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Foreword

Root Biology: An Inconvenient Truth

The truth is that roots usually are as extensively underground as the aerial portions

are above the ground. Crop plants would not live without roots. Roots absorb water

and nutrients and anchor the plant in the soil. So why do not we know more about

roots? It is likely due to the inconvenience of phenotyping root characteristics – and

many of today’s phenotyping methods are destructive. While we recognize the

essentiality of roots and their relation to plant performance, the scientific commu-

nity has not placed a sufficiently high priority on their analysis to make the needed

major advances. Many of the factors that affect root health can result in a 50% yield

loss when deficient. Given that the predicted human population increase is 50% by

2050, the improvement of root health in crop plants could play a major role in

meeting the world’s need for increased food.

The study of root biology involves extensive plant–soil–water interactions that

are complicated by the microorganisms and insects in the rhizosphere that can alter

root development. Each of the possible interactions has feedback effects in the

plant; many effects are long-range effects within the plant. The soil environment

relates to nutrient availability and uptake, which reflects the condition of the soil

including acidity. Even alternation of dry and flooded conditions changes various

ion states, which can change with the duration of flooding. Many climate change

scenarios predict water shortages, making the understanding of root biology even

more important in the future.

Much of today’s phenotyping of roots is based on root architecture, such as root

length, root diameter, root proliferation, root biomass, root mass density at different

soil depths, diameter, and distribution of meta-xylem vessels, and root-to-shoot

ratios. Early maturity, early shoot-growth vigor, and depth and rapidity of water

absorption also are often assessed among other factors. New nondestructive

approaches need to be encouraged such as X-ray imaging, light transmission

imaging, and time-lapse recordings of root growth.
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This book clearly documents that many new genetic/genomic technologies are

rapidly being applied to the study of roots, including high-throughput genome

sequencing, TILLING, use of molecular markers such as SSRs, DArTs, and SNPs

for introgression of favorable genes, QTL analyses, marker assisted breeding, gene

discovery, comparative mapping, transcription factor identification, transcriptional

profiling, posttranscriptional events regulating microRNAs, and proteome profiling

with complete roots. Some genetic approaches are constrained – such as genome-

wide selection and gene cloning – by the difficulty in phenotyping.

Plants coordinate root growth with the soil environment. Many factors can

inhibit root growth. In this book, aluminum, iron, and salt toxicity are extensively

reviewed, providing a great deal of useful information. The root system is the

primary site of interaction with the soil environment, which includes exudates of

organic compounds from the plants and the microbes. Some of these exudates are

known to represent signals that regulate microbe behaviors and even germination

of seeds.

As illustrated in this book, it is amazing what we know about roots and their

importance, but equally amazing is what we do not know – and we know even less

about the complicated interactions and feedback mechanisms. The work reviewed

in this book also shows the value of using model species such as Arabidopsis; e.g.,
22 genes have been reported in Arabidopsis on lateral root development, 19 genes

on primary root development, and 8 genes on root-hair formation.

One of the goals of this book was to show how root research relates to sustain-

able crop productivity. The chapters taken together represent an extensive review of

the topic focusing primarily on highly productive crops under rainfed conditions.

Crops are mostly rainfed in the most populated areas of the world; this suggests that

it is imperative that root biology be a major research emphasis in the coming years –

but will that be the case? Will the “inconvenient truth” be recognized?

Ronald L. Phillips

Regents Professor Emeritus

Department of Agronomy and Plant Genetics

Microbial and Plant Genomics Institute

University of Minnesota

St. Paul, MN 55108, USA
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Preface

With the emerging recognition that agriculture needs to approach sustainability,

the plant–soil–water interactions become of paramount importance in crop systems.

In this scenario, roots arise from a minor to a major role in the understanding of

plant growth and development. Novel technologies allow us to scan genomes in

the fastest way ever, and there is not a day without further developments leading

to cheaper and more precise genotyping techniques. However, the complexity of

underground metabolism and the responses of root systems to a variety of stresses

call for improvements in phenotyping as well as genotyping techniques.

The idea of organizing a book on Root Genomics dates as back as early 1990s in

the graduate benches of Purdue University. The fascination with a system so

important for the plant but yet so unknown served as both an incentive and a

challenge to pursue this line of research. In 2002, an important opening for root

biology occurred when the late Dr. Mike Gale, FRS, agreed to include a workshop

in Root Genomics at the Plant and Animal Genome Meetings, held yearly at San

Diego, CA. Since 2003, this workshop has generated fruitful discussions and

created new paths for root research. Many speakers from different countries shared

their experience in root genomics, regardless if they were working with model or

crop species. One of the speakers, Rajeev Varshney, was very impressive in his

enthusiasm and determination to target important aspects of drought stress. Sharing

the same enthusiasm for studying roots and stress responses was crucial to put the

idea of this book forward. Many of the authors have presented their work in the

Root Genomics Workshop, but all were chosen by their significant contributions to

agricultural and plant sciences and their common efforts for a better world. We are

grateful to all the authors who not only provided a timely review of the published

research work in their area of expertise but also shared their unpublished results to

offer an updated view. We also appreciate their cooperation in meeting the dead-

lines, revising the manuscripts and in checking the galley-proofs.

We are thankful to Dr Jeff L. Bennetzen, who as a brilliant geneticist was a

great role model and a friend (ACO) that has indirectly inspired this line of research.

We thank Dr. Ronald Phillips, a major pioneer in the field of plant genetics and
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genomics and the father of many ideas that influenced modern plant sciences, for

writing the foreword.

Both of us also recognize that the editorial work for this book took away pre-

cious time that we should have spent with our respective families. ACO acknowl-

edges the efforts of his parents, Glauco and Izabel, for providing an atmosphere of

learning and investigative thought during his young years, his wife Carla for her

continuous encouragement, patience, and friendship, and his children Victoria

(Vickie) and Eduardo (Dudu). Similarly, RKV acknowledges the help and support

of his wife Monika and his children Prakhar (Kutkut) and Preksha (Nanu) who

allowed their time to be taken away to fulfill RKV’s editorial responsibilities in

addition to research, managerial, and other administrative duties at ICRISAT and

Generation Challenge Programme (GCP).

Pelotas-RS, Brazil Antonio Costa de Oliveira

Patancheru, A.P., India Rajeev K. Varshney
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Chapter 1

Introduction to Root Genomics

Antonio Costa de Oliveira and Rajeev K. Varshney
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1.1 Introduction

The twenty first century has been marked by climate awareness and an overall

increase in conscience towards environmentally friendly agriculture. Despite the

natural phenomena playing hard against most crops, we need to gather all the

possible information on the plant–soil–water interactions in order to breed for this

century. Abiotic and biotic stresses will be targeted as most of the frontiers for

agriculture lie in nonoptimal areas, and genetic improvements through science will

play a major role in this conquer.
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Root development, one of the major processes essential to the development of

flowering plants, remains poorly understood. Roots are a hidden part of plants for

many aspects and have not been the main subject of interest of researchers.

Nevertheless, roots play a major role in the plant–soil interactions, regarding

biological and physical aspects. The understanding of the physiological, molecular,

and developmental processes that roots undergo may represent a giant step on the

achievement of a more sustainable and energy-efficient agriculture. This book may

serve as a reference book in this context. Some concepts about root genomics

together with an overview on different chapters presented in this volume are

given in this article.

1.2 Root Genomics: An Overview

Root genomics research can be divided in the following four areas of research: (1) root

growth and development; (2) functional analyses of abiotic stress responses; (3)

functional analyses of biotic stress responses; and (4) quantitative trait loci (QTL)

analysis and molecular breeding. The understanding of basic mechanisms involving

root development and the interactions of roots and soils under various abiotic and

biotic stresses will pave the way for the next decades. Also, mutations obtained in

model species through the use of high throughput techniques such as TILLING

(targeted induced local lesions in genome) are turning root genomics an exciting

subject in plant molecular biology. An attempt has been made to cover all the above-

mentioned four areas of root genomics research.

1.2.1 Root Growth and Development

The breakthrough depiction of root development has started with Arabidopsis roots
(Dolan et al. 1993, 1994; Scheres et al. 1996). The events of division, enlargement,

and differentiation of cells in the roots are spatially separated. At the root tip, there

is a region of continuous cell division, the RAM (root apical meristem). The new

cells formed enlarge by a factor of 100-fold through a process of cell elongation.

After the cells reach a mature size, they differentiate into the various cell types of

the root. Root growth is accompanied by the formation of a series of lateral roots,

resulting in a branching pattern that covers higher volumes of soil space in every

step of branching. A range of root systems can be found in different plants including

from shallow patterns to very deep roots. Therefore, the identification of factors

affecting the patterns of root development is the major point in decoding the genetic

control of this organ.

In a paleontological context, the role of auxin in morphogenesis has allowed

the identification of vascular patterns preserved in fossils as records of auxin

gradients and growth dynamics (Boyce 2010). Roots evolved independently at least

2 A. Costa de Oliveira and R.K. Varshney



in lycophytes and euphyllophytes (Gensel et al. 2001). Root traces have been found in

early Devonian soil horizons, contemporaneous with attached roots in lycophyte

related fossils. The presence of root hairs, root cap, and endogenous initiation shared

by roots has been proposed to have highly divergent origins (Boyce 2010). Shared

regulation by similar helix-loop-helix transcription factors (Menand et al. 2007)

suggests a homology between rhizoids and root hairs. The origin of root caps, on

the other hand, is suggested to be a response to the need of having a protective tissue to

the root apical meristem, a fast-growing region constantly in contact with a solid

surface, i.e., the soil. The appearance of adventitious roots may date the evolution of

endogenous initiation combined with reversed auxin transport, since the first appears

to have occurred repeatedly through times and is suggested to have been required for

the establishment of vascular continuity (Boyce 2005). Anatomical homogeneity/

heterogeneity is suggested as a reflection of stable/unstable environments faced by

land plants and epiphytes/swamp plants, respectively. Despite the environmental

differences, auxin transport mechanisms are thought to limit the anatomical variations

in roots (Boyce 2005; Raven and Edwards 2001).

Studying root development requires model species with simple root architecture.

Arabidopsis and rice are model species that have been fully sequenced and therefore

can provide good models for monocot and dicotyledoneous root development.

Arabidopsis root is composed of 15 distinct cell types arranged as concentric

cylinders around the radial axis (Iyer-Pascuzzi et al. 2009). MicroRNA-mediated

signaling has been reported to be involved in plant root development (Meng et al.

2010). Several of these miRNAs are interestingly shared by Arabidopsis and rice

despite their differences in root patterns and architecture. However, only a few genes

governing root development have been described in cereals, and differences between

monocots and dicots are quite remarkable when one regards at the root system.

Therefore, both models are necessary for the better understanding of the branching

patterns and functional specificities of roots. Two crown rootless mutants, crown-
rootless4 (crl4) andOsGnom1, affect the gene orthologous toGNOM1 in Arabidopsis
(Kitomi et al. 2008; Liu et al. 2009). GNOM1 is a membrane-associated guanine-

nucleotide exchange factor of the ADP-ribosylation factor G protein (ARF_GEF) that

regulates the traffic of PIN1 (PINFORMED 1) auxin efflux carrier proteins that

regulates auxin transport. GNOM1 is thought to be required for the formation of

the lateral primordium in Arabidopsis, by acting on the asymmetrical division of

pericycle cells (Coudert et al. 2010). Recently, a new notion on root system architecture

(RSA) has been described (Dorlodot et al. 2007). Root architecture importance for

plants lies in the fact that soil nutrients are not evenly distributed and the ability to

spatially deploy roots can constitute an advantage.

Developmental models could be an alternative to improve phenotyping in this

very plastic organ. Mapping the dynamics of roots per se or after inducing root

development under different stresses could bring better understanding and establish

genotype differences. Shoot-borne-root formation characterizes the difference

between cereals and the dicot model plant Arabidopsis. Several mutants that are

impaired in shoot-borne-root formation (4), lateral roots (4), primary root (6), and

root hairs (4) have been described in maize and rice (Hochholdinger et al. 2004).
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Some of these genes controlling root development have been recently cloned and

will shed light on the influence of distinct root functions and architecture on grain

yield and performance in water-limited conditions (Hochholdinger and Tuberosa

2009). However, the overall trend is that single mutant standard analysis is shifting

to genome-wide approaches, leading to a speeding up of the process of generating

information. Proteomics- and metabolomics-generated datasets will need integration

with bioinformatics tools in order to translate the overwhelming amount of data into

biological meaningful phenomena.

1.2.2 Biotic Stress Tolerance

Biotic stress is caused by organism attacks to plants and can be caused by different

pathogens (virus, bacteria, or fungi) or pests (insects). Pathogen infections trigger

plant response mechanisms that are not restricted to the infection organ. The plant

senses the pest attack and responds with a range of different expressions of genes

regulating metabolites such as proteinase inhibitors, toxins, or volatiles that repel

pests or attract natural enemies. Herbivores or pathogens can elicit different types

of defense reaction. When vacuoles and trichomes are bursted as a consequence of a

chewing herbivore attack, compounds such as organic isothiocyanates can be

released (Bruce and Pickett 2007).

An interesting point of view is brought by on the cross-talk between shoot and

root (Van Dam et al. 2004; Bezemer and van Dam 2005). Induced responses are

complicated. The fact that hormone signaling pathways govern biotic and abiotic

stress responses is characterized by the fact that ABA is involved in many abiotic

responses and acts as a negative regulator of disease resistance (Fujita et al. 2006).

Other phytohormones, such as Salycilic acid (SA), Jasmonic Acid (JA), and

Ethylene (ET), play critical roles in biotic responses. Other responses are mediated

by MAP-kinase cascades, which control many biotic and abiotic responses. Other

evidence of this cross-talk is the presence of Reactive Oxygen Species (ROS) at

converging points between biotic and abiotic response pathways. The integration of

this network of responses is essential for the understanding of how roots participate

in this process and the intricate process of cross-signaling that this may need.

1.2.3 Abiotic Stress Tolerance

Roots are subjected to a wide range of stresses such as drought, flooding, salinity, as

well as nutrient starvation and metal toxicity such as Al, Cd, Fe, As, and Hg.

Cadmiun is a nonessential element for plants, its toxicity resulting in chlorosis and

stunting. Chlorosis seems to be an indirect effect on the uptake, transport, and use of

other elements such as Ca, Mg, Fe, Mn, Cu, Zn, P, and K. Cd also interferes with

hormones and disturbs plant water status, causing reduction of root hydraulic
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conductivity, decrease of transpiration, and increase of stomatal resistance (Prasad

1995; Das et al. 1997; Aina et al. 2007). A proteomics approach revealed the

importance of two metabolic enzymes induced by 10 uM Cd that seems to play a

key role in the response to several abiotic stresses: alanine aminotransferase (ALT)

and Hexoquinase (HXK) suggest that these could be potential biomarkers for the

study of Cd toxicity (Aina et al. 2007). The accumulation of NaCl at root peripheral

regions limits growth by exerting osmotic and ionic stresses. Ionic stress is a

consequence of Naþ and Cl� accumulation, disturbing the Kþ/Naþ ratio in the

plant cell (Hasegawa et al. 2000). Time-dependent effect of NaCl on the activities

of tonoplast proton pumps, showing distinct profiles for vacuolar proton transporting

ATPase and vacuolar proton transporting pyrophosphatase were reported. Activity

alterations were found to be due to posttranslational changes (Kabata and Ktobus

2008). The effects of salinity on Arabidopsis cells have been recently investigated

(Dinnenny et al. 2008). Transcriptional changes in response to salinity seem to be

highly constrained by developmental parameters. Iron deprivation and salt stress data

sets were compared. The largest set of coregulated genes displayed concerted down-

regulation in the epidermis and encoded genes important for protein biosynthesis.

Epidermis cells seem to present the least conserved patterns when different stresses

are applied (13–15%). A range of 244 genes are cell-type-specific and whose

expression pattern does not substantially change with stress. Chloroplast accumulation

was found to be a novel feature of the cortex in light-grown roots. Interestingly, rice

roots under excess iron stress seem to accumulate Rubisco peptides, as revealed by

proteomic studies (Costa de Oliveira, unpublished).

The responses of roots to abiotic stresses are though amenable to environmental

influences as well as cell-type. The high plasticity observed in the developmental

patterns plus the range of abiotic factors affecting root growth through the devel-

opment of plants picture a complex scenario composed of many players as well as

interactions among them.

1.2.4 QTL Analysis and Molecular Breeding

Root morphology is in most cases regulated by many genes with small effects and

highly influenced by the environment. Therefore, the study of root system related

genes will very often rely on QTLs analyses. A few examples on mapping and

identification of QTLs explaining the variation for root traits have become available

in some crop species (Price and Tomos 1997; Price et al. 2002; Giuliani et al. 2005).

Adventitious rooting has been considered to improve phosphorus uptake and deep

root growth to increase the ability to copewith drought (Ochoa et al. 2006;Macmillan

et al. 2006; Steele et al. 2006). In some cases, QTLs associated with root traits have

been cloned, e.g., root elongation in Arabidopsis (Sergeeva et al. 2006).
Although QTL analysis was developed to deal with environmental influence on

target characters, the high degree of plasticity presented by roots can mislead studies

and make it difficult to do a reliable phenotyping. However, at least in rice and
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maize, QTL by environment interactions have been found to be weak, and marker-

assisted selection studies have been successful (Macmillan et al. 2006; Kamoshita

et al. 2002; Steele et al. 2006, 2007; Giuliani et al. 2005; Landi et al. 2005).

1.3 About the Book

This book covers all the four areas of research mentioned above. Some highlights of

the chapters included in this book are given below.

During the past decades, a considerable number of genes and gene networks have

beenwell described in themodel speciesArabidopsis thaliana. This knowledge can be
adapted for more complex plant systems as barley, rice, or maize. Despite their

agronomic importance, only a little is known about molecular basis of root formation

in crop species, and only few mutants together with corresponding genes have been

well characterized. In this context, Orman and colleagues from Silesian University,

Poland, have described the EST (expressed-sequence tag)-based approach, inChap. 2,

to search for potential orthologous genes involved in root morphogenesis between

Arabidopsis, rice, and barley. The comprehensive gene list, developed by authors,

should provide strong platform for molecular studies and gene identification in barley

and related species.

Roots are exposed to a range of microbe, and there are several studies, as men-

tioned above, which deal with discussions on root–microbe interactions as well as

impact of biotic stresses on the root architecture. The Chap. 3, authored byMathesius

and van Noorden from Australian National University, Australia, present the updates

on genomics of root–microbe interactions. Microbes influence roots by producing

signals, toxins, altering nutrient cycling, and by invading roots as endosymbionts or

endoparasites. Genomic tools have helped to elucidate the molecular changes induced

in roots by microbes. This chapter highlights some of the recent advances gained by

genomic and postgenomic studies to enhance knowledge in the area of root–microbe

interactions. Similarly, Deshpande and colleagues from Purdue University (USA),

University of Georgia (USA), Michigan Technological University (USA), and Instituto

Nacional de Tecnologı́a Agropecuaria (INTA, Argentina), in Chap. 4, discuss the

advances in the plant genetics for study of the roles of root exudates and microbes in

the soil. In order to dissect the relationships between soil microbes, plant exudates,

and plant function, authors planned to use host genetics to identify exudate::microbe

correlates that segregate with specific plant genes. Their studies indicated the great

potential for future investigations of the plant-determined chemical and organismal

diversity in the soil.

Abiotic stresses are the major stresses for limiting crop productivity in several crop

species, especially in developing countries. Inmajority of such cases, roots are the first

plant organs to be exposed as well as to respond. Some of these abiotic stresses in the

context of root genomics have been discussed in a few chapters. For instance, in

Chap. 5, Gruber and colleagues from Institut des Sciences du Végétal (ISV) and

Université Paris Diderot Paris 7 from France discuss the impact of abiotic stresses
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such as drought and salt on the action and number of root meristems to determine root

architecture. In addition to Arabidopsis, authors have discussed recent results on

model legumes able to interact symbiotically with soil rhizobia to form new meris-

tems leading to the nitrogen-fixing nodule. Aluminum (Al) toxicity is another abiotic

stress that limits agricultural productivity over much of the world’s arable land by

inhibiting root growth and development. Affected plants have difficulty in acquiring

adequate water and nutrition from their soil environments and thus have stunted shoot

development and diminished yield. Hoekenga from US Department of Agriculture

(USDA) – Agricultural Research Station (ARS) (USA) and Magalhaes from

EMBRAPA Maize and Sorghum (Brazil) discuss in Chap. 6 the Al-tolerance

mechanisms. They propose and discuss the use of systems biology approaches to

study the mechanisms of Al tolerance and apply this knowledge to crop improvement

via marker-assisted breeding and translational genomics. Sousa and Costa de Oliveira

fromEliseuMaciel School of Agronomy, Campus UFPel (Brazil) discuss, in Chap. 7,

about root responses to other abiotic stresses such as soluble iron and short chain

organic acids in flooded soils, especially in the context of rice. Authors review the

progress on discovery of iron transporters as well as genetic variation present in rice

genotypes for flooding tolerance.

A number of studies have described QTLs that provide access to valuable

genetic diversity for the morphophysiological features that characterize root func-

tionality. Although a number of major QTLs have been identified as mentioned

above, none of these QTLs has been cloned so far in crop plants, mainly due to the

difficulty to accurately phenotype the target traits in a sufficiently large number of

plants. In this context, in Chap. 8, Tuberosa and colleagues present summary and

discuss the strategies for QTL cloning, especially in the context of maize. QTL

cloning should be facilitated by adoption of high-throughput phenomics platforms

as well as by information made available through genome and the profiling of the

transcriptome, proteome, and metabolome, all of which will contribute to the

identification of plausible candidate genes. Sheshashayee and colleagues from

University of Agricultural Sciences-Bangalore, India, in Chap. 9, have presented

phenotyping methodology for root traits and biotechnological approaches to

improve these roots traits with an objective of sustainable crop production. In

Chap. 10, Varshney and colleagues from ICRISAT, India, and Hokkaido University,

Japan, discuss the physiological and genomics approaches to dissect the root traits

at genetic and molecular level in context of devising the strategies for breeding for

root traits to enhance drought tolerance in chickpea. Authors have also discussed

the use of next generation sequencing technologies towards gene discovery and

marker development.

The last two chapters discuss the progress in the area ofmolecular breeding for root

traits for crop improvement. For instance, Raman from Wagga Wagga Agricultural

Institute, Australia, and Gustafson from University of Missouri, USA, in Chap. 11,

review the progress made on various aspects of molecular breeding for Al resistance

such as genetics, molecular mapping, comparative mapping, marker-assisted selec-

tion, candidate gene discovery and validation, and allele mining in key cereal crops

including wheat, barley, rice, maize, oats, sorghum, and rye. Similarly, Ismail and
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Thomson from International Rice Research Institute, Philippines, in Chap. 12, have

summarized the progress made in unraveling molecular and physiological bases of

tolerance of various abiotic stresses encountered in rice problem soils including salt

stress and nutritional toxicities and deficiencies. Authors have also provided a brief

account of the progress towards developing and using marker-assisted back crossing

(MABC) for cultivar improvement in rice.

1.4 Concluding Remarks

The field of root genomics is an exciting and promising field of research. Some of

these areas of research have been detailed in some chapters of the book. The

technical advances in plant-omics are prone to generate enough data to push

forward the science of root genomics. Candidate gene identification is a strategy

that is getting stronger every year. The production of genomic sequences from

many sequencing projects is making the availability of specific genes more

frequent. Bioinformatic tools and reverse genetic approaches such as TILLING,

gene knockout mutants, or RNAi are prone to increase the success in this strategy

(Dorlodot et al. 2007). An ever neglected part of the plant, roots seem to hold the

key for the next plant breeding revolution, leading to improved crop productivity

in environmentally challenged situations.
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2.1 Introduction

There are increasing evidences that root architecture is a fundamental aspect of

plant growth. The role of root system includes acquisition of water and nutrients,

anchorage of the plant in the soil, synthesis of hormones, and also storage functions.

It was generally considered that root characteristics could be important for breed-

ing, to obtain genotypes of a higher adaptability to unstable soil and climatic

conditions (Gorny 1992; De Dorlodot et al. 2007) and higher productivity (Lynch

1995). Despite their importance, little is known about genetic basis of root system

formation and architecture in major crop species. A great progress in understanding

the molecular processes underlying root development has been achieved only in

Arabidopsis thaliana (Scheres et al. 2002; Casimiro et al. 2003; Casson and
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Lindsey 2003; Ueda et al. 2005; Zhang et al. 2007; Busov et al. 2008). This progress
was accomplished through detailed analysis of root mutants with the use of

advanced molecular, genomic, and bioinformatic tools available for Arabidopsis.
Recently, several root mutants have been reported in three cereal species, rice (Ma

et al. 2001; Zimmer et al. 2003; Liu et al. 2005; Inukai et al. 2005; Jiang et al. 2005;

Li et al. 2006a; Kim et al. 2007), maize (Lim et al. 2005; Woll et al. 2005; Wen et al.

2005; Hochholdinger et al. 2008), and wheat (Wang et al. 2006). Some of them

have become the subject of studies similar to Arabidopsis that have led to the

identification of homologous and novel genes controlling root system formation in

monocotyledons (Morita and Kyozuka 2007). There is, however, a lack of similar

knowledge in barley. These differences in progress of knowledge between mono-

cotyledonous and dicotyledonous species could be considered as a result of the

more extensive size of adult cereal root systems and lack of such efficient screening

strategies like those developed for Arabidopsis. Based on this, we will focus on root
development in monocotyledons, especially in barley, which is the fourth most

important crop in the world after maize, wheat, and rice. Recently, it is becoming a

novel cereal model plant because of its true diploidy (Sreenivasulu et al. 2008).

Root system of monocotyledonous plants is generally composed of two funda-

mental parts: seminal root system, which develops from initials present in embryo,

and nodal (often called adventitious or shoot-borne) root system, which originates

from shoot (Hackett 1968). The dicotyledonous species develop a taproot system

with one primary root and lateral branches, which remain active during the whole life

cycle. However, dicotyledonous plants can also form roots called “adventitious”

under unusual circumstances such as wounding or hormone application, etc., at

uncharacteristic sites on a plant. Following Hochholdinger and coworkers (2004),

we also suggest not calling monocotyledonous stem-derived crown and brace roots

“adventitious” because they belong to the normal developmental program of cereals.

Despite having to fulfill the same fundamental functions, the root systems of mono-

cotyledons and dicotyledons differ both in morphology and anatomy. In monocoty-

ledons, the secondary root growth do not occur, and root vessels are relatively

uniform cylinders (in the absence of environmental stimuli) (Gorny 1992). The

adult crop plant exhibits an extensive shoot-born root system, which plays a major

role in the postembryonic root architecture (Hochholdinger et al. 2004; Hochholdin-

ger and Zimmermann 2008). Nevertheless, it has been reported that maize seminal

roots have relatively high water uptake capacity compared to other root types, which

makes them important throughout whole plant life (Osmont et al. 2007).

2.2 Root Mutants of Arabidopsis Published in Pubmed

Both forward and reverse genetic approaches have been used to increase knowledge

about root architecture. As there are many mutagenesis methods, the use of

chemical mutagenesis mostly by EMS and insertional mutagenesis using T-DNA

insertion, followed by mutant screening, apparently dominates. Using EMS, 147

gene alleles were obtained, 140 alleles by insertional mutagenesis (e.g., 19 by
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transposable elements, 118 by T-DNA, 2 by promoter trap and 1 by activation

tagging), whereas 22 alleles were obtained by physical approach (nine by fast

neutrons, six by X-ray, seven by gamma rays). Reverse approach (e.g., RNAi,

overexpression) were also commonly used to study influence of a gene of interest

on root traits.

Using these strategies, it was possible to build the model pattern of root devel-

opment in dicotyledons, based on data from reference Arabidopsis. Up to now,

many genes have been shown to be involved in various aspects of Arabidopsis root
development (Tables 2.1 and 2.2). Many of them have a pleiotropic effect not only

on various stages of root development but also on whole plant per se. Nevertheless,
we divided Arabidopisis genes controlling root system into formation of radial and

longitudinal pattern, keeping in mind that assigning genes to only one chosen

category could be misleading. The Arabidopsis radial pattern consists of a number

of defined cell types organized in concentric layers, with the epidermis, ground

tissue composed of cortex and endodermis, and the last main part called stele, which

includes pericycle surrounding the central vascular cylinder (Scheres et al. 2002;

Casson and Lindsey 2003). Based on this, we secondly divided genes responsible

for root radial pattern into three groups, which assemble genes involved in epidermis,

ground tissue, and stele development.

The first one (Table 2.1) includes genes involved in root hair development as a

specific product of root epidermis. Both monocotyledonous and dicotyledonous

root systems increase absorptive surface through the formation of root hairs. In

Arabidopsis, root hairs always form on epidermal cells positioned over the radial

cell wall between cortical cells (Dolan and Costa 2001). However, it is difficult to

predict root hair-forming epidermal cells in cereals (Hochholdinger et al. 2004). In

Arabidopsis, epidermis is composed of trichoblasts, which develop into root hair

cells, and atrichoblasts, which remain hairless. The identity of these cells is

regulated by positional information – hair-forming cells are located above two

underlying cortical cells. The genetic analysis of root hair development has identi-

fied at least 39 genes that are required for the initiation and growth of the root hair.

Some of them, such as TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3
(GL3), ENHANCER OF GLABRA3 (EGL3), and GLABRA2 (GL2), have been

well described (Galway et al. 1994; Walker et al. 1999; Bernhardt et al. 2003).

Both TTG1 and GL2 mutants have root hairs at nearly all root epidermal cells

(Walker et al. 1999; Ohashi et al. 2003), whereas GL3 and EGL3 mutants have

reduced numbers of atrichoblasts (Bernhardt et al. 2003). TTG1 encodes a protein

with WD40 repeats (Mendoza and Alvarez-Buylla 2000), which is localized in the

nuclei of trichomes at all developmental stages (Zhao et al. 2008). It seems thatGL2
is a direct target of GL3 and EGL3, whereas TTG1 is directly regulated by GL1
(Zhao et al. 2008).

The second group includes genes responsible for ground tissue pattering, com-

posed of one cortex and one endodermis layer (Table 2.1), which originate from the

common initial cell adjacent to the quiescent center (QC) (Scheres et al. 2002).

Outside the endodermis, there are 4–6 layers in barley (Jackson 1922) and 8–15 in

rice and corn (Hochholdinger et al. 2004) of bigger and thin-walled loosely packed

2 EST-Based Approach for Dissecting Root Architecture in Barley Using Mutant Traits 13
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cortical cells (Briggs 1978), whereas in Arabidopsis, root comprises only one

endodermis and one cortical layer (Scheres et al. 2002). The one layer of endoder-

mis is exceptionally thick-walled, just like that reported earlier in rice, maize, and

onion (Jackson 1922) with a “Caspian strip” in the walls (Karas and McCully

1973). Many mutations that disrupt patterning of the ground tissue have been

identified. For example, both the SCARECROW (SCR) and SHORT ROOT (SHR)
mutants have a single layer instead of cortex and endodermis. These genes encode

putative transcription factors of the GRAS family responsible for specifying QC

and for controlling the periclinal cell division of the daughter cell of their common

initial cell, which leads to two adjacent layers (Ueda et al. 2005). However, SCR
mutant layer has differentiated attributes of both cortex and endodermis, whereas

SHR layer attribute only to cortex (Scheres et al. 2002). SCR was previously shown

to act downstream of SHR (Ueda et al. 2005), whereas Levesque and coworkers

(2006) suggested that SHR not only directly regulates the transcription of SCR
through binding to the chromatin upstream of the gene but also functions in

development of the vascular tissue.

In the middle of the young barley root is a duct bordered by thin-walled cells,

which becomes thickened during aging. The continuity of one layer of pericycle

cells is broken by the xylem groups, which contain large vessels. The number of

xylem groups in barley root is from 6 to 8 alternating with groups of phloem

(Jackson 1922). Protoxylem elements abut directly to the single layer of endoder-

mis, the walls of which thicken with age (Briggs 1978). Fully developed monocot-

yledonous root consists of much more thickened cell walls in stele, and

sclerenchyma develops in the outer cortex (Briggs 1978). In contrast to monocoty-

ledonous root radial pattern, the primary vascular pattern in Arabidopsis roots

involves a xylem axis and two phloem poles, surrounded by one pericycle layer

(Scheres et al. 2002). Only few Arabidopsis genes, which are responsible for stele

pattern, have been described (Table 2.1). In the WOODEN-LEG (WOL) mutant,

protoxylem is the only tissue in the vascular cylinder (Sieberer et al. 2003). It has

been shown that this gene encodes a cytokinin receptor (Franco-Zorrilla et al.

