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Abstract 
Four Schiff bases derived from 7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin-

(6H)-one and its bromo-substituted analogue (HL1–HL4) and four copper(II) 

complexes 1–4 have been synthesised and fully characterised by standard 

spectroscopic methods (1H and 13C NMR, UV–vis), ESI mass spectrometry, single 

crystal X-ray diffraction and spectroelectrochemistry. In addition, two previously 

reported complexes with paullone ligands 5 and 6 were prepared and studied for 

comparison reasons. The CuII ion in 1–4 is five-coordinate and adopts a square-

pyramidal or slightly distorted square-pyramidal coordination geometry. The ligands 

HL1–4 act as tridentate, the other two coordination places are occupied by two 

chlorido co-ligands. The organic ligands in 2 and 3 are bound tighter to copper(II) 

when compared to related paullone ligands in 5 and 6. The new compounds show 

very strong cytotoxic activity against human colon adenocarcinoma doxorubicin-

sensitive Colo 205 and multidrug resistant Colo 320 cancer cell lines with IC50 values 

in low micromolar to nanomolar concentration range. 
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Introduction

Indolobenzazepines are a class of compounds with a broad spectrum of biological 

activities, amongst them analgesic, antidepressant, antimalarial, antidiabetic, 

anticancer and antiparasitic.1–7 The search for potent kinase inhibitors led to 

indolo[3,2-d]benzazepines, known as paullones.8 Cyclin dependent kinases (cdks) 

are attractive targets for anticancer drugs, since they control the cell cycle.9 Research 

on structure-activity relationships (SARs) showed that electron-withdrawing groups in 

position 9 of the paullone scaffold (Chart 1, left) enhance the cdk inhibition, while the 

lactam moiety is essential for the anticancer activity. This finding resulted in the 

discovery of the lead compounds kenpaullone and alsterpaullone (Chart 1).10  

Despite their potency, paullones possess some adverse properties. In particular, the 

low aqueous solubility and bioavailability hampered their clinical use. Later it was 

shown that the bioavailability can be improved by the attachment of suitable metal 

binding sites onto the paullone backbone and the consequent metal complex 

formation with gallium(III), ruthenium(II), osmium(II) and copper(II) ions. This led to 

highly cytotoxic compounds with an enhanced aqueous solubility with copper(II) 

complexes being the most active ones.11–16 However, cdks seem not to be the main 

target for these metal complexes.17 Alternative mechanisms of action have been 

suggested, amongst them DNA intercalation.14

In our present work, we focused our attention on the isomeric indolo[2,3-

d]benzazepine scaffold (Chart 1, right). It differs from the paullone core by the 

position of the lactam group in the azepine ring and features a flipped indole moiety 

with respect to the benzazepinone half of the molecule. These new compounds 

contain a typical latonduine structural motif. Latonduine-modified molecules usually 

exhibit prominent anticancer activity in vitro, along with the ability to inhibit tubulin 

polymerisation.18–21 Like paullones, these compounds do not possess any metal 

binding site. Therefore, it was of interest to us to chemically modify them and obtain 

proligands with potentially tridentate κN, κN’, κN’’ metal binding site, in particular, for 

copper(II). Copper is an essential trace metal and therefore considered to be safer 

than other metals used in chemotherapy, i.e. platinum.22,23 In addition, it is well-

established that copper(II) is able to strongly enhance the cytotoxicity of biologically 

active ligands.24
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Chart 1. The indolo[3,2-d]benzazepinone (paullone) (left), vs the indolo[2,3-

d]benzazepinone backbone (right) with numbering schemes.

Herein we report on the synthesis and characterisation of four novel latonduine core 

containing proligands and their copper(II) complexes. In order to obtain structure-

activity relationships we modified the indolobenzazepine backbone by inserting a 

bromine substituent at position 11, the equivalent to position 9 in the paullone 

scaffold (compare kenpaullone). In addition, an aldehyde and a ketone containing a 

functional group in a position suitable for chelate formation were used for Schiff base 

condensation reactions, namely 2-formyl- and 2-acetylpyridine (Chart 2). 

The new compounds have been characterised by 1H and 13C NMR spectroscopy 

(HL1–HL4), single crystal X-ray diffraction (HL4, 1–4) and ESI mass spectrometry; 

their purity was validated by elemental analysis. Solution equilibrium properties of 

HL3 and its copper(II) complex 3 were characterised in DMSO-water mixture by UV–

vis titrations.  The cytotoxicity of the proligands and the corresponding copper(II) 

complexes was tested in Colo 205 (chemo sensitive) and Colo 320/MDR-LRP 

(multidrug resistant) human colon adenocarcinoma cell lines and one non-cancerous 

human embryonal lung fibroblast MRC-5 cell line and compared to those of the two 

previously reported paullone-derived copper(II) complexes 5 and 6 (Chart 3).15,25 The 

new compounds showed very high activity with IC50 values from the low micromolar 

to the nanomolar concentration range and were superior to 5 and 6 in cancer cell 

lines, while less cytotoxic in non-cancerous MRC-5 cells. Furthermore some 

selectivity for cancer cells over normal cells was observed in most cases, making this 

compound class pertinent for further development as anticancer drugs. 
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(iv)

Chart 2. New proligands and copper(II) complexes synthesised in this work.a 
Underlined numbers indicate compounds studied by X-ray diffraction. *1 crystallized 
from DMF as the trimer [Cu3Cl4(HL1)3]Cl2 (1trim). aReagents and conditions: (i) C: 
phosphorus pentasulfide/aluminum oxide, acetonitrile, 85 °C, overnight; D: 
phosphorus pentasulfide/aluminum oxide, tetrahydrofuran, 75 °C, overnight; (ii) 
hydrazine monohydrate, reflux, overnight; (iii) HL1, HL2: 2-formypyridine, ethanol, 85 
°C, overnight; HL3, HL4: 2-acetylpyridine, ethanol, 85 °C, overnight; (iv) CuCl2·2H2O, 
isopropanol, reflux, 15 min.  

N

H
N

HNR1

N
N

Cu Cl

Cl

R2

R1 = Br, R2 = H (5)
R1 = H, R2 = CH3 (6)

Chart 3. Paullone derived copper(II) complexes used in this study.15,25
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Experimental
2-Iodobenzonitrile, ethyl-1H-indole-carboxylate and 5-bromo-ethyl-1H-indole-

carboxylate were purchased from ABCR. Borane solution (1M in THF), absolute 

DMF, dimethylaminopyridine, di-tert-butyl-dicarbonate, absolute acetonitrile, 

palladium(II) acetate, sodium bicarbonate, basic aluminuim oxide, 2-acetylpyridine 

and 2-formylpyridine were bought from Fisher/Acros Organics. Ethoxy-methylchloride 

was obtained form TCI. Sodium hydride, phosphorus(V) sulfide, celite, hydrazine 

monohydrate and methyl iodide were purchased from Sigma Aldrich, while lithium 

hydroxide monohydrate and triphenylphosphine were from Alfa Aesar. 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide-hydrochloride was purchased from IRIS biotech. 

Silver(I) carbonate was purchased from Merck. 2-Iodobenzylamine was prepared by 

a known method.26 The unsubstituted indolo[2,3-d]benzazepinone (A) was prepared 

by following published protocols.18–20 The 11-bromo-substituted B was prepared 

using reported precedures,18–20 with some modifications, a detailed description of the 

synthesis of B is given in the Supplementary Information file.

Synthesis of proligands
5,8-dihydroindolo[2,3-d][2]benzazepin-7(6H)-thione (C). 5,8-dihydroindolo[2,3-

d][2]benzazepin-7(6H)-one (A) (966 mg, 3.88 mmol) was dissolved in absolute 

acetonitrile (77 mL) in a Schlenk tube under argon atmosphere. A mixture of 

phosphorus(V) pentasulfide and basic aluminium oxide (0.6 : 1 w/w)27 (1.60 g) was 

added and the reaction mixture was stirred at 90 °C overnight. The next day, the 

mixture was cooled to room temperature and filtered. The filtrate was concentrated in 

vacuo and taken up in water (50 mL). The pH was adjusted to 8 using saturated 

potassium carbonate solution. The solution was extracted with dichloromethane 

(DCM) (3 × 100 mL). The organic phases were combined and dried over magnesium 

sulfate. The dried organic phase was concentrated and the raw product was purified 

on silica using a mixture of DCM : methanol 99 : 1 as eluent. Yield: 841 mg, 82%. 1H 

NMR (500 MHz, DMSO-d6) δ 11.78 (s, 1H, NH), 10.57 (t, J = 5.5 Hz, 1H, NH), 7.98 

(dd, J = 14.4, 7.9 Hz, 2H, H(Ar)), 7.64 (d, J = 8.3 Hz, 1H, H(Ar)), 7.53 (t, J = 7.5 Hz, 1H, 

