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Abstract 

Connectivity Based on Multi-Voxel Patterns Can Selectively Identify Brain Networks 

Where Condition-based Functional Connectivity Does Not: Evidence from the Scene 

Network 

Heather Bruett, MS 

University of Pittsburgh, 2019 

With a major focus of neuroimaging research on mapping brain network connectivity, it is 

essential that researchers use the most effective methods for determining which regions comprise 

functional networks. Here, we compare the functional magnetic resonance imaging (fMRI) brain 

networks that can be identified through shared fluctuations in regions’ univariate responses to 

conditions (i.e., condition-based functional connectivity), with those identified by shared 

fluctuations in multivariate information. To do this, we compare brain networks generated by two 

approaches for measuring connectivity: psychophysiological interaction (PPI), which measures 

the effect of conditions on shared univariate responses, and informational connectivity (IC), which 

measures shared fluctuations in the discriminability of multi-voxel patterns. We compare the 

findings generated by applying these methods to data collected while people perceptually process 

scenes and control (pseudo) scenes. Prior work establishing the regions involved in scene 

processing give us an opportunity to compare the sensitivity and selectivity of these approaches to 

detect a stimulus-relevant network. We find that, while each measure produces useful information, 

the PPI method was less selective than IC in detecting scene-related regions. Using PPI led to 

identifying networks containing both scene and object regions, with little specificity in connections 

between scene regions. In contrast, the network identified by IC was more consistent with prior 

literature examining the brain’s scene network. We recommend that – for conditions known to be 
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represented in multi-voxel patterns – researchers wishing to prioritize specificity in mapping 

networks should examine informational connectivity over univariate connectivity approaches such 

as PPI. 
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1.0 Introduction 

Functional magnetic resonance imaging (fMRI) has long been a useful tool for gaining 

insight into the brain and how it processes various cognitive tasks. Traditionally, univariate 

analysis techniques have been used to compare a region’s average blood oxygen-level-dependent 

(BOLD) signal reactivity to certain stimuli (DeYoe, Bandettini, Neitz, Miller, & Winans, 1994). 

These types of analyses have proven very useful in identifying regions involved with different 

types of processing. For example, the parahippocampal place area (PPA) was originally identified 

as a scene-processing region when univariate comparisons showed that the region responds more 

to scenes than to other visual stimuli (Epstein & Kanwisher, 1998). Since this early work, the idea 

of examining the multi-voxel pattern of activity across a region’s voxels has become increasingly 

popular. Instead of examining average signal differences between conditions, multivariate 

techniques, including multivoxel pattern analysis (MVPA), allow for more fine-grained 

comparisons between conditions and stimuli, by establishing if a region’s activity patterns are able 

to distinguish different conditions (Haynes & Rees, 2006). For example, beyond knowing that a 

region’s activation level distinguishes scenes from non-scenes, MVPA is able to decode forests 

from buildings from mountains (Walther, Caddigan, Fei-Fei, & Beck, 2009). This development 

allows investigators to probe a level of neural specificity that is more closely analogous to the 

cognitive specificity humans use during real-world cognitive processing. For instance, it is 

typically not informative for a human to recognize that they are viewing “an” environment, or “an” 

object. Instead, recognizing an environment as a forest, or an object as a hammer, is more 
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frequently cognitively relevant. Multi-voxel patterns can track these more specific distinctions, in 

ways that univariate approaches cannot. 

Over the last twenty years, cognitive neuroscientists have become increasingly interested 

in understanding how regions of the brain work together to achieve cognition. In a similar fashion 

to investigations of individual brain regions, multiple analysis techniques have been developed to 

measure “connectivity” between regions. While connectivity analyses have historically drawn on 

univariate techniques, newer techniques have recently emerged that allow us to investigate how 

the information in a region co-varies with others (Anzellotti & Coutanche, 2018). Here, we 

compare a popular approach to measuring connectivity based on univariate differences with a more 

recent approach that draws on multivariate information. 

Psychophysiological interaction (PPI), an arm of functional connectivity, is an established 

univariate measure of context-based connectivity (Friston et al., 1997; Gitelman, Penny, 

Ashburner, & Friston, 2003). This measure allows for the investigation of how the time course of 

BOLD activity correlates between regions depending on condition. A currently favored form of 

PPI, generalized PPI (gPPI), has been shown to produce results that are more reliable than earlier 

versions (Cisler, Bush, & Steele, 2014; McLaren, Ries, Xu, & Johnson, 2012). 