2005), which is required for asymmetric cell divisions of phloem and procambium

initial cells (Scheres et al. 2002). Defects in vascular tissue could be also observed

in ALTERED PHLOEMDEVELOPMENT (APL)mutant. This gene, which encodes

a MYB transcription factor, has a dual role both in promoting phloem differentia-

tion and in repressing xylem differentiation during vascular development (Bonke

et al. 2003).

Root meristem tissues are organized in longitudinal cell files. From the root tip to

the plant base, three main regions could be distinguished: the division, elongation,

and the differentiation zone (Table 2.2). During both monocotyledons and dicoty-

ledons embryogenesis, first the primary or embryonic radicle and few seminal roots

are formed, respectively, whereas lateral roots (LRs) originate from existing roots

postembryonically. LRs originate from the group of pericycle cells in Arabidopsis
(Malamy and Benfey 1997; Scheres et al. 2002), whereas in monocotyledons,

endodermis is also involved (Hochholdinger et al. 2004; Karas and McCully

1975). In Arabidopsis, lateral roots emerge from the pericycle cells adjacent to
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the xylem poles (Benjamins and Scheres 2008), whereas in barley from pericycle

and endodermis adjacent to phloem (Briggs 1978) just like in rice and corn

(Hochholdinger and Zimmermann 2008). The general structure of barley lateral

roots seems to be the same as the seminal and nodal roots, despite their different

origins. The transverse section exhibit typical thick-walled endodermis and single

large axile duct surrounded by much more thicker tissue (Gorny 1992). For LR

initiation, auxin plays a crucial role in both monocotyledonous (Chhun et al. 2007)

and dicotyledonous (Tian and Reed 1999; Casimiro et al. 2003) species.

More than 170 genes have been described as important for longitudinal pattern

in Arabidopsis. Alterations in these genes cause often severe phenotype, such as in

the case ofGNOM (GN).Mutants of this gene display a range of phenotypes, but all

of them lack a root (Shevell et al. 2000). This gene encodes an ARF GDP/GTP

exchange factor involved in embryonic axis formation and polar localization of

PIN1 (Geldner et al. 2004). It was shown that mutations in this gene disrupt the

polarity of auxin transport and thereby cause defects not only in gravitropism

(Geldner et al. 2003) but also hydrotropism (Miyazawa et al. 2009). Lack of a

primary root is characteristic for BODENLOS (BDL) and MONOPTEROS (MP)
mutants. The MP gene encodes a transcription factor ARF5 (AUXIN RESPONSE

FACTOR 5) that activates auxin-responsive target genes, whereas BDL encodes

INDOLACETIC ACID-INDUCED PROTEIN 12 (IAA12) (Shevell et al. 2000).

Hamann and coworkers (2002) suggested inhibitory effect BDL on MP, but exact
mechanism of their action is unknown (Weijers et al. 2006). Alterations in root

length could be an output of decreased number of cell divisions such as in the case

of DAWDLE (DDL), cell elongation – PHOSPHOLIPASE DS 1,2 (PLDz1) or cell-
wall formation – MURUS 1 (MUR1). DDL mutant plants exhibit shortened roots.

This gene seems to influence transcription activation by recruiting proteins to

transcription complexes; however, its precise function is still unknown (Morris

et al. 2006). Slower elongation of primary roots and faster of lateral roots in low

phosphate conditions are characteristic for PLDz1 and PLDz2mutants. These genes

are involved in root elongation during phosphate limitation – they promote primary

root growth but inhibit lateral root elongation (Li et al. 2006b). MUR1 mutants

exhibit root grow defects, where more brittle altered cell walls are observed. This

gene is necessary to form essential pectin cross-links within the cell wall and proper

composition of cell wall polysaccharides (Freshour et al. 2003).

Up to now, many genes have been described as involved in lateral root formation

in the differentiation zone. Lateral roots are formed from the pericycle “founder

cells,” which undergo a series of periclinal and anticlinal divisions to generate a

new meristem (Casson and Lindsey 2003). One of the earliest genes involved in

lateral root formation is ALF4 (ABERRANT LATERAL ROOT FORMATION 4).
The ALF4 mutant is unable to produce lateral roots or adventitious roots and

does not respond to exogenous auxins (Casimiro et al. 2003). It was suggested by

DiDonato and coworkers (2004) that ALF4 functions in maintaining the pericycle

in the mitotically competent state needed for lateral root formation. There are only

few mutants described as involved in lateral root emergence. LAX3, which has been
described recently by Swarup et al. (2008), encodes an auxin influx carrier that
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facilitates emergence of new primordia. Mutants exhibit nearly 40% reduction in

numbers of emerged lateral roots. Many genes involved in lateral meristem activa-

tion are related to ABA, such as ABA DEFICIENT 1 (ABA1). This mutant has

shorter primary root, is ABA-sensitive, and exhibit reduced ABA inhibition of LRs

length (Signora et al. 2001). As auxin is involved in all steps of lateral root

formation, genes involved in ABA metabolism determine auxin-independent

checkpoint for lateral root development. The product of the ABA1 gene – zeaxan-

thin epoxidase – generates the epoxycarotenoid precursor of the ABA biosynthetic

pathway (Barrero et al. 2005).

Little is known about adventitious root formation in Arabidopsis. Among those

genes, ARGONAUTE 1 (AGO1) has been well described. Mutants are barely able to

form adventitious roots in response to auxin and exhibit defect of hypocotyl

elongation in response to auxin. Sorin et al. (2005) suggested that AGO1 regulates

genes required for adventitious root development through its action on the regula-

tion of ARF17 expression. Mutation in AGO1 results in the higher levels of ARF17
expression in hypocotyl, which in turn leads to fewer adventitious roots. ARF17-
overexpressing line also forms fewer adventitious roots than the wild type (Sorin

et al. 2005).

2.3 Root Mutants in Monocotyledonous Species Published

in Pubmed

The deepest monocotyledonous root system is usually of seminal origin, whereas

the upper layers of the soil are penetrated by the nodal roots (Gorny 1992). In

addition to their white color, nodal roots are much thicker and less branched than

seminals and maintain larger number of root hairs. The anatomy of nodal roots

differs from seminal roots. Young ones have all thin-walled stele cells. There are

several (four to six) large ducts in the center surrounded by parenchymatous cells.

Moreover, the xylem and phloem are undetectable. Eight to nine layers of paren-

chymatous cells form the cortex separated from the stele by the endodermis. The

fully developed roots exhibit four large ducts separated by the more thick-wall

cells. Each of twelve to sixteen xylem groups contains one large vessel. The groups

are separated from each other by parenchyma cells and phloem poles hard to

distinguish. Outside the endodermis, there are six to eight layers of large parenchy-

matous cortical cells (Jackson 1922).

Up to now, little is known about genes involved in root architecture in mono-

cotyledons. The main information came from three species: rice, maize, and wheat

(Table 2.3). Similar to dicotyledons, also forward and reverse approaches were used

to study root traits. At least six mutants were obtained trough Mu transposition, four

by g-irradiation, three by NaN3, and one by each: MNU, Tos17, and tissue culture.

Reverse approach (e.g., RNAi, overexpression) were also used to study influence of

a gene of interest on root traits. Several mutants have been described, which are

responsible for monocotyledonous root traits. Lim and coworkers (2005) described
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maize ZmSCR gene. They suggested that this gene is Arabidopsis SCR ortholog

based on sequence and expression pattern similarity to the members of the GRAS

family. It was then confirmed due to the ability to complement the Arabidopsis SCR
mutant phenotype, which suggests conservation of function. Although the main

knowledge about lateral root development came from Arabidopsis, rice mutant

ALF1 (ALTERED LATERAL ROOT FORMATION) has been isolated by Rani Debi
and coworkers (2003). This mutant displayed not only significantly shorter lateral

roots as compared with wild type but also reduction in both the number and length

of root hairs. In maize, SHORT LATERAL ROOTS1 (SLR1) and SLR2 mutants have

been reported with defective lateral root elongation (Hochholdinger et al. 2001).

The defects in both mutants act specifically during early postembryonic root

development, and crown roots at all the stages produced normal lateral roots similar

to the wild type. In contrast, the ALF1 mutant displays shorter lateral roots in both

embryonic seminal and postembryonic crown roots up to later growth stages (Rani

Debi and coworkers, 2003). Rice mutants that lack CELLULOSE SYNTHASE-LIKE
D1 (OsCSLD1) function develop abnormal root hairs that elongate less. It appears

that OsCSLD1 may be the functional ortholog of Arabidopsis KOJAK, which is

involved in root hair elongation (Kim et al. 2007). The similar phenotype is

observed in maize roothairless 3 (ZmRTH3), which encodes a COBRA-like protein
(Hochholdinger et al. 2008).

2.4 Strategy for EST Data-Mining

The goal of this work was to find an optimal, short, and efficient procedure in a search

for potential orthologs between Arabidopsis and barley using rice for confirmation

and between already reported genes in other monocotyledons and barley. The first

step was to review the literature in searching for genes that are described as involved

in root development. Out of 259 Arabidopsis and 35 monocotyledonous genes found

in this search, it was possible to analyze a total number of 192 Arabidopsis and

21 monocotyledonous genes, whose nucleotide and protein sequences were available

in GenBank database. Potential orthologs between Arabidopsis and barley and

between other monocotyledons and barley were analyzed separately.

2.4.1 Searching for Potential Orthologs Between Arabidopsis

and Barley

The strategy included two pipelines (Fig. 2.1). First, a search in the GeneBank for

rice potential orthologs using BLASTn and BLASTp based on Arabidopsis nucleo-
tide and protein sequences, respectively, was done. To minimize false positive

results, more restrictive criteria (E value 10�5 or less) were chosen than suggested
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by Pevsner (2003). However, it should be noticed that BLAST is a heuristic version

of Smith-Waterman algorithm, so it generates an output that is a list of sequences

based on Score value obtained for each corresponding fragment (Koonin and

Galperin 2004). In other words, the more points the alignment gets, the higher on

the output list will the sequence be. Moreover, change of the parameters of BLAST

searching modifies the Score value for each alignment and may automatically have

an influence on the order of sequences in the result list. That is the main reason for

the need to manually verify the results from BLAST searches using multiple

alignment tool ClustalW.

Parallel to this, the search for barley ESTs in TIGR and GenBank databases was

performed to select Arabidopsis genes, which have good EST coverage. To mini-

mize false positive results, more restrictive criteria were chosen (Expect 10�5 or

less) just like in the previous searches. The barley EST sequences were then used as

a query in TIGR database in search for rice ESTs. Rice ESTs obtained through this

searching were then aligned with rice nucleotide and protein sequences obtained

through GenBank searching.

Using this approach, 22 genes involved in LR formation, 19 genes controlling

root development, and 8 genes involved in root hair formation in Arabidopsis
(which lead to total number of 49 genes) were identified (Table 2.4). To determine

the level of similarity between Arabidopsis, barley, and rice, the sequences were

compared on nucleotide and protein level. Nevertheless, the success of this

approach depends heavily on the quality of EST sequences, which cannot be

guaranteed. This is mostly due to the existence in EST artifacts during cDNA

library construction and inherent errors caused by DNA sequencing procedures

Confirmation 

192 Arabidopsis genes

50 Arabidopsis genes

Searching in databases for publications on root
mutants in Arabidopsis
(PubMed in GenBank)

259 Arabidopsis genes

Identification of gene sequences responsible for
mutant phenotype in Arabidopsis
(PubMed in GenBank)

Nucleotide
sequence

Searching in GenBank for similar sequences in rice
genome
(BLASTn and BLASTp)

Arabidopsis nucleotide
and protein sequence

Barley nucleotide
and protein sequences

Rice nucleotide
and protein sequences

Comparision of Arabidopsis, rice and barley
sequences to each other on nucleotide and protein
level (EMBL ClustalW)
CDD search (BLASTp) 

Comparision of exon/intron arrangement between
Arabidopsis and rice
(Jellyfish)

Using ETS sequences from barley to search for
similar sequences in rice
(BLASTx and BLASTp)

Searching in TIGR for similar sequences (ESTs) in
barley, wheat and maize, potential homologs of
Arabidopsis
(BLASTn)

The same rice
sequences found in
both searches

Nucleotide sequence
Protein sequence

Nucleotide sequence
Protein sequence

Fig. 2.1 Strategy for selection of potential barley orthologs to Arabidopsis genes. E value

(GenBank)/Expect (TIGR) 10�5 or less
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(Liang et al. 2007), because ESTs are single pass reads. This leads to comparison of

only corresponding fragments of sequences to determine similarity. Moreover,

ESTs may often provide information on only a partial segment of an entire

cDNA, whereas random sampling of clones leads to redundancy in EST datasets,

as mention by Parkinson et al. (2002). To minimize false negative results in

generation of barley consensus sequences, the CAP3 program was used, which

has an ability to clip 50 and 30 low quality regions of reads (Huang and Madan

1999). To prevent “domain hits” (e.g., similarities that are caused by the conserva-

tion of fragments within families), only these Arabidopsis/monocotyledons

sequences were chosen, which have extended barley EST coverage beyond the

domain zone. Each time, the domain area on a nucleotide sequence, based on CDD

search using Jellyfish, was established manually. As previously suggested by

McGinnis and Madden (2004), the fastest way to compare the function of a protein

is to perform a CDD search, which uses a database of motifs to characterize

“conserved-domains” in a protein sequence. Following this idea, each selected

sequence, which led to the confirmation of the existence of the same conserved

domain in all cases (data not shown), was submitted into such analysis.

2.4.2 Arabidopsis and Rice Genes Comparisons

The definition of gene homology implies the existence of a common ancestor gene,

which existed before speciation (in the case of orthologs) or before duplication (in

relation to paralogs) (Alexeyenko et al. 2006). This implies the conservation in

exon/intron arrangement between homologous genes, which led to the comparison

of exon/intron organization in selected Arabidopsis and rice genes. In most cases,

the arrangement was highly conserved between putative homologs, whereas some

of them exhibited deletions or insertions (Fig. 2.2). Nevertheless, these changes

have not disturbed an overall order in exon/intron arrangement.

2.4.3 Searching for Potential Orthologs Between Other
Monocotyledons and Barley

Due to the lack of genomic sequences for most of monocotyledonous genes, it was

not possible to check the level of conservation of exon/intron arrangement. Just like

in the previous case, the first step was to search for barley ESTs in TIGR and

GenBank databases (Fig. 2.3). This allowed selection of monocotyledonous genes,

which have good EST coverage in barley genome, following the rules described

above. Parallel to this, searching was done for the rice (in case of maize and wheat

genes) and Arabidopsis sequences in GenBank. The barley ESTs were then used in

a search for rice ESTs, which were compared with rice sequences from GenBank.

As mentioned above, this step was performed to establish whether these sequences
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are the same to confirm that the “hit” did not occur only by chance. This analysis led

to the total number of ten genes, including six rice, two maize, and two wheat genes,

which have potential orthologs in barley genome (Tables 2.5 and 2.6). ClustalW

was also used for determining the similarity between other monocotyledons and

barley sequences on nucleotide and protein level, respectively. To establish poten-

tial domains of barley proteins, CDD search was performed and confirmed in all

cases the existence of the same conserved domains as in monocotyledonous

proteins (data not shown).

2.4.4 Phylogenetic Analysis

Even if the pairwise approach was theoretically the most powerful one-to-one

methodology to predict true orthologs, many phylogenetic methods have been

well described up to now (Chiu et al. 2006; Hulsen et al. 2006; Conte et al.

2008). In order to confirm the output from manually created BLAST-based

approach and to establish the relationships between each of Arabidopsis and rice

genes, it was decided to use GreenPhyl pipeline, which has been described as the

O. sativa 

A. thaliana

64%  

1000 bp 

PAS1 (PASTICCINO 1) 

ECR1 (E1-CONJUGATING ENZYME-RELATED1-1) 

68% 

A. thaliana

O. sativa 
1000 bp 

AGL21 (AGAMOUS-LIKE 21) 

1000 bp 

60% 

A. thaliana

O. sativa 

71% 

A. thaliana

1000bp

30–20% 

40–30%
50–40% 
60–50%

60–70%  

70–80%

10–0% 

20–10%

A. thaliana

53,9% 

O. sativa

80–90% 
90–100%  

1000 bp 

83,3% 

A. thaliana

O. sativa 

RCN1 (ROOTS CURL IN NP) 

Level of similarity 

SINAT5 (SEVEN IN ABSENTIA HOMOLOG 5)

1000 bp

PHV5 (PHAVOLUTA 5)

Fig. 2.2 Examples of exon/intron arrangement in othologous Arabidopsis and rice genes.

corresponding fragments are shaded using appropriate color in response to similarity between

these fragments on protein level; black line ¼ scale bar
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most efficient phylogenetic method (Conte et al. 2008). In many cases, a large

number of proteins showing high sequence similarity to Arabidopsis were encoded
in the rice genome (data not shown). This is likely to be the result of multiple rounds

of gene and genome duplications, followed by differential gene loss (Adams and

Wendel 2005; Sterck et al. 2007). Following Conte et al. (2008), only ortholog

associations in which a bootstrap value was 50% and more were taken into account

as statistically significant. The total number of 50 Arabidopsis and 11 monocotyle-

donous genes were analyzed using this approach. From this number, 26 Arabidopsis
genes (13 genes involved in LR formation, 3 genes involved in root hair formation,

and 13 genes involved in root development) were confirmed as potential orthologs

with a bootstrap value 50% or more (Fig. 2.4). Only in case of three Arabidopsis
and one monocotyledonous genes, the orthologs detected by GreenPhyl were

different from these selected on the basis of BLAST searching. Although genes

selected as potential orthologs using BLAST approach were on the phylogenetic

tree, they had lower bootstrap value. For genes typed by phylogenetic approach, the

GreenPhyl bootstrap values were higher than values for genes selected using

BLAST and were above 50%.

2.4.5 Synteny Detection in Arabidopsis and Rice Genomes

To establish whether gene orders remained conserved between Arabidopsis and

rice putative orthologs, the “Cinteny” pipeline was used (Sinha and Meller 2007).

From 50 Arabidopsis sequences selected as having potential orthologs in rice

Nucleotide
sequence

Nucleotide sequence
Protein sequence

The same rice sequences found
in both searches

Nucleotide sequence
Protein sequence

Confirmation

35 monocotyledonous
genes

21 monocotyledonous
genes

11 monocotyledonous
genes

Searching in databases for publications on root
mutants in monocotyledonous spiecies
(PubMed in GenBank) 

Identification of gene sequences responsible for
mutant phenotype
(PubMed in GenBank)

Searching in GenBank for similar sequences in
Arabidopsis and rice genomes (in case of maize and
wheat genes)
(BLASTn and BLASTp)

Arabidopsis nucleotide
and protein sequence

Barley nucleotide
and protein sequences

Rice nucleotide
and protein sequences

Comparision of Arabidopsis, rice and barley
sequences to each other on nucleotide and protein
level (EMBL ClustalW)
CDD search (BLASTp)

Using barley ETS sequences to search for similar
sequences in rice
(BLASTx and BLASTp)

Searching in TIGR for similar sequences (ESTs) in
barley, wheat and maize, potential homologs of
monocotyledonous genes (BLASTn)

Fig. 2.3 Strategy for selection of potential barley orthologs to monocotyledonous genes. E value

(GenBank)/Expect (TIGR) 10�5 or less
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genome, 34 exhibited conservation in gene order (15 genes involved in LR forma-

tion, 6 genes involved in root hair formation, and 12 genes involved in root

development). For the rest of 16 Arabidopsis genes, orthologs were not detected

in rice genome using synteny-based approach. Nevertheless, it has been shown

previously that, where microcolinearity is broken, it is possible to find “missing”

gene in nonorthologous locus (Xu et al. 2002; Ware and Stein 2003). That is the

reason why the lack of synteny does not imply the absence of homology. On the

Fig. 2.4 The bird’s eye on in silico analysis: best candidates for molecular cloning. Using

GreenPhyl, potential ortholog associations in barley genome were considered to be significant if

the supporting bootstrap value was 50% and more. Similarity searching was proceeded using E

value (GenBank)/Expect (TIGR) 10�5 or less. Genes that are situated in the middle (belonging to

all three wheels) represent genes that have been selected by smart “best hit” strategy using BLAST

searching and obtained a phylogenetical confirmation using GreenPhyl (bootstrap value 50% and

more), and the conservation of gene order has been confirmed by Cinteny. Genes that are listed in

the BLAST wheel were selected based on “best hit” strategy and have a GreenPhyl bootstrap value

lower than 50%. GreenPhyl wheel corresponds to those genes that have candidates with bootstrap

value higher than 50%, while “best hit” approach selected other candidate genes that have lower

bootstrap values. Those genes, which belong to Cinteny wheel, preserved conservation in gene

order. Genes that belong to BLAST and GreenPhyl wheels were selected by “best hit” approach

and have bootstrap value 50% and more, but Cinteny did not display synteny blocks and/or

orthologs in Arabidopsis or rice genome. Genes that belong to both GreenPhyl and Cinteny and

separately to BLAST and Cinteny exhibit conservation of gene order for genes that belong to

GreenPhyl and BLAST wheels, respectively
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other hand, the conservation of gene order during evolution could be treated as a

valuable confirmation.

2.5 In Silico vs. Laboratory Approach to Gene Identification

Information from model species could be used in gene identification in two general

ways. The first one is based on laboratory approach, where designing of degenerate

starters (Ma et al. 1990; Finnegan and Dennis 1993) or probes for screening libraries

(Schmidt et al. 1993; Nomura et al. 2003) have been commonly used. The second

one is a bioinformatic approach, which in most cases is based on sequence similarity

search using BLAST, phylogenetical analysis (Conte et al. 2008), as well as on the

existence of synteny, as suggested by Fritz-Laylin and coworkers (2005). In general,

the combined strategy is commonly used, which is based on bioinformatic analysis

followed by molecular verification, like suggested in this paper.

In spite of their obvious successes in the past, laboratory strategies alone are

inappropriate for large-scale analysis. The main disadvantage is their pure

sequence-based nature, which can generate false-positive results, especially in

correspondence to evolutionary divergence, where the level of similarity based on

sequence comparison could be very low.

The improvements in sequencing technology led to hundreds of complete

genome sequences, though most come from microorganisms. Till the end of

2008, only the genomes of three dicotyledonous species (A. thaliana, Populus
trichocharpa and Vitis vinifera), one monocotyledonous species (O. sativa), and a

moss (Physcometrilla patens) have been fully sequenced. Recently also, complete

draft assembly of the soybean (Glycine max) and maize (Zea mays) were released.
Although, new sequencing technologies are now available, the assembly of large

and complex genomes is still hampered by a significant content of repetitive DNA

and, in allopolyploids, by the presence of homoeologous genomes. Most

of economically important crops, specifically bread (16,979 Mbp) and durum

(12,030 Mbp) wheat, barley (5,100 Mbp), oat (12,961 Mbp), rye (7,933 Mbp),

and maize (2,793 Mbp), have large genomes (Doležel et al. 2007). For most of

them, deep collections of full-length cDNA sequences are not available. In silico

methods that are based on phylogenomic analysis suffer because of the lack of

universal and efficient method for generating phylogenetic trees (Fu and Jiang

2007). Even the full genomic sequence does not guarantee the propriety of such

analysis. It has to be taken into account that this could straightly lead to mistakes

because of wrongly generated phylogenetic tree, as suggested by Dutilh et al.

(2007). However, before the start of the genome sequencing projects, large-scale

EST-sequencing projects were undertaken in several cereal species, and a large

number of ESTs have become available for most of them. In spite of their impor-

tance (Varshney et al. 2006; Liang et al. 2007), EST projects yielded mostly partial
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cDNA sequences, which are not adequate for direct comparison and assembly of

entire genes. Nevertheless, the increasing amount of ESTs unlocks the gene con-

tents of many species and automatically creates a need to elaborate new strategies to

use this knowledge. They could be analyzed using only sequnce-based approach,

like BLAST or FASTA, but such strategy can generate mistakes (Koonin and

Galperin 2004).

Here is proposed the EST-based combined procedure for selecting potential

orthologs, which is based on BLAST analysis combined with phylogenetic- and

synteny-based approaches. The strategy includes a simple searching procedure used

as a confirmation, which can avoid most common pitfalls during BLAST exploita-

tion. Moreover, manual verification of the position of the evolutionary conserved

fragments of proteins in domain zones using CDD search and Jellyfish program

minimizes the risk of the so-called “domain hits,” especially when the protein

family is large. Although it should be noticed that lack of synteny does not imply

absence of homology, such searching can be very handful during selection of genes.

It was demonstrated in the presented paper that bioinformatic analysis is a powerful

tool, which gives the possibility to find potentially homologous sequences between

two species. The procedure that combines three most commonly used in silico

approaches allowed to shortlist the number of potential orthologs as good candi-

dates for molecular cloning.

2.6 Methods

2.6.1 Rice and Arabidopsis Searches

Searches for rice and Arabidopsis genes were carried out in publicly available

genome databases. Arabidopsis sequences were obtained from The Arabidopsis
Information Resource (TAIR) database (http://www.arabidopsis.org/). O. sativa
sequences being potential homologs of A. thaliana genes were chosen using

mRNA and protein sequences of A. thaliana genes searched against the GenBank

database using BLASTn and BLASTp with default parameters, respectively (http://

blast.ncbi.nlm.nih.gov/Blast.cgi). Among a large number of output sequences

obtained from the search, we selected the potential orthologs based on carefully

selected criteria. First, E value was very restrictive and lower than 10�5 (Pevsner

2003). Each of the searches has been done in both directions to avoid hits obtained

just “by chance.” These sequences were also identified as potential orthologs

through phylogenetic analysis using GreenPhyl (http://greenphyl.cines.fr/cgi-bin/

greenphyl.cgi) or OrthologID; alternatively (http://nypg.bio.nyu.edu/orthologid/)

synteny detection was proven using Cinteny (http://cinteny.cchmc.org/).

2 EST-Based Approach for Dissecting Root Architecture in Barley Using Mutant Traits 59

http://www.Arabidopsis.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://greenphyl.cines.fr/cgi-bin/greenphyl.cgi
http://greenphyl.cines.fr/cgi-bin/greenphyl.cgi
http://nypg.bio.nyu.edu/orthologid/
http://cinteny.cchmc.org/


2.6.2 Sequence Analysis

The next stage of bioinformatic analysis was to check the degree of similarity

on protein level between A. thaliana and O. sativa. The putative O. sativa and

A. thaliana orthologous genomic sequences retrieved were then aligned with

mRNA sequences for intron/exon junction positions, respectively, using Jellyfish

program (http://jellyfish.labvelocity.com). This application was also used to align

exon(s) of A. thaliana to the corresponding ones in O. sativa on protein level.

Alignments of protein sequences were performed at The European Molecular

Biology Laboratory (http://www.ebi.ac.uk/embl/ ) using the CLUSTALW program

(Chenna et al. 2003) with default parameters.

2.6.3 ESTs

Searches for ESTs used in the presented publication were performed in publicly

available EST libraries in The TIGR Gene Indices (Quackenbush et al. 2001) using

the BLASTn and tBLASTx program with default parameters (http://www.tigr.org/

db.shtml). This includes: barley sequences release 10.0 (June 3, 2008), wheat

release 11.0 (July 13, 2008), maize release 18.0 (July 18, 2008), and rice release

17.0 (June 20, 2006). Searches for barley EST sequences corresponding to chosen

monocotyledonous and Arabidopsis genes were also made in the GenBank EST

database (http://www.ncbi.nlm.nih.gov/dbEST/index.html) using the tblastn pro-

gram and default parameters.
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3.1 Introduction

All plants coinhabit their environment with a multitude of microorganisms, includ-

ing bacteria, viruses, fungi, nematodes, and protozoans. In many cases, plants

interact with specific microbes, leading to symbiotic relationships, where both

partners are intimately associated and can either mutually benefit, or one partner

can live at the other’s expense. Roots are in close contact with the soil and an array

of microorganisms that inhabit the rhizosphere. Easily available carbon is usually in

short supply in soils, and microorganisms can benefit from root exudates and dead

root material as a food source. Sometimes they specifically invade living root tissues

to access nutrients from the plant. In the case of pathogenic interactions, this may

lead to damage or death of the plant tissue. Common root-pathogen relationships
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include interaction of roots with pathogenic root knot (Meloidogyne sp.) or cyst

(Heterodera and Globodera sp.) nematodes, infection of roots by pathogenic fungi,

oomycetes, or bacteria. In contrast, plants and microbes have also evolved important

mutualistic symbioses, most notably the interaction of plants with nitrogen-fixing

bacteria and with mycorrhizal fungi. In both cases, the invading microbial partner

provides nutrients in the form of ammonia (nitrogen-fixing bacteria) or phosphorus

(mycorrhizal fungi), in exchange for carbon sources from the plant.

Because of the economic importance of the latter two mutualistic interactions, a

major research effort has focused on unraveling the molecular basis of these

symbioses. One of the best studied interactions is that between legumes and

nitrogen-fixing soil bacteria called rhizobia. Rhizobia invade the roots of specific

legume partners through root hairs or via crack entry, largely avoiding plant

defense responses. Rhizobia produce species-specific lipochitin oligosaccharides

(Nod factors) which are perceived by plant LysM-like receptors and activate a

signal transduction pathway required for the invasion process and the subsequent

development of a new root organ, the nodule (Geurts et al. 2005; Riely et al. 2004).

Rhizobia remain outside the plant cytoplasm and are engulfed in a symbiosome

membrane, which functions to regulate nutrient exchange between the partners.

Nodules arise from redifferentiating root pericycle and cortical cells and are later

invaded by rhizobia (Hirsch 1992). After further growth and differentiation of the

nodule, the rhizobia start converting nitrogen from the air into ammonia, which is

exported to the plant as amino acids. In exchange, rhizobia import carbon from the

plant. This nutrient exchange requires coordination of transport processes by both

partners (Prell and Poole 2006). The Rhizobium-legume (hereafter abbreviated RL)

symbiosis also requires feedback mechanisms, so that symbiosis can be limited at

times of sufficient nitrogen supply of the plant (Caetano-Anollès and Bauer 1988).

In contrast to the limited host range of rhizobia on legumes, most land plants

form a mutualistic symbiosis with mycorrhizal fungi. Fungal hyphae show

increased hyphal branching in the vicinity of host roots and invade root tissues,

forming either arbuscular structures inside root cortical cells (arbuscular mycor-

rhizae or AM) or extracellular hyphal structures (ectomycorrhizae or EM). In AM

symbioses, which are the most widespread associations and have existed for the last

450 M years, fungal hyphae first colonize the root surface where they form

appressoria, invade roots intercellularly through clefts formed by the plant partner

between epidermal cells, followed by intracellular invasion of root cortical cells

and the formation of arbuscules in the inner root cortex (Harrison 2005). Similar to

rhizobia, the fungal partner remains separated from the plant cytoplasm by a

perifungal membrane. There is intensive nutrient exchange across membrane inter-

faces between the fungus and the plant. The most important nutrient provided by

the AM fungal partner is phosphorus, while the plant provides carbon and lipid

sources for the fungal symbionts (Harrison 1999). Again, feedback regulation

functions to limit the carbon supply of the plant to the symbiont, which has been

estimated to reach 30% of the total plant assimilated carbon (Nehls et al. 2007).

Root endoparasitic nematodes can cause enormous losses to crop plant production

and have thus been extensively studied. The most common of these nematodes
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include root knot and cyst nematodes, obligate sedentary endoparasites that complete

their life cycle within the roots of host plants. Both invade roots and form feeding

structures into which they divert large amounts of plant nutrients, leading to plant

deformation or death (Bird and Koltai 2000; Williamson and Gleason 2003). The

mechanism of gall or cyst formation is not well understood, but most likely a result of

injections from nematode glands. Root knot nematodes induce giant cells, resulting

from acytokinetic mitosis (mitosis without cell division) and endoreduplication of

xylem parenchyma cells, which is accompanied by cell proliferation in cortical and

pericycle cells, leading to root gall formation (Goverse et al. 2000a). Cyst nematodes

induce the formation of syncytia, multinucleate cells resulting from fusions of cell

contents of multiple root cells as well as endoreduplication of those cells (Goverse

et al. 2000a). Both feeding structures alter transfer of nutrients from the xylem into

the feeding site in a one-way relationship, in contrast to mutualistic symbionts.

Studying root–microbe interactions has provided insight into a number of

biological processes, for example, recognition and communication of partner organ-

isms (Cooper 2007), elicitation and suppression of defense responses (Samac and

Graham 2007), formation and maintenance of endosymbiotic structures (Kistner

and Parniske 2002), remodeling of plant development and meristem activity by the

microbial partner (Ferguson and Mathesius 2003), nutrient exchange (Benedito et al.