H(Ar)), 7.48 (d, J = 6.9 Hz, 1H, H(Ar)), 7.41 (t, J = 7.3 Hz, 1H, H(Ar)), 7.36 (t, J = 7.4 Hz, 

1H, H(Ar)), 7.20 (t, J = 7.5 Hz, 1H, H(Ar)), 4.41 – 4.28 (m, 1H, CH2), 4.04 (d, J = 12.2 

Hz, 1H, CH2). ESI-MS (acetonitrile/methanol + 1% water), positive: m/z 265.08 [M + 

H]+.
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11-bromo-5,8-dihydroindolo[2,3-d][2]benzazepin-7(6H)-thione (D). 5,8-

dihydroindolo[2,3-d][2]benzazepin-7(6H)-one (B) (1.00 g, 3.06 mmol) and a mixture 

of phosphorus(V) pentasulfide and basic aluminium oxide (0.6 : 1 w/w)27 (2.20 g) 

were suspended in dry THF (50 mL) in an 100 mL Schlenk tube, under argon 

atmosphere. The reaction mixture was stirred overnight at 75 °C. The next day it was 

cooled to room temperature, the yellow precipitate was filtered off and washed with 

THF. The filtrate was evaporated and the residue was purified on silica by using 

DCM/methanol 99 : 1 as eluent. The product as yellow-orange powder was obtained 

after removal of the solvent. Yield: 635 mg, 60%. 1H NMR (500 MHz, DMSO-d6) δ 

12.00 (s, 1H, NH), 10.67 (t, J = 5.6 Hz, 1H, NH), 8.10 (d, J = 1.7 Hz, 1H, H(Ar)), 7.93 

(d, J = 7.2 Hz, 1H, H(Ar)), 7.60 (d, J = 8.7 Hz, 1H, H(Ar)), 7.55 (td, J = 7.5, 1.4 Hz, 1H, 

H(Ar)), 7.51 – 7.47 (m, 2H, H(Ar)), 7.43 (td, J = 7.4, 1.1 Hz, 1H, H(Ar)), 4.33 (s, 1H, CH2), 

4.06 (d, J = 12.5 Hz, 1H, CH2). ESI-MS (acetonitrile/methanol + 1% water), positive, 

m/z 344.99 [M + H]+.

7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin-(6H)-one (E). A suspension 

of 5,8-dihydroindolo[2,3-d][2]benzazepin-7(6H)-thione (C) (582 mg, 2.21 mmol) in 

hydrazine monohydrate (8 mL) under argon atmosphere was refluxed overnight. On 

the next day it was cooled to room temperature and the pale yellow precipitate was 

filtered off, washed with water and dried in vacuo. Yield: 496 mg, 86%. 1H NMR (500 

MHz, DMSO-d6) δ 11.43 (s, 1H, NH), 7.86 (t, J = 8.5 Hz, 2H, H(Ar)), 7.49 – 7.40 (m, 

2H, H(Ar)), 7.37 (d, J = 6.5 Hz, 1H), H(Ar), 7.20 (dt, J = 21.5, 7.3 Hz, 2H, H(Ar)), 7.09 (t, 

J = 7.0 Hz, 1H, H(Ar)), 6.32 (s, 1H, NH), 5.00 (s, 2H, NH2), 4.07 (s, 2H, CH2). ESI-MS 

(acetonitrile/methanol + 1% water), positive: m/z 263.09 [M + H]+.

11-bromo-7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin-(6H)-one (F). A 

suspension of 11-bromo-5,8-dihydroindolo[2,3-d][2]benzazepin-7(6H)-thione (D) (830 

mg, 2.42 mmol) in hydrazine monohydrate (20 mL) under argon atmosphere was 

refluxed overnight. On the next day it was cooled to room temperature and the pale 

yellow precipitate was filtered off, washed with water and dried in vacuo. Yield: 757 

mg, 92%. 1H NMR (500 MHz, DMSO-d6) δ 7.97 (d, J = 1.8 Hz, 1H, H(Ar)), 7.80 (d, J = 

7.2 Hz, 1H, H(Ar)), 7.47 – 7.37 (m, 3H, H(Ar)), 7.33 – 7.29 (m, 1H, H(Ar)), 7.25 (td, J = 

7.4, 1.0 Hz, 1H, H(Ar)), 6.36 (s, 1H, NH), 5.07 (s, 2H, NH2), 4.06 (s, 2H, CH2). ESI-MS 

(acetonitrile/methanol + 1% water), positive: m/z 343.24 [M + H]+.
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HL1·0.4C2H5OH. A solution of 7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin-

(6H)-one (E) (199 mg, 0.76 mmol) in ethanol (3 mL) in a 25 mL Schlenk tube was 

degassed by bubbling argon through the solution for 10 min. 2-Formylpyridine (79 µL, 

0.83 mmol) was added and the mixture was stirred overnight at 85 °C. The next day 

the reaction mixture was cooled to room temperature and the solvent was 

evaporated. The residue was taken up in water (10 mL) and ethanol was added until 

complete dissolution. Then, the solvent was removed slowly under reduced pressure 

until precipitation started. The mixture was allowed to stand at 4 °C overnight. The 

next day, a yellow precipitate was filtered off, washed with water/ethanol 2:1 and 

dried in vacuo. Yield: 266 mg, 99%. Anal. Calcd for C22H17N5·0.4C2H5OH (M 372.13 

g mol–1): C, 73.71; H, 5.07, N, 19.09. Found: C, 73.91; H, 5.33; N, 18.82. 1H NMR 

(600 MHz, DMSO-d6) δ 11.93 (s, 1H, H12), 8.59 (d, J = 4.1 Hz, 1H, H18), 8.37 (d, J = 

8.0 Hz, 2H, H15, H21), 8.31 (t, J = 5.4 Hz, 1H, H6), 7.98 (dd, J = 15.4, 7.6 Hz, 2H, H12, 

H3), 7.87 (td, J = 7.5, 1.2 Hz, 1H, H20), 7.60 (d, J = 8.2 Hz, 1H, H9), 7.53 – 7.49 (m, 

1H, H2), 7.47 (d, J = 6.6 Hz, 1H, H4), 7.40 – 7.31 (m, 3H, H10, H1, H19), 7.20 (dd, J = 

11.1, 4.0 Hz, 1H, H11), 4.36 – 4.02 (m, 2H, H5). 13C NMR (151 MHz, DMSO) δ 155.62 

(Cq, C7), 154.52 (Cq, C16), 152.14 (CH, C15), 149.28 (CH, C18), 137.78 (Cq, C4a), 

136.76 (Cq, C8a), 136.30 (CH, C20), 133.161 (Cq, C12c), 129.01( Cq, C7a), 128.09 

(CH, C4), 128.06 (CH, C2), 127.41 (CH,C3), 126.33 (CH,C1), 124.94 (Cq, C12a), 

124.10(CH, C10), 123.87 (CH, C19), 120.77 (CH, C21), 120.46 (CH, C11), 120.22(CH, 

C12), 117.12(Cq, C12b), 112.69(CH, C9), 46.00 (CH2, C5). For atom numbering 

scheme see ESI†, Scheme S1. ESI-MS (acetonitrile/methanol + 1% water), positive: 

m/z 352.26 [M + H]+.

HL2·H2O. A solution of 11-bromo-7-hydrazin-yl-5,8-dihydroindolo[2,3-

d][2]benzazepin(6H)one (F) (370 mg, 1.08 mmol) in ethanol (6 mL) in a 25 mL 

Schlenk tube was degassed by bubbling argon through the solution for 10 min. 2-

Formylpyridine (113 µL, 1.19 mmol) was added and the mixture was stirred overnight 

at 85 °C. The next day the reaction mixture was cooled to room temperature and the 

solvent was removed under reduced pressure. The residue was dissolved in 

methanol (10 mL). This solution was concentrated under reduced pressure to about 

half the volume, when the formation of a yellow precipitate was observed. The 

resulting suspension was allowed to stand at 4 °C overnight. On the next day the 

precipitate was filtered off and washed with cold methanol. Yield: 135 mg, 31%. Anal. 
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Calcd for C22H16BrN5·H2O (M 448.32 g mol–1): C, 58.93; H, 4.05, N, 15.62. Found: C, 

58.86; H, 3.97; N, 15.67. 1H NMR (700 MHz, DMSO-d6) δ 12.14 (s, 1H, H8), 8.59 (d, 

J = 4.6 Hz, 1H, H18), 8.38 – 8.35 (m, 2H, H15, H21), 8.32 (t, J = 5.3 Hz, 1H, H6), 8.10 