Another measure of connectivity, informational connectivity (IC), builds on the previously 

discussed multivariate developments in fMRI analyses, by incorporating a multivariate approach 

into examinations of connectivity (Anzellotti & Coutanche, 2018; Coutanche & Thompson-Schill, 

2013, 2014). Several studies have used the method to identify regions that show common 

fluctuations in multi-voxel information over time (Aly & Turk-Browne, 2016; Huffman & Stark, 

2014). Just as functional connectivity has allowed researchers to measure connectivity by 

predicting, or correlating, the mean activity in different ROIs across time (dependent on condition, 
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in the case of PPI), informational connectivity correlates the time course of regions’ multi-voxel 

pattern discriminability, which varies over time, in a manner similar to that of univariate responses. 

In this study, we compare the types of brain networks identified by univariate and 

multivariate approaches– in this case, networks detected through PPI and IC . To do so, we used 

both measures to attempt to identify the brain’s scene network based on data collected while 

participants viewed different scenes and pseudoscenes during an fMRI scan. The scene network is 

a good choice for comparing connectivity approaches, as it has been well established in the 

literature, with investigations of scene processing frequently identifying the occipital place area 

(OPA), parahippocampal place area (PPA), and retrosplenial cortex (RSC) as core parts of this 

network (Aminoff & Tarr, 2015; Groen, Silson, & Baker, 2017). The OPA is thought to serve as 

the first stage in the scene perception system (Dilks, Julian, Paunov, & Kanwisher, 2013). The 

PPA processes rich, viewpoint specific visual details of a scene, while the RSC is involved in 

viewpoint-invariant navigation and route learning (Epstein, Higgins, Jablonski, & Feiler, 2007; 

Park & Chun, 2009).  

As a point of comparison, we also probed the object network as a control network. 

Although regions in the scene and object networks likely communicate with each other during 

perception, scene processing should typically elicit relatively more connectivity within the scene 

network (by definition), than with other networks, when scene processing is being performed. For 

key nodes of the object network, we examined two subregions of the lateral occipital complex 

(LOC), the LO and posterior fusiform gyrus (pFs), and the anterior temporal lobe (ATL). The LO 

is sensitive to size and location of objects, while the pFs is involved in processing illumination and 

viewpoint (Grill-Spector et al., 1999). The ATL has been shown to act as a convergence zone for 

processing different features of objects (Coutanche & Thompson-Schill, 2015). 
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Our goal for this study was to compare two connectivity measures in their abilities to 

effectively extract the scene network from the object network when tasked with distinguishing 

between scenes and pseudoscenes. We predicted that informational connectivity would more 

reliably detect the scene network than psychophysiological interactions based on its greater access 

to the scene-specific information that is represented in multi-voxel patterns. 
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2.0 Methods 

Data from this study were originally collected and reported by Aminoff and Tarr (2015). It 

was later acquired by the authors via Open fMRI. Full experimental details are available from the 

original manuscript employing this data (Aminoff & Tarr, 2015), but the relevant elements are as 

follows. 

Data from 15 participants (12 females; one left-handed; age range 18–33, M = 24) were 

collected with approval of the Carnegie Mellon Institutional Review Board. Participants gave their 

written informed consent and were monetarily compensated for participating. Scanning data were 

collected with a 3T Siemens Verio MR scanner. Functional data were collected with 2mm x 2mm 

x 3mm slice thickness, while the T1-weighted MPRAGE with 1mm x 1mm x 1mm. 

2.1 Stimuli and Experimental Design 

2.1.1  Pre-scan training and testing 

Prior to the scan, participants were presented with “pseudoscenes” that we used as control 

stimuli for real scenes. These pseudoscenes were arrangements of shapes with predictable spatial 

relations between them (in a similar fashion as real scenes, in which objects are arranged with 

predictable spatial relations). In a pseudoscene, the same shapes were consistently presented in the 

same arrangements (see Figure 1). In this sense, the shape patterns contained scene-like 

information – they had consistent identity and location information. Just as objects tend to appear 
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in consistent locations across scenes, these pseudoscenes had the same shapes appearing in 

consistent locations. Our use of pseudoscenes allowed for a scene-related contrast between 

pseudoscenes and scenes that would effectively draw upon the scene network.  

