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KCTD12 and miR-383-binding genes in the
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Abstract
Ruminative response style is a passive and repetitive way of responding to stress, associated with several disorders.
Although twin and candidate gene studies have proven the genetic underpinnings of rumination, no genome-wide
association study (GWAS) has been conducted yet. We performed a GWAS on ruminative response style and its two
subtypes, brooding and reflection, among 1758 European adults recruited in the general population of Budapest,
Hungary, and Manchester, United Kingdom. We evaluated single-nucleotide polymorphism (SNP)-based, gene-based
and gene set-based tests, together with inferences on genes regulated by our most significant SNPs. While no
genome-wide significant hit emerged at the SNP level, the association of rumination survived correction for multiple
testing with KCTD12 at the gene level, and with the set of genes binding miR-383 at the gene set level. SNP-level
results were concordant between the Budapest and Manchester subsamples for all three rumination phenotypes. SNP-
level results and their links to brain expression levels based on external databases supported the role of KCTD12,
SRGAP3, and SETD5 in rumination, CDH12 in brooding, and DPYSL5, MAPRE3, KCNK3, ATXN7L3B, and TPH2 in reflection,
among others. The relatively low sample size is a limitation of our study. Results of the first GWAS on rumination
identified genes previously implicated in psychiatric disorders underscoring the transdiagnostic nature of rumination,
and pointed to the possible role of the dorsolateral prefrontal cortex, hippocampus, and cerebellum in this cognitive
process.

Introduction
Ruminative response style refers to a trait-like tendency

to reflect in a passive and repetitive way on personal
feelings and difficulties1,2, being thus a manifestation of
cognitive inflexibility and perseveration that prolongs the
individual’s reaction to stress3,4. High scores on ques-
tionnaire measures of rumination are associated with
increased risk of various mental disorders, including

major depression, post-traumatic stress disorder, social
phobia1, and with symptoms of alcohol abuse5, binge
eating6, generalized anxiety1, and migraine7. By prolong-
ing stress reaction it is thought to adversely affect cardi-
ovascular and immune responses as well as numerous
somatic complaints, such as pain3,4.
On the basis of factor analytic studies of questionnaire

scales, Treynor et al.8 identified two subtypes of rumina-
tion: brooding, which denotes a maladaptive mechanism
of passively comparing one’s current situation with an
unachieved standard; and reflection which indicates a
more adaptive strategy of purposefully turning inward for
cognitive problem solving. According to twin studies
among adolescents, rumination score has a 24%
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heritability9, ranging from 21% in case of the brooding to
37% in case of the reflection subtype10. However, in twin
studies among young adults heritability of rumination is
even higher, ranging from 34% for females to 40% for
males11.
Candidate gene studies have revealed replicable asso-

ciations with rumination. Three studies reported that the
5-HTTLPR functional length polymorphism of the ser-
otonin transporter gene SLC6A4 promoter significantly
interacts with life stress to increase rumination scores12–14.
We demonstrated that the effect of the serotonin receptor
2A gene HTR2A on brooding is a function of childhood
adversity15. Another study showed that the glucocorticoid
receptor co-chaperone FKBP5 gene interacts with
attachment security to affect rumination scores in chil-
dren16, and with childhood trauma to affect rumination in
adolescents17. Our recent results have identified the
MTHFD1L gene in the folate metabolism as a risk variant
for rumination18. Furthermore, a gene–gene interaction
effect on rumination has been reported for G protein-
activated inwardly rectifying potassium channel subunit 2
(GIRK2) gene KCNJ6 and cAMP-response element
binding protein gene CREB1, pointing to the importance
of synaptic plasticity in the generation of rumination19.
Association of the brain-derived neurotrophic factor gene
BDNF and rumination20–22 also points to this direction,
although controversial results are available regarding
rumination in adults14,20,23 and in children22. Despite its
potential mediatory role in various disorders and the
promising results of candidate gene studies, no genome-
wide association studies (GWASs) have yet been reported
for rumination.
In the present study, we performed a GWAS on rumi-

nation and its two subtypes, brooding and reflection, in a
European general population to explore genetic risk var-
iants and pathways that contribute to this cognitive
phenotype.