2006), and long distance signaling in the plant (Beveridge et al. 2007). We will focus

our review on aspects of these processes after discussing some of the major model

organisms and genomic tools available for studies into root– microbe interactions.

3.2 Genomics Resources for Studying Root–Microbe

Interactions

3.2.1 Legume Resources

As neither the RL nor AM symbioses are formed in Arabidopsis, model legumes have

been in the forefront of genomics research into root–microbe interactions. The

selection of Medicago truncatula and Lotus japonicus as model plants for the study

of RL and AM symbioses by a large community of researchers greatly contributed to

the amount resources that are available for genomic approaches (Cook 1999; Udvardi

et al. 2005). Both legumes have small diploid genomes of 470–550 Mb in size, have

short regeneration times, are self-fertile, and are relatively easy to transform and

regenerate. Both M. truncatula and L. japonicus are currently targets of genome

sequencing projects, which have helped significantly in the map-based cloning of

genes required for root–microbe interactions. As of January 2007, 176 Mb of nonre-

dundant sequences of the L. japonicus and 189 Mb of nonredundant sequences of the

M. truncatula genomes have been released. These correspond to approximately 40%

of the entire genome of both legumes and cover 69 and 58% of public expressed

sequence tags (ESTs) of L. japonicus and M. truncatula, respectively (Sato et al.

2007). The crop legume soybean (Glycine max) has been proposed as a third model
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legume and sequencing is well underway (Jackson et al. 2006; Stacey et al. 2004).

Soybean is a model legume for other bean species with more complex genomes and

has been extensively studied for its interactions with rhizobia and cyst nematodes.

In addition to the genome sequencing projects, large EST databases are available

for legumes that have been useful for transcript analyses as a basis for protein

identification in proteomics studies and for the development of transcript profiling

arrays (Journet et al. 2002). EST frequency analyses (in silico Northers) have also

been used for transcript profiling (Tesfaye et al. 2006). For M. truncatula, around
200,000 ESTs are available (MtDB2 http://www.medicago.org/MtDB/; http://

compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb¼medicago). ESTs from

L. japonicus are available from Kazusa at http://est.kazusa.or.jp/en/plant/lotus/

EST/ and from Harvard University at http://compbio.dfci.harvard.edu/tgi/cgibin/

tgi/gimain.pl? gudb¼l_japonicus. EST sequences from soybean are numerous

(330,436) and can be found at http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/

gimain.pl?gudb¼soybean.

For M. truncatula, both a 16k microarray and The Affymetrix GeneChip1

Medicago Genome Array are available. The 16K microarray (Medicago truncatula
Mt16kOLI1 70mer oligonucleotide-based microarray) is based on all tentative

consensus sequences (TCs) from the DFCI Medicago gene index release 5.0

(Hohnjec et al. 2005). The Affymetrix GeneChip® Medicago Genome contains

about 48,000 transcripts of M. truncatula, 1,850 transcripts of M. sativa (alfalfa),

and all the genes of Sinorhizobium meliloti, the symbiont of M. truncatula and

M. sativa. An Affymetrix chip is also available for soybean and includes over

37,500 soybean transcripts as well as 15,800 transcripts for Phytophthora sojae (an
oomycete pathogen of soybean) as well as 7,500 transcripts from the soybean cyst

nematode (Heterodera glycines). Genomics resources for L. japonicus include

cDNA arrays and Serial Analysis of Gene Expression (SAGE) (Sato et al. 2007).

In addition, suppressive subtractive hybridization (SSH) has been used in a number

of studies to identify transcripts differentially displayed in specific cDNA libraries.

Proteomics is another postgenomic tool that has gained steadily in popularity

and has been used in several root–microbe studies (Bestel-Corre et al. 2004). For

both M. truncatula and L. japonicus, protocols for proteomic analysis are available

in protocol handbooks (see below), although much development is needed for

detection of low abundance proteins, phosphoproteins, and other posttranslational

modifications.

Metabolic profiling is a third postgenomic tool and is the most complex in scope

and so far limited in its use. To measure metabolites on a genomics scale requires

specialized equipment such as high-performance liquid chromatography, capillary

electrophoresis, and gas chromatography in combination with mass spectrometry.

In addition, the metabolite profiling data are highly complex, which presents

challenges for identification and quantification of the metabolites. Metabolomics

was used to study metabolite profiles in mature nodules in L. japonicus (Desbrosses
et al. 2005) and M. truncatula (Barsch et al. 2006), as well as in mycorrhizal roots

(Schliemann et al. 2008). Carbon, nitrogen, and phenylpropanoid metabolism have

been the major focus of published metabolomic studies. In addition, a metabolic
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pathway database has been established (Urbanczyk-Wochniak and Sumner 2007).

A major current limitation is the availability of chemical reference databases for

identification of a larger number of metabolites.

Research into the biology of root symbiosis in these model legumes is supported

by a range of postgenomic resources (Ané et al. 2008; Colebatch et al. 2002b, c)

including reverse genetic approaches as gene silencing by RNA interference

(RNAi), virus-induced gene silencing, T-DNA and transposon tagging, fast neutron

and EMS (ethyl methanesulfonate) mutagenesis (Tadege et al. 2005), and bioinfor-

matics resources (Cannon et al. 2005; K€uster et al. 2007a; Lamblin et al. 2003).

A TILLING (Targeting Induced Local Lesions IN Genomes) service has been set

up for both legumes at the John Innes Centre, Norwich, UK. Further descriptions of

these resources and detailed protocols for the study of root–microbe interactions in

these species can be found in the handbooks for M. truncatula (http://www.noble.

orgMedicagoHandbook/) and L. japonicus (Marquez et al. 2005).

3.2.2 Microorganism Resources

In recent years, several Rhizobium strains have been sequenced (MacLean et al. 2007)

including Sinorhizobiummeliloti, the symbiont ofM. truncatula (Galibert et al. 2001),
Mesorhizobium loti, the symbiont of L. japonicus (Kaneko et al. 2000), and Bradyr-
hizobium japonicum, the symbiont of soybean (Kaneko et al. 2002). The complete

sequenced genomes of these rhizobia allowed many genomic studies including

profiles of transcript (Perret et al. 1999) and protein expression (Djordjevic et al.

2003; Djordjevic 2004). The AM fungus Glomus intraradices and the EM fungus

Laccaria bicolour are two symbiotic fungal genomes being sequenced (http://darwin.

nmsu.edu/~fungi/index.php). Sequencing projects for several root knot and cyst

nematodes (http://www.nematode.net) and for root pathogenic fungi and oomycetes

(http://www.broad.mit.edu/annotation/fgi/, http://genome.jgi-psf.org/) are underway.

Recent reviews give an update on genomics of fungal partners (Soanes et al. 2002,

2007), discuss studies on transcript profiling during host–pathogen interactions, and

give an excellent overview on design of these experiments (Wise et al. 2007).Wewill

therefore not cover these areas in our chapter in detail.

3.3 Insights into Root–Microbe Interactions Using Genomics

3.3.1 Initial Communication Between Roots and Microbes

The first step in root microbial interactions is mutual recognition and subsequent

attraction of the microbe to the root surface. Following signal molecule recognition,

signal transduction is necessary to initiate defense reactions, morphological

changes, or physiological adaptations of the root and whole plant.
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Both plants and microbes release chemical signals into the rhizosphere that aid

in mutual recognition and attraction. Legumes have long been known to release

species-specific mixtures of (iso) flavonoids into the soil, which are recognized by a

number of organisms. Rhizobia perceive flavonoids of their host legumes by

binding of the flavonoid to a protein called NodD, which then activates a suite of

nodulation genes inside the bacteria (Redmond et al. 1986). This gene induction by

flavonoids appears specific to nodulation-related genes: a proteome analysis of

Rhizobium leguminosarum in response to flavonoids revealed only four altered

proteins (Guerreiro et al. 1997), and a transcriptome study of S. meliloti showed
only nine altered gene transcripts (Capela et al. 2005). The requirement for root

flavonoids for the successful induction of Nod genes and subsequent nodulation has
recently been shown in soybean, where silencing of the isoflavonoid pathway by

RNAi led to an inhibition of nodulation, which could be overcome by inoculating

plants with a flavonoid hypersensitive Bradyrhizobium strain or purified Nod

factors (Subramanian et al. 2006). Flavonoids of certain structures are also active

as stimulators for mycorrhizal fungi and can trigger hyphal growth and branching

that can be observed before AM fungi infect the root (Steinkellner et al. 2007).

However, the successful infection of plants defective in flavonoid synthesis has cast

doubt on a strict requirement for flavonoids for the AM symbiosis (Becard et al.

1995). Strigolactones are a class of sesquiterpenoid compounds that are released

from roots of mycorrhizal host, but not from nonhost plants, and have been the first

identified compounds with activity as stimulators of hyphal branching in AM fungi

(Akiyama et al. 2005).

Microorganisms in turn produce a range of signaling molecules that mediate

root–microbe interactions and have extensive effects on the host. The best studied

of these signals are the Nod factors synthesized by rhizobia. Nod factors are

necessary for nodulation and sufficient for the early signaling events in the root.

Nod factors not only induce specific nodulation-related responses but also have

effects on root growth and lateral root formation (Olah et al. 2005). A large-scale

SSH approach identified many new regulatory genes activated in roots following

the first 48 h after Nod factor treatment (Godiard et al. 2007).

Most bacteria release so-called “quorum sensing” signals (QSS) that are used in

communication between bacteria and the regulation of a range of bacterial behaviors

that require coordination between bacterial cells, including pathogenic behaviors of

rhizosphere bacteria (von Bodman et al. 2003). While several studies have shown the

extent of gene expression changes in the bacteria in response to QSS (Arevalo-Ferro

et al. 2003; Chen et al. 2003; Gao et al. 2007; Schuster et al. 2003), it has become

apparent that plant hosts can also detect and broadly respond to QSS. A proteome

analysis ofM. truncatula roots showed over 100 protein changes in response to QSS,
and these were specific for the QSS structure and concentration (Mathesius et al.

2003). In addition, treatment of roots with QSS led to changes in the expression of

disease-related genes in the shoots of tomato plants, indicating that QSSs have

systemic effects in the plant that alter plant defense (Schuhegger et al. 2006).

Therefore, it is likely that eukaryotes have evolved detection systems for signals
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that could alert plants to the presence and density of bacterial symbionts of pathogens

in the rhizosphere (Bauer and Mathesius 2004).

The existence of a mycorrhizal factor (“Myc factor”) has long been suggested.

Firm evidence for a diffusible factor from AM fungi comes from experiments,

where expression of a plant reporter gene, ENOD11::gusA, was activated in

response to AM fungi that were physically separated from the root by a membrane

(Kosuta et al. 2003). Interestingly, the diffusible factor still stimulated ENOD11
gene expression in a dmi (does not make infections) mutant that is unable to form

either nodules or arbuscules, suggesting that the “Myc factor” triggers early signal

transduction pathways outside this essential signal cascade. So far the “Myc factor”

has not been structurally identified.

A recent study has suggested the existence of a “Nem factor,” a signaling

molecule released by parasitic root knot nematodes (Weerasinghe et al. 2005).

This signal is likely to act on the same signal transduction pathway as Nod factors,

as the nematode signal was unable to initiate root responses in mutant host plants

lacking a functional Nod factor receptor (Weerasinghe et al. 2005). Identification of

the “Myc” and “Nem” factors would be an important advance, together with

characterization of genes involved in their synthesis and regulation, which is

expected to progress with the sequencing of fungal and nematode genomes (Bird

et al. 2005; McCarter et al. 2005).

3.3.2 Signal Transduction

Unraveling of the signal transduction pathways required for successful microbial

invasion and symbiosis has been accelerated in recent years through the positional

and mapped-based cloning of key genes of the signal transduction pathways,

especially in RL and AM symbioses. Importantly, Nod factor receptor candidates,

as well as a calcium signaling cascade and several crucial transcription factors,

were identified. An interesting finding of those studies was that there is a group of

early signal transduction genes in legumes that are required for both RL and AM

symbioses. Several detailed recent reviews have covered the identification and

characterization of these genes (Cook 2004; Gianinazzi-Pearson and Brechenmacher

2004; Harrison 2005; Kinkema et al. 2006; Oldroyd and Downie 2006; Parniske

2004; Stacey et al. 2006), and therefore these studies will not be discussed in detail

here. The identification of one of the signal transduction genes, the calcium-

calmodulin dependent kinase, DMI3, has been one of the first examples of transcript-

based cloning (Mitra et al. 2004a), whereby a transcript profiling comparison of the

mutant and wild type was used to identify a few candidate genes with changed

expression, including the mutant gene.

The nodulation mutants are now being used increasingly as tools in postgenomic

analyses to study the downstream effects these mutations have on root–microbe

interactions. For example, a transcriptome analysis found that gene expression

changes induced in wild-type roots in response to rhizobia were not activated in
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six early nodulation-deficient (nod�) mutants and only partially induced in a later

nod� mutant (hcl, hair curling). In addition, it was shown that the responses of 46

selected genes were specifically due to Nod factor synthesis by the rhizobia (Mitra

et al. 2004b). Similar results were found in a micro- and macroarray analysis ofM.
truncatula that identified more than 750 gene differentially displayed during the

first 10 days of nodule development (El Yahyaoui et al. 2004). Expression changes

can be detected within 1 h of inoculation with rhizobia and showed stage-specific

patterns (Lohar et al. 2006).

In the AM symbiosis, the dmi3 mutant, which does not form AM or RL

symbioses, fails to regulate several genes altered by AM in the wild type, including

a receptor kinase, transcription factors, an ABC transporter, and an auxin response

gene (Sanchez et al. 2005). Similarly, several other genes were only induced by AM

in wild type but not the dmi3mutant, and interestingly, these genes could be induced

even in absence of physical contact between fungi, suggesting that a diffusible

“Myc” factor triggers the responses (Weidmann et al. 2004). In addition, an extensin

and a Nod-like gene with similarity to membrane proteins showed reduced induc-

tion in the dmi3 mutant at the appressorium stage and this might be linked to cell

wall modifications necessary for the infection structure (Siciliano et al. 2007).

A study of gene expression changes in response to AM fungi in seven early signal

transduction mutants in L. japonicus that are affected in AM-colonization identified

several gene expression changes dependent on the mutations (Kistner et al. 2005).

Additional components of signal transduction pathways that are shared and

specific to the RL and AM symbiosis were identified in gene expression profiles,

including a large number of transcription factors and kinases, but their roles remain

to be investigated (Deguchi et al. 2007; Frenzel et al. 2005; Hohnjec et al. 2005,

2006; Liu et al. 2003; Manthey et al. 2004). A combination of in silico and

transcript profiling has highlighted (AM and RL)-symbiosis-specific genes and

promoter elements in M. truncatula, as reviewed by K€uster et al. (2007b). Since
the finding that most of the early signal transduction genes are required for both AM

and RL symbioses, it has been interesting to search for genes specific for each

symbiosis. Of interest are a group of lectin-like genes that are specifically induced

during AM and RL symbioses and could play a role in binding cell wall carbohy-

drates of the microsymbiont and recognition of the partners (Frenzel et al. 2005;

Mitra and Long 2004). A large (>300) group of short proteins with a signaling

peptide and a cysteine motif has been identified to be specific for nodules in

indeterminate legumes (Mergaert et al. 2003). This was confirmed and extended

by in silico studies searching for nodule-specific genes (Fedorova et al. 2002;

Tesfaye et al. 2006). Comparative transcript profiling of AM- and RL-infected

roots showed AM-specific expression of two putative transcription factors that

could be involved in gibberellic acid (GA) signaling (Manthey et al. 2004).

Interestingly, comparisons of AM-induced genes with those induced in interaction

of roots with the pathogenic fungi Magnaporthe grisea and Fusarium moniliforme
(Guimil et al. 2005) and with the growth promoting bacterium Pseudomonas
fluorescens (Sanchez et al. 2005) showed large overlaps in the root’s response to

these very different microbes, suggesting similarities in their perception.
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3.3.3 Root Endosymbiosis, Endoparasitism, and the Regulation
of Defense Responses

The successful invasion of microbes into plant roots requires physical changes in

the root, formation of infection structures, and the regulation of defense responses,

so that the invading microbe is tolerated by the root and restricted to certain tissues.

In many legumes, rhizobia infect roots through infection threads (ITs) that form in

infected root hairs. Other legumes are infected at so-called crack-entry sites at

lateral root bases and these differences might reflect evolutionary stages in nodula-

tion (Sprent 2007). The aquatic legume Sesbania rostrata can be infected in both

ways, depending on growth conditions. When flooded, ethylene build-up inhibits IT

entry and rhizobia invade by crack entry. A transcriptome comparison of S. rostrata
roots infected via IT and crack entry identified multiple transcripts specific for each

process (Capoen et al. 2007). A calcium-dependent protein kinase (CDPK1) was

shown to be necessary for effective infection by rhizobia (and AM fungi) and

transcript analysis of roots in which CDPK1 was silenced showed altered expres-

sion of cell wall and defense-related proteins (Ivashuta et al. 2005).

It has been suggested that rhizobia inhibit plant defense responses for successful

invasion (Mith€ofer 2002). In recent years, transcriptomics and proteomics studies

found evidence for large-scale changes in root defense responses. Transcript

profiling of early stages of nodulation showed that the majority of defense-related

transcripts was induced early (from 1 h) after inoculation but was repressed during

later stages, especially during IT development (Lohar et al. 2006). In nodules, there

is evidence for enhanced expression of defense-related genes, and this might reflect

the ongoing control of the bacterial partner by the plant (Colebatch et al. 2002a,

2004; El Yahyaoui et al. 2004; Tesfaye et al. 2006). Ethylene is one of the hormones

mediating defense responses. The notion that nodulation is restricted by abortion of

infection events by the plant was supported by the hyperinfection and hypernodula-

tion of an ethylene insensitive mutant (sickle) (Penmetsa and Cook 1997). This

mutant shows an altered expression of putative defense-related proteins, for exam-

ple Kunitz proteinase inhibitor, trypsin inhibitor, and a pathogen-related protein

(Prayitno et al. 2006a). Salicylic acid (SA) and jasmonic acid (JA) also play a role

in regulating defense responses, and there is evidence that Nod factors down-

regulate defense responses mediated by SA (Martinez-Abarca et al. 1998) and

that JA biosynthesis is enhanced during the early stages of infection (Kouchi

et al. 2004).

In AM roots, fungal hyphae are restricted to cortical cell layers, and defense

responses are likely to limit hyphal spread. Several studies have used transcrip-

tomics and proteomics to identify candidates that play a role in defense and disease

resistance. Successful infection by AM fungi appears to be related to a week early

but transient expression of defense-related genes (or often just a downregulation

without induction), followed by later induction of defense gene expression in

arbuscule-containing cells, similar to the RL symbiosis (Deguchi et al. 2007;
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Garcia-Garrido and Ocampo 2002; Gianinazzi-Pearson and Brechenmacher 2004;

Liu et al. 2003).

The AM- and RL-deficient dmi3 mutant ofM. truncatula showed induction of a

disease resistance gene during early appressorium formation in the AM symbiosis,

suggesting that DMI3 might be involved in early downregulation of defense

responses as part of successful invasion (Siciliano et al. 2007). Amiour et al.

(2006) showed in a proteomic study that several glutathione-S-transferases (GST)

are downregulated in appressorium-forming roots, which could play a role in

defense. In contrast, SSH studies have shown increased abundance of GSTs in

AM-infected roots and suggested that in addition to defense, this gene might be

involved in arbuscule senescence (Brechenmacher et al. 2004; Wulf et al. 2003).

In addition to local gene expression changes, mycorrhizal fungi were also shown to

induce systemic changes in the shoot that led to increased pathogen resistance in

M. truncatula, accompanied by expression changes of defense- and stress-related

genes (Liu et al. 2007). The latter study also showed that most of the induced genes

are common between roots inoculated with three different species of mycorrhizal

fungi (G. intraradices, G. versiforme, and Gigaspora gigantea). Similar findings

were made in M. truncatula inoculated with a range of different AM fungi that

induced largely similar responses (Massoumou et al. 2007). Defense-related

changes to gene expression found in many studies by genomic techniques could

explain well known observations that AM-infected roots are more resistant to

pathogen attack (Cordier et al. 1998; Liu et al. 2007) and might become important

targets in improving plant health.

The extent of defense responses appears to be affected by the combination of

host and fungal partner. A study by Feddermann et al. (2008) differentiated

responses between G. intraradices, G. mosseae, and Scutellospora casanea and

found that in addition to a common set of AM-related genes, there were significant

differences in host responses to the different fungal species, although this correlated

with different infection types. Similarly, Gao and colleagues reported that induction

or repression of defense-related genes correlated with the infecting fungi and their

ability to penetrate the root (Gao et al. 2004). AM fungi can form two developmen-

tal patterns, the Arum-type and the Paris-type, the former penetrating with one

hyphae into one arbuscule-containing cell, whereas in the latter, hyphae can grow

from cell to cell and thus penetrate many more cell walls. Increased defense gene

expression was observed mainly in interaction with high fungal penetration rates in

the Paris-type interactions, although analysis of a tomato mutant with reduced

infection suggested that induction of plant defense genes does not necessarily

restrict infection by AM fungi (Gao et al. 2004).

Proteomic analyses of M. truncatula roots in response to the oomycte pathogen

Aphanomyces euteiches have shown a correlation between expression levels of

PR10 (pathogenesis-related) proteins and pathogen infection levels in plant lines

with various levels of resistance (Colditz et al. 2004). This study also showed the

preinfection of roots with mycrorrhizal fungi protects from subsequent pathogen

infection, and that this was accompanied with induction of proteins of the phenyl-

propanoid pathway and proteolytic proteins which could be involved in protection
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from pathogens. Subsequent RNAi studies have confirmed that silencing of certain

PR10 genes increased plant resistance to A. euteiches, concomitant with the induc-

tion of a different class of PR proteins in the silenced roots (Colditz et al. 2007).

Gene expression studies of roots responding to infection with endoparasitic

nematodes have demonstrated downregulation of many defense-related genes

(Jammes et al. 2005; Puthoff et al. 2003) including JA biosynthesis genes (Ithal

et al. 2007b). This suggests that nematodes, which move through host roots either

intercellularly (root knot nematodes) or intracellularly though vascular tissue (cyst

nematodes), actively inhibit host defense responses. Thioredoxin peroxidase, a

nematode secreted protein, could mediate reduced defense responses by repressing

formation of reactive oxygen species (Robertson et al. 2000). However, other

studies have reported increased expression of defense- and stress-related genes

(e.g., Alkharouf et al. 2006; Gheysen and Fenoll 2002; Ithal et al. 2007b). Compar-

ative analyses of gene expression changes in susceptible and resistant plants have

identified several candidates for resistance to nematodes, including a glycosyltrans-

ferase in tomato (Schaff et al. 2007), a range of syncytial-specific genes including a

WRKY transcription factor and a receptor-like kinase in soybean (Klink et al.

2007a). In addition, responses of the same soybean species to compatible and

incompatible cyst nematodes have also shown extensive differences in gene expres-

sion in the roots within 12 h, again involving defense-related WRKY transcription

factors (Klink et al. 2007b). A parallel study of gene expression changes in soybean

roots and infecting cyst nematodes has highlighted the extent to which the genomes

of both partners adapt during the interaction, with 429 of 35,611 (1.2%) plant genes

and 1,850 of 7,431 (24%) nematode genes showing altered expression levels during

different stages of infection (Ithal et al. 2007a).

3.3.4 Alteration of Root Development by Microbes

Many rhizoshere microbes can alter the development of roots. Some bacteria

synthesize hormones which can alter root growth, lateral root formation, and cell

division activity. Most of the other microbial signals that alter root development, or

their mechanism of action, remain unknown.

Rhizobia induce new cell divisions inside roots of host plants, which differenti-

ate in an organized fashion to develop into a mature nodule. Purified Nod factors are

sufficient to induce cortical and pericycle cell divisions, and their action has been

linked to the reactivation of key cell-cycle regulators in legumes (Foucher and

Kondorosi 2000). One explanation for their action on cell cycle is their potential to

alter auxin and cytokinin signaling in the root. Both auxin and cytokinin levels and

ratios are crucial for activation of the plant cell cycle (Foucher and Kondorosi

2000). Nod factors alter auxin transport at the site of nodule initiation in indetermi-

nate legumes and this might cause an accumulation of auxin where cell division

occurs (Mathesius et al. 1998b). The alteration of auxin transport is most likely

mediated by an induction of root flavonoids (Mathesius et al. 1998a), and silencing

the flavonoid pathway inM. truncatula by RNAi was shown to abolish the ability of
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rhizobia to initiate nodules and to regulate auxin transport (Wasson et al. 2006).

Auxin transport is also altered in the ethylene-insensitive M. truncatula sickle
mutant, and this is linked to hypernodulation (Prayitno et al. 2006b). The involve-

ment of cytokinin in nodulation has been demonstrated in two L. japonicusmutants.

Whereas a mutant defective in cytokinin perception is unable to form nodules

(Murray et al. 2007), a gain-of-function mutant conferring constitutive cytokinin

signaling in the root forms nodules spontaneously (Tirichine et al. 2007).

In M. truncatula, silencing of the cytokinin receptor CRE1 resulted in reduced

nodulation (Gonzalez-Rizzo et al. 2006). If Nod factors alter hormone signaling in

the root, they could be expected to alter other aspects of root development affected

by these hormones, and this has been observed in several studies. The cre1 mutant

has significantly increased numbers of lateral roots (Gonzalez-Rizzo et al. 2006),

and similarly in L. japonicus, overexpression of a cytokinin oxidase (which reduces
cytokinin response) increased lateral root but decreased nodule formation (Lohar

et al. 2004), suggesting a negative role for cytokinin in lateral root and a positive

role in nodule formation. Nod factors and a signal from mycorrhizal fungi also

stimulate lateral root formation and this was shown to require early nodulation

signal transduction genes (Olah et al. 2005). Transcriptome and proteome studies

have identified multiple genes that could be involved in developmental changes

induced by rhizobia, including hormone response genes, transcription factors, and

cell division-related genes, although their function remains unstudied (El Yahyaoui

et al. 2004; Kouchi et al. 2004; Lohar et al. 2006; van Noorden et al. 2007).

Root endoparasitic nematodes cause major developmental changes in host roots

as a result of creating feeding structures (Williamson and Gleason 2003). The

mechanisms of feeding site induction are largely unknown, but results from injec-

tion of nematode secretions into plant cells. Some of the secreted proteins have

been analyzed using a proteomic approach (Jaubert et al. 2002) and at least one

secreted peptide belongs to the plant encoded CLE peptide family that includes

CLAVATA3, a peptide regulating shoot meristem activity in plants (Wang et al.

2005). CLE peptides have recently also been observed in other cyst nematodes and

it has been suggested that they mimic plant ligands for receptors involved in cell

differentiation (Mitchum et al. 2007). Of particular interest in these root–nematode

interactions have been genes involved in the induction of cell division and differ-

entiation in the feeding structures. Microarray, subtractive cDNA cloning, and

SAGE have begun to characterize the extensive changes occurring in host roots

in response to cyst and root knot nematodes (Alkharouf et al. 2006; Bar-Or et al.

2005; Bird 1996; Fuller et al. 2007; Ithal et al. 2007a, b; Jammes et al. 2005; Khan

et al. 2004; Klink et al. 2007a; McCarter et al. 2003; Puthoff et al. 2003, 2007;

Uehara et al. 2007). The induction of cell cycle and auxin and cytokinin response

genes indicates that nematodes activate the plant cell cycle by alteration of hormone

levels (Bird and Koltai 2000; Gheysen and Fenoll 2002; Goverse et al. 2000b).

Interestingly, there are several overlaps in gene expression and hormone changes

between galls and Rhizobium-induced nodules (Favery et al. 2002; Hutangura et al.
1999; Koltai et al. 2001). Concomitant changes in cell wall modifying enzymes and

cytoskeletal proteins are likely also involved in the activation of cell cycle and cell
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expansion during giant cell and syncytium formation (Jammes et al. 2005). In

Arabidopsis, a comparative analysis of gene expression in response to root knot

and cyst nematodes revealed similar expression of certain cytoskeletal and organ

development genes which might have a role in formation of both types of feeding

structures, whereas lipid transfer proteins, hypothesized to be involved in cell

expansion and/or organ development, were differentially expressed between the

two interactions (Fuller et al. 2007). Studies on the global responses of hosts to

nematodes (and other microbes) have been limited by the difficulty of collecting

sufficient plant material of infection structures, and the use of laser capture micro-

dissection to collect individual infected cells (Klink et al. 2007a; Ramsay et al.

2004) is a step toward obtaining more localized expression data.

In general, it has been difficult to distinguish responses related to invasion from

those related to development. In future studies, it would be useful to analyze

mutants defective either in invasion or in developmental changes to separate

these effects.

3.3.5 Nutrient Exchange

Endosymbioses with mutualistic bacteria and fungi are formed preferentially under

conditions of nutrient deficiency, in particular of nitrogen and phosphorus, respec-

tively. Both partners of these symbioses play an active part in regulating nutrient

exchange across membranes in the infection structures. Rhizobia invade dividing

cortical cells but remain separated from the plant cytoplasm by the peribacteroid or

symbiosome membrane (derived from the plant plasma membrane). Often several

bacteroids are housed together in a symbiosome, where nitrogen fixation by nitroge-

nase takes place. Leghemoglobin is an abundant protein inside nodules protecting

nitrogenase from oxygen (which inhibits nitrogenase) at the same time as delivering

oxygen to the electron transport chain. Bacteroids are differentiated rhizobia that

show significantly altered gene and protein expression patterns compared with free-

living bacteria (Ampe et al. 2003; Becker et al. 2004; Djordjevic 2004; Djordjevic

et al. 2003; Pessi et al. 2007). Fixed nitrogen is exported to the plant cytoplasm as

amino acids, and carbon, mainly in the form of tricarboxylic acids, are taken up by

the bacteroids (Lodwig et al. 2003; Prell and Poole 2006). Transcript analyses for

functioning root nodules demonstrated a high activity of sucrose breakdown, glycol-

ysis, and carboxylic and amino acid assimilation (Colebatch et al. 2002a, 2004;

Tesfaye et al. 2006). Nodule tissues of plant origin express a large number of nutrient

transporters (carbon, nitrogen sulfate, and potassium), metal-binding proteins, aqua-

porins, ATPases related to nutrient uptake, and osmoregulaton inside the nodule

(Benedito et al. 2006; El Yahyaoui et al. 2004; Kouchi et al. 2004; K€uster et al. 2004;
Manthey et al. 2004). Interestingly, these studies also found a large number of

regulatory proteins that could be important in the ongoing regulation of enzyme

and transport activity inside nodules (Colebatch et al. 2004). Proteomics studies of

the peribacteroid membrane have identified about 100 proteins, including many

transporters, aquaporins, especially of the nodulin 26 family, ATP-ases, signaling
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and defense proteins, and endomembrane proteins, which could be a result of the

endocytotic origin of the peribacteroid membrane (Panter et al. 2000; Wienkoop and

Saalbach 2003). Metabolomic approaches confirmed elevated levels of amino acids,

organic acids, and certain sugars in nodules (Barsch et al. 2006; Colebatch et al.

2004; Desbrosses et al. 2005). Because significant amounts of photoassimilates can

be diverted to nodules for nitrogen fixation, it could be expected that plants limit

carbon supply to ineffective (fix-) nodules. Metabolome analysis of fix- nodules

showed that carbon restriction to nodules occurs as a limitation of carboxylic acid

synthesis in nodules, rather than photoassimilate transport to the nodule (Barsch et al.

2006). Sucrose synthase, which acts in unloading and cleavage of sucrose in the

nodule, appears as another important metabolic control point and its repression

led to major transcriptome and metabolome changes in nodules, particularly repres-

sing amino acid synthesis (Baier et al. 2007). Senescing nodules can become a

nutrient source for the plant, and this often coincides with pod filling. Transcriptome

analysis of aging nodules identified many regulatory genes that could be involved

in controlling the senescence process and revealed a role for ethylene, JA, and GA in

nodule senescence (Van de Velde et al. 2006).

Mycorrhizal fungi depend on carbon allocation from their host and create a

carbon sink in the infected roots. This is accompanied by increased expression of

hexose transporters, activation of fungal glycolysis, and subsequent carbohydrate

storage in ectomycorrhizal associations (Nehls et al. 2007). Induction of specific

phosphate transporters is localized to arbuscules and is crucial for provision of

phosphorus to the plant partner and some of these transporters have recently been

cloned (Harrison et al. 2002; Paszkowski et al. 2002). A plethora of other nutrient

and water transporters and enzymes of primary metabolism have been detected in

AM-infected roots using transcript profiling (Hohnjec et al. 2005; Liu et al. 2003,

2007). Combined transcriptome and metabolome approaches have highlighted the

role of metabolites from plastids and mitochondria in AM-infected roots. Amino

acid, fatty acid, and carotenoid metabolism were activated in AM roots both at the

transcript and metabolite level, and phosphate levels were increased (Lohse et al.