Participants were incidentally presented with pseudoscenes among three other conditions 

over a period of about 25 minutes. The three other conditions were similar to pseudoscenes in that 

they were arrangements of shapes in particular manners, but differed in how they were arranged. 

Four pseudoscenes were learned over 30 presentations. All stimuli were preceded by a central 

fixation cross for 250 ms and a 250 ms blank screen, followed by the stimulus appearing on the 

screen for 2500 ms. While viewing the pseudoscenes, participants were asked to imagine 4 

equally-sized quadrants dividing the screen presenting the stimuli. During each presentation, they 

were instructed to indicate how many of the quadrants contains at least one shape. 

2.1.2  Scanning 

Data from the main experiment was collected through 2 runs with a 2 second TR using a 

block design for a 224 TR run length. Each trial, a stimulus was presented with a fixation cross 

overtop for 2s. Participants passively viewed one of nine stimulus conditions at a time and were 

instructed to press a button when the fixation cross changed color (twice per block). For the present 

study, we used data from three of these conditions: scenes, pseudoscenes, and objects. In the 

original study, there were two blocks of each of the nine stimuli presented each run. Our scene 

condition collapsed across 3 conditions in the original experiment: hallways, roads, and 

intersections (i.e., there were 6 blocks of scenes and 2 of all other conditions in each run). Objects 

were everyday objects placed on a white background, with “weak-contextual associations” (as 

determined by the original authors), such as a garbage can or clock (Aminoff & Tarr, 2015). 
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Pseudoscenes were the arranged shapes participants trained on prior to their scan. Other conditions 

(not examined here) included the other shape arrangements from training and scrambled objects. 

After the experimental functional runs, a separate localizer run consisting of 152 TRs was 

used (TR = 2.3s). It consisted of 84 scenes (indoor and outdoor) and 84 objects with weak 

contextual associations on a gray background (Aminoff & Tarr, 2015). The run was used to 

functionally define the scene network ROIs. Localizer data were collected using a block design 

with 12 stimuli blocks in one run. Half of the stimuli blocks were scene blocks and half were object 

blocks, which alternated and were interleaved by 8s of fixation. Participants completed a one-back 

task (two repeats per block) while viewing 16 stimuli (14 unique) in each block. Each stimulus 

was presented for 1s.  

2.2 Magnetic Resonance Imaging Preprocessing 

Imagining data were preprocessed using the Analysis of Functional NeuroImages (AFNI) 

software package (Cox, 1996). Slice-time and motion corrections were applied to all functional 

images so as to register them to a mean functional volume. A high-pass filter was used to remove 

low-frequency trends below 0.01 Hz from all runs. Activation for all voxels was scaled to a mean 

of 100 and a maximum activation limit of 200 was imposed. The time series was shifted by 2 TRs 

to account for hemodynamic lag.  
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2.3 Regions of Interest 

Six regions of interest were created for each subject and used for analysis. The scene 

network consisted of the occipital place area (OPA), parahippocampal place area (PPA), and 

retrosplenial cortex (RSC). The object network included the LO and pFs (two subregions of the 

lateral occipital cortex, LOC) and the anterior temporal lobe (ATL). All ROIs consist of two 

spheres, one placed in each hemisphere. The PPA had an average of 259 voxels (SD = 26.03), the 

OPA, 248 (SD = 8.19), and the RSC, 250 (SD = 9.66). The LO was made up of 272 voxels on 

average (SD = 18.72), while the pFs had an average of 250 (SD = 11.08) and the ATL 259 (SD = 

22.58). Importantly, the ROIs were identical for the two compared connectivity approaches. Thus, 

both connectivity approaches had the same potential for detecting networks. 

The OPA, PPA, and RSC were functionally defined using univariate measures from the 

localizer run. A contrast of scenes minus objects was conducted and peak beta coefficients located 

in clusters in regions expected based on prior work were used as the center points for newly created 

ROIs. The RSC for subject 1, PPA in subject 10, and OPA for subjects 9 and 10 could not be 

functionally localized after cluster correction and so coordinates from previous papers were used 

(Bainbridge & Oliva, 2015; Frost & Goebel, 2012; Park & Chun, 2009). The LO and pFs were 

defined using coordinates from a previous paper (Grill-Spector, Kushnir, Hendler, & Malach, 

2000), as was the ATL (Coutanche & Thompson-Schill, 2015). 
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2.4 Connections of Interest 

We compared connectivity between scene regions (PPA to OPA, PPA to RSC, OPA to 

RSC), between object regions (LO to pFs, LO to ATL, pFs to ATL), and between inter-network 

regions (PPA to LO, PPA to pFs, PPA to ATL, OPA to LO, OPA to pFs, OPA to ATL, RSC to 

LO, RSC to pFs, RSC to ATL). Note that the order in which the connections are presented does 

not imply directionality. 