Methods
Participants
This study was part of the NewMood study (New

Molecules in Mood Disorders, Sixth Framework Program
of the EU, LSHM-CT-2004-503474) and was funded by
the European Union. All procedures were carried out in
accordance with the Declaration of Helsinki, and were
approved by the North Manchester Local Research Ethics
Committee, Manchester, United Kingdom, and by the
Scientific and Research Ethics Committee of the Medical
Research Council, Budapest, Hungary. Participants aged
between 18–60 years were recruited through advertise-
ments, general practices, and a website in Greater Man-
chester, United Kingdom, and through advertisements
and general practices in Budapest, Hungary. All of them

provided a written informed consent, and all of them were
of European white ethnic origin.

Phenotype
Participants filled out the NewMood questionnaire

pack, comprising the 10-item Ruminative Responses Scale
(RRS)8, and a background questionnaire asking about
gender, age, ethnicity, lifetime psychiatric problems, and
present somatic disorders, relevant to rumination. RRS
has two subscales, representing the two subtypes of
rumination: brooding and reflection. We calculated the
score for rumination, brooding and reflection as a con-
tinuous weighted score: the sum of item scores divided by
the number of completed items.

Genotyping, quality control, and imputation
Participants provided DNA by a genetic saliva sampling

kit. Genomic DNA was extracted from buccal mucosa
cells according to established protocols24. Genotyping was
performed using Illumina's CoreExom PsychChip yielding
a total of 573 141 variants, the genomic positions of which
were defined according to the build GRCh37/hg19.
Quality control and imputation was based on ref. 25, see
also Supplementary File 1.

Analyses
For descriptive statistics we used SPSS 25.
Our sample size greater than 200 enabled us to use

parametric statistical methods, irrespectively of normality
of distributions26.
To assess variance in each of the three examined traits

explained by all single-nucleotide polymorphisms (SNPs)
in our dataset we used the genomic-relationship-matrix
restricted maximum likelihood (GREML) method in the
genome-wide complex trait analysis (GCTA) software,
version 1.26.0 (ref. 27). In the analysis of rumination,
covariates were gender, age, and the first 10 calculated
principal components (PCs) of the genetic data to correct
for population substructure. In case of each subscale, the
other subscale was also included as a further covariate, to
eliminate their shared variance.
Primary SNP-based association tests for each phenotype

were calculated using linear regression models in Plink 1.9
(https://www.cog-genomics.org/plink2), assuming an
additive genetic effect. All models contained the covari-
ates described above for the GCTA analyses.
To test the consistency and reproducibility of the above

SNP-based association results between the Budapest and
Manchester subsamples, sign tests were performed. First,
SNPs were filtered in the combined Budapest+Man-
chester dataset by their p-values using a given threshold
(p < 0.05, p < 1 × 10–3, and p < 1 × 10–5, respectively),
based on refs. 28,29, and by their linkage disequilibrium
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(R2 ≥ 0.5) with the most significant SNP retained. For
these remaining relevant and approximately independent
SNPs, sign of the linear regression coefficients (betas) was
compared between the Budapest and Manchester data-
sets. Rate of concordance with a 95% confidence interval
and the p-value of the corresponding right-tailed sign test
were calculated.
To carry all SNP-based associations to further levels,

enrichment analysis was conducted both for individual
genes and for gene sets. Gene-based annotations for SNPs
were defined according to the RefGene database, build
hg19, with an extension of 10,000 base pairs in both
ends30. Gene sets were defined according to version 6.1 of
MSigDB (http://software.broadinstitute.org/gsea/msigdb/),
we examined sets defined in collections C5 (Gene
Ontology—GO—terms, all categories), C3.mir (micro-
RNA targets), and C3.tft (transcription factor targets).
Gene sets were restricted to those containing at least 15
genes and no more than 300.
To aggregate p-values at the level of SNPs to the level of

