. Moreover, the model is competitive to our

ensemble model presented in Chapter 3.

Table 12: The performances of different models. Avg. Ffig denotes average figurative F-score,

Avg.Acc denotes average accuracy. * indicates the difference is significant with our model

ACE+LocalAtt+AKWE at the 95% confidence level. Since the method from [Fazly et al., 2009]

restricted their experiment to VNC type, we only report their performance on the VNC corpus.

SemEval VNC
Type Model Avg. Ffig Avg.Acc Avg. Ffig Avg.Acc

Rajani et al., 2014 0.71* 0.75 0.69* 0.7
Per-Idiom Li and Sporleder, 2009 0.64* 0.62* 0.67* 0.66*

Fazly et al., 2009 - - 0.73 0.74
Our Ensemble Model 0.77 0.77 0.75 0.75
Our Unsupervised Model 0.75 0.74 0.73 0.75

Generalized Sporleder & Li 0.58* 0.52* 0.61* 0.57*
ACE + GlobalAtt + AWE 0.72 0.69 0.71 0.7
ACE + GlobalAtt + AKWE 0.74 0.7 0.73 0.7
ACE + LocalAtt + AWE 0.74 0.73 0.76 0.73

Our Model ACE + LocalAtt + AKWE 0.76 0.75 0.75 0.73
Bidirectional LSTM + GlobalAtt + AWE 0.68 0.68 0.67 0.67
Bidirectional LSTM + GlobalAtt + AKWE 0.72 0.72 0.69 0.7
Bidirectional LSTM + LocalAtt + AWE 0.69 0.68 0.7 0.69
Bidirectional LSTM + LocalAtt + AKWE 0.73 0.72 0.72 0.71

5.4.3 Detailed Analysis

5.4.3.1 Using Standard CBOW for Idiom Usage Recognition In this study, we experiment

using standard CBOW for idiom usage recognition, in which ACE is used as the context represen-

tation and the direct dot product between context representation and target word representation is

used as a measurement of semantic compatibility. The training and evaluation procedures are the

same as our full models.
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Table 13: The results of CBOW for idiom usage recognition. Results are averaged across all the

idioms in the two corpora.

Model Avg. Ffig Avg.Acc
CBOW+AWE 0.63 0.62

CBOW+AKWE 0.65 0.63

Table 13 shows the performance of CBOW for idiom usage recognition, which is significantly

worse than our adapted models. Arguably, CBOW is insufficient to capture the semantic compat-

ibility information in text. To illustrate this point, we compare the CBOW and our adapted model

(we use the bidirectional LSTM + Local Attention for context representation) to select the most

compatible words based on a given context. We find the results of CBOW remains of wildly-vary

quality. Considering the example ”can you see the [] i try to make?”, the top 10 most compatible

words to fill in the bracket predicted by the two models are shown in Table 14.

Table 14: Top 10 most compatible words in ”can you see the [] i try to make?”

CBOW Adapted CBOW

please stuff

want positives

you ripples

hear ones

how things

try changes

sure figures

wish pictures

know dilema

do negatives

As we can see, CBOW has a fairly poor semantic compatibility measurement; all the words
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tend to make little sense in the context. In contrast, the adapted model has much better results.

Since our idiom usage recognition heavily relies on the underlying model’s ability of measuring

semantic compatibility, this could potentially explain why the CBOW has a worse performance in

the downstream task.

To better understand the effectiveness of sequential information, attention mechanism and se-

mantic compatibility layer, we did an ablation study and the results are shown in Table 15. Since

AKEW tend to outperform AWE (as shown in Table 12) , we only experiment with AKEW as the

literal representation of idiom.

Table 15: The results of ablation study. Results are averaged across all the idioms in the two

corpora.