2.5 Decoding Analyses 

All MVPA analyses were conducted using MATLAB_R2017b with the Princeton MVPA 

Toolbox (Detre, et al., 2006). Analyses were conducted using ridge regression with an optimal 

penalty applied (Coutanche, Thompson-Schill, & Schultz, 2011).  

 A 2-fold cross-validation was conducted (training on 1 run, testing on the second) with a 

ridge regression applied with an optimal penalty to classify each TR as that of a pseudoscene or a 

scene in each ROI. The optimal penalty was selected using the training data only. The classifier 

was trained and tested on vectors of BOLD activity values within the ROIs. Because there were 

more scene blocks per run (6) than pseudoscene blocks per run (2), this decoding was done 10 

times in each participant, where two of the scene blocks were randomly selected to be included in 

the cross-validation each time. The final decoding performance of an ROI was defined as the 

average output of each iteration. A one-way t-test was conducted in each ROI, testing the average 

decoding performances against chance (50%). 
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This process was repeated for pseudoscene-versus-object contrasts, instead training and 

testing on pseudoscene and object TRs. Because there were an equal number of object and 

pseudoscene presentations, however, the cross-validated decoding was conducted only once. After 

the 2-fold cross-validation, the final decoding performance for an ROI was defined as the group 

average of the classifier performance. A one-way t-test was again conducted in each ROI against 

chance (50%). 

2.6 Connectivity Analyses 

2.6.1  Psychophysiological interaction 

Generalized PPI was conducted using AFNI in each subject’s native space (Cox, 1996). 

Drift and motion regressors were first removed to create a fitted time series. Analyses were 

conducted with each of the six ROIs acting as the seed region. During each iteration, the time 

series of the seed was deconvolved with a Gamma basis function. We calculated the interaction of 

this output with each of the seven conditions separately, treating all scenes as one condition. The 

resulting interactions were convolved with the HRF. Each iteration, we conducted a regression 

predicting functional activity using each condition’s timing information, head motion, the seed 

time series, and the interactions we calculated as predictors.  

For each ROI seed and each condition of interest (objects, scenes, pseudoscenes), the 

interaction predictor beta weights were extracted from the other ROIs. Because connections 

between each ROI pair were each produced twice (once while the first ROI was the seed and again 

when the second ROI was the seed), we averaged the results between the ROI pairs to get a final 



 11 

PPI connectivity value for each ROI-ROI connection for each condition of interest. To get the final 

difference scores, which reflects the impact of conditions upon functional connectivity, each 

subject’s averaged beta values for the pseudoscene interaction were subtracted from those of the 

scene interaction. This was repeated with an object minus pseudoscene difference score. 

Significance tests for these difference scores were conducted via one-way t-tests against 0. 

2.6.2  Informational connectivity 

All IC analyses were conducted using MATLAB_R2017b with the Princeton MVPA 

Toolbox (Detre, et al., 2006) and the Informational Connectivity Toolbox (Coutanche & 

Thompson-Schill, 2013).  

Informational connectivity is a way of using multivoxel patterns to assess whether regions 

in the brain are able to discriminate conditions from one another concurrently (i.e., have shared 

time courses of discriminability). Discriminability values reflect a classifiers “confidence” in its 

guess on each trial where higher discriminability values represent a region’s greater ability to 

discriminate conditions from one another (Coutanche & Thompson-Schill, 2014). Here, 

discriminability values across time were correlated between regions to produce informational 

connectivity. IC was calculated twice: once for pseudoscenes versus scenes and again for 

comparing pseudoscenes versus objects. 

To assess statistical significance of the IC results, we conducted permutation testing. First, 

each subject’s classifier testing labels were scrambled 100 times so that any block in the 

experiment could be labeled as either of the conditions of interest for the given contrast. 

Informational connectivity was repeated for each new set of labels, each set being held constant 

for both training and testing. To obtain a group p-value, a null distribution was generated by 
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randomly sampling a classification accuracy value from every subject’s 100 means 10,000 times, 

giving 10,000 permutated group means (each reflecting the average of one permuted value per 

subject). The group p-value was then calculated from this distribution by comparing the real group 

mean to this null distribution.  



