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Abstract Applying game-theoretical tools for measuring the reliability of a
network has become very common. The basic idea is very natural: analyzing
an appropriately defined attacker-defender game might give rise to a relevant
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1 Introduction

Measuring the reliability of a network is one of the rich and complex areas
of combinatorial optimization. Since the precise meaning of reliability highly
depends on the application, a large variety of different reliability metrics have
been proposed in the literature. Applying game-theoretical tools for measuring
security has become very common. The basic idea is very natural: define a
game between two virtual players, the Attacker and the Defender, such that
the rules of the game capture the circumstances under which reliability is to be
measured. Then analyzing the game might give rise to an appropriate security
metric: the better the Attacker can do in the game, the lower the level of
security is.

There is an abundance of recent books and papers on game-theoretical
tools for measuring and increasing security. Since all aspects of security are
obviously of utmost importance nowadays and game theory as a tool to address
related problems presents itself very naturally, the literature on this topic is
extremely diverse. Much of the arsenal of game theory has been employed on
various applications which very often have little in common besides somehow
being related to security. Interested readers are referred to the following books
and surveys: [1], [9], [11], [12], [19].

In this paper, however, only the theory of two-player, zero-sum games,
the simplest and probably most widely known subfield of game theory will be
relied on to analyze a very naturally arising family of games and thus give
rise to new graph reliability metrics that will turn out to be generalizations of
weighted connectivity (meant in various ways).

The structure of this paper is as follows. We mention a few related results
on network reliability games to motivate the topic of this paper below. In
Section 2 we briefly summarize the necessary background in game theory. In
Section 3 we define different versions of the st-Path Game and present the new
contributions of the paper. Section 4 concludes the paper.

We follow the notation and terminology of [16]. In particular, for a function
f : E → R and a subset U ⊆ E, f(U) denotes

∑
e∈U f(e).

1.1 Network Reliability Games

As mentioned above, analyzing appropriately defined attacker-defender games
is a natural approach for measuring the reliability of a network. Many such
games known from the literature fall under the following framework.

Assume that an input graph G is given. G can either be directed or undi-
rected depending on the application. Besides that, two weight functions are
also part of the input: for each edge e ∈ E(G) the “damage” caused by the loss
of e (or in other words, the “importance” of e) is denoted by d(e); furthermore,
the cost of attacking an edge e is denoted by c(e). Then a two-player, zero-
sum game is defined on G between two virtual players, the Attacker and the
Defender as follows. The Attacker chooses (or “attacks and destroys”) an edge
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e of G. Simultaneously (or simply without knowing the Attacker’s choice) the
Defender chooses a subset of the edges Z ⊆ E(G) that is thought of as some
kind of “communication infrastructure” and the precise requirements on which
vary in each application. Regardless of the Defender’s choice, the Attacker has
to pay the cost of attack c(e) to the Defender. There is no further payoff if
e /∈ Z. If, on the other hand, e ∈ Z then the Defender pays the Attacker the
damage value d(e).

Since these games are two-player, zero-sum games by definition, they have a
unique Nash-equilibrium payoff V (which will simply be referred to as the game
value in this paper) by Neumann’s classic Minimax Theorem (see Section 2).
Since V is the highest expected gain the Attacker can guarantee himself by an
appropriately chosen mixed strategy, it makes sense to say that 1

V is a valid
reliability metric in the sense corresponding to the specifics the game.

We remark that it might seem unrealistic in the above described framework
that the Defender should receive the cost of attack c(e) from the Attacker (as
the Defender is indifferent to the costs and efforts associated with an attack,
she is only affected by the damage caused). In other words, it would be more
natural to assume that the above given payoffs only describe the Attacker’s
gain while the Defender’s loss depends exclusively on e, Z and the damage
value d(e) (and is thus always bigger by c(e) than the Attacker’s gain). This
would also imply that the game is not zero-sum any more. However, it is easily
shown that the thus-obtained non-zero-sum game is essentially equivalent to
the zero-sum game described above. This equivalency is due to the fact that
the sum of the payoffs only depends on the choice of the Attacker and it
more precisely means that Nash-equilibria of the two versions of the game
are identical and the Attacker’s Nash-equilibrium payoff is unique in the non-
zero-sum version of the game and it is equal to the (unique) Nash-equilibrium
payoff corresponding to the zero-sum version. (An analogous statement would
not be true for the Defender.) The proof of this equivalency is a simple exercise
(see [10, Lemma 1] for a proof). We will disregard this point in the remainder
of the paper and focus on the zero-sum game versions described above.