Model Avg. Ffig Avg.Acc

ACE+GlobalAtt+AKEW 0.74 0.7

- w/o Semantic Layer 0.66 0.64

ACE+LocalAtt+AKEW 0.76 0.74

- w/o Semantic Layer 0.67 0.66

- w/o attention 0.66 0.67

Bidirectional LSTM+GlobalAtt+AKEW 0.71 0.71

- w/o Semantic Layer 0.65 0.64

Bidirectional LSTM+LocalAtt+AKEW 0.73 0.72

- w/o Semantic Layer 0.66 0.66

- w/o attention 0.7 0.69

5.4.3.2 Sequential Information The importance of sequential information is closely related to

attention model. In Table 12, we can observe that our full non-sequential models (ACE variants)

generally outperform the sequential models (Bidirectional LSTM variants). Without attention,

however, we find sequential information can significantly boost the performance of our model; the

bidirectional LSTM + AKEW achieves F-score of 0.7 while the ACE + AKEW only gets 0.66
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as shown in Table 15. Intuitively, with the aid of attention, our model can identify those critical

words, which enhances the expressiveness of context representation by simple weighted averaging.

5.4.3.3 Attention In Table 15, we can observe removing attention layer can result in perfor-

mance drop for both ACE and bidirectional LSTM variants. This shows the effectiveness of our

attention model in terms of context representation. Moreover, the global attention is not as competi-

tive as the local attention. For example, the Bidirectional LSTM+LocalAtt+AKEW model achieves

an averaged F-score of 0.73 on the two corpora while the Bidirectional LSTM+GlobalAtt+AKEW

model gets 0.71. This observation aligns with our intuition that semantic compatibility usually

involves the local interactions among words within the sentence. In Figure 9 we visualize the

attention layer using the first example in the Introduction section. The global attention tends to

assign higher weights to non-stop words such as ”kids”, ”experts” and ”sign”, while the local at-

tention tends to assign higher weights to words with strong semantic relation, such as ”warn” and

”danger”.

Figure 9: Visualization of attention layer.

5.4.3.4 The Semantic Compatibility Layer We have argued that the direct dot product be-

tween context representation and target word embedding could lead to the paradox of transitivity. 

To address this problem, we add a multilayer perceptron over the context representation so as to 

map different contexts to embeddings that are close to the target word.
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In Table 15, we observe that the performances of our modes decrease significantly without the

semantic compatibility layer. Among all the full models, the ACE+LocalAtt+AKEW has the most

severe performance drop, i.e., from 0.76 to 0.67 in terms of F-score and 0.74 to 0.66 in terms of

accuracy. This suggests the semantic compatibility layer is essential to our model.

5.4.4 Limitations

We have used ablation studies and visualization to demonstrate the effectiveness of the pro-

posed attention models. But does our model always successfully capture the important words in

context for semantic compatibility? To make the study more reliable, we can manually annotate

those critical words and check whether they align with the weights learned by the attention models.

However, human annotations require a great amount of time and effort outside the scope of this

thesis. Alternatively, we can use statistical weighting methods such as tf-idf or syntactic parser to

automatically label some candidate words and compare them with the attention models. A poten-

tial drawback of this method is that the candidates are produced using general-purpose weighting

methods, which might deviate from actual critical words for semantic compatibility.

Another limitation concerns the evaluation of semantic compatibility. Although the ablation

study suggests that the semantic compatibility layer is essential to our full models, a systematic

quantitative evaluation is needed to justify that our models have learned the knowledge of semantic

compatibility. As we can see from Table 14, we still have some predicted words that are not

compatible with the context. In the future, we plan to use sentence completion task to evaluate

our semantic compatibility model. In corpora such as Microsoft Sentence Completion Challenge

(MSCC) [Zweig and Burges, 2011], each entry is a sentence with one word replaced by a gap. The

task is to choose a word, out of five choices, that is most coherent to fill the gap. However, it is

worth noting that general sentence completion tasks might need domain knowledge, reasoning and

grammar analysis; sentence compatibility might get involved in only a small portion of the relevant

datasets (e.g., MSCC).
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5.5 Chapter Summary

To reduce the computational cost, we have built a generalized idiom usage recognition model

such that it no longer needs to be trained separately for each individual idiom. Our idea is to

quantitatively measure the semantic compatibility between the literal meanings of idioms and their

contexts and use the result to determine the usages of idioms. Although the concept of semantic

compatibility is reminiscent of the training objective of CBOW, we find that the standard CBOW

can not fully capture the semantic compatibility in text due to its shallow architecture. We have de-

veloped a novel semantic compatibility model by addressing the limitations of the standard CBOW

for the purpose of idiom usage recognition. Experiments have shown that the proposed generalized

model achieves competitive results compared to the per-idiom models.
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6.0 Applications of Idiom Usage Recognition Models