(d, J = 1.5 Hz, 1H, H12), 7.92 (d, J = 7.6 Hz, 1H, H1), 7.86 (dd, J = 11.0, 4.4 Hz, 1H, 

H20), 7.56 (d, J = 8.7 Hz, 1H, H9), 7.52 (t, J = 7.5 Hz, 1H, H2), 7.47 – 7.44 (m, 2H, 

H10, H4), 7.39 – 7.34 (m, 2H, H19, H3), 4.46 – 3.99 (m, 2H, H5). 13C NMR (176 MHz, 

DMSO-d6) δ 155.25 (Cq, C7), 154.40 (Cq, C16), 152.52 (CH, C15), 149.29 (CH, C18), 

137.86 (Cq, C4a), 136.30 (CH, C20), 135.39 (Cq, C8a), 132.95 (Cq, C12), 130.29 (Cq, 

C7a), 128.27 (CH, C4), 128.17 (CH, C2), 127.35 (CH, C1), 126.71 (CH, C10), 126.63 

(CH. C3), 126.54 (Cq, C12a), 123.95 (CH, C19), 122.23 (CH, C12), 120.82 (CH, C21), 

116.48 (Cq, C12b), 114.70 (CH, C9), 113.01 (Cq, C11), 45.91 (CH2, C5). For atom 

numbering scheme see ESI†, Scheme S1. ESI-MS (acetonitrile/methanol + 1% 

water), positive: m/z 432.06 [M + H]+.

HL3. A solution of 7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin(6H)one (E) 

(200 mg, 0.76 mmol) in ethanol (3.5 mL) in a 25 mL Schlenk tube was degassed by 

bubbling argon through the solution for 10 min. 2-Acetylpyridine (94 µL, 0.84 mmol) 

was added and the mixture was stirred overnight at 86 °C.  The next day the reaction 

mixture was cooled to room temperature and stored at 4 °C for 2 h. The yellow 

precipitate was filtered off and washed with cold ethanol. Yield: 261 mg, 94%. Anal. 

Calcd for C23H19N5 (M 365.43 g mol–1): C, 75.59; H, 5.24, N, 19.16. Found: C, 75.32; 

H, 5.05; N, 19.00. 1H NMR (600 MHz, DMSO-d6) δ 11.77 (s, 1H, H8), 8.62 – 8.55 (m, 

1H, H18), 8.50 (d, J = 8.0 Hz, 1H2), 8.02 – 7.91 (m, 3H, H1, H5, H12), 7.81 (td, J = 7.8, 

1.8 Hz, 1H, H20), 7.62 (d, J = 8.2 Hz, 1H, H9), 7.49 (td, J = 7.6, 1.2 Hz, 1H, H2), 7.43 

(d, J = 6.8 Hz, 1H, H4), 7.40 – 7.29 (m, 3H, H3, H19, H10), 7.19 (dt, J = 18.3, 5.5 Hz, 

1H, H11), 4.64 – 3.75 (m, 2H, H5), 2.50 (s, 3H, H22 (overlapped DMSO signal)). 13C 

NMR (151 MHz, DMSO-d6) δ 158.23 (Cq, C15), 156.45 (Cq, C16), 153.36 (Cq, C7), 

148.44 (CH, C18), 137.95 (Cq, C4a), 136.65 (Cq, C8a), 135.88 (CH, C20), 133.74 (Cq, 

C12c), 129.75 (Cq, C7a), 128.07 (CH, C4), 127.97 (CH, C2), 127.33 (CH, C1), 126.18 

(CH, C3), 125.05 (Cq, C12a), 123.92 (CH, C10), 123.52 (CH, C19), 120.84 (CH, C21), 

120.37 (CH, C11), 120.13 (CH, C12), 116.50 (Cq, C12b), 112.62 (CH, C9), 45.97 (CH2, 

C5) 13.08 (CH3, C22). For atom numbering scheme see ESI†, Scheme S1. ESI-MS 

(acetonitrile/methanol + 1% water), positive: m/z 366.16 [M + H]+.
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HL4. A solution of 11-bromo-7-hydrazin-yl-5,8-dihydroindolo[2,3-

d][2]benzazepin(6H)one (F) (76 mg, 0.22 mmol) in ethanol (2 mL) in a 10 mL Schlenk 

tube was degassed by bubbling argon through the solution for 10 min. 2-

Acetylpyridine (27 µL, 0.24 mmol) was added and the mixture was stirred overnight 

at 85 °C.  The next day the reaction mixture was cooled to room temperature and 

allowed to stand at 4 °C for 2 days. The yellow-brown plates of X-ray diffraction 

quality were filtered off and washed with cold ethanol. Yield: 57 mg, 58%. Anal. Calcd 

for C23H18BrN5 (M 444.33 g mol–1): C, 62.17; H, 4.08, N, 15.76. Found: C, 61.86; H, 

4.13; N, 15.74. 1H NMR (600 MHz, DMSO-d6) δ 11.98 (s, 1H, H8), 8.60 – 8.56 (m, 1H, 

H18), 8.53 – 8.44 (m, 1H, H21), 8.09 (d, J = 1.8 Hz, 1H, H12), 7.99 (t, J = 5.3 Hz, 1H, 

H6), 7.93 – 7.90 (m, 1H, H1), 7.82 (ddd, J = 8.0, 7.5, 1.8 Hz, 1H, H20), 7.58 (d, J = 8.7 

Hz, 1H, H9), 7.54 – 7.49 (m, 1H, H2), 7.47 – 7.42 (m, 2H, H10, H4), 7.38 – 7.33 (m, 

2H, H19, H3), 4.39 – 4.08 (m, 2H, H5), 2.49 (s, 3H, H22 (overlapped DMSO signal)). 
13C NMR (151 MHz, DMSO-d6) δ 158.62 (Cq, C15), 156.34 (Cq, C16), 152.96 (Cq, 

C7), 148.45 (CH, C18), 138.04 (Cq, C4a), 135.91 (CH, C20), 135.30 (Cq, C8a), 133.08 

(Cq, C12c), 131.02 (Cq, C7a), 128.20 (CH, C4), 128.15 (CH, C2), 127.28 (CH, C1), 

126.68 (Cq, C12a), 126.53 (CH, C10), 126.49 (CH, C19), 123.61 (CH, C3), 122.14 (CH, 

C12), 120.88 (CH, C21), 115.90 (Cq, C12b), 114.65 (CH, C9), 112.92 (Cq, C11), 45.88 

(CH2, C5), 13.10 (CH3, C22). For atom numbering scheme see ESI†, Scheme S1. 

ESI-MS (acetonitrile/methanol + 1% water), positive: m/z 446.08 [M + H]+.

Synthesis of copper(II) complexes
1·0.4H2O·0.7C3H7OH. To a solution of HL1 (169 mg, 0.48 mmol) in isopropanol (8 

mL) a solution of CuCl2·2H2O (82 mg, 0.48 mmol) in methanol (0.5 mL) was added. 

The reaction mixture was heated to reflux for 15 min, cooled down and allowed to 

stand at 4 °C overnight. The product was filtered off, washed with isopropanol and 

dried in vacuo to give a green-brown powder. Yield: 232 mg, 99%. Anal. Calcd for 

C22H17Cl2CuN5·0.4H2O·0.7C3H7OH (M 535.13 g mol–1): C, 53.86; H, 4.24, N, 13.08. 

Found: C, 54.09; H, 4.41; N, 13.08. Solubility in water/1% DMSO ≥ 1.0 mg mL–1. ESI-

MS (acetonitrile/methanol + 1% water), positive: m/z 764.23 [CuII(L1)(HL1) ]+. 

2·0.5H2O. To a solution of HL2 (100 mg, 0.23 mmol) in isopropanol (20 mL) at 70 °C 

a solution of CuCl2·2H2O (40 mg, 0.23 mmol) in methanol (1 mL) was added. The 

colour of the solution changed from yellow to green and the reaction mixture was 
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refluxed for 15 min. After cooling down the solution was kept at 4 °C overnight. Green 

precipitate was filtered off, washed with isopropanol and dried in vacuo. Yield: 105 

mg, 77%. Anal. Calcd for C22H16BrCl2CuN5·0.5H2O (M 573.76 g mol–1): C, 46.05; H, 

2.99, N, 12.21. Found: C, 45.93; H, 2.86; N, 12.52. Solubility in water/1% DMSO ≥ 

0.7 mg mL–1. ESI-MS (acetonitrile/methanol + 1% water), positive: m/z 922.07 

[CuII(L2)(HL2) ]+.