The Spanning Tree Game Perhaps the most natural of the games falling under
the above framework is the following. A connected, undirected graph G, a
damage function d : E(G)→ R+ and a cost function c : E(G)→ R are given.
The Attacker chooses an edge e of G and the Defender chooses a spanning tree
T of G. Then the payoff from the Defender to the Attacker is d(e)− c(e) if e
is in T and −c(e) otherwise. This game was first considered in the d(e) ≡ 1
and c(e) ≡ 0 case in [6] and then in the more general d(e) ≡ 1 (and c(e)
is arbitrary) case in [7]. For the general case, where d(e) ≥ 0 and c(e) are
both arbitrary, the following was proved in [17]. (See Section 2 for a precise
definition of the notion of game value.)

Theorem 1 The game value of the Spanning Tree Game is

max
∅6=U⊆E(G)

comp(G− U)− 1− q(U)

p(U)
,
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where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G) and comp(G− U) is the

number of components of the graph obtained from G by deleting U . Further-
more, there exists a strongly polynomial algorithm to compute the game value
of the Spanning Tree Game and an optimum mixed strategy for both players.

We remark that the above formula (without a corresponding strongly poly-
nomial algorithm) was shown previously in the special case of d(e) ≡ 1 in [7].
Furthermore, in the special case of c(e) ≡ 0 the result of [16, Corollary 51.8a]
is essentially equivalent to the above theorem in a non-game-theoretical set-
ting. The running time of the algorithm given in [17] was later substantially

improved to O(|V |4|E| 12 ) in [2].
It also follows from the above theorem that the spanning tree game is

capable of capturing a known graph reliability metric. The strength of a con-
nected graph G was defined by Gusfield [8]. The idea is quite natural: if we
remove a subset U ⊆ E(G) of the edges then the efficiency of this “attack”
against G can be measured by the ratio of the number of new components
created and |U | (that is, the “effort” required for the attack). Then it makes
sense to define the reciprocal of the maximum efficiency of an attack to be a

security metric: σ(G) = min
{

|U |
comp(G−U)−1 : U ⊆ E(G), comp(G− U) > 1

}
,

where comp(G− U) is the number of components of the graph obtained from
G by deleting U . This notion was extended to a weighted version and its
computability in strongly polynomial time was shown by Cunningham in [5]:

Definition 1 Assume that a connected graph G is given with a positive
weight function p : E(G)→ R+ on its edges. Then

σp(G) = min

{
p(U)

comp(G− U)− 1
: U ⊆ E(G), comp(G− U) > 1

}
is called the strength of G with respect to p.

Corollary 1 ([17]) The game value of the Spanning Tree Game is 1
σp(G) if

p(e) = 1
d(e) and c(e) = 0 is assumed for all e ∈ E(G).

It is also worth mentioning that Theorem 1 was proved in [17] in a much
more general, matroidal setting which gives rise to a number of natural ex-
tensions of the Spanning Tree Game and readily provides the corresponding
modifications of the notion of graph strength. Interested readers are referred
to [17] for the details.

The Arborescence Game A naturally arising, directed version of the Spanning
Tree Game was defined in [17]. Call a subset of the nodes R ⊆ V (G) of a
digraph G a source set if every node of G is reachable from a node in R via
a directed path. A vertex r ∈ V (G) is a source node if {r} is a single-element
source set. Recall that an arborescence of a digraph G is a subset A of the
arcs that is a spanning tree of the underlying undirected graph such that the
digraph (V (G), A) has a source node. (It is well-known and elementary that
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the existence of an arborescence is equivalent to the existence of a source
node.) Then the input of the Arborescence Game is a directed graph G that
has a source node, a damage function d : E(G) → R+ and a cost function
c : E(G)→ R. Analogously to the Spanning Tree Game, the Attacker chooses
an arc e of G, the Defender chooses an arborescence A of G and the payoff from
the Defender to the Attacker is d(e)− c(e) if e is in A and −c(e) otherwise.