The ubiquity of idiomatic expressions in different genres of text has negative impacts on

many NLP applications due to their idiosyncratic behavior. Recently, automated processing of

idioms has been actively investigated to mitigate such impact [Liu et al., 2017, Cap et al., 2015,

Fadaee et al., 2018, Spasic et al., 2017, Williams et al., 2015]. The models we have proposed in

this thesis can be extended into semantic-related NLP tasks to address the ambiguity problem in-

troduced by idioms. In this chapter, we first briefly discuss some potential applications of our

models. Then we present a case study in which we integrate our models into modern machine

translation system to improve its performance on sentences containing idioms.

6.1 Potential Applications

Information Retrieval Lexical ambiguity is a long-lasting problem for advanced information re-

trieval systems. For example, when one aims to search for information of the ”Apple” company,

the results which are related to the fruit ”apple” should be excluded. This problem also occurs to

idioms. When an idiom is used figuratively, its constituents would not have their literal interpre-

tations. Therefore, when we search for information which is related to the literal senses of these

constituents, information retrieval systems should be able to exclude sentences in which the idiom

is used figuratively. Our model can help information retrieval system to achieve such a goal.

Automated Essay Scoring Previous studies had shown that appropriate use of idioms is a strong

indicator of the native-like proficiency of the language and might be a reliable measure of writing

skills [Cowie et al., 1984]. Therefore, our model can potentially benefit automated essay scoring

[Ong et al., 2014, Persing and Ng, 2015]. For example, our model can help locate the figurative

usages of idioms in essays and this information can serve as features for downstream automated

essay scoring models.

Sentiment Analysis Idioms are commonly used in reviews and comments because they typically

imply an affective stance toward something (rather than a neutral one) [Williams et al., 2015,
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Nunberg et al., 1994]. Since words are the basic sentiment units in modern sentiment analy-

sis models, studies reveal that a large number of errors of sentiment classification are caused

by idioms due to their non-compositional property [Balahur et al., 2013, Williams et al., 2015].

[Williams et al., 2015] has shown that the inclusion of idioms as features can improve the perfor-

mance of traditional sentiment analysis. Since the sentiments of literal and figurative usages of

idioms might be different, it is promising that the usage information can potentially further boost

the sentiment analysis models.

Machine Translation As we have mentioned at the beginning of this thesis, machine translation

has a poor performance on sentences with idioms due to the usage ambiguity; state-of-the-art

machine translation models generally treat idioms as normal expressions and are not sophisticated

enough to translate them properly in different context. How to integrate the information learned by

the idiom usage recognizers into advanced machine translation models is an interesting question

to answer.

6.2 Case Study: Improving Machine Translation of Idioms

The majority of previous work on idiom translation mainly augments machine translation mod-

els with features indicating whether there is an idiom in the source sentence [Fadaee et al., 2018,

Salton et al., 2014]. In this case study, we investigate whether the usage information of idiom

(extracted by our usage recognition model) can benefit machine translation on idiom translation.

6.2.1 Integrating Usage Information into Machine Translation Model

To conduct the study, an important challenge is to build a dedicated parallel corpus of reason-

able size for learning and evaluating idiom translation. We find the English-German idiom corpus

from [Fadaee et al., 2018] to satisfy our need. This corpus is built from the data used in the WMT

German-English Shared Task from 2008 to 2016 [Bojar et al., 2017]. Specifically, we perform the

English-to-German translation task and each English sentence in the testing data contains at least

one idiom in the dict.cc online dictionary. The statistics of the dataset are listed in Table 16 .
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Table 16: Statistics of English-to-German translation dataset.

Number of unique idioms 132

Training size 4.5M

Idiomatic sentences in training data 1998

Test size 1500

Another challenge of this study is to integrate our usage recognition model into modern ma-

chine translation models. The full pipeline has to address many problems. First, it needs to locate

the potential idioms in the sentence. Second, it has to recognize the usages of the potential idioms.

Finally, we need to find a way to encode the usage information into machine translation models.