3·0.3H2O·0.6C3H7OH. To a solution of HL3 (200 mg, 0.55 mmol) in isopropanol (140 

mL) at 70 °C a solution of CuCl2·2H2O (95 mg, 0.55 mmol) in methanol (1 mL) was 

added. The colour of the solution changed from yellow to green and the mixture was 

refluxed for 15 min. After cooling down the solution was kept at 4 °C overnight. The 

next day a green precipitate was filtered off, washed with isopropanol and dried in 

vacuo. Yield: 224 mg, 82%. Anal. Calcd for C23H19Cl2CuN5·0.3H2O·0.6C3H7OH (M 

541.34 g mol–1): C, 55.02; H, 4.54, N, 12.94. Found: C, 55.07; H, 4.16; N, 12.84. 

Solubility in water/1% DMSO ≥ 0.3 mg mL–1. ESI-MS (acetonitrile/methanol + 1% 

water), positive: m/z 463.04 [CuCl(HL3)]+, 427.07 [Cu(L3)]+.

4·0.5H2O. To a solution of HL4 (50 mg, 0.11 mmol) in isopropanol (20 mL) at 70 °C 

CuCl2·2H2O (19 mg, 0.11 mmol) in methanol (1 mL) was added. The colour of the 

solution changed from yellow to green and the reaction mixture was refluxed for 15 

min. After cooling to room temperature, the solution was kept at 4 °C overnight. The 

next day a green precipitate was filtered off, washed with isopropanol and dried in 

vacuo. Yield: 51 mg, 80%. Anal. Calcd for C23H18BrCl2CuN5·0.5H2O (M 587.79 g 

mol–1): C, 47.00; H, 3.26, N, 11.91. Found: C, 46.85; H, 3.53; N, 11.81. Solubility in 

water/1% DMSO ≥ 0.9 mg mL–1. ESI-MS (acetonitrile/methanol + 1% water), positive: 

m/z 542.96 [CuIICl(HL4)]+, 507.00 [CuII(L4)]+.

Crystallographic Structure Determination. X-ray diffraction quality single crystals 

of HL4 were obtained by crystallisation from ethanol, 1trim·2DMF·1.25H2O, 
3·1.2DMF·0.25H2O, 3´·DMF and 4·2DMF by slow diffusion of diethyl ether into the 

DMF solution of the corresponding complex, while 2·0.55MeOH by slow evaporation 

of the metanolic solution of the compound. The measurements were performed on 

Bruker X8 APEXII CCD (2·0.55MeOH, 3·1.2DMF·0.25H2O) and Bruker D8 Venture 

(HL4, 1trim ·2DMF·1.25H2O, 3´·DMF, 4·2DMF) diffractometers. Single crystals were 
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positioned at 27, 27, 27, 35, 25 and 27 mm from the detector, and 672, 1632, 1000, 

614, 479 and 1566 frames were measured, each for 8, 30, 10, 24, 3 and 6 s over 0.4, 

0.5, 0.5, 0.7, 0.5 and 0.5° scan width for HL4, 1trim ·2DMF·1.25H2O, 2·0.55MeOH, 
3·1.2DMF·0.25H2O, 3´·DMF and 4·2DMF, respectively. The data were processed 

using SAINT software.28 Crystal data, data collection parameters, and structure 

refinement details are given in Tables 1 and 2. The structures were solved by direct 

methods and refined by full-matrix least-squares techniques. Non-H atoms were 

refined with anisotropic displacement parameters. H atoms were inserted in 

calculated positions and refined with a riding model. Co-crystallised solvent 

molecules (DMF, H2O or CH3OH) were found to be disordered in 1trim, 2 and 3. The 

positional parameters of disordered atoms were refined by using PART, DFIX, SADI 

and EADP tools implemented in SHELX. The following computer programs and 

hardware were used: structure solution, SHELXS-2014 and refinement, SHELXL-

2014;30 molecular diagrams, ORTEP;31 computer, Intel CoreDuo. CCDC 

1903184‒1903189.

Spectrophotometric solution equilibrium studies. An Agilent Carry 8454 diode 

array spectrophotometer was used to record the UV‒vis spectra in the interval 200–

800 nm. The path length was 2 cm. Spectrophotometric titrations were performed on 

samples containing the proligand HL3 or the complex 3 at 12.5 M concentration by a 

KOH solution in the presence of 0.1 M KCl in DMSO : water 30 : 70 (w/w) mixture as 

solvent at 25.0 ± 0.1 oC in the pH range from 2 to 11. An Orion 710A pH-meter 

equipped with a Metrohm combined electrode (type 6.0234.100) and a Metrohm 665 

Dosimat burette were used for the pH measurements and titrations. The electrode 

system was calibrated to the pH = −log[H+] scale in the DMSO-water solvent mixture 

by means of blank titrations (HCl vs. KOH) similarly to the method suggested by 

Irving et al. in pure aqueous solutions.32 The average water ionisation constant (pKw) 

was 14.52 ± 0.05, which corresponds well to the literature data.33 Argon was passed 

over the solutions during the titrations. Proton dissociation constants (pKa) of the 

ligand, overall stability constants (log) of the copper(II) complexes and the individual 

spectra of the various species present in solution were calculated by the computer 

program PSEQUAD.34  MpLqHr) is defined for the general equilibrium pM + qL + rH 

MpLqHr as  (MpLqHr) = [MpLqHr]/[M]p[L]q[H]r where M denotes the copper(II) ion 

and L the completely deprotonated ligand. The calculations were always made from 
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the experimental titration data measured in the absence of any precipitate in the 

solution.

Distribution coefficients (D7.4) values of HL1, HL3 and complexes 1, 3 were attempted 

to be determined by the traditional shake-flask method in n-octanol/buffered aqueous 

solution at pH 7.40 (20 mM phosphate buffer, 0.10 M KCl) as described previously.35
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Table 1. Crystal data and details of data collection for HL4, 1trim ·2DMF·1.25H2O, 2·0.55MeOH, 3·1.2DMF·0.25H2O 

Compound HL4 1trim ·2DMF·1.25H2O 2·0.55MeOH 3·1.2DMF·0.25H2O
empirical formula C23H18BrN5 C72H67.5Cl6Cu3N17O3.25 C22.55H18.2BrCl2CuN5O0.55 C26.6H27.9Cl2CuN6.2O1.45
fw 444.33 1626.25 582.37 592.09
space group P21/c P-1 C2/c P-1
a [Å] 18.405(4) 13.0443(3) 37.232(30) 9.7602(13)
b [Å] 8.2958(16) 14.9957(3) 11.3330(11) 13.4027(15)
c [Å] 13.230(3) 20.2999(4) 11.6674(10) 20.685(2)
 [°] 92.0747(8) 98.235(4)
 [°] 103.962(8) 103.4914(8) 107.494(3) 92.013(5)
 [°] 112.4054(8) 93.367(4)
V [Å3] 1960.4(7) 3535.02(13) 4695.3(7) 2670.7(5)
Z 4 2 8 4
 [Å] 0.71073 0.71073 0.71073 0.71073
calcd [g cm-3] 1.506 1.528 1.648 1.473
crystal size [mm] 0.10  0.08  0.01 0.14  0.08  0.06 0.13  0.10  0.02 0.80  0.08  0.08
T [K] 100(2) 100(2) 100(2) 296(2)
 [mm‒1] 2.117 1.183 2.883 1.053
R1

[a] 0.0527 0.0387 0.0599 0.0725
wR2

[b] 0.1203 0.0984 0.1650 0.1719
GOF[c] 1.041 1.033 1.148 0.943

a R1 = ||Fo|  |Fc||/|Fo|. b wR2 = {[w(Fo
2  Fc

2)2]/[w(Fo
2)2]}1/2. c GOF = {[w(Fo

2  Fc
2)2]/(n  p)}1/2, where n is the number of 

reflections and p is the total number of parameters refined. 
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Table 2. Crystal data and details of data collection for 3´·DMF and 4·2DMF

Compound 3´·DMF 4·2DMF
empirical formula C26H25ClCuN6O C29H32BrCl2CuN7O2
fw 536.51 724.97
space group P21/c P-1
a [Å] 10.3347(4) 12.0530(9)
b [Å] 23.4454(7) 16.7234(14)
c [Å] 11.0757(4) 17.8152(15)
 [°] 105.698(3)
 [°] 117.731(1) 105.962(3)
 [°] 106.665(3)
V [Å3] 2375.41(14) 3060.2(4)
Z 4 4
 [Å] 0.71073 0.71073
calcd [g cm-3] 1.500 1.574
crystal size [mm] 0.10  0.08  0.05 0.19  0.08  0.03
T [K] 100(2) 100(2)
 [mm‒1] 1.065 2.234
R1

[a] 0.0566 0.0498
wR2

[b] 0.1597 0.1177
GOF[c] 1.031 1.024

a R1 = ||Fo|  |Fc||/|Fo|. b wR2 = {[w(Fo
2  Fc

2)2]/[w(Fo
2)2]}1/2. c GOF = {[w(Fo

2  
Fc

2)2]/(n  p)}1/2, where n is the number of reflections and p is the total number of 
parameters refined. 