2005; Schliemann et al. 2008). A detailed review of genome-wide gene expression

changes relating to nutrient exchange and concomitant cell wall modifications has

recently been published (Balestrini and Lanfranco 2006).

Similar to the symbiotic structures, nematode feeding sites develop into massive

nutrient sinks, although the plant appears to fail to regulate this process. Nematode

feeding site development is accompanied by increases in expression of sucrose

transporters and enzymes of carbohydrate metabolism and water channels and other

transport proteins (Gheysen and Fenoll 2002; Hammes et al. 2005; Jammes et al.

2005; Uehara et al. 2007).

3.3.6 Feedback Mechanisms

The acquisition of nutrients by roots is intimately linked with the available carbon

supply from photosynthesis in the shoot. Therefore, long distance communication is
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necessary to balance the extent of symbiosis in the root with carbon supply from the

shoot. Both RL and AM symbioses are limited by a feedback mechanism called

autoregulation (Caetano-Anollès and Bauer 1988). The number of nodules and

arbuscules in the root is regulated by a gene that acts in the shoot and has been

identified as a leucin-rich receptor like kinase (LRR-RLK) from soybean

(GmNARK), L. japonicus (LjHAR1), and M. truncatula (MtSUNN), as reviewed by

Kinkema et al. (2006). Interestingly, this LRR-RLK has high similarity to the Clavata

1 (CLV1) gene from Arabidopsis that regulates shoot meristem activity (Gresshoff

2003). Mutation of NARK leads to supernodulation or super-mycorrhization of the

root and overall plant growth is often stunted. Grafting studies have shown that

autoregulation is a result of a signal initiated in the root upon infection with rhizobia

or mycorrhizal fungi, which is received by NARK in the shoot, and a second signal is

generated that travels back to the root and inhibits further symbiosis (Delves et al.

1986; Gresshoff 2003). So far it is unknown why both symbioses are affected by the

action of NARK, or what the autoregulation signal is. Metabolite analyses of alfalfa

found that flavonoid synthesis is limited in both RL and AM symbioses by the

autoregulation signal, possibly limiting availability of symbioses-enhancing flavo-

noids (Catford et al. 2006). Metabolome analysis also suggested that the accumula-

tion of isoflavonoids inhibitory to fungal germination in AM-infected roots could be

part of the autoregulation system (Cordier et al. 1998; Schliemann et al. 2008). In the

M. truncatula sunn (super numeric nodules) mutant, it was shown that inoculation of

roots with rhizobia causes an inhibition of auxin translocation from the shoot to the

root and that the supernodulation mutant does not show this long-distance auxin

transport inhibition (van Noorden et al. 2006). In addition, sunn had higher levels of

auxin in the inoculation zone of the root, suggesting that auxin is a positive regulator

and long-distance signal in autoregulation (van Noorden et al. 2006). Proteome

analysis of wild type and sunn roots supported this, showing that the large majority

of proteins induced by rhizobia are also auxin-inducible. The study also identified

proteins differentially expressed between wild type and sunn, including PR10 pro-

teins, a protein involved in JA synthesis, a glutathione-dependent peroxidase, and a

trypsin inhibitor (van Noorden et al. 2007). A transcriptome study also found several

defense-related genes differing in expression between sunn and wild type suggesting
a reduced defense response in supernodulating plants (El Yahyaoui et al. 2004).

Proteome analysis of mycorrhizal fungi-infected wild type and sunn roots showed

protein expression changes of two annexins, a narbonin, a quinine reductase, and a

Kunitz proteinase inhibitor (Amiour et al. 2006). Liu et al. (2007) showed differential

expression of several defense related and other genes including an aquaporin in the

uninoculated and inoculated part of roots of a split-root system infected with

mycorrhizal fungi, but also several genes similarly regulated by mycorrhizal fungi

in both split root parts, confirming that mycorrhizal fungi have long-distance effects

on uninfected parts of the plant. Comparison of gene expression changes in leaves of

inoculated soybean wild type and a supernodulation mutant identified over 100

differentially amplified cDNA fragments of which most changed in wild type but

not in the mutant (Lestari et al. 2006). Of particular interest in this study was

differential expression of several receptor kinases and transcription factors that
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might be involved in autoregulation. These studies have highlighted the complex

changes occurring in shoot and root in response to rhizobia and mycorrhizal fungi

and how they are affected by the autoregulation signal, yet the signal itself remains

elusive. Proteome analysis of xylem sap of soybean wild type and NARK mutants

identified some proteins that could potentially travel long distances in the xylem,

including a lipid-binding protein and Kunitz proteinase inhibitor, although none of

these differed between wild type and mutant (Djordjevic et al. 2007). In future,

phosphoproteomics might reveal some of the early targets of the receptor-like kinases

that control autoregulation.

3.4 Conclusions and Future Directions

One of the most interesting findings of recent years has been the overlap in the

signaling pathways utilized by rhizobia and mycorrhizal fungi to invade legume

roots, leading to the hypothesis that the more ancient mycorrhizal symbiosis was

the precursor for the more recent interaction of legumes with rhizobia (Kistner and

Parniske 2002; Sprent and James 2007). Furthermore, genomic tools have revealed

evidence that root parasitic nematodes also share signal transduction pathways,

genes and maybe signaling molecules with RL and AM symbioses (Bird and Koltai

2000; Favery et al. 2002; Gheysen and Fenoll 2002; Koltai et al. 2001; Weerasinghe

et al. 2005). Interestingly, genome sequencing projects have revealed aspects of the

evolution of genes involved in root–microbe interactions. Several nematode genes,

in particular cell wall-degrading enzymes, appear to have higher similarity to

bacterial genes than to eukaryotic genes, suggesting horizontal gene transfer

between root-infecting bacteria and nematodes (Scholl et al. 2003). Future chal-

lenges remain to determine which parts of the microbial genomes are necessary for

their symbiotic or pathogenic behavior, and these questions might become clearer

with comparative genomic studies of a growing number of sequenced organisms.

Likewise, it will be interesting to reveal the whole extent to which similar plant

genes are required for infection, signaling, and developmental changes in response

to soil microbes. The current wealth of genes and proteins identified in genomics

studies will need to be tested in functional, e.g., reverse genetic, studies to explain

how they are involved in root–microbe interactions. It would be particularly

interesting to test the effect of specific mutations on the interaction of plants

with a range of microbes to highlight commonalities and differences. For

parasitic interactions, it will be of interest to identify nematode- and infection

structure-specific genes that could be targeted in strategies to increase nematode

resistance in crop plants.
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4.1 Introduction

Although plants can be grown in sterile soil in aseptic growth chambers, their

natural lives involve an intense and intimate interaction with a vast number of

microbes, especially those found in soils. The number of different bacterial species

in a single gram of soil has been estimated to be anywhere from a few thousand to

many millions, depending on the soil source and the method of analysis (Foster

1988; Schloss and Handelsman 2006; Aislabie et al. 2008), with still-undescribed

species making up a large share of the total. In addition to eubacteria and archae-

bacteria, many species of fungi, protists, and algae are also found in the soil, often in

association with plant roots. The great majority of these soil microbes have not been

studied to any significant degree, partly because conditions for their axenic culture

have not been developed. For instance, only 26 of the approximately 52 identified

major lineages, or phyla, within the domain Bacteria have cultured representatives.

In fact, it is estimated that less than 1% of the bacterial species in the soil could be

grown in culture with current approaches (Leadbetter 2003; Handelsman 2004;

Leveau 2007), and this number is certain to be much lower if one considers that

most rare microbial components of the soil are completely unknown.

Plants actively secrete very large quantities, and a great diversity, of organic

compounds into the soil. Exudation of anywhere from 5 to 60% of total photo-

assimilate has been reported and found to be highly variable across environmental

conditions (e.g., soil type, time of day, soil moisture, temperature) and plant

genotype or growth stage (Bekkara et al. 1998; Groleau-Renaud et al. 1998; Hughes

et al. 1999; Iijima et al. 2000; Aulakh et al. 2001; Garcia et al. 2001; Prosser et al.

2006). The roles of only a few of these compounds are known or guessed at

(Merbach et al. 1999). Citrate is secreted, sometimes in very large quantities, to

help acidify the soil and thereby promote root growth (Jones and Darrah 1994;

Hinsinger et al. 2006), and this compound also helps bind aluminum in the soil,

thereby decreasing its phytotoxic effects (Hoekenga et al. 2003). Some plants have

been shown to exude phenolic compounds that exhibit allelopathic effects like the

sorghum exudate sorgoleone that is an inhibitor of broadleaf and grass weeds at

concentrations as low as 10 mM in hydroponic assays (Nimbal et al. 1996). Many

other compounds, such as amino acids and sugars, are believed to be secreted by

plant roots in order to promote rhizosphere microbial growth (Brimecombe et al.

2001), although the value to the plant of �1% of the rhizosphere microbes are not

known in any system. Specific secreted phenolic compounds have been shown to be

signal molecules that attract root colonization by useful microbes, nitrogen-fixing

bacteria such as Rhizobium, and mycorrhizal fungi (reviewed in Bais et al. 2006).

The question remains, what do most of these soil microbes do? The active

secretion of so much of the fixed carbon produced by a plant suggests that these

microbes are very important to the plants, but this idea is challenged by the

observation that plants can grow efficiently in sterile soil. Of course, plants that

are grown with fertilizers in a controlled environment do not need symbiotic

relationships that yield limiting growth substances, like the fixed nitrogen provided
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by rhizobia or the phosphate access provided by mycorrhizae. Perhaps, a more

frequent value of rhizosphere microbial associations to a plant is exemplified in the

“take-all” disease, where the Gaeumannomyces graminis var. tritici fungus that

infects wheat roots is overcome in the soil by a beneficial bacterial competitor, a

specific isolate of Pseudomonas fluorescens (Thomashow and Weller 1988; Capper

and Higgins 2007). Unlike sterile soil, potential microbial pathogens in field soil

may exist in staggering numbers and variety, and only attraction of beneficial or

neutral microbial competitors of these pathogens to the rhizosphere would provide

comprehensive protection to host plants.

In the absence of the ability to grow most soil microbes in pure culture, it is

difficult to test their possible contributions to plant growth or plant disease. One

cannot simply inoculate the soil with a single microbe and see its effects on a

potential host plant if one cannot first grow that microbe. However, we have

postulated that we can use our control over host plant genetics to accomplish the

same goals of understanding the roles of microbes in the soil (Deshpande 2006). If

one can find mutations in plants, or segregating natural variation, which determines

the presence/absence or abundance of specific rhizosphere microbes, then this

demonstrates a specific relationship between the product of the mutated or varying

plant gene(s) and the biology of the affected microbe. For instance, if one finds a

natural variation for a low level of sorgoleone production, and sees that this causes

the root to no longer be colonized by mycorrhizae, then this indicates that sorgo-

leone is involved in mycorrhizal colonization (Akiyama et al. 2005).

We have been pursuing this approach to use plant host genetics to dissect

plant–microbe interactions in the soil for the last 10 years. This research has

proceeded very slowly because of the need to establish a foundation for the experi-

ments, a very limited tool set, a challenging level of environmental variation in the

experiments, a surprisingly low level of plant genetic variation for rhizosphere

exudates (at least in Arabidopsis thaliana, see below), and the lack of funding for

such research in the absence of compelling preliminary results. However, recent

advances in DNA sequencing technology have offered the possibility that studies of

plant genetic control of microbial interactions in the rhizosphere and root can be

analyzed comprehensively. This chapter describes our initial results with the genetic

and metagenomic analysis of these interactions.

4.2 Natural Variation and Mutagenesis in Arabidopsis
to Identify Alterations in Root Exudate

We used a model dicot angiosperm, Arabidopsis thaliana, as a target for our initial
studies of plant host genetic effects on rhizosphere microbial populations. Because

high pressure liquid chromatography (HPLC) is such a powerful technique to

separate and display low molecular weight organic compounds like phenolics, we

decided to determine reproducible conditions for exudate production by the roots of

Arabidopsis seedlings by scoring the production from seedlings grown under sterile
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conditions. Seeds were first surface-sterilized by gently agitating them in a solution

containing two volumes of 0.1% Triton X-100 and one volume bleach. Seedlings

were grown on filter paper set atop moist glass beads for 15 days in Gamborg’s B5

medium at a temperature of 24�C and an artificial light intensity of 100 mE m�2 s�1.

On day 15, fresh Gamborg’s B5 medium diluted to 5% of its original concentration

was added to the roots, and the medium (now with root exudates) was collected

after 2 days of additional growth. Pools of ~100 seedlings were grown together in

single vials for this analysis because smaller numbers of seedlings did not yield

sufficient quantities of exudates for HPLC analysis. The liquid samples were frozen

and dried in a Beckman lyophilizer and then resuspended in 98% methanol for

reverse phase HPLC analysis. Under these conditions, a broad array of peaks

representing different compounds were observed, and these were not produced by

dead seeds or the growth media in the absence of growing seedlings (Fig. 4.1).

Many of these peaks were found not to be reproducible from experiment to

experiment, however, so a smaller range of peaks was chosen for specific focus.

These six peaks gave qualitatively consistent profiles detected at 360 nm (Fig. 4.2).

These peaks were both consistent across experiments and had the general properties

of phenolics and related compounds that were good candidates as signal molecules.

Having established a reproducible assay system, we then looked at A. thaliana
ecotypes Columbia, Landsberg erecta, Kashmir-1, Wassilewskeja, and Cape Verde

Islands (CVI) for their root exudation of related compounds. Surprisingly, we saw

no dependable variation for the compounds represented by these six peaks on the

HPLC chromatogram. The ecotype CVI was included in this study because, at the

level of DNA markers, it was the most different of any Arabidopsis ecotype

available at that time. Hence, it was not possible to map genes responsible for

variation in these compounds in any of the various mapping populations developed

in Arabidopsis from crosses between these ecotypes.

Having failed to detect useful natural variation for exudate production, we next

investigated the production of the compounds represented by these six peaks in

EMS mutagenized Columbia and Landsberg erecta backgrounds, with M3 seed

provided by Lehle Seeds. Most surprisingly, out of 2,000 M3 populations analyzed,

not a single reproducible variation in any of these peaks was identified. Given the

mutation rate in these EMS populations, we expected that 2,000 M3 would have

provided an average of 1–2 homozygous and 3–4 segregating knockout mutations

per gene for every gene in the Arabidopsis genome. Hence, for the first time in the

history of genetics, we apparently identified a series of biological processes to

produce numerous compounds that are not affected by mutational inactivation of

any single gene. This astounding result remains unexplained.

Because it was expected that many of the compounds in the studied six peaks

were phenolics, we also looked at known mutations in phenolic pathways, including

knockout mutations in fad1-2, fae2-1, gsm1-1, gsm1-2, hy5-1, mur2-1, mur4-1,
mur5-1, and rhd1-1, plus the double mutants fah1-7/tt3-1, tt3-1/ tt7-1, and tt4-1/tt5-
1 (Koornneef 1990; Lemieux et al. 1990; Haughn et al. 1991; Miquel and Browse

1992, Reiter et al. 1997) obtained from the ABRC. In addition, a line exhibiting

transgenic F5H overexpression, generously provided by the laboratory of Dr. Clint
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Chapple (Purdue University), was also investigated. Arabidopsis lines that were

mutant in these genes were found to not exhibit any qualitative changes in the six

putative phenolic peaks that we focused on throughout this project.

Fig. 4.1 A three-dimensional metabolite profile of root exudates showing the retention time

(X-axis), peak intensity (Y-axis), and the UV range of 200–400 nm (Z-axis). (a) Root exudates
of wild-type Arabidopsis thaliana plants, ecotype Columbia; (b) negative control (growth media

processed as exudate)
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The rationale of the Arabidopsis studies had been to identify genetically

determined exudate variation and then to follow this up with the characterization

of both the exudate compound(s) affected and the degree to which this variation

altered soil microbial populations associated with the Arabidopsis root. In

the absence of identified genetic variation, such follow-up studies were not

performed.

Fig. 4.2 Chromatograms of wild-type Arabidopsis thaliana root exudates showing the six major

peaks detected at 360 nm. (a) Ecotype Columbia; (b) negative control

104 A. Deshpande et al.



4.3 Plant Genetic Determination of Natural Variation

in Rhizosphere and Root-Associated Microbes

in the Grasses

After arriving at the University of Georgia (UGA) in 2003, our lab decided to look

at several grass species as targets for the study of root–microbe interactions. These

studies have not yet involved exudates analysis but went directly to a metagenomic

analysis of soil microbes. The soil used was from different UGA fields, but each

experiment involved mixing one field soil source with a uniform potting mixture (to

make roots easier to subsequently extract) and then placing equal amounts of this

mixture in each large pot used in the experimental study. Seeds for host plants were

germinated in these soils, and seedlings were then grown in the greenhouse under

the same conditions for each duplicated or triplicated plant in the experiment. The

assay system has been to sequence either total DNA or 16s ribosomal DNA

amplicons prepared from the soil that clings to an extracted root (“rhizosphere”

or Rh), the microbes firmly attached to a root washed with water (“root-external

microbes” or REM), and the microbes remaining after the root is treated with

chitinase, lysozyme, and various levels of hydrogen peroxide (“root-internal

microbes” or RIM). Of course, the sample termed REM contains both root-internal

and root-external microbes, while the Rh sample is certainly contaminated by

broken root fragments that would yield some root-internal and root-external

microbes.

In order to guarantee that the DNA analyzed would provide a comprehensive

description of the microbes that were present, a vigorous DNA extraction protocol

(http://fgp.bio.psu.edu/methods/ctab.html) was followed. Hence, the DNA extrac-

tion procedure for Rh, REM, and RIM samples yields not just the microbial DNA

but also DNA from any other organisms or tissue fragments that were present in the

sample. Especially in the case of the REM and RIM samples, this meant that there

was a tremendous amount of host plant DNA present. Hence, random shotgun

sequencing of all root-associated samples was mostly an exercise in sequencing the

host plant genome, with yields of 10–20% of cloned DNA (Table 4.1) that was

verified as nonplant. At the time of these analyses, neither the sorghum nor maize

genomes had been fully sequenced, so many of the sequences labeled unknown

could be screened for homology to these genomes once the ongoing sequencing

projects are completed. Regardless, it was clear that this was an expensive route to

pursue for metagenomic discovery.

Because the majority of maize nuclear DNA is methylated at the cytosines in

50-CG-30 and 50-CNG-30 sequences, we decided in one experiment to transform all

of our soil DNA into DH5-a because cytosine methylated DNA such as that seen

in maize and other grasses is often destroyed by this Escherichia coli strain (Palmer

et al. 2003). Sequences of the resulting clones provided a significant decrease

in maize DNA, and a significant increase in the percent of bacterial sequences

recovered (Table 4.1) but decreased the amount of mycorrhizal DNA that was

observed (data not shown). Hence, this potential metagenomic enrichment technology
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was abandoned because it was not likely to yield a representative description of the

microbes present in the soil, rhizosphere, or root samples. We also abandoned the

hydrogen peroxide treatment in our RIM purification process because the level of

treatment that we employed (2 min in 3% H2O2) appeared to lead to degradation of

some DNA inside roots (data not shown). Moreover, although hydrogen peroxide

treatment greatly lowered the number of sequences that were recovered from the

extracted DNA, it did not show any obvious effect upon the relative abundances of

classes of eubacteria that were recovered (data not shown). Hence, further investi-

gation of hydrogen peroxide treatment, to identify an appropriate level of exposure

for removing external microbes without damaging root-internal DNA, is warranted

but may not be necessary.

Our first experiments were on the plant species Zea mays (maize), Sorghum
bicolor (sorghum), and S. propinquum (a wild and interfertile relative of sorghum).

The results with random shotgun sequencing of Rh, REM, and RIM microbes

(Table 4.2) indicated that sequences representing many different kingdoms and

phyla of microbes (archaebacteria, eubacteria, fungi, protists), small animals (e.g.,

nematodes and insects), mosses, and even a bacteriophage were present in the data,

although most of the sequences were either from the host plant or of unknown

origin. Interestingly, the organisms in the RIM sample (presumed root-internal

microbes) included protists like Cercozoa (a flagellate protozoan that consumes

bacteria) and the diatom Thalassiosira. These DNA sequences were annotated in

early 2009, when internal funding for this project was exhausted, so reannotation at

this date would be much more informative because additional plant sequences

could be identified, and more of the unknown sequences would be attributed to

many of the additional microbes that have been sequenced since that time.

For reasons of cost effectiveness, we decided to primarily switch to the standard

process for amplification of rRNA genes (Weisburg et al. 1991; Tringe and

Hugenholtz 2008) for microbe identification. This has the disadvantage of a poten-

tial for differential degrees of amplification of different sequences (thus providing a

skewed quantitative description of the microbes present) and the possible lack of

amplification of highly diverged microbes. For cost reasons with the maize and

sorghum samples, only a few eubacterial rRNA sequences were investigated,

providing between 173 and 191 eubacterial reads per duplicated data set. Even

with this limited amount of data, certain patterns were clear. The most abundant

eubacteria both outside and inside roots were from the class betaproteobacteria,

although the deltaproteobacteria were about equally abundant in the REM (root

external) samples for both S. bicolor and S. propinquum (data not shown).

Table 4.2 Analysis of soil and root-associated organisms with 16s, 17s, and 18s rRNA sequences

in switchgrass cultivar “Alamo”

Species Treatment Eubact.

phylotypes

Archaea

phylotypes

Fungal

phylotypes

Protist

phylotypes

Animal

phylotypes

Switchgrass Rh 668 13 37 19 46

Switchgrass REM 409 3 53 6 5

Switchgrass RIM 284 2 50 8 8
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The alphaproteobacteria and gammaproteobacteria were also relatively abundant in

both REM and RIM samples. Such species as the acidobacteria, bacilli, chloroflexi,

clostridia, and deinococci were found both in REM and RIM samples but at

low abundances. The sphingobacteria were of moderate abundance in the REM

samples, but much rarer in the root-internal samples (RIM). Most dramatic, the

Sorghum samples (especially S. propinquum) had a >2X lower percentage of

eubacteria from known classes compared to maize, suggesting that a greater

number/variety of exotic microbes associate with the roots of plants in the genus

Sorghum than with maize.

Recently, we have begun studies of the microbial populations associated with

the candidate biofuel crop called switchgrass (Panicum virgatum). In our first

experiments, we have observed that the Rh, REM, and RIM populations for

switchgrass are quite distinct (Table 4.2). For instance, archaebacteria were very

abundant in the soil sample employed and frequent in the Rh populations but were

very rare in the REM and RIM samples. As seen with maize and sorghum previ-

ously, mycorrhizal DNA was greatly enriched within the roots (the RIM samples).

In general, bacterial, archaebacterial, protist, and animal diversity dropped off

dramatically on and inside the roots compared to the rhizosphere, but detected

fungi were actually more diverse both on and inside roots compared to the rhizo-

sphere (Table 4.2). Preliminary results indicate that different switchgrass cultivars

yield very different abundances for some microbial species (data not shown),

suggesting that host genetics might be used to characterize the factors that deter-

mine the specific host–microbe associations involved.

4.4 Implications and Perspectives

The relationship between plant growth and soil microbes remains one of the great

mysteries in the life sciences. Other than nitrogen fixation by root-internal or root-

associated bacteria (Elbeltagy et al. 2001), only a few cases are known where a soil

microbe provides some benefit to an associated plant (Thomashow and Weller

1988; Bais et al. 2006; Capper and Higgins 2007; Javot et al. 2007; Evelin et al.

2009). However, the tremendous contribution of photosynthate and a great variety

of apparent signaling compounds that are actively released into the soil by roots

indicate that most rhizosphere microbes are intentionally attracted by the plant. The

simplest model for the role(s) of these microbes is protection from disease caused

by that subset of microbes or animals in the soil that can pathogenize or parasitize

plants via their roots. It is striking that the species diversity of microbes in the soil is

orders of magnitude greater than that available to the aerial parts of the plants, yet

soil-vectored/root-targeted pathogens of plants are relatively rare compared to

those that infect above the ground. In one very preliminary experiment, we

observed that greenhouse-grown maize, sorghum, and sunflower were slightly

less vigorous if grown on field-derived soil than they were on sterilized field soil.

Least healthy of all were plants grown on the same field soil that had been treated
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with erythromycin, a broad-spectrum antibiotic that should have killed many of the

eubacteria, suggesting that these bacteria provide some nutrients or protection from

other microbes in the soil.

The most surprising results in this study were that no Arabidopsis mutants were

identified for exudate production. There exists the very trivial explanation that the

stocks that we obtained were not actually mutagenized. It is also possible (however

unlikely) that every one of these exudates compounds is synthesized by enzymes

and regulated by proteins that are encoded by redundant genetic pathways. The lack

of natural variation in exudate production by Arabidopsis was also a surprise, and it
reinforces the idea that these compounds are so important that their composition

and approximate levels are fixed within the species. However, a recent study has

found that two Arabidopsis ecotypes in our study (CVI and Landsberg erecta) were
quite different in their exudates profile, and that this strongly affected rhizosphere

microbial composition (Micallef et al. 2009). We have no explanation for the

dramatic difference in conclusions about exudate variability between our results

and those of Micallef and coworkers, other than the differences in the exudate assay

systems employed. It has also been recently observed that some ATP-binding

cassette (ABC) transporter mutants of Arabidopsis lead to altered root secretion

of phytochemicals and significantly altered fungal and bacterial communities in the

rhizosphere (Badri et al. 2009). It is puzzling that such mutations were not detected

in our experiments.

The much-greater diversity of microbes outside the root compared to on the root

(REM) and inside the root (RIM) suggests that there is a much greater diversity of

environments and niches to fill in the soil than within a plant. The absence of

archaebacteria from inside the roots makes sense, given the facts that the great

majority of archaebacteria are extremophiles and that plants (like all other organ-

isms) attempt to maintain a consistently moderate internal environment that is

necessary for the physiology associated with efficient growth and development.

The most promising results to date are the differences observed in microbial

populations associated with different cultivars of switchgrass. The tetraploidy and

near-obligate outcrossing nature of this grass species makes it ideally unsuited for

genetic dissection of any trait, including plant determination of soil microbial

populations. Nonetheless, a perennial plant like switchgrass is particularly depen-

dent on a durable and very efficient root system, so studies in the switchgrass

rhizosphere are important. However, if funding were available, such studies would

probably move much more rapidly if performed in diploid grasses with excellent

genetics, such as maize, rice, or the close switchgrass relative called foxtail millet

(Setaria italica) (Doust et al. 2009).
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5.1 Introduction

The pattern of lateral root formation is a complex developmental process that is tightly

regulated to achieve efficient nutrient andmoisture acquisition from the soil in all land

plants (Osmont et al. 2007). In addition to lateral roots, legume roots are capable to

develop post-embryonically another organ resulting from the symbiotic interaction

with soil rhizobia, the so-called symbiotic nitrogen-fixing nodules. Efficient use

of symbiotic nitrogen fixation in legumes is an important agricultural trait (Stacey

et al. 2006). Common mechanisms affecting lateral roots and Rhizobium–legume

interactions seem to exist to regulate the action ofmeristems in root tissues to optimize

root growth with a particular soil environment.
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Abiotic stresses impact severely plant development and productivity. To cope

with these environmental stresses, plants have evolved complex cell signaling

pathways in response to environmental stimuli and have acquired plasticity in

metabolic functions and developmental switches to gain a new equilibrium between

growth, development, and survival. In plants, the root system is the primary site of

perception of the soil environment and diverse stresses, including salinity and

drought (Osmont et al. 2007; Nibau et al. 2008).

In this chapter, we describe first the different meristems arising from the root

system in two model plants, Arabidopsis and Medicago, and then discuss common

mechanisms controlling lateral root development and the formation of the symbi-

otic root nodules. In contrast, we will not describe mycorrhizal interactions here,

even though they have an important impact on root nutrition and architecture,

because these interactions do not involve formation of new meristems. We referred

to other nice reviews for this topic (Bending et al. 2006; Osmont et al. 2007;

Reinhardt 2007; Parniske 2008). Additionally, we focus on the role of plant

hormones in lateral root development in Arabidopsis and nodule organ formation

in legumes.

5.2 Root System Development

5.2.1 Lateral Root Development

In most eudicot plants, only primary roots are formed during embryogenesis and

emerge during seed germination. The branching process in roots depends on the

formation of new meristems starting from a limited number of pericycle lateral root

(LR) founder cells (Fukaki et al. 2007). After germination, pericycle cells in the

root, which constitute a cylindrical layer of cells surrounding the central vascular

tissue, become competent to undergo a characteristic program of cell divisions and

expansions to form lateral root primordia (LRP) post-embryonically. The primor-

dium emerges from the primary root by cell expansion particularly apparent in cells

near the base of the primordium. Then, the new LR meristem begins to elongate,

cell numbers increase at the root tip, and the LR emerges from the parental primary

root (Malamy and Benfey 1997; Malamy 2005; Dubrovsky et al. 2006; Osmont

et al. 2007).

In Arabidopsis and most other dicots, LRs are formed only from pericycle cells

overlying the protoxylem poles of the parent root (Barlow et al. 2004). After

stimulation and dedifferentiation of the pericycle founder cells, cell re-entry and

asymmetric cell divisions of pericycle derivatives produce a dome-shaped primor-

dium with a radial organization similar to that of the mature root tip (Dubrovsky

et al. 2000, 2001; Beeckman et al. 2001; Casimiro et al. 2001, reviewed in De Smet

et al. 2006; Osmont et al. 2007). Pericycle founder cells acquire a different

developmental fate during the first stages of lateral root initiation. In dicots, lateral

root founder cells are recruited from the pericycle cells adjacent to the xylem pole
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and formed from a minimum of three or six founder cells depending on longitudinal

unicellular or bicellular initiation (Dubrovsky et al. 2001). The subset of cells

associated with the xylem is strongly competent to initiate cell division contrary

to those associated to phloem, which remain quiescent. Indeed, xylem pole pericy-

cle cells, from which founder cells are recruited, carry cytological meristematic

features such as large nuclei, dense cytoplasm, and small vacuoles (Himanen et al.

2004; Parizot et al. 2008).

To gain insight into the specification process, de Smet et al. (2008) performed

live imaging on longitudinal pericycle cell files during lateral root initiation in

Arabidopsis. Time-lapse recordings revealed a repeated cell division pattern com-

posed of two successive rounds of asymmetric cell divisions, generating a central

core of four small cells and two larger flanking cells. To achieve this, the original

pericycle lateral root founder cells undergo an initial asymmetric division to

generate a smaller daughter cell and a larger flanking cell. The latter will undergo

another asymmetric division, resulting in a central core of small cells. Hereafter, the

process of anticlinal asymmetric cell divisions stops, and the two central cells

change their axis of division by 90� and divide periclinally. The flanking and the

adjacent undivided pericycle cells undergo few or no anticlinal divisions and will

only contribute modestly to the flanks of the primordium (Fukaki et al. 2007).

Potential factors involved in regulating asymmetric cell division pattern were

identified using transcript profiling on sorted pericycle cells undergoing lateral root

initiation (de Smet et al. 2008). Among them, the receptor-like kinase Arabidopsis
CRINKLY4 (ACR4) appears as a key factor both in promoting formative cell

divisions in the pericycle and in constraining the number of these divisions once

organogenesis has been started. ACR4 is transcribed specifically in the small

daughter cells after the first asymmetric pericycle cell division. ACR4 represses

supernumerary formative divisions of root cells, both in pericycle cells during

lateral root initiation and in the columella in the root apex. ACR4 signaling is

therefore a critical homeostatic mechanism in mediating formative divisions in

pluripotent root tissue during organogenesis and might act both cell- and non-cell

autonomously. Cell autonomously, ACR4 might be required for correct specifica-

tion of lateral root primordia cells whereas non-cell autonomously, ACR4 signaling

might prevent neighboring pericycle cells from becoming triggered for LR initia-

tion. Although specification of founder cells is a key event in postembryonic organ

formation, the mechanisms underlying this process are largely elusive. The restric-

tion of formative cell division to a few pericycle cells and the specification of stem

cell identity in the branching process in roots are not yet well understood.

Auxin promotes organ formation (Reinhardt et al. 2000, 2003; Tanaka et al.