 13 

3.0 Results 

3.1 Decoding Performance 

All of the scene processing areas were able to decode scenes from pseudoscenes, OPA (M 

= .717, SD = .15, t(14) = 5.57, p < .001), PPA (M = .794, SD = .091, t(14) = 12.96, p < .001), RSC 

(M = .707, SD = .092, t(14) = 8.75, p < .001). Both LO (M = .617, SD = .092, t(14) = 4.90, p < 

.001) and the pFs (M = .570, SD = .114, t(14) = 2.34, p = .032) could also make this classification. 

The ATL was at chance, M = .501, SD = .069, t(14) = .058, p = .955). 

Only LO (M = .572, SD = .094, t(14) = 2.96, p = .010) was able to decode pseudoscenes 

from objects. No other ROIs were able to make the discrimination, ps > .169. 

3.2 Connectivity  

3.2.1  Psychophysiological interaction 

Multiple PPI results showed connections that had higher betas for scenes than 

pseudoscenes (see Figure 2). This included connections between regions of the scene network, as 

well as strong connections between the scene and object network regions. Notably, the strongest 

connection was between the two inter-network regions, the RSC and LO (M = .245, p = .001). 

There was a strong scene-network connection between the PPA and OPA (M = .182, p = .004). 

However, the PPA-LO connection (M = .182, p = .005) was stronger than those of the OPA-RSC 
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(M = .181, p = .006) and RSC-PPA (M = .161, p = .036). No other connections reached 

significance, ps > .171. 

Four inter-network connections showed significant differences between PPI betas related 

to objects and pseudoscenes, (PPA-LO: M = .182, p = .024; PPA-pFs: M = .167, p = .031; RSC-

LO: M = .147, p = .052; OPA-LO: M = .138, p = .015). No other regions showed significant 

differences, ps > .062. 

3.2.2  Informational connectivity  

Informational connectivity clearly and specifically identified the scene network. Strong 

connections were found between scene processing regions: PPA to OPA (M = .451, p < .001), PPA 

to RSC (M = .600, p < .001), and OPA to RSC (M = .336, p = .019. No significant levels of IC 

were determined between object processing regions, ps > .131, or between object and scene 

regions. 

None of the regions were significantly informationally connected for the object vs. 

pseudoscene contrast, ps > .610. 



 15 

4.0 Discussion 

In this study, we examined how univariate and multivariate approaches to condition-based 

connectivity differ in identifying regions of the scene network. Using brain data collected while 

processing scenes and control stimuli (“pseudoscenes”), we found that inter-region connectivity 

based on shared fluctuations in multi-voxel pattern discriminability – informational connectivity 

– detected the scene network with greater specificity than did connectivity based on how shared 

univariate responses are modulated by condition (through PPI). Our IC findings showed strong 

connections between scene network regions. These results had a high degree of specificity: 

connections between object regions, and between object and scene regions, were not significant. 

While PPI results did indicate that the scene network was involved in the scene processing, they 

also implied strong connections existed among inter-network (i.e., object network – scene network 

and scene network – object network) connections. Moreover, the strongest connection in the PPI 

results was between the RSC (a scene processing region) and the LO (an object processing region). 

Our study aimed to compare the ability of IC and PPI to extract the scene network during a scene-

relevant contrast. The scene network, which has been well-documented in the literature, provided 

us with a way of evaluating the effectiveness of our connectivity measures in identifying the 

network. We argue that the method of greatest value is that which offers the most interpretable 

results. Here, while the PPI results are reasonable, they do not effectively pull out the scene 

network. Our IC results, on the other hand, showed an easily interpretable pattern of results. The 

fact that we see the scene network specifically be identified with IC gives confidence that it would 

specifically identify networks in circumstances that are less well established. These results cannot 

be reduced to a result of thresholding. While it is true that some of the weaker connections in the 
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PPI results might disappear if we changed the threshold, the LO-RSC and LO-PPA connections 

would remain stronger than some of the intra-scene network connections. 