Cyclic voltammetry and spectroelectrochemistry. Cyclic voltammetric 

experiments with 0.5 mM solutions of 1–4 in 0.1 M nBu4NPF6 (puriss quality from 

Fluka; dried under reduced pressure at 70 °C for 24 h before use) supporting 

electrolyte in DMSO (SeccoSolv max. 0.025% H2O, Merck) were performed under 

argon atmosphere using a three-electrode arrangement with platinum wire as counter 

electrodes, and silver wire as pseudoreference electrode. Glassy carbon (GC) or 

platinum wire served as working electrodes. Ferrocene purchased from Sigma 

Aldrich was used as the internal potential standard without further purification. All 

potentials in voltammetric studies were quoted vs ferricenium/ferrocene (Fc+/Fc) 

redox couple. A Heka PG310USB (Lambrecht, Germany) potentiostat with a 

PotMaster 2.73 software package served for the potential control in voltammetric 

studies. In situ ultraviolet-visible-near-infrared (UV‒vis‒NIR) spectroelectrochemical 

measurements were performed on a spectrometer (Avantes, Model AvaSpec-
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2048x14-USB2 in the spectroelectrochemical cell kit (AKSTCKIT3) with the Pt-

microstructured honeycomb working electrode, purchased from Pine Research 

Instrumentation. The cell was positioned in the CUV-UV Cuvette Holder (Ocean 

Optics) connected to the diode-array UV-vis-NIR spectrometer by optical fibers. UV-

vis-NIR spectra were processed using the AvaSoft 7.7 software package. Halogen 

and deuterium lamps were used as light sources (Avantes, Model AvaLight-DH-S-

BAL).

Cell lines. Human colonic adenocarcinoma cell lines Colo 205 doxorubicin-sensitive 

(ATCC-CCL-222) and Colo 320/MDR-LRP multidrug resistant over-expressing 

ABCB1 (MDR1)-LRP (ATCC-CCL-220.1) were purchased from LGC Promochem, 

Teddington, UK. The cells were cultured in RPMI 1640 medium supplemented with 

10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 1 mM Na-pyruvate and 

10 mM HEPES. The cell lines were incubated at 37 °C, in a 5% CO2, 95% air 

atmosphere. The semi-adherent human colon cancer cells were detached with 

Trypsin-Versene (EDTA) solution for 5 min at 37 °C. MRC-5 human embryonal lung 

fibroblast cell line (ATCC CCL-171) was purchased from LGC Promochem, 

Teddington, UK. The cells were cultured in Eagle’s Minimal Essential Medium 

(EMEM, containing 4.5 g/L glucose) supplemented with a non-essential amino acid 

mixture, a selection of vitamins and 10% heat-inactivated fetal bovine serum. The cell 

lines were incubated at 37 °C, in a 5% CO2, 95% air atmosphere. 

Assay for cytotoxic effect. MRC-5 non-cancerous human embryonic lung fibroblast 

and human colonic adenocarcinoma cell lines (doxorubicin-sensitive Colo 205 and 

multidrug resistant Colo 320 colonic adenocarcinoma cells) were used to determine 

the effect of compounds on cell growth. The effects of increasing concentrations of 

compounds on cell growth were tested in 96-well flat-bottomed microtiter plates. The 

compounds were dissolved in DMSO and stock solutions of 10 mM were prepared. 

These were further diluted in the appropriate cell culture medium by 2-fold serial 

dilution starting from 100 µM to 0.195 µM. The adherent human embryonal lung 

fibroblast cells were cultured in 96-well flat-bottomed microtiter plates, using EMEM 

supplemented with 10% heat-inactivated fetal bovine serum. The density of the cells 

was adjusted to 1104 cells in 100 μL per well, the cells were seeded for 24 h at 37 

C, 5% CO2, then the medium was removed from the plates containing the cells, and 
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the dilutions of compounds previously made in a separate plate were added to the 

cells in 200 μL. In case of the colonic adenocarcinoma cells, the two-fold serial 

dilutions of compounds were prepared in 100 μL of RPMI 1640, horizontally. The 

semi-adherent colonic adenocarcinoma cells were treated with Trypsin-Versene 

(EDTA) solution. They were adjusted to a density of 1104 cells in 100 μL of RPMI 

1640 medium, and were added to each well, with the exception of the medium 

control wells. The final volume of the wells containing compounds and cells was 200 

μL. The culture plates were incubated at 37 °C for 72 h; at the end of the incubation 

period, 20 μL of MTT (thiazolyl blue tetrazolium bromide, Sigma) solution (from a 

stock solution of 5 mg/mL) were added to each well. After incubation at 37 °C for 4 h, 

100 μL of sodium dodecyl sulfate (SDS) (Sigma) solution (10% in 0.01 M HCI) were 

added to each well and the plates were further incubated at 37˚C overnight. Cell 

growth was determined by measuring the optical density (OD) at 540/630 nm with 

Multiscan EX ELISA reader (Thermo Labsystems, Cheshire, WA, USA). Inhibition of 

the cell growth was determined according to the formula below:

IC50  = 100100 












controlmediumODcontrolcellOD
controlmediumODsampleOD

Results are expressed in terms of IC50, defined as the inhibitory dose that reduces 

the growth of the cells exposed to the tested compounds by 50%. The IC50 values 

were calculated using GraphPad Prism7 software. 

Results and Discussion
Synthesis. The synthesis of the main core structure A in Chart 2 was performed by 

following the published literature protocols. B was synthesised similarly.18–20 A 

detailed description for the synthesis of B is given in the ESI†. The lactam derivatives 

A and B were converted into thiolactams C and D by reaction with P2S5 on Al2O3 in 

dry boiling acetonitrile or tetrahydrofuran in 82 and 60% yield, respectively.27 

Thionation with phosphorus pentasulfide bound to aluminium oxide offers the 

advantage that the reagent can be removed by filtration after the reaction. In addition, 

this method was chosen because the standard method for the thionation of 

paullones10 gave only small yields. Further reaction of C and D with hydrazine 

hydrate as reagent and solvent afforded hydrazines E and F in 86 and 92% yield, 

respectively. It should be noted that that F exists in two tautomeric forms in DMSO 

solution, as evidenced by the appearance of two signal sets in the 1H NMR spectrum. 
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The predominant species is the one shown in Chart 2 where N13 is protonated and 

the double bond is endocyclic. The NMR signal of N13H appears as a singlet at δ = 

6.36 ppm. In the minor species, (ca. 15% in DMSO), N6 is protonated and the double 

bond is exocyclic. N6H appears as a triplet with the typical coupling constant of 5.3 

Hz at δ = 8.49 ppm. NMR data is given only for the major species in the experimental 

part, because of the low signal intensity of the minor species and signal overlapping. 

For atom numbering scheme see Scheme S1, ESI†. Similar tautomerism has been 

observed in the case of paullones previously.14 The Schiff bases HL1–HL4 were 

prepared in 99, 31, 94 and 58% yield, respectively, from hydrazine species E and F 

and 2-formyl- and 2-acetylpyridine taken in 10% excess in boiling ethanol. 1H and 13C 

NMR spectra of HL1–HL4 were in agreement with the formulae proposed. Notably, 

HL4 showed a second set of NMR-signals with an intensity of about 10% of the main 

species in DMSO-d6. Tautomerism as in the case for F was excluded, because of the 

presence of the typical triplet signal for N6H in both species. It is likely that a mixture 

of E and Z isomers is present, similarly to previously reported paullone derived 

ruthenium(II) and osmium(II) complexes.17 However, low signal intensity and signal 

overlapping did not allow a more accurate analysis to be performed. ESI mass 

spectra measured in positive ion mode showed peaks with m/z 352.26, 432.06, 

366.16 and 446.08 attributed to [M+H]+. The purity of HL1–HL4 (>95%) was 

confirmed by elemental analysis. The structure of HL4 was also established by single 

crystal X-ray diffraction (vide infra). Complexes 1‒4 were prepared by reaction of 

HL1–HL4 in isopropanol by addition of a methanolic solution of CuCl2·2H2O in 1:1 mol 

ratio, respectively, in 77 to 99% yields. The positive ion ESI mass spectrum of 1 

showed the presence of a peak with m/z 764.18 due to [CuII(L1)(HL1)]+. The mass 

spectra of 2–4 contain peaks at m/z 528.97 and 492.99, 463.04 and 427.07, 542.96 

and 507.00 attributed to [CuIICl(HL2–4)]+ and [CuII(L2–4)]+, respectively. The elemental 

analysis was in agreement with the structures shown in Chart 2, providing the 

required purity of bulk samples for biological investigations. The complexes 1‒4 as 

well as 3´ have been studied by X-ray diffraction.