2006), and locally increased levels of auxin response have been reported to mark

positions of organ initiation and distal tips of developing organ primordia (Benkova

et al. 2003; Heisler et al. 2005; Laskowski et al. 2006). LR initiation has since long

been considered to occur after re-entry of pericycle cells into the cell cycle from an

arrested G2 phase through the action of auxin (Blakely and Evans 1979; Laskowski

et al. 1995; Malamy and Benfey 1997). However, experimental evidence argues

against this dedifferentiation concept. Studies in young apical region of the
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Arabidopsis root, just above the elongation zone, emphasize the mitotic compe-

tency of the pericycle and counter the G2 re-entry hypothesis as most of the

pericycle remains in the G1 phase, with only the xylem pole pericycle cells

progressing from G1 to G2 phase (Beeckman et al. 2001). Correspondingly,

xylem pole pericycle cells continue to cycle without interruption after leaving the

root apical meristem (Dubrovsky et al. 2000). Taken together, these data question

the differentiated nature of pericycle cells and argue for the concept of a mono-

layered extended meristem. Nevertheless, new LRs can also initiate in more mature

parts of the root, between earlier ones, which necessitate therefore a dedifferentia-

tion and cell cycle re-entry for pericycle cells (Casimiro et al. 2003).

In Arabidopsis, the pericycle has been shown to have competence to divide due

to the constitutive expression of at least two core cell cycle genes, the cyclin-

dependent kinase CDKA;1 and the cyclin CYCA2;1 (Beeckman et al. 2001; Roudier

et al. 2003). Furthermore, pericycle cells continue to divide at the xylem pole, but

most of the divisions do not result in LR initiation and are purely proliferative.

Accordingly, based on the genetic and phenotypic characterization of the Arabi-
dopsis alf4-1 mutant (Celenza et al. 1995), which is not capable to initiate any LR.

DiDonato et al. (2004) have shown that ALF4 is required to maintain the pericycle

in a mitosis-competent state needed for LR formation. The competent state appears

to be a prerequisite for the very first asymmetric divisions, because no such

divisions and no mitotic cyclin CYCB1;1 expression are observed in the mutant.

Moreover, Himanen et al. (2002) reported that the KRP2 gene, encoding the CDK

inhibitor of the G1- to S-phase transition, is strongly expressed in non-dividing

protoxylem pericycle cells. Overexpression of KRP2 decreases the number of LRs

regulating negatively the cell cycle progression during pericycle reactivation. The

G1- to S- phase is therefore one of the targets for auxin-mediated LR initiation

(Himanen et al. 2002, 2004 , Vanneste et al. 2005).

Despite the importance of the cell cycle in LR initiation, increasing the mitotic

index in roots or forcing excessive cell divisions in the pericycle does not stimulate

LR initiation or morphogenesis (Vanneste et al. 2005; Wang et al. 2006). Lateral

root initiation takes place only when cell cycle activation is accompanied by cell

fate re-specification of pericycle cells triggered by auxin-induced degradation of the

SLR/IAA14 protein. Lateral root founder cell specification and patterned cell

division in the pericycle can be separated both temporally and genetically indicat-

ing that the primary event during LR primordium initiation may not be exclusively

an auxin-induced activation of the cell cycle (De Smet et al. 2006). Dubrovsky et al.

(2008) have shown that an increase in auxin levels and signaling in individual

pericycle cells always accompanies lateral root organogenesis, and that such

increases are sufficient for the acquisition of lateral root founder cell identity.

This process is not directly coupled to subsequent division of the founder cells, as

the specification event can be genetically separated from the patterned division

during primordium morphogenesis. The local accumulation of auxin in individual

xylem pericycle cells could result from either directed transport or local synthesis

and serves as a local instructive signal for cell fate reprogramming. This mechanism

of local auxin maxima can thus select given pericycle cells and convert them into
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founder cells, thereby determining a spatial pattern of lateral root formation. A

model whereby auxin serves as a morphogenetic trigger for LR initiation was

proposed (Dubrovsky et al. 2008). Interestingly, using the DR5::GUS auxin

reporter line, De Smet et al. (2007) have reported that an oscillating auxin response

maximum in the basal region of the meristem seems responsible for priming

pericycle cells for lateral root initiation suggesting that early events in the life of

a pericycle cell might affect its future competence for lateral root formation.

The polar auxin transport is required to form lateral roots as demonstrated with

mutants defective in polar auxin transport failing to produce lateral roots (Benkova

et al. 2003; Geldner et al. 2004). Roots use a transcellular auxin signaling network

designed to synchronize lateral root development and emergence processes. The

AUX/IAA-dependent repositioning of auxin efflux carriers toward the tip of the

newly formed LR is linked to an important change in the direction of auxin flow

favoring a LR growth perpendicular to the primary root (Benkova et al. 2003; Sauer

et al. 2006). The PIN and AUX/LAX (such as AUX1) classes of auxin transport

proteins have key roles in transmitting or localizing the inductive IAA signal,

respectively (Kramer 2004). Although PIN class of auxin efflux carrier expressed

by the lateral root facilitates the transmission of the inductive IAA signal, the ability

to localize the auxin response to cells directly overlaying lateral root primordia is

dependent on the auxin influx carrier LAX3 (Swarup et al. 2008). Auxin induces the

expression of LAX3 in cortical and epidermal cells directly overlaying new LR

primordia creating a positive-feedback loop. LAX3-expressing cells will become

more efficient sinks for auxin. LAX3 therefore functions to amplify the signal

emitted by the lateral root primordium tip while limiting its action to a few cells

in close proximity with this auxin source.

Hirota et al. (2007) reported that PUCHI acts downstream of auxin signaling and

contributes to lateral root morphogenesis through affecting the pattern of cell

divisions during the early stages of primordium development. Indeed, the expres-

sion of PUCHI is regulated by auxin through ARF transcription factors (TFs)

during the early stages of LRP development, in particular ARF7 and ARF19,
which are key regulators of LR initiation, whose activities are negatively regulated

by the IAA protein SLR/IAA14 (Fukaki et al. 2005; Okushima et al. 2005).

Moreover, ectopic expression of a stabilized mutant IAA14 protein in early LRPs

results in the formation of disorganized primordia, suggesting that the normal auxin

response mediated by Aux/IAA signaling is required for proper patterning of LRP

(Fukaki et al. 2005). Microarray analyses have indicated that the induction of

PUCHI expression by auxin does not occur in the slr-1 or arf7 arf19 mutant

background (Okushima et al. 2005; Vanneste et al. 2005). Although it is not

known whether the ARF7 and ARF19 proteins are involved not only in LR

initiation but also in subsequent morphogenesis of the LRP, it is possible that

PUCHI expression may be directly regulated by these ARF proteins. Alternatively,

expression of PUCHI may be regulated by other unknown ARF proteins that are

activated by auxin during early LRP development.

In addition to auxin, other hormone signals are important for LR emergence as

recently reviewed by Fukaki and Tasaka (2009). Lateral root growth is regulated
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antagonistically by auxin and cytokinin. Cytokinin is a negative regulator of LR

formation in many plant species, including Arabidopsis and Medicago (Werner

et al. 2003; Gonzalez-Rizzo et al. 2006; Li et al. 2006; Laplaze et al. 2007).

Cytokinin signaling is repressed in xylem-pole pericycle cells (Mahonen et al.

2006). Transactivation of the Arabidopsis cytokinin-degrading enzyme cytokinin

oxidase 1 in lateral root founder cells results in increased lateral root formation.

Laplaze et al. (2007) observed that cytokinins perturb the expression of PIN genes

in lateral root founder cells and prevent the formation of an auxin gradient that is

required to pattern lateral root primordia.

Ethylene has a stimulatory effect on adventitious root formation in many plant

species (Clark et al. 1999). Negi et al. (2008) reported that ethylene negatively

regulates Arabidopsis LR formation by altering auxin transport. This ethylene-

enhanced IAA transport depends on AUX1, an IAA influx carrier, because the

aux1-7 mutant is insensitive to ethylene as an enhancer of acropetal and basipetal

IAA transport, and thus for the inhibition of LR formation.

Abscisic acid (ABA) can reversibly block meristem activation post-emergence

by inhibiting the cell cycle gene expression necessary for meristem activity, leading

to LR growth arrest (De Smet et al. 2006). Interestingly, ABA appears to have the

opposite effect on LR emergence in legumes, stimulating LR formation in Medi-
cago (Liang and Harris 2005). TheMedicago latdmutant has a reduced root surface

area with short primary roots, arrested LRPs, and disorganized meristems (Bright

et al. 2005). However, exogenous application of ABA rescued at least partly the latd

phenotype, and latd mutants seem to be impaired in ABA perception or signaling

(Liang et al. 2007).

Lateral root formation is modified to optimize the growth of the root system in a

particular soil environment. LRP initiation and emergence are separable processes

providing therefore greater plasticity to the root system (Dubrovsky et al. 2006).

Cells in the parent root overlaying new lateral root primordia actively participate in

organ emergence. In several plant species, cells from root tissues overlaying new

primordia are recruited to form a temporary root cap that assists organ emergence

(Casimiro et al. 2003; Dubrovsky and Rost 2003; Ivanchenko et al. 2006). How-

ever, the principles that govern the longitudinal positioning and spacing of lateral

root primordia are not yet understood (Malamy 2005).

5.2.2 Symbiotic Interactions and Legume Root Architecture

Legume roots are capable to interact symbiotically with nitrogen-fixing soil bacteria

known as rhizobia, to form the so-called root nitrogen-fixing nodules. In this symbi-

osis, compatible rhizobia and plant partners recognize each other through the

exchange of chemical signals (Limpens and Bisseling 2003). Host plants produce

compounds acting as inducers of the bacterial nod genes, whose products are

involved in the synthesis and secretion of a specific rhizobial lipochitooligosaccharide

signal named the Nod factor. The Nod factor signal triggers a series of host

118 V. Gruber et al.



responses, culminating in the development of the root nodule, in which rhizobia

convert atmospheric nitrogen to nitrogen-containing compounds (Oldroyd and

Downie 2008). The signal perception by the host initiates epidermal infection

and stimulates the cortical cell divisions that give rise to the first cells of the new

root-derived organ. In Medicago truncatula and other temperate legumes, inner

cortical cells dedifferentiate and proliferate, whereas in Lotus japonicus and other

tropical legumes outer cortical cells are recruited (Stacey et al. 2006). Other bacte-

rial surface components, such as exopolysaccharides or lipopolysaccharides, are

also required for the elongation of infection threads and further stages of nodulation

(Jones et al. 2007).

Nodule initiation involves two primary processes: root infection and nodule

primordium induction. These processes occur predominantly in the developmen-

tally receptive zone-of-elongation in legume roots. Rhizobia gain entry into the root

tissues via plant-derived infection threads which route the bacteria toward the

developing primordium (Limpens and Bisseling 2003; Fournier et al. 2008). In

tropical-type nodules, the meristematic activity of the nodule occurs only at early

stages of organogenesis, leading to round-shaped nodules with determinate growth.

The meristem is transient, and all the primordia cells differentiate into mature

nitrogen-fixing nodule cells. In temperate legumes exhibiting indeterminate

nodules, Rhizobium-derived Nod factors stimulate pericycle, endodermal, and

inner cortical cells at proximal xylem poles to enter the cell cycle, divide, generate

new symplasmic connections with phloem cells in the stele, and form a primordium

containing pluripotent stem cells (Timmers et al. 1999; Complainville et al. 2003).

In this section, we will only discuss common mechanisms affecting LRs and

Rhizobium–legume interactions. Indeed, nodules and roots share many aspects of

their development consistent with the theory that nodulation may have evolved

from pre-existing mechanisms dealing with lateral root formation (Hirsch and

LaRue 1997; Mathesius et al. 2000; Mathesius 2003; Ferguson et al. 2005).

Symbiotic nodules and LRs form adjacent to xylem poles, develop meristems, and

emerge through various cell layers from the primary root. However, unlike LRs,

legume nodules lack a root cap and have a peripheral stem-like vasculature, rather

than the central vasculature of roots. In addition, nodule and LR primordia are formed

primarily from different tissues: the nodule from cortex and LRs from pericycle

(Oldroyd and Downie 2008). Nevertheless, pericycle cells are activated and divide

during nodule formation in M. truncatula (Timmers et al. 1999; Complainville et al.

2003), suggesting that the pericycle is at the origin of both organs. A further similarity

between nodule and lateral root development in legumes is the involvement of

cortical cells in the formation of lateral roots (Oldroyd and Downie 2008). Cortical

cells activated during lateral root formation can be induced to form nodule primordia

in mature regions of the root in white clover (Mathesius et al. 2000). Thus, the same

root tissue layers are involved in nodule and lateral root development in legumes, but

to different degrees. Differences in the ontogeny of lateral roots and indeterminate

nodules may be more quantitative than qualitative, with divisions of the inner

cortex providing the bulk of the nodule primordium, whereas predominantly pericy-

cle-derived cells compose the LR primordium. Indeed, roots treated with auxin
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transport inhibitors lead to the formation of nodule-like structures with some histo-

logical traits typical of lateral roots in alfalfa and pea (Hirsch et al. 1989; Scheres

et al. 1992).

Insight in the cellular origin of nodule and LR has been obtained through genetic

approaches. In the homeotic mutant cochleata of Pisum sativum, hybrid structures

between nodules and roots are formed. The organs start as nodule, but once the

meristem is formed (characteristic of indeterminate nodules), this meristem turns

into a lateral root. These cochleata nodules appeared functional (able to fix nitro-

gen) and contained a root cap, a LR-like meristem, with the peripheral vasculature

leading to a central vasculature and root hairs, similar to a LR (Ferguson and Reid

2005). These pea mutants are also deficient in gibberellins (GAs) and the reduction

in lateral root and nodule formation could be complemented by exogenous applica-

tion of GAs, suggesting therefore a role for GAs in both type of legume root-derived

organogeneses (Ferguson et al. 2005). The existence of intermediate lateral organs

known as root nodule hybrids in certain legumes or following inoculation with

specific Rhizobium strains further supports the fact that nodule formation evolved

from developmental pathways activated during lateral root formation (Ferraioli

et al. 2004). However, these root nodule hybrids differed morphologically from

those typically detected in the cochleata mutant, as the nodule zonation pattern and

multiple root, nodule and callus structures characteristic of cochleata hybrids were

not observed. In bean, ectopic roots from abortive nodule primordia develop after

infection with different Rhizobium etli mutants called “root inducer” (RIND)

affected in different anabolic pathways (Ferraioli et al. 2004). These mutants

induced a wild-type early sequence of morphogenetics events, including root hair

deformation and nodule primordia development. Later on, however, from the

resulting root outgrowths, instead of nodules, one or more ectopic roots (spaced

closely related and agravitropic) emerged.

The identification of common genes involved in both types of root-derived

organogenesis revealed common regulatory pathways. One example reported by

Wopereis et al. (2000) is the HAR1 (for hypernodulation aberrant root formation)

gene of Lotus japonicus which is involved in the regulation of lateral root and

nodulation numbers and is a shoot-derived trait. This gene codes for a Clavata

receptor-like kinase involved in the regulation of meristem number and nitrate

regulation (Oldroyd and Downie 2008). In addition, analysis of the latd (for lateral

root organ defective) mutant revealed that the LATD gene is required for both lateral

root and nodule development, as well as for maintenance of the primary root

meristem. The latd mutant plants initiate LRs and nodule formation but do not

complete their development resulting in immature, non-nitrogen-fixing nodules and

short bump-like LRs. LATD provides therefore a strong evidence for shared genetic

components between nodule and LRs (Bright et al. 2005). Exogenous ABA rescues

not only meristem organization of latd primary and lateral roots but also meristem

function, restoring cell division and local inhibition of differentiation (Liang et al.

2007). This suggests a direct role for ABA in meristem function and organization in

legume roots as well as in a later step of nodule formation. Secondary root organo-

genesis has also been shown to be controlled by a cytokinin receptor homolog,
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MtCRE1 (Gonzalez-Rizzo et al. 2006). Down-regulation of MtCRE1 leads to cyto-

kinin-insensitive roots, which show an increased number of LRs and a strong

reduction in nodulation, supporting interactions between lateral root and nodulation

pathways. This suggests a cross-talk between cytokinin signaling pathways and

development of root lateral organs in legumes (Frugier et al. 2008). Further evidences

for cross-talk between symbiotic nodule and LR developmental pathways have been

obtained through the identification of genes, such as the AUX1-like genes MtLAX1,
MtLAX2 (de Billy et al. 2001),MtANN1 (De Carvalho-Niebel et al. 2002),Medicago
sativa cyclinA2;2 (Roudier et al. 2003), and the early nodulin (enod) genesENOD11,
ENOD12, and ENOD40, that are highly expressed in both developing nodules and

LRs (Stacey et al. 2006). For example, during LR and nodule development, the

MtLAX genes are expressed in the primordia, particularly in cells that are probably

derived from the pericycle. At slightly later stages, these genes are expressed in the

regions of the developing organs where the vasculature arises consistent with the

involvement of MtLAX genes in local auxin transport. Auxin seems required at two

common stages of lateral root and nodule development: formation of the primordia

and differentiation of the vasculature (de Billy et al 2001; Mathesius 2008). Finally,

the discovery of microRNAs (miRNAs) as post-transcriptional regulators of many

developmental processes, including the formation of vascular tissues (Voinnet 2009),

suggested a possible involvement in legume root architecture. Recently, overexpres-

sion of MtMIR166 in M. truncatula was shown to perturb the organization of root

vascular bundles and increased the number of xylem and phloem poles in roots. This

consequently reduced the number of symbiotic nodules and lateral roots generated

from these roots (Boualem et al. 2008) and was linked toMtMIR166-mediated post-

transcriptional regulation of several HD-ZIP III genes in roots and nodules.
Both symbiotic interactions and soil environmental stresses can profoundly

affect the growth and development of the root and influence the final architecture

of the root system.

5.3 Plasticity: How the Action of the Environment

on the Regulation of Gene Expression Affects

Root Growth and Development

Plants are exposed to a plethora of stress conditions throughout their life cycle. The

two major environmental constraints that currently reduce plant productivity are

drought and salinity. More than 10% of arable land is affected with desertification

and salinization rapidly increasing on a global scale the decline of average yields

for most major crop plants (Bray et al. 2000; Botella et al. 2005). Exposure to both

stresses triggers many common reactions in plants including cellular dehydration

and removal of water from the cytoplasm into the extracellular space resulting in a

reduction of the cytosolic and vacuolar volumes (Verslues et al. 2006). Plants have

evolved complex cell signaling pathways activating metabolic functions and devel-

opmental switches to permit their adaptation to these conditions (Shao et al. 2006;

Umezawa et al. 2006; Yamaguchi-Shinozaki and Shinozaki 2006; Sreenivasulu
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et al. 2007). The regulatory circuits include stress sensors, signaling pathways

comprising a network of protein–protein interactions, TFs and promoters, and

finally the output proteins or metabolites. A critical step controlling stress responses

involves thus transcriptional regulation, generally mediated by TFs that may govern

and coordinate the expression of large groups of genes. Plant genomes dedicate a

large number of their coding sequences to TFs reaching about 5.9% (>1,500 TF

genes) in the fully sequenced Arabidopsis genome (Riechmann et al. 2000). In
legumes, extensive sequencing highlighted around 2,000 TFs per genome, less than

1% of them genetically characterized (Udvardi et al. 2007).

Roots are in direct contact with the soil and hence are primary sites for percep-

tion of the soil environment. Abiotic stresses have the ability to elicit morphologi-

cal, structural, and physiological responses to an unfavorable environment in root

growth in order to maximize the acquisition of resources, a property linked to the

so-called root developmental plasticity (Lynch and Ho 2005). TF networks are

known to control root cell identity during development and adaptation to abiotic

stresses also in roots (Montiel et al. 2004; Nibau et al. 2008). The development of

genomic resources and information for model species as Arabidopsis thaliana,
Medicago truncatula, and Lotus japonicus increased considerably the analysis of

TF gene expression on a global genome-wide scale based on their regulation in

response to abiotic stresses (Chen and Zhu 2004; Maggio et al. 2006; Tuteja 2007),

including available publicly databases (e.g., Genevestigator, Ma et al. 2006).

In fact, microarray studies revealed large-scale changes in the transcriptome in

response to specific abiotic stresses (Kreps et al. 2002; Seki et al. 2002; Jiang and

Deyholos 2006; Dinneny et al. 2008). In the model legume M. truncatula, micro-

arrays covering 16,000 genes revealed more than hundred TF genes responding to

early salt stress in root apexes (Gruber et al. 2009). In chickpea, the application of

SuperSAGE (Serial Analysis of Gene Expression) technology to profile transcripts

of drought- and salt-stressed roots from chickpea identified TF genes exclusively

expressed under both stresses, but not in non-stressed controls (Molina et al. 2008).

Several reports have shown a role of TFs as major modulators of stress responses

as salt and drought, in roots. Although theWRKY-type TFs are involved in multiple

abiotic stress responses, the expression of GmWRKY13 in transgenic plants showed

a higher sensitivity to salt and mannitol stress as well as an increase in LRs when

compared to wild-type plants (Zhou et al. 2008). In contrast, GmWRKY54 confers

salt and drought tolerances possibly through the regulation of TFs like DREB 2A
(drought-responsive element binding factor 2A) and STZ/Zat10 (Yamaguchi-

Shinozaki and Shinozaki 2005). Hence, GmWRKY genes play differential roles in

abiotic stress tolerance, and GmWRKY13may function in both lateral root develop-

ment and abiotic stress responses. In addition, a subclass of APETALA2 (AP2) –

and ethylene-responsive element-binding protein – type TFs, such as DREB2A,
expressed in all root cell layers under salt stress conditions controls semi-ubiquitous

responses to abiotic stresses (Sakuma et al. 2006). Potential direct targets

of DREB2A up-regulated by salt have been identified. Another AP2/ERF-like
(APETALA 2/Ethylene Responsive Factor-like) transcription factor identified via

a gain-of-function Arabidopsis mutant hrd-D is the HRD gene. Overexpression of
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this gene improves water use efficiency, drought resistance, and salt tolerance.

This mutant has roots showing enhanced strength, increased branching patterns,

and more cortical cells, accompanied by increased expression of abiotic stress-

associated genes (Karaba et al. 2007). Tolerance to salinity and osmotic stress is

also observed in transgenic tobacco expressing CAP2 (C. arietinum AP2), possibly

because of a large increase of the root system and LRs (Shukla et al. 2006). In

legumes, overexpression of MtZPT2-1 TF genes, linked to recovery processes in

transgenic Medicago roots, allows growth under restrictive salt stress conditions

(Merchan et al. 2007; de Lorenzo et al. 2007). This gene may activate specific

genetic programs linked to the adaptation of legume roots to salt stress. A vascular-

specific bZIP (basic region/leucine ZIPper motif), representing a novel root-specific

transcription factor, is also involved in coordinating gene expression in response to

water-deficit stress in Phaseolus species (Rodriguez-Uribe and O’Connell 2006).

Endogenous phytohormones and regulatory genes sensing the soil environment

may interact to adapt root architecture (Jovanovic et al. 2007). For example,

repressing auxin-induced responses together with enhancement of cytokinin sensi-

tivity may have profound effects on recovery responses after salt stress by limiting

primary root growth, controlling the emergence of lateral roots or the root apical

dominance (Malamy 2005; Aloni et al. 2006; Merchan et al. 2007; Ditengou et al.

2008; Huang et al. 2008; Wolters and J€urgens 2009). A cross-talk between phyto-

hormone signaling and stress responses in roots was observed for the AtNAC2 TF

(He et al. 2005). It is up-regulated by salt stress and its overexpression in transgenic

Arabidopsis plants results in increased LR formation. This gene is also up-regulated

by ethylene, auxin, and ABA, and its induction by salt is compromised in auxin and

ethylene signaling mutants. On the other hand, the enhanced drought tolerance

conferred by MYB15 overexpression in Arabidopsis seems to be associated to

increased ABA biosynthesis and signaling, which results in greater expression of

several stress-responsive genes and lower water consumption (Ding et al. 2009). In

addition, overexpression of DREB1/CBF also increases the tolerance of transgenic

plants to freezing, drought, and salt stresses (Shinozaki and Yamaguchi-Shinozaki

2000; Sakuma et al. 2002; Fujita et al. 2005) and regulates ABA-independent gene

expression in response to drought and cold stress. Abscisic acid and drought stress

have similar and probably synergistic effects on LR development. Several drought
inhibition of lateral root growth (dig) mutants have enhanced responses to ABA

and are also drought tolerant, whilst others have a reduced LR-inhibition response

to ABA and are drought sensitive (Xiong et al. 2006).

5.3.1 Spatial Control and Transcriptional Complexity
in Response to Stress

Knowledge about responses to abiotic stresses of model plants, such as Arabidopsis
and Medicago, has accumulated during the past decade, based on large-scale

mutant analyses and genome-wide transcript profiles at organ or tissue levels.
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These approaches give unrefined localization of gene expression and a few data are

available to correlate stress-related transcript changes and cell-specific gene expres-

sion in an organ.

Ma and Bohnert (2007) analyzed tissue-specific response to stress by integrating

diverse large-scale datasets in which cell type-specific and growth stage-specific

gene expression in Arabidopsis roots was recorded. They combined three types of

data analyzing genome-wide expression profiles modulated by a number of stress

conditions, regulatory cis-elements in promoters, and cell-specific and develop-

mental age-specific root transcripts and their reaction to stress. Among the probes

printed on the Affymetrix chip, 12,360 are considered to be present in at least one of

the three developmental stages of the root: the root expansion growth region (stage 1),

the region of maximum elongation (stage 2), and the root maturation region

(stage 3) also dissected in different cell lineages (lateral root cap, epidermis, cortex,

endodermis, and stele). Among these genes expressed in roots, 5,963 exhibit

statistically significant changes in gene expression during stress. Root-specific

genes down-regulated by abiotic stress are highly expressed in stage 1 root cap

and epidermis under optimal conditions, whereas other genes up-regulated by stress

are expressed in the stage 3 stele, endodermis, and cortex. Thus, complex regulatory

mechanisms can be dissected through intersections of stress-responsive and cell-

specific profiles to identify how cell files are affected by abiotic stresses. Recently,

Dinneny et al. (2008) characterized the transcriptional response to high salinity of

different cell layers and developmental stages of the Arabidopsis root, showing a

highly constraint of transcriptional responses by developmental parameters. Several

tissues tend to be highly responsive as 48% of salt-responsive genes are regulated in

the cortex, 28% in the stele, and 31% in the epidermis. The transcriptional changes

lead to the differential regulation of specific biological functions in subsets of cell

layers which, for certain cases, could be correlated with observable physiological

changes. Known stress pathways primarily control semi-ubiquitous responses, and

mutants disrupting epidermal patterning were used to reveal cell layer-specific and

inter-cellular effects.

Amajor finding arising from these reports is that cell identity determines the gene

pool that is regulated during stress, as reflected by the high degree of cell specificity

in functional gene categories. This specificity requires maintenance of cell fate

during stress, which is probably ensured by a transcript cohort enriched in cell-

identity genes that remains unaffected by environmental stress (Laurentius et al.

2008). Environmental stimuli combinedwith cell- and developmental-stage-specific

profiling enable the identification of high-confidence transcriptional modules.

5.3.2 Establishing Regulatory Networks: TFs and MicroRNAs

Even though TFs are central in the regulation of development and stress responses,

post-transcriptional events regulated by miRNAs, e.g., mRNA degradation or

translational inhibition, have also emerged as playing crucial roles in regulating
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gene expression (Sunkar et al. 2007; Voinnet 2009). The interaction of miRNAs

and TFs may determine regulatory networks controlling the transcriptome, and

examples have been found to affect root developmental and stress responses.

Lateral root emergence is promoted by auxin signals transmitted by the NAC1
TF (Xie et al. 2000). To study the regulation of the target NAC1mRNA by miR164,

Guo et al. (2005) manipulated miR164 levels or expressed a miRNA cleavage-

resistant version of NAC1 mRNA in plants. Apparently, miR164 functions as a

negative regulator of auxin-mediated lateral root development by controlling NAC1
mRNA levels and is induced by auxin. This suggests that miR164 mediates the

rapid degradation of NAC1 mRNA to attenuate and terminate auxin signaling. In

addition, disrupting miR160 regulation of ARF17 (Auxine response factor 17)

increases the target ARF17 mRNA levels and leads to severe developmental

abnormalities, including root defects (Mallory et al. 2005). This indicates a critical

role of miR160-directed regulation of ARF17 which seems a transcriptional regu-

lator of GH3-like early auxin-response genes. The Arabidopsis auxin response

factors ARF10 and ARF16 are also targeted by the miR160 and control root cap

cell formation promoting columella cell production (Wang et al. 2005). Indeed,

MIR160 overexpressing plants, in which the expression of ARF10 and ARF16 is

repressed, and the arf10-2 arf16-2 double mutants display the same root tip defect.

They show uncontrolled cell division and blocked cell differentiation in the root

distal region, a tumor-like root apex and loss of gravity sensing. Moreover, auxin

and miR160 regulate the expression of ARF10 and ARF16 genes independently,

generating a pattern consistent with root cap development. Recently, Gifford et al.

(2008) report cell-specific data revealing responses that suggest a coordinated cell-

specific regulation of a transcriptional circuit mediating LR outgrowth in response

to nitrogen via microRNA167 targeting ARF8, one of the pericycle-induced ARFs.
The miR167a, b is expressed specifically in the pericycle and LR cap along with

ARF8, but, consistent with an antagonist effect on ARF8, is repressed in both tissues
in response to nitrogen. Thus, ARF8 offers a link between environmental nutritional

inputs and auxin-mediated plasticity of lateral root architecture. In Medicago, we
mentioned that MIR166 targets a subset of class-III homeodomain–leucine zipper

(HD-ZIP III) TF to regulate LR and root nodule formation (Boualem et al. 2008) as

well as affect vascular bundle patterning. Furthermore, Combier et al. (2006)

showed that miR169-mediated regulation of Medicago MtHAP2-1 expression

leads to a critical spatial and temporal restriction of this TF to the nodule meriste-

matic zone, thereby allowing correct tissue identity and transition from meriste-

matic to differentiated cells.

5.4 Conclusions

The molecular mechanisms controlling root architecture are being unraveled using

a variety of approaches combining physiology, genomics, and genetics. Major

questions remain to understand how these mechanisms interact with the soil stress
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conditions, and the advent of genomic technologies may open new perspectives for

the analysis of how roots adapt to the soil environment. This work, mainly done in

model systems such as Arabidopsis and M. truncatula, uncover diverse regulatory
genes, notably TFs that participate in abiotic stress responses and genetic programs

regulating root growth and architecture. Integration of these data with genomic

approaches on different genetic backgrounds will reveal critical regulatory net-

works and molecular hubs, whose orthologs could then be analyzed in crop plants to

establish the generality of these mechanisms and impact agricultural practices.
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Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T (2005) Cell cycle progression in the

pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in

Arabidopsis thaliana. Plant Cell 17:3035–3050
Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K (2006) Methods and concepts in

quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water

status. Plant J 45:523–539

5 Impact of the Environment on Root Architecture in Dicotyledoneous Plants 131



Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation

by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216
Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K (2006) Overexpression of RAN1 in

rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin.

Plant Physiol 140:91–101

Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-

deficient transgenic Arabidopsis plants show multiple developmental alterations indicating

opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant

Cell 15:2532–2550

Wolters H, J€urgens G (2009) Survival of the flexible: hormonal growth control and adaptation in

plant development. Nat Rev Genet 10:305–317

Wopereis J, Pajuelo E, Dazzo FB, Jiang Q, Gresshoff PM, De Bruijn FJ, Stougaard J,

Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered

symbiotic phenotype. Plant J 23:97–114

Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal down-

stream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants

by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol

142:1065–1074

Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in

osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular

responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY

(2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and

GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.
Plant Biotechnol J 6:486–503

132 V. Gruber et al.



Chapter 6

Mechanisms of Aluminum Tolerance

Owen A. Hoekenga and Jurandir V. Magalhaes

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1.1 Scope of Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1.2 Brief Overview of Al Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Al Exclusion by Organic Acid Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.1 Mediated by Malate and ALMT1-Type Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.2 Mediated by Citrate and AltSB-Type Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.3 Mediated by Oxalate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Al Exclusion by Non-organic Acid Dependent Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Al Exclusion Mediated by Other Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.2 Mediated by pH Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Internal Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4.1 Internal Chelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4.2 Reactive Oxygen Species Scavenging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4.3 Lipid Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.4 Cell Wall Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

O.A. Hoekenga (*)

Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural

Research Service, Ithaca, NY 14853, USA

e-mail: Owen.Hoekenga@ars.usda.gov

J.V. Magalhaes

Embrapa Maize and Sorghum, Rod. MG 424 Km 65, 35701-970 Sete Lagoas, Minas Gerais, Brazil

e-mail: jurandir@cnpms.embrapa.br

A. Costa de Oliveira and R.K. Varshney (eds.), Root Genomics,
DOI 10.1007/978-3-540-85546-0_6, # Springer-Verlag Berlin Heidelberg 2011

133



6.1 Introduction

6.1.1 Scope of Problem

The Food and Agriculture Organization (FAO) of the United Nations regards Al

toxicity as the second largest soil constraint to agriculture, after erosion hazard and

affects 14.7% of the world’s land area (Bot et al. 2000). In comparison, salinity and

sodicity each affects ~3% of the world’s land area. Al toxicity is the leading soil

constraint to agricultural production in Sub-Saharan Africa, Asia, Oceania, Central

and South America and the second largest limitation for North American agricul-

ture (Bot et al. 2000). Nearly one-third of the countries enumerated in a recent FAO

survey exhibit Al toxicity on 25% or more of their area (54/166 countries; Bot et al.