As we have addressed the second problem in the previous chapters (we use the generalized model

in this study), we need to address the first and the third problem in this study.

For each sentence in the English-to-German translation dataset, the idiom information (e.g.,

whether there is an idiom and the standard form of the idiom) is provided; we only need to find the

position of the given idiom. We employ lexico-syntactic patterns to recognize their occurrences.

Specifically, we first use exact string matching to locate them in text. It cannot find all the idioms

since many idioms can also undergo certain syntactic changes such as inflection. To resolve this

problem, we further use regular expressions to recognize their occurrence. To encode the usage

information into machine translation models, a straightforward method is to append a special extra

token < fig > to each source sentence containing a figurative usage of idiom. This simple ap-

proach tends to be effective in machine translation systems which employ sequence-to-sequence

architectures [Fadaee et al., 2018]. As this method ignores the position of the idiom, we also ex-

periment with another method in which we insert a token < start fig > before the idiom and a

token < end fig > after the idiom. We compare these two methods with the conventional setting

in which no extra information regarding the usage of idiom is provided.

We use OpenNMT [Klein et al., ] to implement the machine translation model. The NMT
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vocabulary is limited to the top 20K most frequent words in both languages. The hyperparameters

are summarized in the following tables:

Table 17: Hyperparameters of our machine translation model.

Parameter Value

Encoder layer 4

Encoder LSTM hidden state size 1000

Dropout 0.1

Epoch 20

Batch size 100

We use BLEU to measure the quality of translations. From the result presented in Table 18, we

can see that the baseline achieves a BLEU score of 17.2, which is lower than the performance of

previously reported models on the standard test set (WMT 2008-2016) [Sennrich et al., 2016]. This

suggests that it is much harder to translate sentences containing idioms. Further, simply appending

the < fig > token to indicate the usage of idiom gets a BLEU score of 16.6, which is slightly

lower than the baseline model; using the < start fig > and < end fig > tokens outperforms the

baseline by 2.3 BLEU. This suggests that the usage information and the position information of

the idiom can help boost the performance of neural machine translation models on idioms.

Table 18: The performance on English-to-German idiom translation test set.

Model BLEU

NMT Baseline 17.2

with < fig > token 16.6

with < start fig > < end fig >token 19.5
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6.2.2 Limitations

As we have mentioned above, the idiom information is provided for each sentence in our study.

In real application, however, we need to know whether there is an idiom in a sentence in the first

place. One straightforward way is to rely on external idiom resources. For example, we can

first build an up-to-date idiom dictionary of broad coverage and high quality (online dictionaries

such as thefreedictionary.com and dict.cc are reasonable choices) and then use lexico-syntactic

patterns to recognize whether an idiom in the dictionary occurs in the sentence. When the external

idiom resources are not available, we can alternatively resort to idiom type classification methods

to find potential idioms in a sentence [Fazly and Stevenson, 2006, Venkatapathy and Joshi, 2005,

Katz and Giesbrecht, 2006].

Another concern is related to the figurative meanings of idioms. We only integrate the usage

and position information of an idiom into machine translation models. Thus, we expect the models

can learn the figurative interpretation of idioms from the training data. This is problematic for

idioms with low semantic analyzability, especially when they do not have enough figurative in-

stances for training. One solution to address this problem is to replace idioms with their figurative

meanings in literal English. We have discussed this solution in [Liu and Hwa, 2016] and we will

leave this as future work.
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7.0 Conclusion

7.1 Summary

In this thesis, we have investigated how to build robust and efficient idiom usage recognizers

so that the models can be applied to a broader range of idioms. We have hypothesized that our

goals can be achieved through better modeling the interaction between idiom and context (§ 1.2).

In Chapter 3, we have proposed an ensemble model which can draw knowledge from different

representations. Experiment result (§ 3.4) supports the first hypothesis of this thesis that a robust

idiom usage recognizer can be trained by addressing the interaction between context representa-

tions and linguistic properties of idioms (H1 in § 1.2). In Chapter 4, we have presented an unsu-

pervised idiom usage recognizer to reduce human effort. The competing performance (§ 4.3) of

this unsupervised model supports the second hypothesis of this thesis that the semantic similarity

between context and idiom can be used as distant supervision (H2 in § 1.2). In Chapter 5, we have

presented a generalized idiom usage recognition model by evaluating the semantic compatibility

between context and the literal sense of the idiom. The generalized model can reduce the computa-

tional cost because there is no need to train the model for each individual idiom. This supports the

third hypothesis of this thesis (H3 in § 1.2). To demonstrate the application of our model, we have

conducted a study in which we integrate the usage information of idioms into machine translation

systems (§ 6.2). The following is a summary of our contribution.