X-ray Diffraction. The results of X-ray diffraction studies for 1trim, 2, 3, 3´, 4 and HL4 
are shown in Figures 1–3, respectively, with selected bond lengths and bond angles 

quoted in the legends. Complex 1 crystallised as a trimer (1trim), while 2–4 and 3´as 

monomeric entities. The corresponding ligand is protonated in 1trim, 2–4 and acts as 
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a tridentate one being coordinated to copper(II) via azepine nitrogen, hydrazine 

nitrogen and pyridine nitrogen atoms. The ligands can be deprotonated in the 

presence of a base. In particular, deprotonation of HL3 in 3 in the presence of 

triethylamine was confirmed by X-ray diffraction study of 3´ (Figure 2b). The 

coordination geometry of copper(II) ion in the trimer (1trim) and in mononuclear 

complexes 2–4 is square-pyramidal or distorted square-pyramidal (see legends to 

Figures 1-3 quoting 5-descriptor values36 for each copper(II) ion), while in 3´ it is 

slightly distorted square-planar. The coordination polyhedron in each case is 

completed by two or one chlorido co-ligands. Note that the same coordination 

geometry was previously established for complexes 5 and 6 with paullone derivatives 

(5 = 0.10 (5) and 0.05 (6)).15 The bond lengths Cu–N5 = 2.038(3) and 2.0220(15), 

Cu–N14 = 1.982(3) and 1.9787(15), Cu–N17 = 2.062(3) and 2.0466(15) in 5 and 6, 

respectively, are significantly longer than those in 2 and 3 (see legends to Figures 1 

and 2) by 0.01–0.05 and 0.005–0.04 Å, respectively, even though the metal binding 

moieties in the corresponding ligands are closely related. Overall a tighter binding of 

the ligand moiety in 2 and 3 is to be mentioned when compared to that in 5 and 6. 

The proligand HL4 and the ligand HL4 in 4 adopt different configurations and distinct 

proton tautomeric forms as shown in Figure 3 and confirmed by the distribution of 

bond lengths (electron density) over the fragment C5–N6–C7–N13–N14–C15 quoted 

in the legend to Figure 3.    
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Figure 1. ORTEP views of a) the complex cation [Cu3Cl4(HL1)3]2+ in 1trim and b) of 
[CuCl2(HL2)] in 2. Selected bond distances (Å) and bond angles (deg) in 1trim: Cu1–
N6 1.994(2), Cu1–N14 1.991(2), Cu1–N17 2.044(2), Cu1–Cl1 2.2685(8), Cu1–Cl2 
2.4382(8), N6–Cu1–N14 78.75(10), N14–Cu1–N17 77.92(9), Cu2–N27 1.990(2), 
Cu2–N35 1.975(2), Cu2–N38 2.034(2), Cu2–Cl2 2.4492(8), Cu2–Cl3 2.2781(8), 
N27–Cu2–N35 79.39(10), N35–Cu2–N38 78.63(10), Cu3–N48 1.995(3), Cu3–N56 
1.959(2), Cu3–N59 2.044(2), Cu3–Cl3 2.6404(8), Cu3–Cl4 2.2116(8), N48–Cu3–N56 
79.51(10), N56–Cu3–N59 79.20(10). Details of coordination geometry in 1trim: 5 
(Cu1) = 0.35, 5 (Cu2) = 0.25, 5 (Cu3) = 0.17; in 2: Cu–N6 1.982(5), Cu–N14 
1.971(5), Cu–N17 2.051(5), Cu–Cl1 2.2252(16), Cu–Cl2 2.5762(17), N6–Cu–N14 
79.7(2), N14–Cu–N17 78.8(2). Details of coordination geometry in 2: 5 (Cu) = 0.06.  

Of note is also that the two Cu–Cl bonds in 1–4 are markedly different. The bond 

length from copper(II) to basal chlorido co-ligand is by 0.17 to 0.43 Å shorter 

compared to that between copper(II) and the apical chlorido co-ligand. A similar 
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situation is also typical for 5 and 6 reported previously.15,25 The corresponding bonds 

differ by 0.19 and 0.13 Å in 5 and 6, respectively.

Figure 2. ORTEP views of a) one crystallographically independent complex 
[CuCl2(HL3)] in 3 (co-crystallised solvent is omitted) and b) of [CuCl(L3)] in 3´. 
Selected bond distances (Å) and bond angles (deg) in 3: Cu1–N6 1.979(4), Cu1–N14 
1.973(4), Cu1–N17 2.034(4), Cu1–Cl1 2.2460(12), Cu1–Cl2 2.4567(14), N6–Cu1–
N14 78.72(17), N14–Cu1–N17 78.33(16), Cu2–N28 1.986(5), Cu2–N36 1.969(4), 
Cu2–N39 2.031(4), Cu2–Cl3 2.2309(14), Cu2–Cl4 2.5054(13), N28–Cu2–N36 
79.09(18), N36–Cu2–N39 78.36(18). Details of coordination geometry in 2: 5 (Cu1) 
= 0, 5 (Cu2) = 0.06 (second crystallographically independent molecule); in 3´: Cu–N6 
1.937(3), Cu–N14 1.953(3), Cu–N17 2.019(3), Cu–Cl 2.2058(9), N6–Cu–N14 
79.52(12), N14–Cu–N17 80.27(12).   
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Figure 3. ORTEP views of a) proligand HL4 and b) of [CuCl2(HL4)] in 4 (co-
crystallised solvent is omitted). Selected bond distances (Å) and bond angles (deg) in 
HL4: C5–N6 1.459(4), N6–C7 1.344(4), C7–N13 1.325(4), N13–N14 1.391(3), N14–
C15 1.300(4); in 4: Cu1–N6 2.011(2), Cu1–N14 1.986(2), Cu1–N17 2.057(3), Cu1–
Cl1 2.2612(8), Cu1–Cl2 2.4327(9), C5–N6 1.470(4), N6–C7 1.295(4), C7–N13 
1.376(4), N13–N14 1.366(3), N14–C15 1.285(4), N6–Cu–N14 78.83(10), N14–Cu–
N17 77.34(10), Cu2–N28 2.010(2), Cu2–N36 1.968(2), Cu2–N39 2.035(3), Cu2–Cl3 
2.2204(8), Cu2–Cl4 2.5321(9), N28–Cu2–N36 79.40(10), N36–Cu2–N39 78.40(10). 
Details of coordination geometry in 4: 5 (Cu1) = 0.28, 5 (Cu2) = 0.28 (second 
crystallographically independent molecule).    

Solution equilibrium studies. The proligand HL3 and complex 3 (Charts 1 and 2) 

were chosen for the detailed solution equilibrium studies. Two complexes with HL3 

were obtained in the solid state, namely [CuCl2(HL3)] (3) and [CuCl(L3)] (3´) (Figure 

2), in which the ligand adopts different protonation states. We therefore aimed to 

study the transformation process of 3 into 3´ in solution. Both HL3 and complex 3 
have fairly poor water solubility, thus UV–vis spectrophotometric titrations were 

performed in the presence of 30% (w/w) DMSO at low concentration (12.5 M). The 

UV–vis spectra recorded for the proligand revealed small but characteristic changes 

upon increasing the pH (Figure 4a) and two well separated proton dissociation 
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processes could be observed. The first deprotonation process was accompanied by 

a blue shift (max: 351 nm → 340 nm) and an absorbance increase at ~ 440 nm in the 

pH range between 2.5 and 3.25. The solution was yellow in this pH range. Upon 

increasing the pH the solution became colourless due to the decrease of absorbance 

in the visible wavelength range (415–490 nm) and the max is red shifted (340 nm → 

360 nm). At pH > 6.5 precipitation occurred in the solution most likely due to the 

formation of the neutral species, thus data collected below this pH were used for the 

calculations. The pKa values (Table 3) and the spectra of the individual ligand 

species (Figure 5a) were calculated on the basis of deconvolution of recorded UV–

vis spectra. The proligand HL3, which can be drawn in two tautomeric forms due to 

the rearrangement of the N=C-NH-N and NH-C=N-N bonds, contains two additional 

protons in its fully protonated form (H2(HL3)2+, (Chart 4). The first deprotonation 

process (pKa1) can presumably be attributed to deprotonation of the pyridinium 

nitrogen, while the second step (pKa2) to the deprotonation of the benzazepinium 

nitrogen. The pKa values were predicted by using the software MarvinSketch as 

well37 (Table 3), showing the same order of the stepwise deprotonation processes as 

we suggest herein. However, these are somewhat different compared to the values 

obtained experimentally in the DMSO-water solvent mixture.  