2000). Al toxicity exists at soil pH < 5.5, at which point rhizotoxic Al cations are

solubilized from non-toxic aluminosilicates and other minerals (Kochian 1995;

Kochian et al. 2004). While inhibition of root growth and function are early

consequences to Al intoxication, increased susceptibility to other stressors and

overall diminishment of yield are the latter consequences. For example, Brazil,

Argentina, and Colombia are the three largest maize producers in South America.

Brazil and Colombia have extensive land area with Al toxicity (63, 56%, respec-

tively) while Argentina has essentially no Al-intoxicated soils (Bot et al. 2000).

The 3-year (2004–2006) average maize yields in Colombia were one-third those

obtained in Argentina, while Brazil were approximately one-half (NASS 2007).

Without the Al stress limitation, significantly higher yields could be achieved on the

same arable land, which would promote food security, economic development, and

environmental preservation.

6.1.2 Brief Overview of Al Tolerance

Al rhizotoxicity occurs when Al cations reach vulnerable portions of the root,

without being detoxified. Al chelation is a common detoxification and can occur

outside (Al exclusion) or inside (internal chelation) the root. Al exclusion is the best

understood family of tolerance processes and may rely upon malate, citrate, or other

small molecules to chelate the Al. Several genes have been identified as major Al

tolerance genes in the malate and citrate pathways, while other Al exclusion path-

ways are less well defined. Al exclusion by chelation requires detection of Al,

synthesis and transport of ligands out of the root. The Al tolerance genes identified

to date fall into the third (transport) category. Al uptake into the root is nearly

unavoidable; plants have mechanisms for internal tolerance to Al stress. Internal

tolerance may result from intracellular chelation of Al, reactive oxygen species

(ROS) scavenging, modifications to lipid or cell wall synthesis, or other unknown

mechanisms.
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Our goals for this review are to update recent progress in understanding the

molecular processes that underlie the mechanisms of Al tolerance. We have placed

emphasis on mechanisms where genes have been identified and confirmed to be

important for Al tolerance and devoted less space to the less clearly defined

mechanisms. We apologize in advance for any omission.

6.2 Al Exclusion by Organic Acid Release

6.2.1 Mediated by Malate and ALMT1-Type Transporters

6.2.1.1 Contributions from Wheat

Many discoveries in Al tolerance research were made in wheat, for both physiolog-

ical mechanisms and their underlying molecular components. The first Al tolerance

gene cloned from any species was the Al activated malate transporter (hereafter
referred to as TaALMT1) (Sasaki et al. 2004). This was accomplished via subtrac-

tive cDNA library sequencing performed on the ET8 and ES8 near isogenic lines,

which differ at the Alt1 locus found on the long arm of chromosome 4D (Delhaize

et al. 1993; Sasaki et al. 2004). TaALMT1 identifies a gene family with members in

Arabidopsis, rice, and many other plants (Sasaki et al. 2004). The most striking

polymorphism between wheat alleles is at the level of gene expression, where

the tolerant ET8 line had much higher levels of expression for TaALMT1 than

the sensitive ES8 (Sasaki et al. 2004). Biophysical analysis demonstrated that the

TaALMT1 protein responds to the presence of extracellular Al and is located within
the plasma membrane, consistent with the identification as an Al tolerance gene

(Sasaki et al. 2004; Yamaguchi et al. 2005).

Physiological analysis of a collection of wheat cultivars demonstrated that the

majority of differences in Al tolerance could be explained by the quantity of malate

released (Ryan et al. 1995). The strongly positive correlation suggested that genetic

differences in Al tolerance were concentrated within a single major tolerance

mechanism (r2 ¼ 0.84, malate efflux to relative root growth) (Ryan et al. 1995).

Subsequent molecular analyses of wheat germplasm collections have reinforced the

physiological observation; expression of the TaALMT1 gene is highly correlated

with both malate release and overall Al tolerance (Raman et al. 2005). Sequence

analysis of the TaALMT1 promoter region has revealed large structural differences

between tolerant and sensitive cultivars, with six clear haplotypes emerging within

cultivars that represent a wide range of Al tolerance (Sasaki et al. 2006; Raman

et al. 2007). These studies have reaffirmed the relationship between malate release

and Al tolerance, as estimated by relative root growth (r2 ¼ 0.88, 0.81 for Sasaki

et al. 2006 and Raman et al. 2007, respectively). The importance for any of the

motifs within the promoter haplotypes is not yet clear, but it has been hypothesized

that one or more motifs found in promoters with low expression have increased in
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copy number and rearranged to derive stronger promoters (Delhaize et al. 2007).

This hypothesis is intriguing due to similarity with observations made at the AltSB
locus in Sorghum (see Sect. 6.2.2 below), but obviously requires additional experi-

mentation. While TaALMT1 expression is an important determinant for overall Al

tolerance, it is not the only one; gene expression differences explain one-half or less

of the differences in tolerance observed (Sasaki et al. 2006; Raman et al. 2007).

Multiple lines of genetic evidence support the observation that other factors

beyond TaALMT1 contribute to Al tolerance. First, analysis of the chromosomal

arm deletion stocks in the Chinese Spring background (ditelosomic chromosomes)

indicated that the loss of three different regions compromised Al tolerance

(Papernik et al. 2001). The loss of chromosome 4DL gave reduced root growth,

malate release, and increased Al accumulation in the root apex; this is easily

explained by the loss of TaALMT1 (Papernik et al. 2001). However, the loss of

the short arms of 5A and 7A also reduce Al tolerance by the same metrics, although

not as severely as losing 4DL (Papernik et al. 2001). Thus, at least three factors

contribute to Al-activated malate release in the Chinese Spring background. Sec-

ond, incomplete transfer of Al tolerance from Altas66 into a Chisholm background

(Chisholm-T) illustrates that multiple loci are important for the high degree of

tolerance observed in Atlas66 (Tang et al. 2002). Malate release in Chisholm-T was

approximately half that observed in Atlas66, where the Chisholm-T derivative

carries the Atlas66 allele of TaALMT1 (Tang et al. 2002; Guo et al. 2007a). The

Chisholm-T line has higher TaALMT1 expression than that seen in the sensitive

sister near isogenic line (Guo et al. 2007b). RT-PCR or other methods were not used

to make the direct comparison between Atlas66 and the Chisholm derivatives, and

so it is difficult to assess which degree cis-acting and trans-acting factors play to

determine TaALMT1 expression. However, it is clear that at least two loci are

important for determining the differences in tolerance observed between Atlas66

and Chisholm. Third, while TaALMT1 represents a major effect QTL in multiple

mapping populations, it does not explain all of the variance observed (Raman et al.

2005). Five doubled haploid populations were evaluated for Al tolerance; markers

within or tightly linked to TaALMT1 explained 75–93% of the variance in the trait

(Raman et al. 2005). Genome-wide marker scans were not conducted to locate the

other, minor QTL that contribute to the remainder of the genetic variance; the

authors mention the possible contributions from chromosomes 5AS and 7AS as

possible locations for minor QTL. However, the heritability of Al tolerance for

these mapping populations was not reported, the component of variance due to

genetic factors; it is possible that the heritability of Al tolerance is sufficiently low

that TaALMT1 explains all of the genetically determined differences in Al tolerance

by itself.

Other determinants for Al tolerance in wheat may include protein kinases or

phosphatases. Reversible protein phosphorylation is a common mechanism for

regulating protein activity and is known to be a point of control for many abiotic

stress responses, including salt, water, and cold stresses (Liu et al. 2000; Zhu 2001).

Malate release in wheat is Al activated, while TaALMT1 gene expression is not

(Sasaki et al. 2004; Raman et al. 2005). This indicates that much of the regulation
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for malate release occurs at the protein level. Short pretreatment (30 min) of wheat

seedlings with the protein kinase inhibitors K-252a and staurosporine significantly

reduced malate efflux after Al challenge, while KN-62, calphostin C, and chelery-

thrine pretreatments had no effect (Osawa and Matsumoto 2001). Of the protein

phosphatase inhibitors tested, only okadaic acid had an effect. Okadaic acid and

staurosporine reduced malate release 30–40% while K-252a essentially abolished

malate release from treated seedlings (Osawa and Matsumoto 2001). Perhaps the

loci found on chromosomes 5AS or 7AS represent these pharmacologically sensi-

tive factors. It is clear that reversible phosphorylation plays a role in the perception

of Al, the first step in the Al-activated organic acid release pathway.

From a basic biology perspective, it is clear that Al tolerance research has made

great gains in wheat. From the applied biology perspective, two studies are espe-

cially noteworthy. First, as TaALMT1 represents a major Al tolerance QTL, having

genotypic information for this locus can allow marker-assisted breeding for Al

tolerance. This substitution of low-cost molecular genotyping for field-based phe-

notyping dramatically accelerates the pace of crop improvement. As a result of

germplasm surveys and the concomitant DNA sequence analyses, haplotype-specific

DNA markers have been generated for elite TaALMT1 alleles to support marker-

assisted breeding (Raman et al. 2007). This should permit the rapid movement of

highly tolerant alleles into elite varieties. Second, TaALMT1 can be utilized for

transgenic crop improvement purposes for species with little variation in Al toler-

ance. Barley is among the most Al-sensitive economically important cereals; while

variation does exist for Al tolerance between barley varieties, it does not provide

adequate protection against Al toxicity (Tang et al. 2000). The introduction of

TaALMT1 into barley resulted in dramatic enhancement of Al tolerance (Delhaize

et al. 2004). Where 2 mM Al concentrations inhibited root growth 50% for non-

transgenic controls and azygous sibling lines grown in hydroponic culture, 40 mMAl

was required to achieve the same level of inhibition for transgenic barley (Delhaize

et al. 2004). Similar results were also observed for soil-grown plants, although the

efficacy of these transgenic events is yet to be evaluated under field conditions.

6.2.1.2 Contributions from Arabidopsis

Arabidopsis thaliana does not possess a great degree of Al tolerance, unlike wheat

(Larsen et al. 1996). However, Arabidopsis is an excellent model system for

molecular genetic and physiological genomic analyses of Al tolerance. What

tolerance exists in Arabidopsis is largely due to Al-activated malate release and

both plants share at least one homologous protein (Hoekenga et al. 2003; Hoekenga

et al. 2006). The existence of a well-annotated and mutagenized genome with the

multitude of other genomics-based resources makes study in Arabidopsis highly

complementary to study in wheat.

TaALMT1 defines a gene family in Arabidopsis with more than a dozen

members (Hoekenga et al. 2006). Of these Arabidopsis, ALMT-like genes (hereafter
AtALMT), AtALMT8 is the most similar. The gene family has a diverse pattern of
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gene expression according to publicly available gene expression databases, where

multiple AtALMT are expressed in essentially every tissue tested (Meyers et al.

2004; Kilian et al. 2007). However, mutant analysis indicates that only AtALMT1 is
essential for Al tolerance responses (Hoekenga et al. 2006). An AtALMT1 knockout
mutant lacks Al-activated malate release, but is capable of releasing malate under

low pH/phosphate deficiency stress conditions indicating that a second AtALMT
is likely active under those conditions (Hoekenga et al. 2006). A third locus,

AtALMT9, encodes a vacuolar malate transporter, expressed in nearly every cell

of the plant (Kovermann et al. 2007). AtALMT9 has a small biophysical response to

applied Al as measured when heterologous expressed in oocytes, suggesting that

related AtALMT proteins share multiple aspects of functionality (Kovermann et al.

2007). Thus, there is clear functional specialization for members of the AtALMT
family, even if the role for only two members has been identified.

Organic acid release in response to Al stress can be classified as immediate

(pattern I) or inducible (pattern II) (Ma et al. 2001). Wheat represents a pattern I

style organic acid release; this is consistent with the constitutive expression for the

TaALMT1 gene with responsiveness to Al coming at the protein level (Sasaki et al.

2004). Arabidopsis represents a pattern II style plant; this is consistent with the

AtALMT1 gene being strongly induced by Al stress, while also responding at

the protein level (Hoekenga et al. 2006). Protein phosphorylation is involved in

AtALMT1 regulation as it is for TaALMT1 (Kobayashi et al. 2007b). The protein

kinase inhibitor K-252a eliminates Al-activated malate release in Arabidopsis, much

like that seen in wheat. AtALMT1 gene expression is still enhanced by Al with

K-252a co-treatment, suggesting that this drug acts at the protein level to restrict

malate release (Kobayashi et al. 2007b). Unlike wheat, staurosporine (a kinase

inhibitor) and calyculin A (a phosphatase inhibitor) also reduce malate efflux in

Al-treated Arabidopsis; AtALMT1 gene expression does not increase with either of

these drugs, suggesting that reversible phosphorylation acts at both the transcrip-

tional and post-transcriptional level to regulate AtALMT1 (Kobayashi et al. 2007b).

Reversible phosphorylation is also important for inactivating AtALMT1. Reversal
experiments, moving plants from Al-containing media to Al-free solutions, indicate

that malate efflux can rapidly be inactivated in Arabidopsis (Kobayashi et al. 2007b).
Co-treatment with calyculin A prevents the inactivation of AtALMT1; malate release

rates remain high as in Al-treated plants (Kobayashi et al. 2007b). It would be

intriguing to see if TaALMT1 also requires protein phosphatases for inactivation of

transport function. No protein kinases or phosphatases are known to be involved in

AtALMT1 regulation. However, gene expression forWAK1, a wall-associated protein
kinase is rapidly induced (20 min) by Al treatment. Over-expression of this kinase

can also modestly increase Al tolerance in transgenic Arabidopsis, but a direct

connection to AtALMT1 is yet to be determined (Sivaguru et al. 2003).

Low pH stress and several other toxic metals can induce AtALMT1 gene expres-
sion to a small degree (5–20%) compared to Al. However, these treatments do

not activate AtALMT1, which speaks to the specificity of the Al stress response

(Kobayashi et al. 2007b). One can imagine commonality of rhizotoxicity between

Al and erbium or lanthanum; however, genetic analysis indicates that the tolerance
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processes are distinct (Kobayashi et al. 2007a). Low pH and Al stress responses

have some degree of overlap, which is not unexpected as Al toxicity is largely

predicated by low pH. Proton and Al tolerance can be genetically and experimen-

tally separated (Ikka et al. 2007; Iuchi et al. 2007). This lack of concordance

between proton and Al stress tolerance was made several years ago in maize, and

the identification of STOP1 in Arabidopsis gives hints to the underlying molecular

mechanisms (Poschenrieder et al. 1995; Iuchi et al. 2007). STOP1 represents a

transcription factor required for proton stress tolerance responses; AtALMT1
expression requires the presence of STOP1 (Iuchi et al. 2007). The STOP1 null

mutant is hypersensitive to proton stress, but is also susceptible to Al toxicity at

doses that do not affect the growth of wild-type plants (Iuchi et al. 2007). It is not

yet clear whether STOP1 activates AtALMT1 transcription directly or indirectly

(e.g., acting at an earlier regulatory level), but this discovery is intriguing in the

light of the number of economically important plants that can be classified in

pattern II organic acid release. As ALMT1-like genes are shared between monocots

and dicots as essential Al tolerance genes, perhaps STOP1-like transcription factors
are also shared (Magalhaes 2006).

6.2.1.3 Contributions from Other Species

Al-activated malate release has been reported for species other than Arabidopsis
and wheat (Kochian et al. 2004). While many of the advancements in the area of

Al-activated malate release have been made in these species, several have not. Two

will be mentioned here. First, rapeseed (Brassica napus) has been reported on some

occasions to release both malate and citrate in response to Al stress (Zheng et al.

1998b). This appears to be cultivar-specific rather than a function of experimental

design. Dual organic acid release has also been reported in rye (Secale cereale),
cowpea (Vigna unguiculata), and soybean (Glycine max) (Li et al. 2000; Silva et al.
2001; Jemo et al. 2007). Rye is among the most Al tolerant of the cereals; perhaps

the dual release of organic acids contributes to its protection and can be exploited as

a target for plant improvement. The malate transporter important for Al tolerance

in rye has been identified as ScALMT1, while the citrate transporter is still unknown
(Fontecha et al. 2007). Given that malate and citrate transporters have both been

identified, presumably progress can be made in rye, cowpea, soybean, or other

species toward the goal of increasing Al tolerance through marker-assisted breeding

or biotechnology.

Second, increasing the numbers of organic acid transporters or interfering with

signal transduction pathways produces clear effects on organic acid release. Recall

that the process of organic acid release can be broken into three components:

perception of Al, synthesis of ligand, transport out of the root. The first and third

parts of this process can clearly be altered so as to affect Al tolerance. Manipulating

the second part of this process, organic acid synthesis, is much less reliable to alter

Al tolerance. Success has been reported in alfalfa (Medicago sativa) using malate

dehydrogenase and in rapeseed with citrate synthase (Tesfaye et al. 2001;
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Anoop et al. 2003). However, over-expression of citrate synthase gave inconsistent

outcomes in transgenic Nicotiana (de la Fuente et al. 1997; Delhaize et al. 2001).

Organic acid supplies within the cell may or may not be limiting for effective stress

responses. In maize where organic acid release rates differed, no changes occurred

in organic acid pools that could be correlated with differential Al tolerance (Pineros

et al. 2005). In fact, the efficacy of over-expression of TaALMT1 in barley would

argue that organic acid supplies might not be a limitation to Al tolerance (Delhaize

et al. 2004). Perhaps with a more careful and systematic study of the interplay

between Al perception, ligand synthesis and release, patterns will emerge to better

instruct how these processes can be manipulated to improve Al stress tolerance.

6.2.2 Mediated by Citrate and AltSB-Type Transporters

6.2.2.1 Contributions from Sorghum

Several physiological mechanisms of Al tolerance have been proposed but the

agronomical efficacy to promote yield stability on acid soils remains at best

uncertain. The clear exception to this statement is the utility of Al-induced organic

acid release from root apices, which is certainly a major mechanism enabling

agriculture on acid, Al toxic soils. The improvement of barley with TaALMT1 by

transformation illustrates this, but only as a proof of concept (Delhaize et al. 2004).

A stronger example for the efficacy of improving Al tolerance in crop plants is the

discovery and characterization of the major Al tolerance gene in Sorghum, AltSB
(Magalhaes et al. 2007). The cultivar SC283 is the best known Al tolerance

standard in Sorghum and has repeatedly shown superior agronomic performance

on acid soils (Duncan et al. 1983; Duncan 1988). Subsequently, using hydroponic

culture rather than field-based observations, Al tolerance in cv. SC283 was shown

to be largely under the control of a single, semi-dominant gene, AltSB, which was

mapped to the end region of Sorghum chromosome 3 (Magalhaes et al. 2004). This

gene was identified by map-based cloning and shown to underlie Al-induced citrate

release, the primary Al tolerance mechanism at work in Sorghum (Magalhaes et al.

2007). The fact that segregation of AltSB was sufficient to explain ~80% of the

phenotypic variation for root growth inhibition caused by Al in hydroponic culture

strongly suggests that AltSB is also the major determinant for the superior agrono-

mical performance displayed by SC283 on Al-intoxicated acid soils. It should be

noted, however, that Al toxicity is one of the most important but not the only source

of abiotic stress on acid soils. Therefore, other genes related to adaptation to the

“acid soil syndrome” should also be considered. Nevertheless, recent comparisons

for agronomic performance on acid soils and root growth inhibition in hydroponic

culture indicated that the two traits are highly correlated in Sorghum; genotypes
carrying the AltSB allele from SC283 out-produced sister lines with an inferior AltSB
allele by ~1 mt ha-1 (Magalhaes et al., unpublished). The AltSB gene encodes a

member of the Multidrug and Toxic Compound Extrusion (MATE) family; the
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gene is Al inducible with maximal levels of expression after several days of Al

stress (Magalhaes et al. 2007). In the original mapping population, the AltSB alleles
contained no polymorphisms within the protein coding sequence; rather, significant

differences were observed in the promoter region. A MITE-class transposon and

sequences immediately flanking it created a repeat unit of 243 bp; the sensitive

allele contained three repetitions while the tolerant (SC283) allele contained five

(Magalhaes et al. 2007). The number of repetitions is positively correlated with

citrate release, root growth, and gene expression. A relatively high level of consti-

tutive expression of AltSB in a tolerant isogenic line was not accompanied by large

and rapid citrate efflux. This suggests the regulation of the gene and the activity of

the protein are somewhat more complicated than the typical; perhaps, Al is required

to activate transport activity or gene expression does not occur in the epidermis in

the absence of Al. Experiments are underway to answer these questions.

6.2.2.2 Contributions from Barley

A locus controlling Al tolerance, Alp, was located to chromosome 4H by trisomic

analysis (Minella and Sorrells 1997). Subsequently, Alp was mapped to the long

arm of barley chromosome 4H in a population derived from the cultivar Dayton,

and subsequent studies using different mapping populations also identified Al

tolerance gene(s) the same chromosome (Tang et al. 2000; Raman et al. 2002;

Ma et al. 2004b). In a broader survey with 21 barley varieties, citrate release and Al

tolerance were positively correlated, while citrate release and Al content in root

apices were negatively correlated, indicating that Al exclusion mediated by citrate

was responsible for Al tolerance in barley (Zhao et al. 2003). This conclusion was

confirmed and expanded by Ma et al. (2004b), who reported co-localization

between the Al tolerance gene on chromosome 4H and rates of citrate release.

Complete linkage of a barley homolog of the MATE family (HvMATE) with the Alp
locus was reported in a doubled haploid population (Wang et al. 2007). Expression

of HvMATE was also correlated to Al tolerance and Al-activated citrate efflux,

leading the authors to consider the hypothesis that HvMATE underlies the Alp locus
in barley. Fine-scale genetic mapping and microarray analysis confirmed that a

member of the MATE family, HvAACT1, confers Al tolerance in barley (Furukawa
et al. 2007). The HvAACT1 gene cloned by Furukawa and co-workers enhanced

Al-activated citrate release and Al tolerance in transgenic tobacco. The protein was

localized to the epidermal cells of barley root tips and within the plasma membrane,

according to GFP translational fusions. In addition, heterologous expression of

HvAACT1 in Xenopus laevis oocytes indicated that the protein was permeable to

citrate rather than malate (Furukawa et al. 2007).

Sorghum and barley have several similarities for the inheritance of Al tolerance;

both display rather simple genetic control for Al tolerance and rely on homologous

genes. However, barley is considered to be the most sensitive species among the

cereals, whereas some Sorghum accessions may exhibit extremely high levels of Al

tolerance (Wang et al. 2006). A comparison between HvMATE and AltSB protein
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sequences uncovers several significant differences, as they are only 65% identical

and 79% similar. Also, they possess strikingly different features such as exon/intron

structure in addition to apparently different numbers of putative transmembrane

domains. Although similarities do exist between the two genes, such as a level of

constitutive expression in the absence of Al and a likely Al activation of the Sorghum
and barley MATE proteins, structural differences may account for the remarkably

different levels of Al tolerance encoded by HvMATE and AltSB. A third related

MATE transporter, FRD3 from Arabidopsis, could also contribute to Al exclusion

via citrate release (Durrett et al. 2007). Ectopic expression of FRD3, which is

normally involvedwith ironmetabolism and transport, is capable ofmaking amodest

increase to Arabidopsis Al tolerance (Durrett et al. 2007). Comparative analysis

between the three MATE proteins, AltSB, HvMATE, and FRD3, will likely reveal

domains and residues important for citrate transport and Al activation.

6.2.2.3 Contributions from Rye

Unlike barley, rye is one of the most Al-tolerant cereals (Aniol and Gustafson

1984). In part, this may result from additive effects of malate and citrate, which are

both released when some rye genotypes are exposed to Al (Li et al. 2000). Studies

with Triticale, which is a hybrid between wheat and rye, identified that gene(s) on

the short arm of rye 3R are required for organic acid release in Triticale (Ma et al.

2000). The pattern of organic acid release in rye involves a lag phase after the

addition of Al (pattern II), suggesting induction at the gene or protein level to

convey full activity. Interestingly, citrate release as modulated by the Sorghum Al

tolerance gene AltSB is also inducible over time of exposure to Al, a response that is

paralleled by AltSB expression (Magalhaes et al. 2007). Given that rye chromosome

3R is homoeologous to Sorghum chromosome 3, it is possible that a MATE

ortholog of AltSB is responsible for rye citrate release (Magalhaes et al. 2004).

6.2.3 Mediated by Oxalate

Malate and citrate are not the only organic acid ligands for Al reported in root

exudates. Oxalate has also been reported to appear in root exudates from Al-treated

plants and is an effective chelate, intermediate between citrate and malate in terms

of the dissociation constant for Al binding. Al-activated oxalate release has been

reported in buckwheat (Fagopyrum esculentum), maize, taro (Colocasia escul-
tenta), and alfalfa (Medicago sativa) (Ma and Miyasaka 1998; Zheng et al.

1998a; Kidd et al. 2001; Tesfaye et al. 2001). Oxalate is only mentioned in passing

in this review due to the lack of identification for an Al-activated oxalate trans-

porter. It is possible that ALMT1-type or AltSB-type transporters are permeable to

oxalate in addition to malate and citrate, respectively. However, the oxalate trans-

porter may represent a third class of organic acid transporters and is yet to be

discovered and described.
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6.3 Al Exclusion by Non-organic Acid Dependent Mechanisms

Al tolerance is highly correlated with exclusion of Al from the root apex in many

species. Al exclusion explained the majority of differences in root growth observed

between a small panel of maize varieties (Pineros et al. 2005). However, low and

high outliers caused Piñeros and co-workers (2005) to reject the hypothesis that all

Al exclusion in maize is mediated by organic acid release. Exclusion could also

result from chelation by non-organic acid ligands or increasing rhizosphere pH,

which would change the speciation of Al to less or non-toxic forms. Organic acid

release does not explain the high degree of tolerance observed in rice or Brachiaria
decumbens (Wenzl et al. 2001; Ma et al. 2002). Thus, it is likely that other species

will be similar to maize, where Al tolerance is dependent upon multiple, indepen-

dent mechanisms.

6.3.1 Al Exclusion Mediated by Other Ligands

Evidence for Al exclusion mediated by non-organic acid ligands is relatively

limited. This may be in part due to the difficulties in detection and identification

of root exudates. Presumably, with the advancements in non-targeted metabolomic

analysis via mass spectrometry or nuclear magnetic resonance, comprehensive

analysis of root exudates will be more common in the future (see (Keurentjes

et al. 2006) for example of this methodology).

Beyond organic acids, two classes of compounds have been implicated in Al

tolerance. First, inorganic phosphate release was reported to occur concomitantly

with malate in wheat (Pellet et al. 1996). Phosphate has high affinity for Al and

would therefore make an effective ligand, although an expensive one from a

nutritional standpoint. In this wheat study, a constitutive phosphate release was

observed in the Al tolerant variety tested that was largely absent from the sensitive

variety and from near isogenic derivatives with differing levels of tolerance (Pellet

et al. 1996). This suggested that the same transporter did not mediate the release of

malate and phosphate. Phosphate, like malate, release was spatially restricted to the

root apex; however, the contribution of phosphate release to overall Al tolerance

was unclear (Pellet et al. 1996). Phosphate has also been reported to occur in

Arabidopsis. Like wheat, the Al tolerant variety released more phosphate and

again the release was not Al responsive (Hoekenga et al. 2003). In the Arabidopsis
case, essentially all the differences observed between varieties for Al tolerance

were consistent with the differences in malate release, such that it is unclear

whether the phosphate release observed made a contribution (Hoekenga et al.

2003). Further analysis will be required to evaluate the importance of phosphate

release to Al tolerance relative to it being just coincidental.

Second, phenolic compounds have been implicated in Al exclusion. Both flava-

noid phenolics and oxalic acid were observed in root exudates from Al-treated
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maize seedlings (Kidd et al. 2001). Similar patterns of oxalate release were

observed in three different maize cultivars with varying levels of Al tolerance,

suggesting that oxalate release did not correlate with the differences observed in Al

tolerance. However, different patterns of catechol, catechin, curcumin, and querce-

tin release were observed between the three maize varieties, with the magnitude of

the catechin release most concordant with the Al tolerance differences (Kidd et al.

2001). Catechin is structurally similar to morin, which is commonly used as an

Al-binding dye and means to assess Al absorption (Eggert 1970). Both catechin and

morin have high affinity for binding with Al, meeting or exceeding the affinity

observed for Al-organic acid complexes. Catechin exudation may represent an Al

tolerance mechanism, but validation of this hypothesis requires more evidence.

6.3.2 Mediated by pH Change

Al speciation is pH dependent, with the different cations (e.g., Al3+, Al(OH)2+)

exhibiting different levels of rhizotoxicity (Kinraide 1991). Relatively small differ-

ences in rhizosphere pH can shift the balance from a preponderance of highly

rhizotoxic Al3+ to the less toxic hydroxy-Al compounds. The first evidence that pH

gradients at the root surface could confer Al tolerance came in Arabidopsis with the
identification of a mutant, alr-104 (Degenhardt et al. 1998). An increased rate of

proton influx was observed in the mutant, which led to an alkalinization of the

rhizosphere by ~0.15 pH units (Degenhardt et al. 1998). Buffering the pH of the

nutrient solution abolished the increased level of Al tolerance. A second, similar

mutation was reported in Arabidopsis in the form of the alt1 locus (Gabrielson et al.
2006). While pH buffering of the nutrient solution abolished the increase in Al

tolerance observed with alt1, rhizosphere pH was not mapped and thus is difficult

to compare the two studies directly (Gabrielson et al. 2006). Root surface pH has

been measured in maize, to examine whether pH gradients might contribute to Al

tolerance differences (Pineros et al. 2005). Differences in root tip pH were observed

between varieties in the absence of Al treatment, with the most tolerant variety

possessing the most alkaline pH. However, Al treatment collapsed any differences

observed along the root surface between varieties and were not restored within 72 h

(Pineros et al. 2005). It is still possible that root surface pH differences do contribute

to natural variation in Al tolerance, but the proper study system is yet to be identified.

6.4 Internal Tolerance

Uncontrolled uptake of Al into the root is essentially inevitable, despite the best

efforts of the various Al ligands. Internal tolerance to Al stress is therefore impor-

tant to some greater or lesser degree for all plant species. In fact, the most highly

Al-tolerant species largely or exclusively rely on internal tolerance mechanisms.
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For a review on the mechanisms of Al hyperaccumulation, the reader is directed to

Watanabe and Osaki (2002). Some internal and external tolerance processes share

underlying physiological processes (e.g., chelation) while others are distinct.

6.4.1 Internal Chelation

Organic acids are an important source for internal as well as external Al tolerance.

Many highly Al-tolerant species, including those considered to be Al hyperaccumu-

lators, utilize organic acid chelation within the root or shoot to achieve Al tolerance.

Buckwheat has been reported to use oxalate for both external and internal chelation

of Al (Zheng et al. 1998a; Ma and Hiradate 2000; Shen et al. 2002). Oxalate is also

the predominant intracellular ligand in tea (Camellia sinensis) roots (Morita et al.

2008). On the other hand, citrate is the predominant ligand found in xylem sap, to

promote the long distance transport of Al from the root to shoot (Morita et al. 2004).

Internal organic acid concentrations respond to Al treatment in Brachiaria roots

(Wenzl et al. 2002). Organic acid levels increase several fold in the whole root for

both tolerantBrachiaria decumbens and sensitiveBrachiaria ruziziensis, where most

of the organic acids are concentrated in the root apices. While the tolerant accessions

accumulate more than the sensitive ones, the difference is far too small to explain the

dramatic differences in Al tolerance (Wenzl et al. 2002). Similarly, citrate content

increased in maize root apices due to Al treatment; however, concentrations were

equivalent among the six maize inbreds and thus not correlated with Al tolerance

(Pineros et al. 2005). It is important to note, however, in spite of the fact that internal

organic acid concentrations may not correlate with differences observed in Al

tolerance between Brachiaria and maize accessions; this does not exclude the

possible importance for internal organic acid chelation. Rather, it may be that internal

organic acid chelation is essential for Al tolerance but not genetically variable, at

least within the accessions that have been studied to date.