• We have conducted the first study that analyzes the impact of linguistic properties of idioms on

the effectiveness of context representations. Concretely, we focused on the semantic analyz-

ability and context diversity of idioms. We have defined two metrics to quantitatively analyze

their interactions with different representations of context.

• We have presented a supervised ensemble approach to adaptively combine multiple contextual

semantic representations for different idioms. Our model can achieve better stability without

loss of accuracy.

• We have proposed a novel literal usage metric based on the semantic similarity between the

context and the idiom to estimate the likelihood that the idiom is used literally.
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• We have shown how to use two representative probabilistic latent variable models (i.e., Latent

Dirichlet Allocation and Naive Bayes) for unsupervised idiom usage recognition. The usage

of an idiom is considered as the hidden variables and represented as a mixture of linguistically

motivated features.

• We transformed the proposed literal usage metric into soft labels; we have further presented

learning algorithms in which the soft label was served as distant supervision to guild the down-

stream probabilistic latent variable models to better infer the usages of idioms. Our full model

is competitive against supervised methods.

• We have presented a transferred learning approach for developing a generalized idiom usage

recognizer. The model was trained on a large raw corpus and there is no need to annotate idiom

usage examples for training.

• We have introduced the concept of semantic compatibility and proposed a novel semantic

compatibility model by adapting the training of the Continuous Bag-of-Words (CBOW) model.

• We have successfully applied the semantic compatibility model on idiom usage recognition by

measuring whether the literal senses of idioms are compatible with the contexts. Results have

shown that our method achieves competitive results compared to state-of-the-art per-idiom

models.

• We have presented a simple approach to extend our models into modern machine translation

model. Results have shown that our models can improve the translation quality of idioms in

text.

7.2 Future Work

The findings reported in this thesis open the door for a variety of future work. We discuss

below some short term future work (§ 7.2.1) and open research questions (§ 7.2.2).
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7.2.1 Short Term Future Work

Weakly Informed Unsupervised Learning Unsupervised learning is one of the most active and

productive areas in recent years in NLP. In Chapter 4, we generate soft labels encoding the likeli-

hood of usages of idioms and use it as a form of distant supervision for downstream unsupervised

models. We have empirically shown that the soft labels not only provide good initialization for

the subsequent unsupervised methods, but also effectively guide the models toward grouping by

usages. This unsupervised learning framework extends far beyond idiom usage recognition.

We propose to investigate the weakly informed topic modeling by adapting the standard LDA

using the framework established in § 4.2.3 (as shown in Fig.10). Although the LDA model can

infer topics based on given training documents, it does not associate the right labels (i.e., ”politics”

or ”sport”) to the topics; we need to manually interpret the learned topics after training. Our

unsupervised learning framework can address this problem by introducing soft labels encoding the

prior topic distributions of documents. The key, therefore, is to generate the soft labels based on

the content of each document. Following MinV, we can first build a topic representation similar

to the literal usage representation. Then, the semantic distance between a document and topic

representations can be used to generate the soft labels. In addition, it is also worth inducing a prior

topic distribution for each word. All these prior information can be integrated into the learning

process following the idea of informed Gibbs sampling. We expect the weakly informed topic

modeling can learn more precise representations of topics and alleviate the post-hoc labeling.

Improve the Semantic Compatibility Model The notion of semantic compatibility is significant

to many NLP applications. We have analyzed the limitations of CBOW and adapt it to model the

semantic compatibility between a sense and a context. Improving the performance of this part is a

priority of future work.

First, it would be interesting to experiment with advanced context representations recently pro-

posed in the literature, such as BERT [Devlin et al., 2018] and ELMo [Peters et al., 2018]. These

representations can efficiently encode different types of syntactic and semantic information and

have significantly outperformed the state of the art of several challenging NLP problems, e.g.,

sentiment analysis, question answering and textual entailment.