  

0.0

0.2
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0.6

pH = 2.05

3.25

0.0
0.2
0.4
0.6
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A
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e

 / nm

3.25-3.69
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a) b)
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Figure 4. UV–vis spectra recorded for a) HL3 and b) complex 3 at various pH values 

in 30–70% (w/w) DMSO-water solvent mixture. {cligand= ccomplex = 12.5 µM; T = 298 K; 

I = 0.10 M (KCl); l = 2 cm}.
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N
H

NH

NH
N HN

N
H

NH

NH
N N

N
H

N

NH
N N

N
H

NH

N
N N

H2(HL3)2+ H(HL3)+

HL3
tautomerism

Ka1 Ka2

Chart 4. Stepwise deprotonation processes of the fully protonated form of HL3 and its 

tautomeric forms.

The UV–vis spectrum recorded for 3 at pH ~2 (Figure 4b) showed significant complex 

formation comparing to that of the free proligand. Thus the complex dissociates only 

partly under these conditions. Therefore, the tridentate coordination via the (N, N, N) 

donor set is assumed in [Cu(HL3)]2+ at such low pH. Upon increasing the pH the max 

is shifted to the lower wavelength (338 nm → 323 nm) concomitant with the 

development of a new band with max 444 nm implying a rearrangement in the 

copper(II) chromophore. Most probably the non-coordinating hydrazinic nitrogen is 

deprotonated, as is the case with 3´ (Figure 2b). In addition a novel process starts at 

pH > 7 as the max shows a further bathochromic shift (max ~483 nm). Although it is 

accompanied by remarkable absorbance decrease in the whole wavelength range 

monitored due to the formation of precipitate of a neutral mixed hydroxido species 

[Cu(L3)(OH)]. On the basis of the recorded UV–vis spectra overall stability constants 

for the complexes [Cu(HL3)]2+ and [Cu(L3)]+ were computed (Table 3) in addition to 

their individual spectra (Figure 5a), while log for [Cu(L3)(OH)] could be only 

estimated. Concentration distribution curves were computed using the determined 

stability constants (Figure 5b) revealing the predominant formation of [Cu(L3)]+ at 

neutral pH. 

 

Page 24 of 35Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ay
 2

01
9.

 D
ow

nl
oa

de
d 

on
 5

/1
4/

20
19

 5
:5

2:
00

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/C9DT01238A

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9dt01238a


25

0

5000

10000

15000

20000

25000

30000

275 325 375 425 475 525


/ M

-1
cm

-1

 / nm

[Cu(L3)]+

[Cu(HL3)]2+

(HL3)

H2(HL3)2+

H(HL3)+

0

20

40

60

80

100

2 3 4 5 6 7 8 9

C
u(

II)
 %

pH

[Cu(L3)]+
[Cu(HL3)]2+

[Cu(L3)(OH)]

Cu(II)

a) b)

Figure 5. a) Molar absorbance spectra computed for proligand HL3 and complex 3 in 

the various protonation states, and concentration distribution curves for 3 plotted 

against the pH. (Dashed lines show the region where precipitate appears.) {ccomplex = 

12.5 µM; T = 298 K; I = 0.10 M (KCl); 30% (w/w) DMSO-H2O}.

The lipo-hydrophilic character is an important property of drugs as it strongly affects 

the passage via biological membranes. Therefore we attempted to determine the 

logD7.4 values for proligands HL1, HL3 and complexes 1, 3 using the traditional 

shake-flask method in n-octanol/buffered aqueous solution at pH 7.40. All these 

compounds were found to be so lipophilic that data could not be obtained 

experimentally since they remained in the octanol phase and only a minor fraction 

was found in the aqueous phase. Thus logD7.4 values were estimated for proligands 

HL1, HL3 by using the software MarvinSketch as well37 (Table 3). The predicted 

values indicate the strong lipophilic character of the compounds. The bromo 

substituents in HL2, HL4 are suggested to increase the lipophilicity even more.           

Table 3. Proton dissociation constants (Ka) of HL3 and overall stability constants () 

of its copper(II) complexes determined by UV–vis titrations in 30–70% (w/w) DMSO-

water solvent mixture, {T = 298 K; I = 0.10 M (KCl)}. Predicted pKa and logD7.4 values 

for HL3 and HL1 by the software MarvinSketch.37  

constant predicted constant

pKa1 H2(HL3)2+ 2.51±0.01 pKa1 H2(HL3)2+ 1.82

pKa2 H(HL3)+ 5.03±0.01 pKa2 H(HL3)+ 5.37

log [Cu(HL3)]2+ 10.96±0.02 logD7.4 HL3 +4.03

log [Cu(L3)]+ 6.39±0.02 pKa1 H2(HL1)2+ 2.00

log [Cu(L3)(OH)] ~ -1.9 pKa2 H(HL1)+ 5.39
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pKa [Cu(HL3)]2+ 4.57 logD7.4 HL1 +4.75

pKa [Cu(L3)]+ ~ 8.3

Electrochemistry and spectroelectrochemistry. Cyclic voltammograms of 1–4 in 

DMSO/nBu4NPF6 at glass carbon (GC) working electrode show two irreversible 

reduction peaks with cathodic peak potentials at Epc
1 = ‒0.75 V and Epc

2 = ‒1.13 V for 

1, Epc
1 = ‒0.68 V and Epc

2 = ‒1.05 V for 2, Epc
1 = ‒0.74 V and Epc

2 = ‒1.12 V for 3 and 

Epc
1 = ‒0.76 V and Epc

2 = ‒1.11 V for 4 vs Fc+/Fc (see Figure 6a and Figure S1, 

ESI†). The first irreversible reduction step can be attributed to the Cu(II) → Cu(I) 

process. We suppose that unstable [Cu(I)L] complex decomposes with partial or full 

release of the proligand. The follow-up product is then irreversibly reduced in the next 

reduction step. 

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2
-0.4
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A

E vs Fc+/Fc / V

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2
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0.0
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 I 
/ 

A

 E / V vs. Fc+/Fc

(a)

(b)

Figure 6. Cyclic voltammograms of (a) 1 and (b) 4 in DMSO/nBu4NPF6 at scan rate 

of 100 mV s–1 at GC working electrode (black traces represent the first scan, while 

red traces the second scan).
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To check the chemical reversibility of the first reduction step for 1–4, the in situ 

spectroelectrochemical UV-vis-NIR experiments were carried out under an argon 

atmosphere in a special thin layer spectroelectrochemical cell with a microstructured 

honeycomb working electrode. The UV–vis spectra measured upon cathodic 

reduction of 1 revealed in the region of the first reduction peak a new emerging 

optical band at 385 nm. In addition, a decrease of the intensity of the bands at 275 

and 485 nm is observed (Figure 7a). According to the findings of the UV–vis titrations 

(Figure 5a), these spectral changes suggest the dissociation of the Cu(II) complex 

and the liberation of the proligand.

(a)

300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

A

 / nm

300 400 500 600 700 800
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0.8

 / nm

CV scan

(b)

-1.2 -0.8 -0.4

-0.8

0.0
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 
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Figure 7. In situ UV-vis-NIR spectroelectrochemistry for 1 in DMSO/nBu4NPF6 (scan 

rate of 10 mV s−1, Pt-microstructured honeycomb working electrode): (a) evolution of 

UV−vis spectra in 2D projection in forward scan in the region of the first reduction 
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peak; (b) UV–vis spectra detected simultaneously upon the cyclic voltammetric scan 

in 3D projection (Inset: the corresponding cyclic voltammogram).

Very similar spectroelectrochemical response was observed also for 2–4 in the 

region of the first reduction peak as illustrated for 3 in Figure S2, ESI†. However, 

upon scan reversal the product that is formed upon reduction (Cu(II) to Cu(I)) is not 

reoxidised back to the initial state (Figure 7b). This fact provides strong evidence that 

the Cu(I) oxidation state is unstable, resulting in the partial or complete 

decomposition of the complex. The presence of the Cu(II) ion in the cells may lead to 

the production of ROS in vivo because of Cu(II)/Cu(I) redox cycling due to Fenton 

like reactions.38,39

Cytotoxic activity assays. The latonduine derivatives HL1–HL4, their copper(II) 

complexes 1–4 , and the paullone derived copper(II) complexes 5, 6 exhibited strong 

cytotoxic activity in cancer cells, exceeding tremendously that of cisplatin. The 

latonduine derivatives HL1–HL4 revealed strong cytotoxic activity in cancer cells, 

while they were less toxic in non-cancerous MRC-5 fibroblasts showing selectivity 

towards cancer cells (Table 4).