Theorem 2 ([17]) The game value of the Arborescence Game is

max
∅6=U⊆E(G)

source(G− U)− 1− q(U)

p(U)
,

where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G) and source(G − U) is the

minimum cardinality of a source set in the digraph obtained from G by deleting
U .

The existence of a strongly polynomial algorithm to compute the game
value of the Arborescence Game and an optimum mixed strategy for both
players was proved in [2].

Analogously to the undirected case, a directed version of the notion of
graph strength presents itself very naturally and then the above theorem shows
its connection to the Arborescence Game. The following notion was defined
and its computability in strongly polynomial time was proved in [17]. The
running time was then again improved in [2].

Definition 2 Assume that a directed graph G is given that has a source node;
assume further that a positive weight function p : E(G)→ R+ is given. Then

−→σ p(G) = min

{
p(U)

source(G− U)− 1
: U ⊆ S, source(G− U) > 1

}
is the directed strength of G with respect to p.

Corollary 2 ([17]) The game value of the Arborescence Game is 1−→σ p(G)
if

p(e) = 1
d(e) and c(e) = 0 is assumed for all e ∈ E(G).

For a survey of some more network reliability games of similar nature
interested readers are referred to [18].

2 Preliminaries on Game Theory

A (finite) two-player, zero-sum game is given by a matrix M called the payoff
matrix. Columns of M correspond to one of the players and rows of M to the
other, so for the sake of simplicity one can refer to the two players as Column
Player and Row Player. Columns and rows of M are called the pure strategies
of the respective players. The matrix M defines the game in the following
sense: both players choose one of their pure strategies (simultaneously, without
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knowing each other’s choices) and then the corresponding entry of M (that is,
the one in the intersection of the chosen row and column) is payed by the Row
Player to the Column Player. (Obviously, a negative payment means that in
reality it is the Column Player who pays the absolute value of the amount to
the Row Player.)

A mixed strategy of a player is a probability distribution on their pure
strategies. If M is a k × n matrix then it is natural to store the Column
Player’s and the Row Player’s mixed strategies as n-dimensional column vec-
tors and k-dimensional row vectors, respectively. If we fix a pair of mixed
strategies x ∈ Rn, y ∈ Rk then the Column Player’s expected gain (or,
equivalently, the Row Player’s expected loss) is obviously yMx. It is sen-
sible for the Column Player to choose a mixed strategy x that maximizes
his worst case expected gain, therefore he is interested in finding an x that
maximizes the minimum value of yMx over all possible mixed strategies y

of the Row Player; in other words, his job is max
x

{
min
y
{yMx}

}
. Analo-

gously, the Row Player’s task is min
y

{
max
x
{yMx}

}
; that is, she wants to

minimize her worst case expected loss. Neumann’s classic Minimax Theo-
rem [14] states that these two values are equal for every payoff matrix M :

max
x

{
min
y
{yMx}

}
= min

y

{
max
x
{yMx}

}
. This common value is called the

game value corresponding to M . Since a pair of mixed strategies (x,y) that
attain the corresponding optima is equivalent to the (more general) notion
of a Nash-equilibrium in the special case of two-player, zero-sum games, the
game value is also referred to as a (Nash-)equilibrium payoff in the literature
(which is known to be unique in this special case). However, in this paper we
will keep calling it the game value.

It is useful to mention that the description of the tasks of the two players
can be simplified by observing that it is sufficient for a mixed strategy to
“guard against” all pure strategies of the other player, that will imply that
it also guards against all mixed strategies. For example, if every entry of the
column vector Mx is at least µ for a mixed strategy x, that translates to
saying that no matter which pure strategy the Row Player picks, the Column
Player’s expected gain is at least µ. However, this also implies yMx ≥ µ for
every mixed strategy y (since yMx is a convex combination of the entries of
Mx). Hence the Column Player’s task can also be described as maximizing
the minimum entry of Mx over all mixed strategies x (and the Row Player’s
case is analogous).

The above also implies (as it is shown in many textbooks, see e.g. [13])
that two-player, zero-sum games are easy to handle algorithmically via linear
programming: optimum mixed strategies for the game given by M can be
found efficiently by solving the following linear program and its dual:

max{µ : Mx ≥ µ · 1,1 · x = 1,x ≥ 0} (1)
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(where 1 denotes the all-1 vector). However, since the size of the payoff matrix
M will be exponential in the size of the input graph G in all applications
mentioned in this paper, this approach will not be viable.