Phenolic ligands are often used for long-term storage of Al in cells of hyper-

accumulator species. While organic acids are used to transport Al within tea,

catechin is the predominant ligand for Al sequestration in tea leaves (Nagata

et al. 1992). Delphinidin and chlorogenic acid are associated with Al in Hydrangea
sepals; association of these pigments with Al influences flower color (Takeda et al.

1990). Delphinidin is an anthocyanin, while chlorogenic acid is a phenylpropanoid;

both are related to catechin, a flavanoid. Each of these Al ligands represents

separate branches of a phenolic family tree, where early biosynthetic reactions

are shared. For example, chalcone synthase (CHS) is the committing step for the

synthesis of catechin, chlorogenic acid, and delphinidin. In maize, variation at

chalcone synthase loci is significant for resistance to insect herbivores (Szalma

et al. 2002). Anthocyanins are induced by abiotic stresses such as cold and high

light (Christie et al. 1994; Kimura et al. 2003). Phenylalanine ammonia lyase

(PAL), a key gene in primary metabolism, carries out the biosynthetic step prior

to CHS and is known to be an Al-inducible gene (Snowden and Gardner 1993).
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While some have attributed the induction of PAL and CHS by Al treatment as non-

specific stress responses, it is also possible that these changes in gene expression

underlie Al tolerance processes dependent upon phenolic ligands. As systems

biology approaches are applied to the study of Al tolerance, it should be increas-

ingly possible to identify which stress responses due convey Al tolerance over the

noise of non-specific changes in gene, protein, or metabolite expression (Hoekenga

et al. 2003, 2006; Yang et al. 2007; Zhang et al. 2007).

Hydroxyamates are another class compounds with potential importance to Al

tolerance. Perhaps the best known hydroxyamate is 2,4-dihydroxy-7-methoxy-1,

4-benzoxazin-3-one (DIMBOA) (Frey et al. 1997). DIMBOA is highly effective at

controlling insect herbivores and microbial pathogens; the complete synthetic

pathway was recently determined (Jonczyk et al. 2008). DIMBOA has also been

implicated in other biological processes, including auxin-induced elongation of

maize coleoptiles (Park et al. 2001). Poschenrieder and colleagues, who also were

the first to make the Al-flavanoid connection in maize, demonstrated intracellular

Al tolerance due to DIMBOA–chelation of Al (Poschenrieder et al. 2005). Hydro-

xyamates are also found in nature as siderophores, ligands used by bacteria to

acquire essential metals from the soil solution or to protect against toxins.

A siderophore-deficient mutant strain of Bacillus has long been known to be

sensitive to Al stress (Davis et al. 1971). Al stress elicited siderophore exudation

from wild-type Bacillus cells, which tolerated Al treatments that completely inhib-

ited growth in the siderophore mutant (Davis et al. 1971). Media supplementation

with the Bacillus hydroxyamate siderophore, schizokinen, or the Rhizobium side-

rophore, vicibactin, conferred tolerance to Al stress to those species, respectively

(Davis et al. 1971; Rogers 1986). As with the phenolic ligands, the application of

systems biology approaches to Al stress tolerance will likely demonstrate the

efficacy of hydroxyamate and others as contributors to Al tolerance processes

across multiple species, genera, and wider evolutionary relationships.

6.4.2 Reactive Oxygen Species Scavenging

Al stress generates ROS, like many other abiotic stressors (Cakmak and Horst

1991). Whether these ROS are a primary or secondary effect of Al toxicity is

arguable; however, the damage done to lipids, nucleic acids, and other susceptible

molecules is not (Yamamoto et al. 2001). ROS-responsive genes have been

detected by gene and protein expression profiling methods in multiple species

(Richards et al. 1998; Yang et al. 2007; Zhang et al. 2007). Genetic analysis has

not implicated ROS scavenging genes, or their regulators, as responsible for natural

variation in Al tolerance. Transgenic experiments that overexpress superoxide

dismutase, peroxidase, or glutathione S-transferase do increase Al tolerance by

small but significant degrees (Ezaki et al. 2000; Basu et al. 2001). It is certain that

ROS scavenging contributes to internal Al tolerance and may be especially impor-

tant in plants that do not rely upon Al exclusion.
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6.4.3 Lipid Composition

Lipid peroxidation is an early sign of damage to Al-intoxicated roots (Yamamoto

et al. 2001). The degree of lipid peroxidation is variable between Al-tolerant and -

sensitive accessions, but it is unclear whether these differences are to due the

proximate or ultimate causes of Al tolerance. One can imagine either scenario:

(1) lipid composition is variable, thus making some plant less susceptible to

peroxidation (a proximate cause of tolerance) or (2) plants with highly effective

Al exclusion mechanisms suffer less lipid peroxidation, as less Al3+ reaches the

plasma membrane (an ultimate cause). A wheat phosphatidylserine synthase gene

was capable of increasing Al tolerance in the yeast, S. cerevisiae (Delhaize et al.

1999). The transgene dramatically reduced phosphatidylinositol levels while

increasing phosphatidylserine, which presumably reduced Al/ROS susceptibility

(Delhaize et al. 1999). The result from yeast was not reproduced in plants, as each

has specific requirements for functional membranes (Delhaize et al. 1999). This did

stimulate the examination of lipid composition between Al-tolerant and -sensitive

varieties (Chaffai et al. 2005; da Silva et al. 2006). Lipid profiling in maize root tips

suggested that sphingolipid composition might be correlated with Al tolerance;

subsequent transgenic experiments with a D8 sphingolipid desaturase in maize,

Arabidopsis and yeast verified this hypothesis (da Silva et al. 2006; Ryan et al.

2007). Together, the lipid profiling and transgenic experiments indicate that lipid

composition can be a proximate cause of Al tolerance.

6.4.4 Cell Wall Composition

The majority of Al associated with the root (�80%) can be found in the cell wall,

according to estimates from maize and wheat (Ma et al. 2004a; Wang et al. 2004).

This association presumably accounts for the reduction in wall extensibility

observed with Al-treated plants (Jones et al. 2006; Zakir Hossain et al. 2006).

Differences between tolerant and sensitive accessions beg the proximate/ultimate

causes question: do tolerant accessions construct cell walls significantly differently

than sensitive accessions, or are the differences observed merely due to Al exclu-

sion. Cell wall composition does change in response to Al treatment, especially in

the pectin component (Eticha et al. 2005; Zakir Hossain et al. 2006; Yang et al.

2008). This is potentially significant as de-esterification of pectin increases the

density of negative charge within the cell wall; increasing the net negative charge

could allow greater Al loading onto the cell wall (Cosgrove 2005). Increasing the

esterified fraction of pectins has been correlated with increasing cell elongation

rates in Arabidopsis (Derbyshire et al. 2007). In both maize and wheat, Al tolerant

accessions had higher degrees of pectin methyl-esterification and reported lower

uptake of Al into the cell wall (Eticha et al. 2005; Yang et al. 2008). Unfortunately,

both studies were comparisons between a pair of accessions, one tolerant and one
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sensitive. The statistical power for such a comparison is very low, but still the

results are intriguing. Additionally, Al3+ is a potent inhibitor of expansins, the

family of cell wall loosening enzymes responsible for acid-responsive growth

(Cosgrove 2000). Cell wall loosening and elongation is diminished or eliminated

in the absence of expansin activity; if Al3+ inactivates expansins, this could

also explain the rapid loss of root growth observed in Al-intoxicated roots.

If Al-resistant expansin isoforms exist, they could represent very powerful Al

tolerance loci as they could protect cell elongation in the presence of stress.

6.5 Concluding Remarks

It is an exciting time to be working in the Al tolerance field. Al tolerance genes have

been identified that underlie major QTL of agronomic importance. Given the size

and strength of the Al tolerance community, we anticipate many more discoveries

of similar magnitude in the coming years. Systems biology approaches that lever-

age traditional plant physiology against genome sequences and other technologies

will permit large improvement in Al tolerance. This should produce outcomes that

promote food security, economic development, and environmental protection in

acid soil regions.
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7.1 Introduction

Soil flooding alters the natural equilibrium of components and organic matter

decomposition, unchaining a series of transformations that affect chemical and

physical soil attributes. Such changes are beneficial to the rice crop because rice

plants present morphological and molecular adaptations in order to survive these

environments that lack free molecular oxygen; moreover, most of nutrients increase

their availability in flooded conditions (Sousa et al. 2009). However, the soil

changes associated to flooding can result in stresses even to the rice crop, which is

well adapted to these conditions. These changes generate products such as soluble
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iron and short-chain organic acids which, under proper conditions, can be toxic to

rice. In order to achieve a perfect state of growth, the plant must balance the presence

of minerals at different concentrations and equate its needs. Among the major

stresses faced by rice plants under no tillage cropping systems in South America,

iron and organic acid toxicity top the list and will be the focus of this review.

Iron toxicity in the rice crop is a nutritional disorder that occurs in cultivated

fields of many countries, mainly in Asia, Africa, and South America. This disorder

has been named differently according to each country, symptoms, and occurrence

conditions. In Japan, for example, it is denominated “Akagare” type I, in Ceylon and

India, it is known as “Bronzing,” and in Colombia, it is known as “Anaranjamiento.”

In Brazil, iron toxicity has already been observed in many rice production areas,

especially from the introduction of modern-type cultivars, which occurred in the

middle of 1980s (Vieira et al. 1999). Organic acid toxicity is a stress that became

important after no tillage cropping started and increasing amounts of organic matter

originating from the straw of the previous crop started to take part in the process.

7.2 Iron in Flooded Soils

Iron is one of the most abundant elements on earth, contributing to approximately

5% of its total weight (Murad and Fischer 1988), and it is present in all soils, in

amounts ranging from 0.7 to 55% (Lindsay 1979). In the soil, iron oxides can be

uniformly distributed or concentrated in some profile layers, forming mottles,

nodules, concretions, hardpans, plinthites ou laterites. The main forms of iron

oxides in soils are hematite, goethite, lepidocrocite, and ferrihydrite, although

other oxide/hydroxides may be present (Sousa et al. 2004).

The changes in oxide and reduction states that occur in environments that

alternate between dry and flooded conditions, such as lowland soils cultivated

with rice, are determinant to the iron oxide and hydroxide forms that predominate

(Moormann and Van Breemen 1978). During flooding, a part of the soluble Fe2+

ions, which are rapidly oxidized during the following draining period, are precipi-

tated as ill-crystalized Fe3+ oxides. If the draining period persists, the Fe3+ oxide

degree of crystalization can increase, although in a very slow process. When the

draining period is over, Fe3+ oxides are again reduced and solubilized. The alterna-

tion between flooded and non-flooded conditions therefore favors low crystalinity

iron oxides. Thus, goethite, lepidocrocite, and ferrihidrite are the most common

forms of iron oxides in hydromorphic soils (Allen and Hajek 1989; Schwertmann

and Taylor 1989). According to van Breemen (1988), iron can still be present in

“green-rust” (Fe3+ and Fe2+ associated to Cl-, SO4
2� and CO3

2� anions in the

interlayers), siderite, pirite, and silicate minerals, such as smectites.

Soil bacteria that reduce Fe3+ in the soil have preference for the ill-crystalized

iron oxide forms. Thus, the speed and the amount in which iron oxides are reduced

and released to soil solution depend, among other factors, from the ratio of crystal-

ized and ill-crystalized soil minerals. As a consequence, the lower the degree of iron
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oxide crystalinity, the higher the iron reduction and release into the soil solution

(Sousa et al. 2004). However, since the reduction of iron depends on the biological

activity, other factors must be considered in this process, as organic matter content

and the presence of easily reducible compounds, such as nitrate and manganese

oxides. Better fitted regression models were obtained for the prediction of exchange-

able Fe2+ (Sousa et al. 2004), during the flooding of 32 hydromorphic soils,

considering not only the amount of iron oxide, but also the amounts ofMn (extracted

with ammonium oxalate at pH 6.0), NO3
� and organic carbon (Table 7.1).

In Fig. 7.1, the trend of iron concentrations in solution of two flooded soils, a

Planossolo (typic Albaqualf, USDA soil taxonomy) which can present iron toxicity
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Fig. 7.1 Iron contents in soil solution from two lowland soils as a function of flooding period.

Albaqualf: O.M: ¼ 17g kg�1; Feoxalate ¼ 1:4g kg�1 Chernosol: O.M: ¼ 24g kg�1;

Feoxalate ¼ 0:4g kg�1

Source: Adapted from Sousa et al. (2009)

Table 7.1 Regression fitting models for exchangeable Fe2+ and NO3
�,

organic-C, and iron and manganese oxides soluble in ammonium oxalate

Model r2

Fe2+ ¼ 3.82 + 0.061 Feo 00.17b

Fe2+ ¼ 1.61 + 0.50 Feo
a 00.50b

Fe2+ ¼ 2.39 + 0.51 Feo
a – 0.30 Mno

a 00.54b

Fe2+ ¼ 3.78 + 0.59 Feo
a – 0.37 Mno

a – 0.07 NO3 00.59b

Fe2+ ¼ 4.38 + 0.52 Feo
a – 0.29 Mno

a – 0.11 NO3 + 0.42 C 00.64b

Source: Vahl (personal communication)

Feo – extracted with ammonium oxalate at pH 3
aFeo and Mno – extracted with ammonium oxalate at pH 6
bsignificant at 1%
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and aMollisol where this nutritional disorder is not observed. In the Planossolo, in 4

or 5 weeks of flooding, iron concentration peeks high enough and toxicity to plants

can be reached. In this soil, the iron concentration peeks normally occur in the stage

where rice is most sensitive, which is the end of tillering. In Mollisol, the iron

amounts released to the soil solution are lower since this soil has low active iron

content (iron extracted with ammonium oxalate), and normally does not present

toxicity problems.

Iron toxicity in irrigated rice is commonly associated to some soil traits, such as

low pH, high iron oxide content, and lowCEC.However, it is common to observe iron

toxicity symptoms at different pH, iron oxide contents, and CEC conditions (Sousa

et al. 2004).The first idea that one grasps about the toxicity of an element to plants is

that high concentrations of this element in the soil lead to an excess absorption and

toxicity. However, in iron toxicity, this idea cannot be taken as a common rule, since

there have been reports of symptoms occurring in crops growing in low iron soils and

no symptoms in crops growing in high iron content soils (Sousa et al. 2004).

The low soil pH is pointed as one factor that favors iron toxicity occurrence. In

this condition, iron solubility is higher, soil CEC is lower, and CEC saturation by

(H+ + Al3+) is higher. However, reports have described soil samples collected from

rice fields showing toxicity symptoms with pH values ranging from 3.8 to 7.5

(Sousa et al. 2004). The high soil iron content, low pH, and low CEC cannot be

considered, alone, as obligatory conditions for iron toxicity to occur, since many

reports have shown rice fields developing iron toxicity symptoms and showing

different iron content, pH, and CEC values. The detection of symptoms depends on

different soil and plant attributes, related to toxicity. A soil with high iron content,

but high CEC and base saturation, can present high Fe2+ content as a consequence

of flooding, but this can be low when compared to other cations such as K, Ca, and

Mg, as a result of CEC and base saturation values, resulting in healthy plants.

Another soil with low iron content, but low CEC, can present low amounts of Fe2+

during flooding, but, however, due to the low CEC, the ratio Fe2+/other cations can

be higher and consequently reach levels toxic to rice plants (Sousa et al. 2004).

Some unpublished results do exist for iron toxicity occurrence in land-leveled

areas. The preparation of these areas for rice cropping can give rise to iron toxicity

cases due to two factors: exposition of B horizon with higher iron contents, or

exposition of E layer, rich in sand and with lower ability to supply nutrients to the

plants (Sousa et al. 2004).

7.2.1 Iron Toxicity Symptoms

Iron toxicity is visually divided into two major symptom groups (Fig. 7.2): direct

toxicity or bronzing and indirect toxicity or yellowing. Direct toxicity is caused by

excessive iron absorption, while indirect toxicity is associated to overall nutrient

deficiency, induced by high iron content in the soil solution. These terms have been

adopted by the majority of authors in order to define the major iron toxicity-related
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symptoms. However, Sahrawat (2004) proposed recently the idea of induced

toxicity or fake toxicity, when the symptoms are caused by a multiple nutrient

deficiency (indirect toxicity) and true toxicity when symptoms are the result of high

iron content (direct toxicity).

The symptoms attributed to direct toxicity are composed of many dark brown

spots, which initiate in the tips and spread to the base of older leaves (Mengel and

Kirkby 1987). Similar symptoms were described in which, at higher iron contents,

the dark brown spots fuse, forming large dark brown areas in the leaves (Tanaka

et al. 1966). These points match the high iron concentration spots in the leaf. Similar

bronzing symptoms have been described (Mengel and Kirkby 1987; Bienfait 1985).

Also, it was reported that when the disorder progresses, leaves senesce and die, and

more severely injured plants show lower tillering, smaller panicles with high

percentage of sterile spikelets and lesser branched roots, with dark brown color

(Ponnamperuma et al. 1955; Sousa et al. 2004). Although the degree of toxicity

measures has been based on the degree of bronzing (IRRI 1965; Ota 1968), the

Fig. 7.2 Regular symptoms of iron toxicity. (a) and (b) Indirect toxicity; (c) direct toxicity; (d)

direct and indirect toxicity simultaneously.
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phenotype itself and the basis of tolerance are not well understood (Ota 1968; Peng

and Yamauchi 1993; Briat and Lobréaux 1997).

Indirect toxicity symptoms initiate with a yellowing of older leaf tips, which

evolves toward the base. Subsequently, the younger leaves are also affected and

many lower leaves die. In severe cases, leaves acquire an orange or yellow color

and may present dark brown stripes (Howeler 1973; Ottow et al. 1983).

Some authors make no distinction between direct or indirect toxicity, describing

the symptoms in the following way: iron toxicity is characterized by the develop-

ment of very small spots in older leaves, which gradually coalesce, giving a purple,

brownish red, orange, or yellow color spreading to the leaf base, especially on the

edges. These parts, then, become dry and curly toward the center. During the first

stages, younger leaves and the unaffected parts of older leaves are green, but later,

younger leaves also tend to show small dark brown spots, while older leaves dry

completely giving the plant a burned look. The root system is dark brown, thick,

and scarce; plant growth is stunted; and there is a high percentage of sterile flowers

(Lantin and Neue 1988).

In case the toxicity occurs during the plantlet stage, rice plants remain stunted

with a very limited tillering ability (Abraham and Pandey 1989). Toxicity during the

vegetative stage is associated with the reduction of plant height and dry matter

accumulation (Abu et al. 1989), which is greatly affected by root biomass (Fageria

1988). Tiller formation and number of fertile tillers can be severely reduced

(Cheema et al. 1990). When iron toxicity occurs at the end of the vegetative phase

or at the reproductive phase, the number of panicles formed decreases (Singh et al.

1992), there is an increase in spikelet sterility (Virmani 1977) and a delay in

flowering and maturation. In highly susceptible cultivars, flowering may not occur

(Ayotade 1979). Also, root growth can stop and the aerenchyma can senesce and

decay, resulting in a decrease of root oxidation ability and formation of Fe(OH)3
compounds on root surface changing it to a darker color (Morel andMachado 1981).

Average yield losses due to iron toxicity range from 35 to 45% (Lantin and Neue

1989; Audebert and Sahrawat 2000). Iron toxicity symptoms can appear in any

plant developmental stage. However, the end of tillering and beginning of flowering

are the stages in which the symptoms appear more frequently and clear (van

Mensroort et al. 1985; Fageria 1984). If iron toxicity occurs in the early stages of

development, plants suffer a severe retard in growth; when it is later, vegetative

growth is not much affected, but grain yield is reduced due to spikelet sterility

(Lantin and Neue 1988). However, some reports state that when iron toxicity occurs

in the beginning of the cycle, plant growth can be strongly affected and a total loss

of yield can occur (Abifarin 1988).

Analyzing the symptoms described by different authors, one can observe that there

is not a unique symptom characterizing iron toxicity, but a range of colors from

yellow to orange, with or without dark brown spots. In all descriptions, these symp-

toms start on older leaves and evolve from tip to base of leaf limb (Sousa et al. 2004).

Leaves become chlorotic because iron is needed for the synthesis of some

chlorophyll–protein complexes in the chloroplast. The low mobility of iron is due

to its precipitation in older leaves as insoluble oxides or phosphates or the formation
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of complexes with phytoferritin, an iron-binding protein (Oh et al. 1996). Iron

precipitation decreases the metal’s subsequent mobilization inside the phloem. This

type of toxicity is less common in Brazilian conditions, but is frequently seen in

other climates, where some soils develop extremely high levels of Fe2+ when

flooded. Indirect toxicity results from the limited absorption of several nutrients

such as calcium, magnesium, potassium, phosphorous, and iron itself, due to iron

precipitation on rice root epidermis. The formation of an oxide–hydroxide Fe3+

layer on the root blocks nutrient absorption, resulting in multiple nutritional defi-

ciencies. Symptoms of this deficiency include plant atrophy, tillering reduction,

orange leaves, and the covering of roots by red layers of iron oxides. Besides iron

deposition in the roots, changes in leaf peroxidase activity have been described

(Peng et al. 1996; Fang and Kao 2000).

The insolubility of iron plus its high reactivity can cause severe damage to the

plant cell. The production of reactive species of oxygen, specifically the hydroxyl

radical (OH�), through the Fenton Reaction, is the major cause for its toxicity inside

the cell (Hell and Stephan 2003):

Fe3þ þO��
2 ! Fe2þ þO2

Fe2þ þH2 O2 ! Fe3þ þOH� þOH�

Or:

O��
2 þH2 O2 ! O2 þOH� þOH�

The entrance of iron into the radicular symplast via the membrane transport

systems creates a need to once more protect it from oxygen. Protection is necessary

in order to avoid precipitation and the generation of reactive oxygen species.

Among the major chelating agents, nicotianamine (NA) appears as the best candi-

date because it forms poor Fenton reagent stable complexes with iron at both

oxidation states, its ubiquitous character, and its correlated localization with iron

(Stephan and Scholz 1990; Scholz et al. 1992; Stephan et al. 1996; Herbik et al.

1996; Liu et al. 1998; von Wiren et al. 1999; Pich et al. 2001).

After zinc, iron is the element that most frequently limits rice production, when

nutritional disorders in rice caused by micronutrients in Brazilian soils are assessed.

Two contrasting scenarios exist: one in dry conditions (upland rice) when the

problem is related to iron deficiency and the other in flooded conditions, due to

toxicity (irrigated rice). Increases in the Fe2+/Fe3+ ratio caused by reduction in the

flooded soil are the major cause of toxicity. This reduction can cause an increase of

6,000-fold in soluble iron (600 vs. 0.1 ppm) when soil redox potential reaches

100–300 mV (Brennan and Lindsay 1998).

In Brazilian soils commonly cultivated with flooded rice, soluble iron content

after flooding does not reach such high levels as registered in other traditional rice

growing countries. Generally, the iron content in Brazilian soils does not exceed
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100 ppm. However, these levels are sufficient to cause iron toxicity in rice (Barbosa

Filho et al. 1994). The iron content in which toxicity occurs in the soil and plant

ranges between 10 and 1,000 ppm and 50 and 1,700 ppm, respectively. Such broad

limits illustrate that toxicity development is a complex phenomenon. It does not

appear that there is a specific factor in either the soil or the plant that allows a

prediction of toxicity (Barbosa Filho et al. 1994).

The predominant and therefore the most important form of toxicity in Brazil is

indirect. Toxicity due to the ferric form (Fe2+) can cause considerable losses in rice

production. This is specially the case in the acid soils of tropical and subtropical

areas (Fageria and Rabelo 1987; Wu et al. 1998), as found in southern Brazil. These

regions are characterized by their richness in iron and low pH (Silva et al. 2003).

Occurrence in rice fields may cause reductions in productivity as high as 80%

(Sousa et al. 2004). Iron toxicity was first detected in Brazil during the 1970s. The

introduction of modern-type rice cultivars, some of which showed sensitivity to

the excess of iron in the soil, revealed the problem. The problem was also seen in the

states of Santa Catarina, Minas Gerais, Rio de Janeiro, Espı́rito Santo, Goiás, and

Rio Grande do Sul (Sousa et al. 2004; Vieira et al. 1999).

7.2.2 Iron Metabolism

The stable forms of iron participating in plant metabolism are Fe2+ and Fe3+

(Staiger 2002). The oxidation of iron-carrying compounds is constantly detected,

iron going from Fe2+ to Fe3+ during the electron transfer and vice versa. The

complex compounds formed with iron such as Fe–S proteins are key to electron

transfer in the respiratory functions in mitochondria and in the photosynthesis

apparatus in the chloroplasts (Balk and Lobreaux 2005). Fe–S clusters also partici-

pate in nitrogen fixation, DNA repair, and metabolic pathways. Iron is an essential

component of different enzymes involved in electron transfer (redox reactions),

such as cytochromes, both heme and non-heme groups, as well as electron carriers

and ferredoxin, a substance known to be involved in the photosynthesis electron

transfer (Barbosa Filho 1994; Briat et al. 1995; Briat and Lobréaux 1997; Briat et al.

2007). The presence of iron was also observed in plant hormone synthesis as a

cofactor (Bouzayen et al. 1991; Siedow 1991). Iron is predominantly present in the

chloroplasts as phytoferritin and ferredoxin (ca. 75%) protein complexes which are

known to be involved in the photosynthesis electron transfer (Brown et al. 1972).

7.2.3 Iron Uptake

The predominant form of iron is the divalent form Fe2+. Its content in the soil ranges

from near zero up to 40% in the Fe2O3 form. In order to cope with the low solubility

of ferric ions, an active mechanism to release/absorb iron from Fe3+ oxide hydrates
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to the soil solution is required. Due to their immobility, plants face a range of iron

availability in the environment. Both iron deficiency and toxicity are responsible

for severe nutritional disorders deeply affecting their physiology (Ponnamperuma

et al. 1955; Chaney et al. 1972). In general, two strategies, one based in reduction

and another based in chelation (Kim and Guerinot 2007), have been described for

the uptake of iron.

7.2.3.1 Strategy I (Reduction Based)

In this strategy, plants release protons into the surrounding rhyzosphere via a

proton-ATPase. Dicot plants improve iron absorption by three reactions: (1) proton

efflux via ATPase to acidify the medium and therefore increase Fe3+ solubility; (2)

reduction of Fe3+ by a Fe3+-reductase to a more soluble form Fe2+; (3) transport of

Fe2+ by an iron transporter (R€omheld and Marschner 1986).

7.2.3.2 Strategy II (Chelation Based)

The organisms using this strategy release phytosiderophores (PSs) that chelate Fe3+

at the rhizosphere, allowing specific protein transporters to import the Fe3+–PS

complexes (R€omheld and Marschner 1986; Hell and Stephan 2003). Microorgan-

isms, as well as grasses, use this strategy. Yeast, although not secreting its own

siderophores, can recognize and absorb bacterial siderophores such as catecholate

or hydroxamate (Yun et al. 2000a; Yun et al. 2000b).

7.2.4 Iron Transport and Signaling

Iron uptake and transport have been described in the model eukaryote Saccharomy-
ces cerevisiae (Curie and Briat 2003). In the plasma membrane, reductases reduce

Fe3+ to Fe2+, which is more soluble. A flavocytochrome (Fre1p) reduces Fe3+ at the

cell surface. Many paralogs of the FRE gene have been found (FRE2 – FRE7) as a
result of yeast genome sequencing (Johnston et al. 1997). FRE2 encodes a protein

related to Fre1p while FRE3 and FRE4 genes are involved in the reduction of Fe3+-
siderophore (Dancis et al. 1990). When the cells are replete with iron, a low-affinity

uptake system is responsible for ferrous iron uptake. This is achieved by a plasma

membrane transport protein encoded by the FET4 gene (Dix et al. 1994; Dix et al.

1997). On the other hand, the genes FET3 and FTR1 play an important role in high-

affinity ferrous uptake, which is induced under iron-deficiency conditions (Askwith

et al. 1994; Stearman et al. 1996). FET3 encodes a trans-membrane protein from a

family of multicopper oxidases that has an oxidase catalytic domain located on the

cell surface. FTR1 encodes a plasma membrane permease containing a REGLE

motif that has been identified in the ferritin iron-storage protein and seems to be

responsible for an iron selective pore. A model for high-affinity iron uptake has
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been proposed (Eide 1998). It requires that Fe2+ produced by the Fe3+ reductases be

oxidized outside the cell by the FET3p multicopper oxidase into Fe3+, which then

binds to a Fe3+-binding site on FTR1p. Then, a conformational change is caused by

this binding, enabling Fe3+ to be transported to the cytoplasm. On another model

species, rice, a survey on the iron homeostasis-related genes revealed 18 YS,

2 FRO, 13 ZIP, 8 Nramp, and 2 Ferritin genes (Gross et al. 2003).

The Nramp (Natural Resistance-Associated Macrophage Protein) family of metal

transporters is conserved from bacteria to mammals (Gunshin et al. 1997). How-

ever, these proteins have also been shown to transport Ni, Zn, Cu, Co, and Cd, as

well as Fe and Mn (Gunshin et al. 1997). In order to avoid imbalances in nutrient

supply and to meet the nutritional demands for the entire plant, vascular plants

employ a strategy of interorgan signaling (Schmidt 2003). The signal for systemic

regulation of root responses to iron has been suggested to be ITP1, an iron-binding

member of the LEA (late embryogenesis abundant) protein family (Krueger et al.

2002). Transcription factors induced by iron deficiency have been reported, includ-

ing 14-3-3 and zinc-finger proteins in barley (Negishi et al. 2002). Also, a protein

containing a helix-loop-helix domain, FER, was cloned from a tomato mutant (fer).
This mutant does not respond to iron deficiency and can only survive with a heavy

supply of iron chelates (Ling et al. 2002). Nitric oxide (NO) is responsible for the

translation of the Fe-deficiency signal, a ubiquitous signal in mammals and plants

(Wendehenne et al. 2001).

The transport of iron to the cell interior creates the necessity of a proper storage

in order to avoid possible damage due to reactive oxygen species. Iron is stored in

the apoplastic space, between the plasmatic membrane and the cell wall of plant

cells, in mitochondria (Zancani et al. 2004), in plastids (Seckback 1982), and in the

vacuole, in low pH and high organic acid concentrations (Briat and Lobréaux

1997). The vacuole is the place for iron and other metal sequestrations, either as

a mechanism of detoxifying the cell or as metal reservoir. Exactly how the vacuole

contributes to iron metabolism is not clear. Mutations that affect vacuolar function

also affect the assembly of high-affinity transport systems present in the plasma

membranes (Urbanowski and Piper 1999). Ferritin, a specialized iron-storage

protein, is used to store iron in both mitochondria and plastids. They consist of 24

subunit hollow spheres capable of storing up to 4,500 atoms of iron per molecule in

a soluble and bio-available form (Balla et al. 1992; Harrison and Arosio 1996;

Connolly and Guerinot 2002). Ferritin forms gated pores, which are highly con-

served in ferritins of humans down to bacteria. These pores control iron flow to

chelators (Liu and Theil 2005). Iron controls the transcription of plant ferritins

in soybean and maize (Fobis-Loisy et al. 1996; Wei and Theil 2000). Also, the

accumulation of plant ferritin is regulated post-transcriptionally, since ferritin

mRNA accumulates in the maize mutant ys1 to a similar level as in other genotypes

(Fobis-Loisy et al. 1996) but iron accumulation in leaves is lower.

Many genes involved in iron transport have been described. Two ZIP family

members that function as root iron transporters, IRT1 and IRT2, are responsible for
iron uptake from the soil in Arabidopsis (Eide et al. 1996; Guerinot 2000; Connolly
et al. 2002; Vert et al. 2002; Varoto et al. 2002). TheOsIRT1 andOsIRT2 genes from
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rice are predominantly expressed in roots and induced in low-Fe conditions

(Ishimaru et al. 2006). A root iron-chelate reductase, FRO2 (homologous to

FRE1, FRP1 and gp91phox), complements the Arabidopsis frd1 mutant, deficient

in root ferric-reductase activity (Robinson et al. 1999). Members of the Nramp

family, Nramp1, 3, and 4, are divalent metal transporters which tend to show

increased mRNA accumulation in Fe deficiency (Curie et al. 2000; Thomine et al.