genes, the following methods were applied: (i) uncor-
rected minimal p-value within; (ii) minimal p-value
adjusted according to Sidak's method; (iii) Fisher's method
of combining correlated p-values modified according to
Makambi31, and Kost and McDermott32; (iv) fixed-effect
z-score statistics (http://www.biorxiv.org/content/biorxiv/
early/2015/07/31/023648.full.pdf); also (v) a slightly
modified version of Makambi's method (as implemented
by the ‘--set-screen’ option of Plink); and (vi) the method
described in ref. 33. These methods were also applied to
sets of genes analogously treating the corresponding
SNPs.
Furthermore, the effective chi-squared (ECS) and

Gates34 methods (implemented by the software KGG
4.035; version released on 8 September 2018) were also
applied at the gene level, and, based on gene-level results
of Gates, Wilcoxon and hybrid set-based test (HYST)
methods (also implemented by KGG 4.0) were applied to
derive results at the gene set level.
To further aggregate the above eight p-values (both at

the gene and at the gene set level), the rank-averaging
method described by the Psychiatric Genomics Con-
sortium36 was applied in the permutation testing frame-
work to yield a single (“empirical”) p-value and false
discovery rate (FDR) q-value for each gene and gene set
(with one million permutations). As in ref. 36, we consider
the genes and gene sets with a q < 0.1 as significant.
To explore the known functional effects of our most

significant SNPs as reported by public open databases,
based on expression quantitative trait loci (eQTL) and 3D
chromatin interaction, we used FUMA v1.3.1 (ref. 37),
with a p ≤ 1x10–5 threshold for lead SNPs, an R2 ≥ 0.5 to
define a genomic risk locus around a lead SNP, and a p ≤
0.05 to involve SNPs into it. Each SNP of the genomic risk

loci (referred to as top SNPs or our most significant SNPs)
were mapped to a gene if either residing within gene
boundaries extended by 10,000 base pairs, or having an
FDR q ≤ 0.05 with it in the external eQTL, or a q ≤ 1 ×
10–6 with its promoter region in the external chromatin
interaction dataset37.

Results
Sample characteristics
After imputation and quality control steps, we had

3,474,641 SNPs and 1758 subjects (773 from Budapest
and 985 from Manchester) with data on rumination,
gender, age, and ten PCs of the genome. The number of
SNPs entailed a Bonferroni-corrected significance
threshold of p ≤ 1.44 × 10–8, and, at the SNP level, we
considered p ≤ 1 × 10–5 a threshold for suggestive sig-
nificance. Entering all SNPs into gene-based and gene set-
based tests, our analyses yielded 25,371 genes, 4323 C5
gene sets, 182 C3 microRNA target (MIR) gene sets, and
550 C3 transcription factor target (TFT) gene sets.
Regarding descriptive statistics on rumination, gender,

age, lifetime psychiatric problems, and present somatic
disorders, Supplementary Table 1 shows that except for
frequency of pain problems there are differences between
the Budapest and Manchester subsamples in all variables
at either a nominally significant (p ≤ 0.05) or trend (0.05 <
p ≤ 0.10) level. The brooding and reflection subscales had
a Pearson correlation of r= 0.488 (p < 0.00001) with each
other in the combined sample, r= 0.373 (p < 0.00001) in
Budapest, and r= 0.507 (p < 0.00001) in Manchester,
underpinning the necessity of including the other subscale
as a covariate when analyzing the specific variability of a
subscale.