Table 4. The IC50 values for latonduine derivatives HL1–HL4 and their copper(II) 
complexes 1–4 , as well as for copper(II) complexes with paullones 5, 6. *Selectivity 
factors (SFs) for Colo 205 and Colo 320 cancer cell lines over non-cancerous MRC-5 
cells. SF(205) = IC50 MRC-5/IC50 Colo 205, SF(320) = IC50 MRC-5/IC50 Colo 320.

 IC50 (µM),a 72 h
 Colo 205 Colo 320 MRC-5 SF(205)* SF(320)*

HL1 0.266 ±  0.012 0.294 ± 0.005 1.522 ± 0.547 6 5
HL2 0.189 ± 0.040 0.051 ± 0.012 2.312 ± 0.032 12 45
HL3 0.037 ± 0.004 0.042 ± 0.001 0.127 ± 0.004 3 3
HL4 0.017 ± 0.002 0.018 ± 0.005 1.257 ± 0.463 74 70
1 0.346 ± 0.008 0.315 ± 0.023 0.461 ± 0.069 - -
2 0.556 ± 0.028 0.104 ± 0.002 0.378 ± 0.004 - 4
3 0.017 ± 0.001 0.020 ± 0.001 0.162 ± 0.009 10 8
4 0.007 ± 0.001 0.015 ± 0.002 0.201 ± 0.001 29 13
5 1.704 ± 0.218 0.413 ± 0.044 0.152 ± 0.001 - -
6 0.380 ± 0.032 0.120 ± 0.007 0.061 ± 0.003 - -
Cisplatin 31.94 ± 2.17 4.81 ± 0.68 12.41 ± 0.367 - 3
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Interesting structure-activity and selectivity relationships deserve to be mentioned. 

Acetylpyridine derived proligands HL3 and HL4 were by one order of magnitude more 

cytotoxic than formylpyridine derived HL1 and HL2. Bromo substituted HL2 and HL4 

were about twice as cytotoxic compared to their unsubstituted counterparts HL1 and 

HL3. The bromo substituted proligands HL2 and HL4 were not only more active, but 

they also showed a more pronounced selectivity for cancer cells over normal cells, by 

a factor of 2 to 25 compared to unsubstituted analogues HL1 and HL3 (see Table 4). 

Interestingly HL2 is more active in the multidrug resistant Colo 320 cell line than in 

the chemosensitive Colo 205 cell line with selectivity factors of 45 vs 12, respectively. 

The most active proligand, HL4, shows IC50 values in the nanomolar range and is 

around 70 times more toxic in the cancer cell lines (Colo 205, Colo 320) than in the 

normal fibroblast MRC-5 cell line. 

Formylpyridine derived copper(II) complexes 1 and 2 showed activity comparable to 

the respective proligands HL1 and HL2, however, their selectivity for cancer cells over 

non-cancerous cell line is diminished. Copper(II) complex 2 was more active in the 

chemoresistant Colo 320 cancer cell line than in the chemosensitive Colo 205 cell 

line, similar to HL2, leading to the assumption that proligand HL2 and copper(II) 

complex 2 may interfere with the ABCB1 transporter (P-glycoprotein). This is the first 

characterised ATP-binding cassette (ABC) transporter, which is the most studied 

member of this protein superfamily. ABC transporters bind and hydrolyse ATP to 

provide energy needed to transport/extrude the substrates/drugs via the cell 

membranes. It has been shown that the overexpression of this protein is often 

associated with the development of multidrug resistance phenotype in cancer and 

disadvantageous clinical prognosis.40 An emerging research approach is the use of 

efflux pump inhibitors as adjuvant compounds (so-called “chemosensitizers”) to 

improve the efficacy of antitumour therapy, by co-administering them with 

chemotherapeutic agents. Computer-aided drug design techniques are used for the 

rapid assessment of chemical libraries in order to guide and speed up the early-stage 

development of new active compounds. In order to determine the ability of the 

compounds investigated in the present study to interact with P-glycoprotein 

molecular docking calculations based on crystallographic data reported by Ferreira et 

al.41 will be performed and the results will be reported in due course. 
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Acetylpyridine derived complexes 3 and 4 are by one to two orders of magnitude 

more active than their formylpyridine derived analogues 1 and 2 and about twice as 

cytotoxic as the corresponding proligands HL3 and HL4. The strong enhancement of 

cytotoxicity, when a methyl group is present at the imine carbon of the ligand, has 

been observed also in the case of paullone derived copper(II) complexes 

previously.15,25 Compound 4 is the most active drug in the whole series, with an 

astonishingly low IC50 value of 7 nM in the Colo 205 cancer cell line, being superior to 

the corresponding proligand HL4 with IC50 value of 17 nM in the same cell line. The 

presence of bromo-substitutuent in position 9 of the paullone42 or similar position in 

latonduine derivative and ketimine group instead of aldimine one increases the 

cytotoxic activity of both proligands and metal complexes, but we do not have any 

explanation of this observation at the molecular level now. Even though 4 is more 

cytotoxic to MRC-5 cells than HL4, it still shows marked selectivity for cancer cells 

over normal ones, with selectivity factors of 29 and 13 for the Colo 205 and Colo 320 

cancer cell lines, respectively. Paullone derived complexes 5 and 6 are isomers of 

latonduine derived complexes 2 and 3. Intriguingly, 5 and 6 are less cytotoxic in the 

cancer cell lines (Colo 205, Colo 320) and more cytotoxic in MRC-5 cells, when 

compared to their counterparts 2 and 3. This means that the new latonduine derived 

copper(II) complexes presented in this work offer both enhanced activity and 

selectivity in comparison with previously reported paullone derivatives.   

Conclusions

Four new proligands which can be regarded as biologically active latonduine 

modified or isomeric to paullone derivatives and containing a potentially tridentate 

metal binding site, HL1–HL4 were prepared via a multistep synthesis. In addition, four 

copper(II) complexes 1–4 were synthesised by direct complex formation reactions of 

proligands with CuCl2·2H2O. For comparison two copper(II) complexes with paullone 

modified ligands reported previously, namely 5 and 6, were also used in this study. 

These two complexes form isomeric pairs with 2 and 3, respectively. The following 

features can be outlined from the performed investigations of the listed compounds. 

X-ray diffraction studies revealed, that like 5 and 6, complexes 1 – 4 are five-

coordinate and adopt a square-pyramidal or slightly distorted square-pyramidal 

coordination geometry. Deprotonation of the ligand HL3 in 3 resulted in formation of 

3´, in which a square-planar coordination geometry is adopted by copper(II) as 
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confirmed by single crystal X-ray crystallography. The decrease of coordination 

number of copper(II) from five in 3 to four in 3´ led to shortening of Cu–N and Cu–Cl 

bond lengths due to less repulsion between the ligand/donor atoms (see legend to 

Figure 2 for comparison of bond lengths in the two complexes). It should be also 

noted that the ligands HL2 and HL3 are bound stronger in terms of bond lengths to 

copper(II) when compared to those in isomeric paulone-based complexes 5 and 6, 

respectively. The Cu–N bond lengths were found to be by 0.01 – 0.05 and 0.005 – 

0.04 Å shorter in 2 and 3 than in 5 and 6, respectively. All the studied compounds are 

significantly lipophilic, and the proligands are in their neutral forms (HL) in solution at 

neutral pH (in 30% DMSO/H2O), while complexes are found in their [Cu(L)]+ forms 

under these conditions. 

Cell tests showed that the new proligands and copper(II) complexes are highly active 

against Colo 205 and Colo 320 cancer lines and show selectivity for cancer cell lines 

over MRC-5, a non-cancerous fibroblast cell line. Structure-activity relationships were 

established, revealing that a methyl substituent at the imine carbon leads to a distinct 

enhancement of the cytotoxicity of the new proligands and copper(II) complexes and 

that a bromo substituent at position 11 of the indolo[2,3-d]benzazepine backbone 

enhances the activity as well as the selectivity. Intriguingly, complexes 2 and 3 were 

by factors 3 and 22 and by factors 4 and 6 more cytotoxic against Colo 205 and Colo 

320 cells in terms of IC50 values than paullone-based complexes 5 and 6. In contrast, 

in non-cancerous cells 5 and 6 were more cytotoxic by factors 2.5 and 2.6 than 2 and 

3, respectively. So, the new complexes 2 and 3 appear to be superior to isomeric 

copper(II) complexes with paullone-modified ligands (5 and 6) in terms of suitability 

for further preclinical development as anticancer drugs.

 

Supporting Information

NMR numbering scheme for HL1–HL4 (Scheme S1), synthesis of B (Scheme S2), 

cyclic voltammograms of 2 and 3 (Figure S1), UV-vis-NIR spectroelectrochemistry for 

3 (Figure S2), NMR spectra (Figures S3–S20), ESI-MS spectra (Figures S21–S32). 

The Supporting Information is available free of charge on the RSC Publications 
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