3 The st-Path Game and its Variations

Motivated by the examples mentioned in the Introduction, the following defi-
nition might feel natural.

Definition 3 Assume that a directed graph G, two nodes s, t ∈ V (G), a
damage function d : E(G)→ R+ and a cost function c : E(G)→ R are given.
Then the Directed st-Path Game is defined as follows: the Attacker chooses
an edge e of G, the Defender chooses a directed path P from s to t (which is
assumed to exist) and then the payoff from the Defender to the Attacker is
d(e)− c(e) if e is on P and −c(e) otherwise. The Undirected st-Path Game is
defined analogously with the single difference being that there G is undirected
and the Defender chooses an undirected path between s and t.

Obviously, the above payoffs correspond to the framework described in the
Introduction: the cost of attack c(e) must be paid by the Attacker in all cases,
but he receives the damage value d(e) if he succeeds in hitting the st-path
chosen by the Defender.

The Undirected st-Path Game was considered and solved in the d(e) ≡ 1
(and c(e) is arbitrary) case in [3] and and in the c(e) ≡ 0 (and d(e) is arbitrary)
case is [20]. (In [3], a generalization of the d(e) ≡ 1 case of the game was also
solved: there the Attacker can target a subset of the edges of a given size and
the Defender can choose two paths between two source-destination pairs.)

Before we claim the following theorem, we need to clarify some terminology:
if G is a directed graph and ∅ 6= X 6= V (G) is a node set then the set of all
edges leaving X for V (G)−X is called a cut. If G is undirected then the set of
all edges between X and V (G)−X is called a cut. If s ∈ X and t ∈ V (G)−X
for some nodes s and t then the cut is also referred to as an st-cut.

Theorem 3 The game value of the Directed st-Path Game is

max

{{
1− q(C)

p(C)
: C is an st-cut

}
∪
{
− c(e) : e ∈ E(G)

}}
,

where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G). Furthermore, the game

value and an optimum mixed strategy for both players can be computed in
strongly polynomial time.

Proof Let the value of the above maximum be µ. Assume first that µ = −c(e)
for some e ∈ E(G). Then if the Attacker targets e with a probability of 1, his

total expected gain is obviously at least µ. Now assume that µ = 1−q(C)
p(C) for

an st-cut C and let the Attacker use the following mixed strategy: assign a



8 Dávid Szeszlér

probability of p(e)
p(C) to every edge of C and 0 to the rest of the edges. Consider

an arbitrary directed path P from s to t and fix an edge e ∈ C. Then e

contributes to the Attacker’s expected gain by p(e)
p(C) (d(e) − c(e)) = 1−q(e)

p(C) or
p(e)
p(C) (−c(e)) = −q(e)

p(C) depending on whether e is on P or not, respectively.

Obviously, the contribution of edges e /∈ C is 0. Since the Attacker’s expected

gain is the total of the above contributions across all edges, this value is T−q(C)
p(C) ,

where T = |C ∩ E(P )|. Observing that T ≥ 1 follows from the fact that C is

a cut, we get that the Attacker’s total expected gain is at least 1−q(C)
p(C) = µ.

Since in all cases the Attacker has a mixed strategy that guarantees him an
expected gain of at least µ, the game value is also at least µ.

For every edge e of G let the capacity of e be g(e) = µ · p(e) + q(e).
Then, by the definition of µ, g(e) ≥ 0 holds for every edge e and the total
capacity of every st-cut in G is at least 1. (Indeed, the capacity of the cut C
with respect to g is g(C) = µ · p(C) + q(C). Therefore g(C) ≥ 1 follows from

µ ≥ 1−q(C)
p(C) .) Therefore there exists a flow f from s to t of overall value 1 by

the Ford-Fulkerson theorem.
It is well-known (see [16, Section 10.3]) that f is a non-negative linear

combination of characteristic vectors of directed paths from s to t and di-
rected cycles. Disregarding the directed cycles of such a decomposition we get
that there exists a set of directed paths P1, P2, . . . , Pt in G from s to t and
corresponding positive coefficients α1, α2, . . . , αt such that

∑t
i=1 αi = 1 and∑

i:e∈E(Pi)

αi ≤ µp(e) + q(e) (2)

holds for each edge e.
Now assume that the Defender uses the following mixed strategy: for every