SNPs in the background of rumination, brooding, and
reflection
Before testing the role of particular SNPs in rumination,

brooding, and reflection, we applied the GREML method
to investigate the polygenic nature of these phenotypes,
namely proportion of their variance residing in the whole
set of the investigated SNPs, with results displayed in
Table 1.
With respect to particular SNPs, for rumination SNP-

based association tests yielded a genomic inflation factor
of λ= 1.00984. For the quantile-quantile (QQ) plot, see
Supplementary Figure 1. No SNP survived Bonferroni
correction for multiple testing but 3 SNPs had a sugges-
tive significance which either reside in LMCD1 or are
intergenic (Fig. 1a and Supplementary Table 2).
In case of brooding, lambda value of the genome-wide

SNP-based tests (for the QQ plot, see Supplementary
Figure 2) was 1.00124. No SNP survived correction for
multiple testing; however, we had 59 SNPs with suggestive
significance (Fig. 1b and Supplementary Table 3). These

Eszlari et al. Translational Psychiatry           (2019) 9:119 Page 3 of 12

http://software.broadinstitute.org/gsea/msigdb/
http://www.biorxiv.org/content/biorxiv/early/2015/07/31/023648.full.pdf
http://www.biorxiv.org/content/biorxiv/early/2015/07/31/023648.full.pdf


SNPs are mapped to the CDH12 (Fig. 2b), STAC, and
RBM17 genes.
Regarding reflection, according to the SNP-based tests,

λ= 1. For the QQ plot, see Supplementary Figure 3. No
SNP survived correction for multiple testing but we had
28 suggestively significant SNPs (Fig. 1c and Supple-
mentary Table 4). Most of these 28 SNPs are intergenic
within the chromosomal region of 12q21.1 (Supplemen-
tary Figure 4) but some of them reside in DPYSL5 (Fig. 2c)
or CHRM3.
Results of the sign tests on the reproducibility of SNP-

based results between the Budapest and Manchester
subsamples are displayed in Table 2 for all three pheno-
types. We can see that the direction of effect of the
independent lead SNPs was significantly concordant
between the separate subsamples, except in case of the
most stringent p-value threshold, which yields an inclu-
sion of only one or two SNPs with a 100% but insignif-
icant concordance.

Genes and gene sets in the background of rumination,
brooding, and reflection
The top ten hits at the levels of genes and the three

different gene sets are shown in Table 3. The complete list
of these results and the intercorrelations between the
respective methods are shown in Supplementary File 2,
Supplementary File 3, and Supplementary File 4 for
rumination, brooding, and reflection, respectively. The
results for rumination demonstrate that after correction
for multiple testing, KCTD12 gene and the set of genes
binding miR-383 survived the FDR q < 0.10 threshold.
Figure 2a illustrates that KCTD12 SNPs captured in our
analysis reside exclusively in the upstream regulatory
region of the gene. However, no gene or gene set survived

the FDR q < 0.10 threshold for either brooding or
reflection.

Functional effects of the top SNPs on gene expression
regulation in the brain
Supplementary Figures 5–11 show FUMA37 results on

the genes regulated in brain by the top SNPs according to
external chromatin interaction databases38 and the fol-
lowing eQTL databases. GTEx v6 and v7 (refs. 39,40) and
BRAINEAC41 comprise several brain regions. However,
xQTLServer42 and CommonMind Consortium (CMC)43

samples encompass only the dorsolateral prefrontal cor-
tex (DLPFC). FUMA results on the regulated genes in all
available tissues and cell types without restriction to brain
are displayed in Supplementary Files 2–4 for each
phenotype.
Results revealed that top SNPs for rumination on

chromosome 3 were associated with expression levels of
SRGAP3 and SETD5 in the DLPFC (CMC samples)
(Supplementary Figure 5 and Supplementary File 2). Top
rumination SNPs on chromosome 13 influenced expres-
sion level of KCTD12 also in the DLPFC (CMC). They
also interacted with C13orf45 (LMO7DN) in the hippo-
campus, DLPFC, and neural progenitor cells (Supple-
mentary Figure 7 and Supplementary File 2).
Most significant SNPs for brooding affected expression