It is interesting that the object network did not appear in the IC results. We believe these 

results are largely due to the stimuli used in the object-pseudoscene comparison. While there are 

certainly differences between the object and pseudoscene stimuli, the pseudoscenes contain 3D 

shapes. On top of this, because the shapes were connected with meaningful information when they 

were associated in the pseudoscene context, they are quite object-like. This may have made it 

difficult for the classifier to distinguish between the conditions. The PPI results did show two 

connections for this contrast. This suggests that in situations where connections are weaker, PPI 

can provide information about connections. 

Our findings suggest that both connectivity measures provide separate advantages. Each 

analysis provides complementary information: more sensitivity in the PPI measure and more 

specificity in the IC. Moving forward, we suggest that those looking to define new networks with 

conditions that are known to be represented within multi-voxel patterns (such as scenes) should 

consider multivariate approaches to connectivity to help with the interpretability of results and the 

accuracy of the regions included in the network. 
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Appendix A Figures 

 

Figure 1 Example of a Single Pseudoscene 

Figure edited from Aminoff & Tarr, 2015. 
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Figure 2 Connectivity Results from both Measures 

IC = informational connectivity. PPI = psychophysiological interaction. Top row shows 

results from a contrast of scenes relative to pseudoscenes and bottom, objects and pseudoscenes. 

Line width indicates the average IC or PPI value in respective panels. Solid line indicates p < .05.  
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Appendix B Tables 

Table 1 Ranked Connectivity Measures for Comparisons of Interest 

Informational Connectivity Psychophysiological Interaction 
Scenes vs. Pseudoscenes 

 Rank Connection Average p  Rank Connection Average p 
 1 RSC PPA 0.601 <.001  1 RSC LO 0.245 0.001 
 2 PPA OPA 0.451 <.001  2 PPA OPA 0.194 0.004 
 3 OPA RSC 0.336 <.001  3 PPA LO 0.182 0.005 
 4 PPA pFs 0.282 0.087  4 OPA RSC 0.181 0.006 
 5 OPA LO 0.210 0.357  5 RSC PPA 0.161 0.036 
 6 RSC pFs 0.207 0.128  6 PPA pFs 0.097 0.196 
 7 OPA pFs 0.184 0.843  7 RSC pFs 0.096 0.171 
 8 LO pFs 0.170 0.528  8 OPA LO 0.055 0.334 
 9 PPA ATL 0.152 0.159  9 LO ATL 0.020 0.726 
 10 pFs ATL 0.135 0.285  10 PPA ATL 0.019 0.823 
 11 RSC LO 0.117 0.880  11 OPA ATL 0.013 0.851 
 12 RSC ATL 0.113 0.619  12 RSC ATL 0.011 0.877 
 13 PPA LO 0.109 0.161  13 OPA pFs 0.011 0.855 
 14 OPA ATL 0.074 0.626  14 LO pFs -0.047 0.344 
 15 LO ATL 0.049 0.845  15 pFs ATL -0.067 0.358 

Objects vs. Pseudoscenes 
 Rank Connection Average p  Rank Connection Average p 
 1 PPA OPA 0.229 0.803  1 PPA LO 0.182 0.024 
 2 PPA pFs 0.221 0.710  2 PPA pFs 0.167 0.031 
 3 OPA pFs 0.208 0.813  3 RSC LO 0.147 0.052 
 4 RSC PPA 0.208 0.607  4 OPA LO 0.138 0.015 
 5 LO pFs 0.192 0.734  5 PPA OPA 0.119 0.064 
 6 OPA LO 0.191 0.940  6 OPA pFs 0.106 0.062 
 7 PPA LO 0.186 0.855  7 RSC ATL 0.063 0.487 
 8 OPA RSC 0.180 0.867  8 RSC PPA 0.057 0.189 
 9 pFs ATL 0.149 0.811  9 LO pFs 0.054 0.462 
 10 RSC pFs 0.122 0.892  10 OPA RSC 0.053 0.486 
 11 OPA ATL 0.109 0.968  11 RSC pFs 0.038 0.57 
 12 PPA ATL 0.100 0.971  12 OPA ATL -0.027 0.756 
 13 RSC LO 0.083 0.965  13 PPA ATL -0.030 0.723 
 14 RSC ATL 0.080 0.913  14 LO ATL -0.049 0.627 
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 15 LO ATL 0.034 0.915  15 pFs ATL -0.185 0.097 
 

Notes. Average IC and PPI values and significance values organized in ranked order from 

most strongly connected to least strongly connected. Connections in orange contain two ROIs in 

the scene network. Blue, two ROIs in the object network.  
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