1 ≤ i ≤ t she assigns the probability αi to Pi and 0 to the rest of the st-paths.
Then if the Attacker targets an edge e then her expected loss is∑

i:e∈E(Pi)

αi(d(e)− c(e))−
∑

i:e/∈E(Pi)

αic(e) =

(d(e)− c(e)) ·
∑

i:e∈E(Pi)

αi − c(e) ·
∑

i:e/∈E(Pi)

αi =

d(e) ·
∑

i:e∈E(Pi)

αi − c(e) ≤ d(e) (µp(e) + q(e))− c(e) = µ

by (2). Therefore this mixed strategy guarantees the Defender an expected
loss of at most µ. Hence the game value is also at most µ, which implies by
the above that it is exactly µ as claimed.

It also follows from the above that the game value is the minimum value of
ν such that for the capacity function g(e) = ν · p(e) + q(e) there exists a flow
of overall value 1 and g(e) ≥ 0 holds for every edge e. Indeed, g(e) ≥ 0 implies
ν ≥ −c(e) and the existence of a flow of value 1 implies ν ·p(C)+q(C) ≥ 1 and
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hence ν ≥ 1−q(C)
p(C) for every st-cut C. Therefore ν ≥ µ (where µ still denotes the

maximum in the statement of the theorem). Furthermore, for the minimum of
such ν’s obviously either g(e) = 0 must hold for some arc e or the maximum
flow value must be exactly 1. In the first case ν = −c(e) for some arc e while
in the second case there exists an st-cut C such that ν · p(C) + q(C) = 1 and

hence ν = 1−q(C)
p(C) . In both cases we get ν = µ as claimed.

Determining the minimum value of such a ν is obviously possible either
by binary search or by linear programming, but these approaches would lead
to weakly polynomial algorithms. On the other hand, this parametric flow
problem was proved to be solvable in strongly polynomial time by parametric
search in [4] or even more efficiently by |E(G)| maximum flow computations
in [15]. The latter algorithm is briefly described after the proof below. Once
µ (that is, the minimum value of such a ν) is known, decomposing a flow f
of overall value 1 with respect to the capacity function µ · p+ q into a convex
linear combination of directed st-paths and directed cycles (which is obviously
possible in strongly polynomial time) yields an optimum mixed strategy for
the Defender according to the above. Furthermore, if µ = −c(e) for an arc e
then targeting e with a probability of 1 is an optimum mixed strategy for the
Attacker as shown above. If not then it also follows from the above that f is
a maximum flow and hence one can easily compute an st-cut C of capacity 1
from f . C then yields an optimum mixed strategy for the Attacker as described
in the first paragraph of the proof. ut

For the sake of completeness we briefly describe the strongly polynomial
algorithm given in [15] for determining µ. As shown in the proof above, µ is
the minimum value of ν such that g(e) ≥ 0 holds for every edge e and there
exists a flow of overall value 1 for the capacity function g(e) = ν · p(e) + q(e).
The algorithm keeps generating a seqence of values ν0 < ν1 < . . . < νt = µ and
corresponding flows f0, f1, . . . , ft and cuts C0, C1, . . . , Ct such that gi(e) ≥ 0
always holds for the capacity function gi(e) = νi · p(e) + q(e) and fi is a
maximum flow and Ci is a minimum cut with respect to gi. To initialize
the algorithm, let ν0 = max{−c(e) : e ∈ E(G)}; this choice already ensures
g0(e) ≥ 0 for every edge e and ν0 ≤ µ by the above theorem. Whenever, during
the procedure, the value of νi is obtained for an i ≥ 0, the algorithm computes
a maximum flow fi and a corresponding minimum cut Ci with respect to gi. If
the overall value of fi is 1 then the algorithm terminates and outputs µ = νi. If

not then it sets νi+1 = 1−q(Ci)
p(Ci)

and continues the procedure (with νi+1 instead

of νi). Since νi+1 ·p(Ci)+q(Ci) = 1, the capacity of Ci with respect to gi+1 is 1
and hence the maximum flow with respect to gi+1 is at most 1. If, on the other
hand, it is exactly 1, then gi+1(C) ≥ 1 for every cut C and gi+1(Ci+1) = 1. In

other words: νi+1 ≥ 1−q(C)
p(C) for every cut C and νi+1 = 1−q(Ci+1)

p(Ci+1)
. This implies

µ = νi+1 and hence the algorithm works correctly. It is also finite since the
number of cuts is finite. The result proved in [15] implies that it terminates in
at most |E(G)| iterations and hence it yields a strongly polynomial algorithm.