level of CDH12 in the DLPFC (CMC) (Supplementary
Figure 8 and Supplementary File 3).
Top SNPs for reflection on chromosome 2 had many

effects according to external databases (Supplementary
Figure 10 and Supplementary File 4). In the DLPFC they
altered expression levels of DPYSL5 (CMC and
xQTLServer), SLC35F6, FNDC4, MAPRE3 (CMC), and
KCNK3 (xQTLServer). In the BA9 region they affected
expression levels of GPN1 (GTEx v6) and also KCNK3
(GTEx v7). In the cortex in general, they regulated
expression levels of DPYSL5 (GTEx v6 and v7) and
KCNK3 (GTEx v7). Furthermore, they altered DPYSL5
expression in hippocampus, substantia nigra (GTEx v7),
cerebellum, cerebellar hemisphere (GTEx v6 and v7), and
white matter (BRAINEAC).
Reflection top SNPs on chromosome 12 influenced

expression level of ATXN7L3B in the inferior olivary
nucleus (BRAINEAC), and also took part in chromatin
interactions with TPH2 and TRHDE in neural progenitor
cells (Supplementary Figure 11 and Supplementary File 4).

Discussion
We present a GWAS of ruminative response style and

its two subtypes. The association of KCTD12 gene and
miR-383-binding genes with rumination appears to be
robust because these results survived correction for
multiple testing. We discuss the implications for the
biological foundations of rumination below. While

Table 1 Results of the GREML analysis for each
phenotype and estimated SNP heritability

Rumination Brooding Reflection

Total variance

Value 0.294 0.325 0.324

Standard error of value 0.0100 0.0110 0.0110

Variance explained by SNPs

Value 0.031 0.035 0.032

Standard error of value 0.0406 0.0397 0.0430

SNP heritability

Value 0.105 0.107 0.099

Standard error of value 0.1380 0.1219 0.1328

P-value 0.230 0.164 0.226

GREML genomic-relationship-matrix restricted maximum likelihood method, SNP
single-nucleotide polymorphism, p-value p-value of the respective model
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Fig. 1 Manhattan plots of genome-wide SNP-based tests for rumination (a), brooding (b), and reflection (c) as outcome. P-value is displayed
in function of genomic position for each single-nucleotide polymorphism (SNP). The red and green lines denote the levels of a suggestive and a
genome-wide significance, respectively
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Fig. 2 Zoomed Manhattan plots of KCTD12 gene for rumination (a), CDH12 gene for brooding (b), and DPYSL5 gene for reflection (c) as
outcome. P-value is displayed in function of genomic position for each single-nucleotide polymorphism (SNP) in the region. Colors denote the r2

value of linkage disequilibrium (LD) with the most significant SNP (marked with asterisk). Gene boundaries and their extension by 10,000 base pairs
(as defined for the gene-based tests) are marked with vertical lines
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previously reported candidate gene results were not
replicated at the more stringent genome-wide level, new
candidate genes emerged in our study.
In spite of their diversity, we only discuss three aspects

of our findings: (i) transdiagnostic nature of rumination,
(ii) relevant brain regions in rumination, and (iii) poli-
genicity of rumination.

Transdiagnostic nature of rumination, brooding, and
reflection, supported by KCTD12, miR-383, and
suggestively significant SNPs
KCTD12, significant at gene level in the present study,

emerged as a candidate in a bipolar depression GWAS
among Han Chinese44. Rumination has indeed been
suggested to show higher levels in bipolar than in major
depressive patients45, and to be independent of bipolar
patients’ mood state46.
Suggestively significant SNPs for brooding regulated