Second, it would also be interesting to investigate the negative sampling in the training of
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(a) LDA[Blei et al., 2003] (b) Weakly informed LDA

Figure 10: Graphical model of LDA and weakly informed LDA. s is the prior topic distribution.

semantic compatibility model. We find that the negative sampling strategy is somewhat naive; the

current sampling algorithm selects a word as a negative word based solely on its frequency in the

corpus. This could have a negative impact on the quality of the trained model. We conjecture that

the reasons are twofold. First, it is highly likely that the generated training examples are not very

challenging for the models to learn meaningful semantic compatibility patterns. Second, it might

sample words which are compatible with the context (i.e., they are not negative). Thus, generating

hard negative examples can help further improve the performance of the learned model. A related

technique is hard negative mining, which is actively studied in the machine learning community

[Shrivastava et al., 2016, Hinami and Satoh, 2018, Shi et al., 2018].

Transfer Our Models to Other Langauge A lot of language might lack manually crafted lexical

resources, such as the MRC Psycholinguistic Database Machine Usable Dictionary (which pro-

vides abstractness measurement of words) used in our unsupervised model. Therefore, an interest-

ing question is how can we transfer our models trained on English to other resource-constrained

languages. One work on metaphor detection shows that model transferring can effectively lever-

age the knowledge learned from English to Spanish, Farsi, and Russian [Tsvetkov et al., 2014].

We think this idea can also apply to idioms and future research along this line is promising.
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7.2.2 Open Research Questions

Infer the Figurative Meanings of Idioms The models we have proposed in this thesis can tell

whether an idiom is used figuratively or literally. A more challenging task is to infer the figurative

meanings of idioms without relying on manually crafted resources such as idiom dictionary.

One promising approach is through the use of semantic compatibility model we have proposed

in Chapter 5. We can first collect a number of figurative instances of the target idiom and find words

that are compatible with the contexts; these words can then be used to approximate the figurative

meaning of the idiom. However, it is possible that the figurative interpretation cannot be fully

expressed by a single word. A more generalized model should be able to generate interpretations

of variable length. An example technique to achieve this goal is the Encoder-Decoder architecture

[Sutskever et al., 2014], as shown in Fig. 11. The encoder aims to represent the context of idioms,

while the decoder exploits recurrent neural networks to generate the inferred figurative meaning.

Figure 11: Encoder-Decoder model for inferring the figurative meanings of idioms.

To be able to interpret figurative l anguages i s a  longstanding problem in NLP. Inferring the 

figurative meaning of idioms opens up exciting research opportunities to address this challenging 

problem. We believe this is an important step toward seamless communication between human 

and computers. We will leave this as future work.
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Idiom Recommendation Idioms is a major language barrier for non-native speakers. In a pilot

study, we have surveyed seven non-native speakers on 100 Tweets containing idioms; we have

found that, on average, the participants had trouble understanding 70% of them due to the in-

clusion of idioms. Communicating using idiom is also significant. Idioms often involve some

cultural background knowledge thus they can convey certain subtle meaning in a concise and vivid

way; non-native speakers who are not aware of the idioms might end up using plain and redun-

dant language to describe the meaning which would otherwise be easily expressed by the idioms.

Therefore, recommending idioms is useful for non-native speakers.

There are at least two types of idiom recommendations that are worth exploring. The first

type is recommending an idiom purely based on meaning. This is useful when the users have an

intended meaning they want to convey but they do not know what idioms to use. A related work is

presented in [Hill et al., 2016]; the proposed model can recommend a word based on the sentences

describing the meaning. The second type is recommending an idiom based on contexts. For exam-

ple, when a user is writing an essay, it is of great value to build an intelligent idiom recommendation

model that can locate parts of the writing which can be replaced by certain idioms. In this case,

the contexts of the parts to be replaced provide useful information for the recommendation model.

To conclude this thesis, the research reported here demonstrates that linguistic-informed com-

putational models capturing the interactions between idioms and contexts can help build robust

and efficient idiom usage recognizers. Our model could benefit downstream NLP applications to

alleviate the negative impact caused by the ambiguities of idiomatic expressions.
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