10 Dávid Szeszlér

We remark that the appearence of max{−c(e) : e ∈ E(G)} in the above
theorem might look counterintuitive. However, its role can be supported by

observing that it compensates for the non-monotoniciy of the function 1−q(Z)
p(Z)

in the following sense: denote the maximum of 1−q(Z)
p(Z) across all subsets Z ⊆

E(G) that contain an st-cut as a subset by µ′. Then µ′ can be strictly bigger
than if this maximum were only taken across st-cuts. On the other hand, it is
easy to show that µ′ is less than or equal to (and can be strictly less than) the
maximum in Theorem 3. (Indeed, since the argument of the first paragraph
of the proof of Theorem 3 can be applied on edge sets containing an st-cut, it
follows that the Attacker can guarantee himself an expected gain of µ′ which
implies µ′ ≤ µ.)

An analogous theorem holds for the Undirected st-Path Game:

Theorem 4 The game value of the Undirected st-Path Game is

max

{{
1− q(C)

p(C)
: C is an st-cut

}
∪
{
− c(e) : e ∈ E(G)

}}
,

where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G). Furthermore, the game

value and an optimum mixed strategy for both players can be computed in
strongly polynomial time.

Proof Let the value of the above maximum be µ. Replace every edge e = {u, v}
of G by the directed arcs e′ = −→uv and e′′ = −→vu and denote the obtained
digraph by D. Let d(e′) = d(e′′) = d(e) and c(e′) = c(e′′) = c(e) for every
edge. Applying Theorem 3 and noting that the total capacity of each st-cut of
D is equal to the total capacity of the corresponding st-cut of G, we get that
the game value of the Directed st-Path Game played on D is µ. Consequently,
there exists a pair of mixed strategies xD : E(D)→ [0, 1] and yD : PD → [0, 1]
such that xD guarantees the Attacker an expected gain of µ and yD guarantees
the Defender an expected loss of µ in the Directed st-Path Game played on
D, where PD denotes the set of directed paths from s to t in D.

Now let xG(e) = xD(e′) + xD(e′′) for every e ∈ E(G). Since the payoff
corresponding to a path P and an edge e in the game played on G is at least
as big as the payoff corresponding to the directed version of P and either e′

or e′′ in the game played on D, it follows that xG guarantees the Attacker of
the game played on G an expected gain of at least µ. Hence the game value is
also at least µ.

We claim that it can be assumed without loss of generality that for every
e ∈ E(G) at most one of e′ and e′′ is contained in a directed path P for which
yD(P ) > 0. Assume to the contrary that e′ = −→uv is contained in the path P1

and e′′ = −→vu is contained in the path P2 and 0 < yD(P1) ≤ yD(P2). Let P1,2

be a directed path from s to t that is contained in the walk consisting of the
first part of P1 leading from s to u and the second part of P2 leading from
u to t. Define P2,1 analogously. Now decrease yD(P1) and yD(P2) by yD(P1)
and increase yD(P1,2) and yD(P2,1) by yD(P1). Since

∑
{yD(P ) : e is on P}
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was not increased for any arc e of D, the modified yD still guarantees an
expected loss of at most µ to the Defender, however, the number of paths P
with a positive yD(P ) containing e′ or e′′ got decreased. Therefore repeating
this modification as many times as needed yields the claim.

Now for every st-path P of G let yG(P ) = yD(P ′) , where P ′ denotes the
directed version of P . Then the claim of the above paragraph implies that yG
guarantees the Defender an expected loss of at most µ in the game played on
G. Hence the game value is also at most µ.

Since xD and yD can be computed in strongly polynomial time by The-
orem 3 and xG and yG can easily be computed from these according to the
above, the proof is complete. ut

Let p : E(G) → R+ be a positive valued weight function on the edges of
G. Recall that λp(s, t), the weighted edge-connectivity between s and t with
respect to p is the minimum value of p(C), where C is an st-cut (both in the
directed and the undirected case). It follows directly from Theorems 3 and
4 that the (Directed and Undirected, respectively) st-Path Game is capable
of capturing the notion of λp(s, t) and its game value can be considered as a
sensible generalization of (the reciprocal of) λp(s, t). The following was also
proved in [20] (for the undirected case).