brain expression level of CDH12, which result corro-
borates the genetic relationship of rumination pheno-
types with bipolar depression and extends it to other
disorders. CDH12 has been previously associated with
bipolar depression, major depression, and schizo-
phrenia47,48, and also with bipolar-type schizoaffective
disorder49, suicidal behavior50,51, and metamphetamine
and alcohol dependence48. CHRM3 gene, highlighted by
a suggestive SNP for reflection, has also been implicated
in schizophrenia52 but binding results of its encoded
protein, muscarinic acetylcholine receptor M3, are
conflicting with regard to bipolar and major depressive
patients53,54. A robust evidence underpins the role of
rumination in major depression55, and there is evidence
on its relevance also in psychosis56, alcohol abuse5, and
substance abuse6.
Underscoring the genetics-based importance of rumi-

nation phenotypes in suicidality, the tryptophan hydro-
xylase TPH2 gene, implicated in chromatin interactions of
SNPs suggestive for reflection, is related to hopelessness, a
suicidality risk phenotype57. It has to be noted, however,
that rumination and brooding have shown a more con-
sistent positive association with suicide phenotypes than
reflection58.
The set of genes binding miR-383, significant for

rumination after correction for multiple testing, can also
be settled in this transdiagnostic context, specifically that
of stress and binge eating which can be interpreted as a
cause and a possible consequence of rumination, respec-
tively1,2,6. MiR-383 expression has been revealed to be
upregulated in the rat serum after chronic unpredictable
mild stress59, and in the hypothalamus of mice deficient of
either leptin or leptin receptor, with an intraperitoneal
injection of leptin downregulating its expression60. Serum
leptin levels have shown conflicting associations with
binge eating symptoms61,62. Nevertheless, direction ofTa
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effects with regard to miR-383 and rumination needs to
be investigated by future studies.
The 12q21.1 region, comprising suggestively significant

SNPs for reflection, has been associated with mental
retardation63. Top SNPs for rumination also underpin the
genetic link with mental retardation, since they affected
brain expression levels of SRGAP3 and SETD5, implicated
in this disorder64,65, but see ref. 66. However, rumination
has shown a positive correlation only with verbal but not
with non-verbal intelligence scores67.
While these disorders represent diverse phenotypes,

based on these overlapping genetic results we propose
rumination as an overarching trait, sharing biological
underpinnings with several psychiatric disorders.

Relevant brain regions in rumination, brooding, and
reflection, based on gene regulation databases and
previous literature
Although the present results do not provide direct

evidence that the implicated genes exert their effect on
rumination and its subtypes via their expression in certain
brain regions, we discuss three regions most salient from
our results: DLPFC, hippocampus, and cerebellum. The
role of the DLPFC68 and hippocampus69,70 has been
suggested in rumination, but results on the role of the
cerebellum have yielded contradictory associations71,72.
Nevertheless, several other brain regions or even other
tissues may play a role in mediating between these genes
and rumination but they are not discussed here.
While we demonstrated that the expression of our sig-

nificant gene, KCTD12, was regulated by our top SNPs
only in DLPFC, its relevance has been suggested in the
hippocampus and the cerebellum by previous literature.
For example, Kctd12-KO mice showed an increased
intrinsic excitability of pyramidal neurons in the hippo-
campus in addition to an increased fear-learning pheno-
type73. KCTD12 encodes an auxiliary subunit exclusively
associated with the GABAB receptor74. The encoded
protein enhances receptor signaling at the cell surface75

and rapidly desensitizes the K+ current response medi-
ated by Kir3 channels after GABAB activation74,76. The
Kir3.2 (GIRK2) subunit of Kir3 channels is encoded by the
KCNJ6 gene associated with rumination in our previous
results19. GABAB and GIRK2 are co-localized77 and have
a concerted action in the hippocampus78–80 and in cere-
bellar Purkinje cells81. Antagonism of the GABAB recep-
tor has been suggested to have antidepressant
properties82,83, and rapid antidepressants may act through
decoupling GABAB from the Kir3 channel via the adaptor
protein 14-3-3eta80, highlighting the importance of Kir3
activation among the numerous downstream effects of
GABAB in current depression level. On the other hand,
the possible action of KCTD12 on rumination can also be
viewed from a developmental perspective, since it showed

extremely low expression in the adult cerebrum and
cerebellum but high brain expression levels in the fetal
stages in a study84. This may resolve contradictions con-
cerning brain regions between our present results and
previous literature to some extent.
Nevertheless, top SNPs of both KCNK3, suggested in

astrocytes of temporal lobe epilepsy patients’ hippo-
campus85, and MAPRE3, implicated in dendritic spine
morphology and synaptic plasticity in mature hippo-
campal neurons86, have affected their expression levels
only in the DLPFC or cortex in our results but not in the
hippocampus.
With regard to the cerebellum, RBM17 emphasizes

Purkinje neurons87. The 12q21.1 region has been linked
to cerebellar ataxia88, and specifically the ATXN7L3B (lnc-
SCA7) gene within has been proposed to have a role in
spinocerebellar ataxia89. However, our top SNPs influ-
enced ATXN7L3B expression within the inferior olivary
nucleus.
In contrast to the controversies detailed above, DPYSL5

(or CRMP5), a gene implicated in reflection in our results,
yielded consistent associations between expression data-
bases and previous literature, stressing the importance of
the hippocampus and the cerebellum. It is involved in
brain development and in adult neurogenesis90, in addi-
tion to the dendrite morphology and synaptic plasticity of
cerebellar Purkinje cells91. In mouse embryonic hippo-
campal neurons DPYSL5 inhibits neurite outgrowth92,
dendrite outgrowth and formation93, and decreases
mitochondrial content in dendrites94, again pointing to a
possible critical window of rumination establishment
during fetal development of the hippocampus.
To summarize, there are both consistencies and

inconsistencies between gene regulation databases and
previous literature regarding these three most salient
brain regions in our results.

Polygenicity of rumination, brooding, and reflection
No SNP association survived correction for multiple

testing but there were several suggestively significant
results.
Lack of significance both in SNP-based association tests

and SNP heritability may be the consequence of the sta-
tistical power of our study, because of the weak effects,
and limited sample size in relation to a large number of
SNPs95. However, the lack of power is offset by our
replication subsamples from Budapest and Manchester.
The sign test analysis demonstrated the replicability of the
effects of independent lead SNPs: the rate of concordant
SNPs significantly deviated from that expected by chance
both for the SNPs with p-values less than 0.05 and 1 ×
10–3. However, this deviation was not significant for the
most significant (p < 1 × 10–5) very few SNPs. This genetic
concordance is also remarkable because the two
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subsamples differed from each other not only in rumi-
nation levels but also in frequencies of most disorders
related to rumination.

Limitations
Although testing at multiple levels and utilizing external

databases of gene expression and chromatin interaction
convey strengths to our study, one of its weaknesses is the
low sample size29. This not only limits the power of our
tests, but also explains that we chose mega-analysis
instead of meta-analysis, despite differences in the rumi-
nation phenotypes between the two subsamples.
Another limitation is that we measured rumination with

only one method, thus we were not able to create any latent
rumination variable, like Johnson et al.11 did with RRS
brooding, RRS reflection, and the rumination component of
the Rumination-Reflection Questionnaire. Genome-wide
investigation of other rumination measurements, as well as
GWASes within specific subpopulations, such as depressed
patients, would also be inevitable.

Conclusions
Although our present study is limited by its low sample

size, the replicability of the effects of independent lead
SNPs between the two subsamples is remarkable given the
phenotypic differences between them. This underlines the
robustness of the genetic background of rumination
across European populations.
The genetically underpinned overarching nature of the

rumination endophenotype implies its clinical relevance
in several fields.
Further studies are needed to shed light on the med-

iating pathways between the implicated genes and rumi-
nation. Developmental and adult perspectives can be
highlighted in the association of rumination with specific
brain regions, such as DLPFC, hippocampus, and cere-
bellum. A possible cooperation of KCTD12, GIRK2, and
GABAB receptor proteins should also be clarified in the
future.
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