Corollary 3 If c(e) = 0 for all e ∈ E(G) then the game value of (both the
Directed and the Undirected) st-Path Game is 1

λp(s,t)
, where p(e) = 1

d(e) for

every edge e.

We remark that while the reciprocal of the game value of the st-Path Game
generalizes the notion of weighted edge-connectivity between two given nodes,
it can easily be modified so as to capture the notion of (general) weighted edge-
connectivity λp(G), that is, the minimum value of p(C) taken across all cuts of
G. Indeed, consider the following modification of the game: first the Attacker
chooses two distinct nodes s, t ∈ V (G) and declares them to the Defender.
Then the Defender chooses a path P from s to t and (simultaneously) the
Attacker chooses an edge e of G. Finally, the payoff from the Defender to the
Attacker is the same: d(e) − c(e) or −c(e) depending on whether e is on P
or not, respectively. It follows easily from Theorems 3 and 4 that the value of
this game is

µ = max

{{
1− q(C)

p(C)
: C is a cut of G

}
∪
{
− c(e) : e ∈ E(G)

}}
,

where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G) (both in the directed

and the undirected case). To show this, the Attacker should first choose a cut

C for which 1−q(C)
p(C) is maximum and choose s ∈ X and t /∈ X arbitrarily,

where C consists of the edges leaving X. Since the value of the thus arising st-
Path Game is µ according to Theorems 3 and 4, it follows that the Attacker
can guarantee himself an expected gain of at least µ and the Defender can
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guarantee herself an expected loss of at most µ and hence the value of this
modified game is indeed µ. It also follows directly that if c(e) = 0 is assumed
for all e ∈ E(G) then the game value is 1

λp(G) .

While all the above results offered a way of capturing and generalizing the
notion of weighted edge-connectivity, it is also possible to modify the st-Path
Game so as to achieve a similar connection with weighted node-connectivity:

Definition 4 Assume that a (directed or undirected) graph G and two nodes
s, t ∈ V (G) are given such that t is reachable from s in G via a (directed
or undirected) path, but there is no direct edge from s to t. Furthermore, a
damage function d : V0 → R+ and a cost function c : V0 → R are also given,
where V0 = V (G) \ {s, t}. Then the Node st-Path Game is defined as follows:
the Attacker chooses a vertex v ∈ V0, the Defender chooses a (directed or
undirected) path P from s to t and then the payoff from the Defender to the
Attacker is d(v)− c(v) if v is on P and −c(v) otherwise.

A set of nodes Z ⊆ V0 is said to cover all st-paths if every path from s to
t contains at least one node in Z.

Theorem 5 The game value of the Node st-Path Game is

max

{{
1− q(Z)

p(Z)
: Z ⊆ V0, Z covers all st-paths

}
∪
{
− c(v) : v ∈ V0

}}
,

where p(v) = 1
d(v) and q(v) = c(v)

d(v) for all v ∈ V0. Furthermore, the game value

and an optimum mixed strategy for both players can be computed in strongly
polynomial time.

Proof Assume first that G is directed. Let the value of the above maximum be
µ and let w ∈ V0 such that c(w) = min{c(v) : v ∈ V0}. Split every node v ∈ V0
into two nodes: replace v by v1 and v2 and let s1 = s2 = s and t1 = t2 = t
for the sake of consistency of the notation. Now add the new arc ev = −−→v1v2
for every v ∈ V0 and replace every e = −→uv ∈ E(G) by e′ = −−→u2v1. Denote the
obtained digraph by D and let c(ev) = c(v) and d(ev) = d(v) for every v ∈ V0
and let c(e′) = c(w) + 1 and d(e′) = 1 for every e ∈ E(G).

Consider an st-cut C of D. Using the observation that q(X)
p(X) ≥ min{c(v) :

v ∈ X} holds for every ∅ 6= X ⊆ V (G) one easily checks that 1−q(C)
p(C) ≤

−c(w) holds if e′ ∈ C for an edge e ∈ E(G) (that is, if C contains an arc
that corresponds to an original arc of G). This implies that the maximum
in Theorem 3 computed for D is either −c(w) = −c(ew) or it is attained
by an st-cut C of D that only contains arcs corresponding to nodes of G.
Consider the latter case and let the corresponding node set of G be Z (that
is, C = {ev : v ∈ Z}). It is again easy to check that C is an st-cut of D if
and only if Z covers all paths from s to t in G. All these together imply by
Theorem 3 that the value of the Directed st-Path Game played on D is µ.

Consequently, there exists a pair of mixed strategies xD : E(D) → [0, 1]
and yD : PD → [0, 1] such that xD guarantees the Attacker an expected gain



Hitting a Path: a Generalization of Weighted Connectivity via Game Theory 13

of µ and yD guarantees the Defender an expected loss of µ in the Directed
st-Path Game played on D, where PD denotes the set of directed paths from
s to t in D.

Now let xG(v) = xD(ev) for every v ∈ V0 \ {w} and let xG(w) = xD(ew) +∑
{xD(e′) : e ∈ E(G)}. Observe that for every e ∈ E(G) the payoff cor-

responding to a path P and e′ is always less than or equal to the payoff
corresponding to P and ew. (Indeed, depending on whether e′ is on P or
not, the payoff corresponding to P and e′ is either d(e′) − c(e′) = −c(w) or
−c(e′) = −c(w)− 1 and hence it is at most −c(w). Similarly, the payoff corre-
sponding to P and ew is either d(w)− c(w) or −c(w), so it is at least −c(w).)
This implies that xG guarantees the Attacker an expected gain of at least µ
in the Node st-Path Game played on G and thus the game value is at least µ.

On the other hand, let yG(P ) = yD(P ′) for every st-path of G, where P ′

is the st-path in D corresponding to P . It follows directly that yG guarantees
the Defender an expected loss of µ in the Node st-Path Game played on G.
Hence the game value is also at most µ and thus it is exactly µ.

Obviously, xG and yG can be computed in strongly polynomial time since
the same holds for xD and yD by Theorem 3 and xG and yG can easily be
computed from these according to the above.

Finally, assume that G is undirected. Replace every edge e = {u, v} of G
by the directed arcs −→uv and −→vu and denote the obtained digraph by G′. Since
directed st-paths in G′ directly correspond to undirected st-paths in G and
V (G′) = V (G), it follows that the Node st-Path Games played on G and G′

are identical (including that the payoffs are also equal in each case). Since the
theorem was already proved to hold on G′, observing that node sets covering
st-paths in G and G′ are also identical yields the theorem on G too. ut

Obviously, the node splitting technique applied in the above proof could
also be used to handle the version of the st-Path Game where both edges
and nodes of a graph have given cost and damage values and the Attacker is
allowed to choose either an edge or a node (different from s and t), however,
the details of this are omitted here.

Recall that for any positive valued weight function p : V (G) → R+, the
weighted node-connectivity between s and t with respect to p is the minimum
value κp(s, t) of p(Z), where Z ranges across all node sets covering all st-
paths (both in the directed and the undirected case). The following is implied
directly by Theorem 5:

Corollary 4 If c(v) = 0 for all v ∈ V0 then the game value of (both the
Directed and the Undirected) Node st-Path Game is 1

κp(s,t)
, where p(v) = 1

d(v)

for every v ∈ V0.

Analogously to what was remarked after Corollary 3, one can modify the
rules of the Node st-Path Game (by letting the Attacker choose s and t first) so
as to capture and generalize the notion of general weighted node-connectivity
of a graph, we omit the details.
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4 Conclusions

In this paper we defined and analyzed different versions of a two-player, zero-
sum game played on a graph by two virtual players, the Defender and the
Attacker. In all versions of the game the Attacker’s goal was to hit a path cho-
sen by the Defender between two given nodes. We determined the game value
of all versions of the game and showed that this, as well as optimum mixed
strategies for both players, can be computed in strongly polynomial time. This
also implied that in the special case where the cost of attack for the Attacker
is zero, the game value always coincides with the reciprocal of weighted con-
nectivity understood in the sense corresponding to the specific version of the
game. This observation led us to the conclusion that the games discussed in
the paper are capable of capturing the notion of weighted connectivity of a
graph and their game values can be considered as a sensible generalization of
(the reciprocal of) weighted connectivity.
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