2000). AtNramp3 is a vascular metal transporter involved in plant responses to iron

deficiency. It is expressed in the vascular bundles of roots, stems, and leaves under

Fe-sufficient conditions, suggesting a function in long-distance metal transport

within the plant (Thomine et al. 2003). Mobilization of vacuolar iron is essential

for seed germination on low iron and is performed by the products of genes

AtNramp3 and AtNramp4 (Lanquar et al. 2005). Some iron efflux transporters

belonging to the IREG/Ferroportin family have been reported (IREG 1-3) and

show sequence similarity to mammalian iron efflux transporters (McKie et al.

2000). YS1, a Fe3+-phytosiderophore transporter, was cloned in maize from the

ys1 (yellow-striped) mutant (Curie et al. 2001). It was reported as a membrane

protein that mediates iron uptake. YS1 is able to translocate iron that is NA or PS

bound, and its specificity to iron seems to be several fold higher than that to copper.

No evidence was found for YS1 to be active in zinc transport (Roberts et al. 2004).

Arabidopsis has eight homologues, YSL 1-8. AtYSL1 is an important nicotianamine

seed loading. This gene was expressed in the xylem parenchyma of leaves, where it

was upregulated in response to iron excess, as well as in pollen and in young siliqua

parts (Le Jean et al. 2005). AtYSL2 is a metal-regulated gene encoding a plasma

membrane transporter of nicotianamine–metal complexes that is expressed in many

cell types in leaves, roots, and reproductive organs showing amajor role in the lateral

movement of metals in the vasculature (DiDonato et al. 2004). Rice has 18 putative

YS1-like genes exhibiting 36–76% sequence similarity to maize YS1. From these,

OsYSL2 is strongly induced in rice leaves by iron deficiency (Koike et al. 2004).

TcYSL3 is a Fe/Ni–NA influx transporter and a good candidate for the function of

entry of Ni–NA into the symplasmic transport in the root for delivering it into the

xylem. It is also important for the unloading of the Ni–NA complexes from the

xylem in the leaves and subsequent delivery to storage sites (Gendre et al. 2006).

A member of the LEA family, ITP, has a similarity to a Fe3+ polypeptide

chelating in the phloem (Krueger et al. 2002). A gene belonging to the cytb5
reductase family, an NFR homolog with iron reductase activity in the tonoplast

and in the phloem was reported (Bagnaresi et al. 2000; Xoconostle-Cazares et al.

2000). Four genes encode ferritin (AtFer1-AtFer4) in Arabidopsis. AtFer1 and

AtFer3 play important roles in the protection of plant cells from oxidative stress

(Petit et al. 2001). AtFer2 gene expression was detected in mature siliquas and dry

seeds, induced by ABA (Briat and Lobréaux 1997). Grasses that utilize strategy II

release a low molecular weight chelating compound such as mugineic acid (MA).

The phytosiderophore-Fe3+ complexes are then transported into the plant (Grotz

and Guerinot 2002). In this process, two genes are required for the conversion of

S-adenosyl methionine to Nicotianamine (Nicotianamine Synthase, NAS) and NA

to deoxymugineic acid (Nicotianamine Aminotransferase, NAAT). A shortage of
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NA impairs the functions of metal-requiring proteins, including transcription fac-

tors (Takahashi et al. 2003). Maize has two types of NAS proteins based on their

expression pattern and subcellular localization (Mizuno et al. 2003). Three genes

were found: ZmNAS1, ZmNAS2, and ZmNAS3. The first two are expressed under

iron deficiency and the third is downregulated by iron deficiency and induced by

iron resupply. Three rice Nicotianamine Synthase genes, OsNAS1, OsNAS2, and
OsNAS3, have been shown to be expressed in cells involved in long-distance

transport of iron and differentially regulated by iron. OsNAS1 and OsNAS2 are

expressed in the vascular bundles of green leaves and in all cells showing chlorosis.

OsNAS3 expression is induced in roots but is suppressed in leaves in response to

iron deficiency (Inoue et al. 2003). A cDNA macroarray using 36 metal-related

genes from rice including metal transporter (ZIPs, NRAMPs, and YSLs) and metal

homeostasis (NAS, FER, FRO, NAAT, FDH,GSTU, and PDR) genes was developed
(Narayanan et al. 2007). The genes OsIRT1, OsZIP1, OsZIP5, OsZIP8, OsYSL5,
OsYSL6, OsYSL7 OsYSL8, OsYSL18, OsNramp2, OsNramp4, and OsNramp7 were

found to be expressed in all types of leaves (flag and non-flag).

7.2.5 Improving high/low Iron Tolerance in Rice

Rice is a particularly interesting species since it is described as a strategy II plant,

but it also absorbs iron through strategy I. This means that it can absorb iron via

chelated- and reduction-based strategies. The latter causes an acidification of the

medium and increases the ratio of soluble/insoluble iron in the soil (Ishimaru et al.

2006). Thus, rice has the advantage of plasticity regarding growing under normal or

submerged conditions. In general, plant species differ regarding the ability to

absorb nutrients, the degree of resistance to toxic elements, and efficiency in the

use of absorbed nutrients (Clark 1983; Furlani et al. 1986). Shoot length and 9 days

of stress were shown to be the best traits for discriminating Brazilian irrigated rice

genotypes (Crestani et al. 2009) regarding their genetic response to iron toxicity.

A mapping population consisting of 123 double-haploid (DH) lines was devel-

oped from a cross between IR64 and Azucena (Guiderdoni et al. 1992). The parents,

123 DH lines, and 100 DHBC1F1 (DH lines backcrossed to Azucena) were used to

find markers associated to seedling tolerance for ferrous iron toxicity (Wu et al.

1997). From a total of 175 cDNA and genomic clones tested, four marker loci on

chromosome 1 were identified to be significantly associated with both segregations

of tolerance index value (degree of bronzing) and RDSDW (relative decrease in

shoot dry weight). A significant association between one marker locus and RDSDW

was found. Also, QTLs explaining 32% and 15% of the tolerance index value and

15%, 21%, and 10% of the RDSDWwere found (Wu et al. 1997). Another mapping

population consisting of 96 backcross inbred lines (BILs) derived from a cross

Nipponbare/Kasalath/Nipponbare was developed (Wan et al. 2003). The 96 BIL

lines in BC1F9 were phenotyped for iron tolerance. Four QTLs were detected using
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RFLP markers on chromosomes 1 and 3 that were significantly associated with leaf

bronze index, stem dry weight, tiller number, and root dry weight.

Regarding iron defficiency, rice produces less phytosiderophores than wheat and

barley. One strategy has been to increase its PS production. When transgenic rice

plants expressing barley NA Aminotransferase were tested, their tolerance was

improved, achieving higher vigor and fourfold higher grain yield (Takahashi et al.

2001). The constitutive expression of two Fe3+--chelate reductases from yeast in

transgenic tobacco resulted in fourfold increase in iron reductase activity and 50%

increase in leaf iron content (Samuelsen et al. 1998). Constitutive expression of the

ArabidopsisNA Synthase gene resulted in a twofold to fourfold increase in leaf iron

content of tobacco plants, which grew faster and performed more efficiently under

iron-deficient conditions (Douchkov et al. 2001). However, improving iron uptake

alone is not sufficient, because of rate-limiting steps further in the pathway. On

the other hand, the increase of NA synthesis may be a viable option, although

co-supression has been observed in rice transformed with the barley NAS gene

(Mori et al. 2001).

7.2.6 Mutation Inducing

Another strategy to obtain improved genotypes for iron toxicity tolerance is mutation

inducing. Gamma ray was used to generate a collection of rice mutant genotypes

from the indica cultivar BR-7 “Taim” (Table 7.1). These mutants were screened for

many abiotic stresses, including iron, aluminum, organic acids, and root morphology

(Zimmer et al. 2003). Seven variables were analyzed on plants under iron stress:

number of roots (NR), main root length (MRL), coleoptile length (CL), shoot length

(SL), first leaf insertion (FLI), first leaf length (FLL), second leaf length (SLL).

Mutant 6 showed one of the best relative performances being constantly among the

three higher values in six of seven evaluated variables (NR, CL, FLI, FLL, SLL, and

APL). It also showed the highest values in four variables (FLI, FLL, SLL, and APL),

showing great potential as an iron-tolerant genotype. Mutants 4 and 7 were also

promising, as both were in the top three values of relative performance in four of

seven evaluated characters (FLI, FLL, SLL, and APL; CL, FLI, FLL, and APL,

respectively). Mutant 26 was among the three higher values of relative performance

in three of seven evaluated characters (NR, MRL, and CL). These mutants show

promise for studying iron uptake and metabolism and are being further investigated.

7.3 Toxicity of Organic Acids to Irrigated Rice

7.3.1 Organic Acid Genesis in Flooded Soils

Soil flooding decreases gas exchanges between air and soil, since the diffusion of

gases in water is ca. 10,000-fold lower than that in the air. As a consequence,
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oxygen supply to the soil is very slow and below microorganism needs. In this

condition, facultative and obligatory anaerobic bacterial microorganisms prolifer-

ate and dominate the biological activity (Ponnamperuma 1972; Sousa et al. 2004).

In the absence of oxygen, biochemical processes responsible for the organic acid

metabolism in flooded soils are anaerobic respiration and fermentation. In the

anaerobic respiration, microorganisms use the energy released from organic carbon

oxidation in their vital processes and from inorganic compounds (nitrate, oxides

and manganese hydroxide, iron, and sulphate) such as electron receptors.

In fermentation, media organic compounds or byproducts of metabolic routes

are used as donors and acceptors of electrons in the oxirreduction process. These

organisms do not use an electron transport chain to oxidate NADH to NAD+,

but should work through an alternative form to use this energy and maintain

a supply of NAD+. Fermentation is characterized by a smaller generation of CO2

and the formation of short chain and low molecular weight organic compounds.

Despite being an inefficient way of breakdown, fermentation promotes the break of

complex organic substrates, resulting in a series of substances, many of them

transitory and not found in oxidized soils. Many of these substances have the

potential of causing toxicity to irrigated rice, especially the short-chain organic

acids, such as acetic, propionic, and butyric acids (Rao and Mikkelsen 1977).

The anaerobic decomposition of organic compounds happens in successive

steps involving different groups of microorganisms which convert complex mole-

cules in simpler forms, those described in Fig. 7.3 (Silva et al. 2008). In the

beginning of the process, there is a hydrolysis of organic polymers of plant origin

(plant tissue components) into monomers (such as carbohydrates into glycids,

lipids into long-chain organic acids, and proteins into aminoacids). This occurs

because facultative or obligatory anaerobic microorganisms secrete extracellular

enzymes, transforming complex compounds into simpler ones. These simple chain

organic compounds are assimilated by these microbes and fermented intracellu-

larly into short-chain organic acids, such as the acetic (CH3COOH), propionic

(CH3CH2COOH), and butyric (CH3CH2CH2COOH) acids, in a process called acid

formation. Following this process, there is the production of acetic acid, from

organic acids with more than two carbons. This step is called ketogenesis and is

regulated by anaerobic microorganisms that cannot convert acetic acid into CH4

due to enzymatic limitations. At the end, CH4 is formed from simple compounds

generated by ketogenesis as well as formate, H2, methanol, methyl amines, and CO2.

The production of organic acids in flooded soils is directly proportional to

degradable carbon availability. Thus, soils rich in organic matter or those soils in

which organic residues are added close to the flooding condition tend to present

higher production of organic acids. The organic acids can start to accumulate in

flooded soils where organic residues have been deposited as soon as day one.

Commonly, acid concentration is low at the first few days, reaching maximal values

between 2 and 4 weeks of flooding (Sousa et al. 2002). Then, the acid concentra-

tions decrease until stable and low values are found (Fig. 7.4). The peak of acid

release varies as a function of soil characteristics, residue amounts, and the type of

acid evaluated.
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7.3.2 Organic Acid Toxicity Symptoms

The toxicity by organic acids in rice is observed at early stages of plant develop-

ment, characterized by a lower germination percentage, lower radicle development,

and lower plant height and weight (Sousa and Bortolon 2002). In cases of severe

toxicity, plant growth injuries can reflect in other phases, leading to decreases in

tillering ability, nutrient absorption, and grain yield (Camargo et al. 1993; Camargo

et al. 2001). The higher toxic effect of organic acids occurs in the root system, and

concentrations of 2.5 mmol L�1 acetic, 1.25 mmol L�1 propionic, and 1.00 mmol

L�1 butyric acid are capable of causing significant reductions on rice growth (Sousa

and Bortolon 2002; Schmidt et al. 2007), as can be observed in Fig. 7.5.

The monocarboxylic acids (such as acetic, propionic, and butyric) alter the

composition of organic acids on the plasma membrane, decreasing the ratio of
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Fig. 7.3 Scheme showing the degradation of organic matter into simpler compounds in flooded

soils. Adapted from Silva et al. (2008)
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polyunsaturated acids, affecting an important property of the membrane such as

selectivity and increasing solute leaking (Marschner 1995). Therefore, organic

acids can harm the development of the crop, mainly by inhibiting root elongation

and nutrient absorption (Takenaga 1995; Sousa and Bortolon 2002). Organic acids

cause root cell division inhibition at the point of contact between root and acid

(Armstrong and Armstrong 2001).

Critical levels of organic acid toxicity reported in the literature vary as a function

of time of exposure of plants to organic acids, nutrient concentration and nutritive

solution pH (Fortes et al. 2008), genotype (Kopp et al. 2008), and acid used, making

the establishment of a standard toxic concentration difficult. A concentration of

4.7 mmol L�1 of acetic acid causes 50% reductions on root growth of rice cultivar

BRS-7 “Taim”(Sousa and Bortolon 2002). A similar result was observed with

1.7 mmol L�1 propionic and 2.0 mmol L�1 butyric acid (Schmidt et al. 2007).

On the other hand, Kopp et al. (2007a) found that concentrations of 10.9 mmol L�1,

5.6 mmol L�1, and 5.3 mmol L�1 of acetic, propionic, and butyric, respectively,

were needed to achieve the same 50% reduction of root growth for cultivars BRS-7

“Taim” and SAIBAN.

Even with some differences among authors about the critical levels of organic

acid toxicity in irrigated rice, there is a common view that acetic acid, although

present in higher amounts in flooded soils, shows less toxicity than propionic and

butyric. The increase in the number of carbons on the chain increases the degree of

toxicity of the organic acid (Takijima 1964; Rao and Mikkelsen 1977). However,

such difference is not so clear when one compares propionic and butyric acid

(Schmidt et al. 2007; Kopp et al. 2007a).
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Fig. 7.4 Acetic acid contents in the soil solution at three depth measures in a flooded Albaqualf,

with ammending of ryegrass residues in amounts equivalent to 10 Mg ha�1. Adapted from Sousa

et al. (2002)

170 R.O. Sousa and A. Costa de Oliveira



Fig. 7.5 Rice plants subjected to different organic acid concentrations in nutrient solution for

13 days.
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Studies developed in our group regarding organic acid tolerance in rice cultivars

and mutants demonstrate that many distinct mechanisms do exist for tolerance to

each of the major acids formed in the soil (acetic, propionic, and butyric). It was

shown that genotypes tolerant to one acid do not necessarily tolerate the other two

(data not shown). However, some genotypes show tolerance to more than one acid

or even to the three of them. When these results are compared to studies where

all three acids were added simultaneously to form the treatments (Wallace &

Whitehand 1980), one observes that the proportion of tolerant genotypes is reduced.

In order to study the genetic variability for tolerance to organic acids in rice, a

mutant population was screened (Zimmer et al. 2003; Kopp et al. 2007b, c, d). After

cycles of generation advancing, 40 lines were obtained for genetic studies. Lines

were divided in 25% tolerant to acetic and propionic and 27.5% tolerant to butyric

acid. Also, some very sensitive lines were identified. These results suggest that the

mutagen affect some genes related to organic acid response. In Oat, mutants

obtained from a gamma Ray induction in the oat cultivar UFRGS 14, which is

sensitive to organic acids (Kopp et al. 2006), were shown to vary regarding

tolerance to these compounds. The evaluation of 30 mutant lines resulted in

23.3% tolerant genotypes. Further studies regarding mapping and inheritance of

these genes are under way.

7.4 Conclusion and Perspectives

The genomic analysis of plant roots will enable us to better understand abiotic

stresses and improve iron tolerance and/or accumulation as well as organic acid

tolerance. Rice is the major staple food for over half of the world’s population and

understanding the major stresses affecting the rice crop will enable scientists to

design better plants with better yields in order to feed the growing population and

save the occupation of virgin areas today maintained as ecological reserves. Deal-

ing with iron and organic acids is not a simple task, and a better understanding of

the mechanisms by which plants absorb, transport, and store/process these com-

pounds will allow better land use and management. Root genomics is likely to be

among the major sciences in this century, since roots have been largely neglected

despite its importance on the plant vs. environment interactions.
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e adsorção de nutrientes, em solução nutritiva com diferentes concentrações de ácido acético.
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Genomics of Root Architecture and Functions

in Maize
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8.1 Introduction

Twenty-first century agriculture will face formidable challenges to provide man-

kind with an appropriate level of food security while enhancing the sustainability

and profitability of agricultural practices, lowering their environmental impact,

and preserving the remaining biodiversity (Borlaug and Dowswell 2005). These

challenges will be even more daunting in view of the increased unpredictability of

weather patterns as a result of global climate change and the decreased availability

of irrigation water required for mitigating the negative effects of drought (Pennisi

2008).

Among the major crops that feed mankind, maize is expected to become the most

important by 2030, especially in view of the projected increase in the demand for feed

in meat production. More severe and frequent droughts have been forecasted
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for regions where maize represents an important component in the human diet (e.g.,

tropical Africa and Northeast China) or for biofuel and livestock production

(e.g., USA and Eastern Europe). In this challenging scenario, better knowledge of

the genetic and functional basis of the processes regulating the development and

plasticity of maize roots will allow for a more effective selection to improve yield

potential while optimizing water- and nutrient-use efficiency (Guo et al. 2005b; Bohn

et al. 2006; de Dorlodot et al. 2007; Osmont et al. 2007; Yu et al. 2007; Desnos 2008;

Hochholdinger and Tuberosa 2009). Root traits have been shown to play a major role

in the adaptive response of crops to drought and low nutrients (Tuberosa et al. 2003;

Lynch 2007), and their selection has often been advocated to mitigate yield losses in

crops exposed to water and nutrient deficits (Ludlow and Muchow 1990). This

notwithstanding, breeders have largely neglected selecting for roots, not only for the

demanding phenotyping but also for the difficulty in identifying a yield-effective

ideotype and to effectively select the desirable root architectural features. Other

factors that have traditionally discouraged root studies in field-grown plants are the

low heritability of root features consequent to high soil heterogeneity and the need to

utilize destructive approaches. Maize is no exception to the above.

As an alternative to root surveys in field-grown plants (Fincher et al. 1985; Beck

et al. 1987), studies implemented under controlled conditions (e.g., hydroponics,

aeroponics, pots) at an early stage facilitate the measurement of root characteristics

in a large number of plants (Nass and Zuber 1971; Arihara and Crosbie 1982; Stamp

and Kiel 1992; Landi et al. 1998; Sanguineti et al. 1998, 2006). Nonetheless, the

unnatural environment in which roots grow and the early growth stage that is

usually considered in such studies are major shortcomings that should be cautiously

considered before extrapolating the results to field-grown plants. In maize, a

significant, albeit weak, positive association was reported between seminal root

traits in hydroponics and root-pulling resistance in the field (Landi et al. 2001).

Additionally, seminal roots in maize play a prominent role in nutrient acquisition at

the seedling stage and thus influence early vigor, a feature particularly relevant

under conditions of zero or minimum tillage characterized by low agronomic input.

The length and number of seminal roots may be particularly important in the

acquisition of immobile nutrients such as phosphorus (Kaeppler et al. 2000; Zhu

et al. 2005a, b, c, 2006; Lynch 2007). As the plant reaches flowering, the importance

of seminal roots declines as compared to shoot-borne roots, commonly

named adventitious nodal roots (Kiesselbach 1949; Hochholdinger et al. 2004b),

which have been shown to positively affect grain yield in water-limited conditions

(Duchoslav et al. 1989; Navara et al. 1993, 1994; Jesko 2001).

Maize roots show a high level of developmental plasticity in response to external

cues (Hose et al. 2000; Ito et al. 2006), a clear example being provided by the

interplay between abscisic acid (ABA) and ethylene in sustaining root elongation

under conditions of water deficit which inhibit shoot elongation (Sharp and Davies

1985; Saab et al. 1990; Zhang and Davies 1990; Sharp 2002; Sharp et al. 2004;

Spollen et al. 2008). Additionally, this plasticity insures the optimization between

the allocation of photosynthates to the root and its capacity to (1) capture water and

nutrients as a function of the prevailing soil conditions and (2) mitigate the negative
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effects of adverse soil conditions. A clear example of the latter is provided by the

development of aerenchyma in adventitious roots in response to water-logging

conditions (Mano et al. 2005a, b).

Notwithstanding the important role of roots for optimizing maize yield (Bolaños

et al. 1993; Hammer et al. 2009), the genetic factors that control root growth have

only recently started to be unveiled with the use of mutants and, in some cases, their

cloning (Taramino et al. 2007; Hochholdinger et al. 2008). As an example, the

cloning of rtcs (rootless concerning crown and seminal roots) revealed its role in

encoding an auxin-inducible transcription factor that controls the early events

leading to the initiation and maintenance of seminal and shoot-borne root primordia

(Taramino et al. 2007). Nonetheless, because the genetic basis of the variability of

root architecture in cultivated maize is prevalently quantitative, the application of

suitable genomics approaches is required to identify the relevant quantitative trait

loci (QTLs). This, in turn, would enable breeders to apply marker-assisted selection

(Varshney and Tuberosa 2007) for tailoring roots according to the ideotype

perceived as optimal to maximize crop performance in the target environment

(de Dorlodot et al. 2007; Tuberosa et al. 2007).

In this context, the present review surveys the main findings of QTL studies

and other genomics approaches aimed at (1) dissecting the genetic basis of the

variability in root architecture in maize and (2) investigating and interpreting the

effects of this variability on yield and other agronomic traits.

8.2 QTLs for Root Architecture and Associated

Traits in Maize

The maize root system includes embryonic primary and seminal roots and postem-

bryonic shoot-borne and lateral roots (Hochholdinger et al. 2004b) which have

different functions as development progresses. As an example, at flowering, shoot-

borne nodal roots play a predominant role in extracting moisture from the more

superficial portion of the soil horizon, while primary and seminal roots allow plants

to access moisture more deeply stored and useful to avoid desiccation under drought

conditions. However, a large root system does not guarantee a high yield as shown in

the recurrent selection work in maize carried out at CIMMYT to improve grain yield

under severe drought conditions (Bolaños et al. 1993) and by a study conducted

testing families derived from the cross of inbred lines (B73 and Mo17) which

differed in root characteristics at an early growth stage (Bruce et al. 2002).

A comparative analysis of the results of QTL studies in maize is facilitated by

the availability of the UMC (University of Missouri, Columbia) reference map

which has been subdivided into 103 sectors (bins) of comparable size (Davis et al.

1999). The boundaries of each bin are defined by flanking markers (RFLPs and

SSRs) included in a public set of Core Markers (Gardiner et al. 1993; Davis et al.

1999). The UMC map reports over 15,000 loci and includes genes, probed sites,

cytological breakpoints, and QTLs (Schaeffer et al. 2006). Because the bin
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framework integrates over 130 independent map sets and includes all mapped loci

stored in MaizeGDB (http://www.maizegdb.org), it has been used extensively for

the comparison of QTL positions across genetic backgrounds (Lin et al. 1995;

Khavkin and Coe 1997; Tuberosa et al. 2002b, 2003, 2005; Chardon et al. 2004;

Sawkins et al. 2004; Schaeffer et al. 2006; Wang et al. 2006). Gramene (http://

www.gramene.org) is another database that reports information on maize QTLs and

allows for comparative searches of maize genomics data with other grasses (Ware

et al. 2002). Importantly, the UMC map allows us to compare the map position of

mutants (Neuffer et al. 1997) with that of QTLs, thus contributing relevant infor-

mation for validating Robertson’s hypothesis for a specific locus (Robertson 1985).

The first comparative analysis of root QTLs in maize (Tuberosa et al. 2003)

highlighted the role of two major QTL regions (on bins 2.04 and 1.06) for their

effects on root architecture and other traits, including grain yield, in different

genetic backgrounds. In order to more accurately evaluate the effects of these two

QTLs on root traits and grain yield, near isogenic lines (NILs) differing for the

parental segment at these QTL regions have been developed (for bin 2.04 see Landi

et al. 2005; for bin 1.06: Landi et al. 2010). The main results reported to date for

these QTL regions are summarized hereafter while the results obtained with the

NILs for bin 2.04 are reported in Sect. 8.3.1.

8.2.1 Effects of the QTL Region on Bin 2.04

Lebreton et al. (1995) were the first to report the significant effect of bin 2.04 on

root architecture using an F2 population (81 plants in total) derived from the cross

between Polj17 and F-2, two lines that were known to differ for root features,

especially root-pulling force (RPF) at flowering, and also for the concentration of

ABA in the leaf and xylem sap. For all but one of the detected QTLs, the additive

effects for ABA concentration and RPF were concurrent. A remarkable correlation

(r ¼ 0.84) was found between the QTL effects for nodal root number and ABA

concentration in the xylem sap. The QTL region on bin 2.04 also showed the

strongest effect on leaf ABA concentration (L-ABA); this finding was confirmed

by Tuberosa et al. (1998) using a mapping population derived from the cross

between Os420 and IABO78, two lines widely different for drought tolerance and

L-ABA (Tuberosa et al. 1994; Landi et al. 2001). It is worth noting that none of the

major mutants impaired in ABA biosynthesis mapped in bin 2.04, a result that led

Tuberosa et al. (1998) to postulate that the effect of the QTL on L-ABA might have

been due to a primary effect on root size/architecture, hence on the water status of

the plant, the major factor influencing the concentration of ABA in plant tissues

(Quarrie 1991). Subsequent studies conducted to further characterize the effects of

this QTL in the Os420 � IABO78 background have shown its marked influence on

root architecture, root lodging, and grain yield but not on the water status of the

plant (Giuliani et al. 2005b; Landi et al. 2007). Further details on the characteriza-

tion of the bin 2.04 QTL are provided in Sect. 8.3.1. Additionally, the meta-analysis
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conducted by Sawkins et al. (2004) has highlighted the effects of bin 2.04 on grain

yield under conditions of water stress. Recently, the importance of bin 2.04 in

controlling root features has been reported by Trachsel et al. (2009) in an RIL

population derived from the cross between CML444 (drought tolerant) and SC-Ma-

lawi (drought sensitive) and tested for length of axile and lateral roots at 2, 5, 7, and

9 days after germination. In particular, a QTL region on bin 2.04 affected the

elongation rate of lateral roots as well as the elongation and number of axile roots.

Additional bins that affected root growth were also reported in bins 1.03, 1.04, 1.08,

2.05, and 7.04. Based on a comparative analysis of their results with those previ-

ously published, Trachsel et al. (2009) suggested that root growth at the juvenile

stage can be predictive of root morphology at later developmental stages.

8.2.2 Effects of the QTL Region on Bin 1.06

In an experiment conducted in hydroponics using 171 F3 families derived from the

cross Lo964 � Lo1016, several QTLs were shown to influence primary root length

(R1L), primary root diameter (R1D), primary root weight (R1W), and the weight of

the adventitious seminal roots (R2W) (Tuberosa et al. 2002c). Bin 1.06 was the

chromosome region with the most sizeable QTL effects (LOD values of 14.7, 6.4,

and 8.3 for R1D, R1L, and R2W, respectively). In order to investigate to what

extent the QTLs influencing root growth in hydroponics may also regulate root

growth in the field, a random sample of 118 (Lo964 � Lo1016) F3 families were

tested for root-pulling force (RPF) at flowering in replicated field trials (Landi et al.

2002). Out of the 30 bins with QTLs for RPF and/or number of brace roots,

15 (including bin 1.06) also harbored QTLs for root traits in hydroponics, i.e., a

frequency much higher than what would be expected based solely on chance.

Subsequent field trials conducted during two growing seasons to measure grain

yield (GY) under well-watered (GY-WW) and water-stressed (GY-WS) conditions

with the Lo964 � Lo1016 F3 families revealed several QTLs whose peaks over-

lapped with those for root traits measured in hydroponics (Tuberosa et al. 2002c)

and/or in the field (Landi et al. 2002). In particular, QTLs for R2W co-localized

with QTLs for GY-WW and/or GY-WS in bins 1.03, 1.06, 1.08, 7.02, 10.04, and

10.07. At five of these six chromosome regions, an increased root weight was

associated with a higher GY, a result more likely to be due to pleiotropy rather

than linkage, in view of the number of independent chromosome regions involved

and the consistency of their effects. Of all regions which concomitantly influenced

root traits and GY, the strongest and most consistent effects were confined to a

10 cM interval on bin 1.06 that affected root features in both hydroponics and field

conditions and GY under both WW and WS conditions. QTLs for root traits on bin

1.06 have also been reported in Polj17 � F-2 (Lebreton et al. 1995), B73 � Mo17

(Kaeppler et al. 2000), F288 � F271 (Barriere et al. 2001), and Z3 � 87-1 (Liu

et al. 2008a). Additionally, it is worth noting that Hirel et al. (2001) reported a
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major QTL for nitrogen-use efficiency and GY on bin 1.06, a finding which further

highlights the importance of this region for GY.

8.2.3 QTLs for Root Architecture of Maize Grown Under
Environmentally Constrained Conditions

Because drought is the major environmental factor curtailing maize yield (Duvick

2005), a number of reviews have already surveyed QTLs for roots in maize under

water-limited conditions and their role in sustaining yield (Tuberosa et al. 2002b, c,

2003, 2007). Here, we summarize the main findings of the studies that have

investigated QTLs for roots of maize grown under low temperature, low nutrients,

flooding, or in the presence of root worms or in conditions that favor root lodging.

8.2.3.1 Root QTLs at Low Temperature

The development of a vigorous, highly structured root system might be of major

importance for growth at low temperature (Hund et al. 2008), especially in no-

tillage systems, where low soil temperature becomes a major limiting factor.

Genotypic differences in cold tolerance exist for the development of the root

(Stamp 1984). QTLs controlling root tolerance to cold at early stages were studied

in a set of 168 F2:4 families of the Lo964 � Lo1016 cross derived from a

corresponding set of F2:3 families originally tested for root traits and tolerance to

drought (Landi et al. 2002; Tuberosa et al. 2002b). Seedlings were grown at

15/13 �C and evaluated for shoot and root traits (Hund et al. 2004). The analysis

of root weight, length, and diameter led to the identification of 38 QTLs, seven of

which confirmed QTLs reported by Tuberosa et al. (2002b) for root traits in the

same population evaluated in hydroponics at normal temperature. A locus on bin

5.07 for root growth at low temperature was also shown to influence cold tolerance

at germination on the same mapping population (Frascaroli et al. unpublished

results), thus suggesting that this QTL region plays an important role in controlling

cold tolerance at different growth stages.

8.2.3.2 Root QTLs Under Low Nitrogen Conditions

The work of Wiesler and Horst (1994) demonstrated that a deeper root system is

essential in maize for utilizing nitrate in deep soils under field conditions and

showed that N-efficient maize cultivars had longer roots and larger root surface

areas.

An important aspect of maize productivity relates to the capacity of the plant to

efficiently absorb soil nitrogen, store it in the vegetative organs, and relocate it
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during kernel growth (Wang et al. 2004; Chun et al. 2005; Hirel et al. 2007; Coque

et al. 2008). Although QTLs for nitrogen-use efficiency have been described and in

some cases accurately characterized in terms of biochemical effects (Agrama et al.

1999; Hirel et al. 2001, 2007; Gallais and Hirel 2004), their possible effects on root

architecture and functions remain to be duly investigated. Conversely, QTLs have

been identified for root hair length and plasticity in response to low phosphorus, a

nutrient that unlike nitrogen shows low mobility in the soil (Chassot and Richner

2002; Zhu and Lynch 2004). By enhancing soil exploration, root hairs play an

important role in the uptake of phosphorus.

A paper-roll culture system was used to investigate root hair length (RHL),

taproot length, root thickness, and root biomass in a RIL population derived from

B73 � Mo17 (Zhu et al. 2005a, b). One QTL was associated with RHL plasticity,

three QTLs with RHL under high fertility, and one QTL with RHL under low

phosphorus. Six QTLs accounted for 53% of the total variation for seed phosphorus

content among RILs. Root biomass plasticity was significantly correlated with RHL

induced by low phosphorus, taproot length plasticity, and seed phosphorus reserves.

The only study that has extensively investigated root QTLs under different

nitrogen levels was conducted by Liu et al. (2008a) using 94 RILs derived from

the cross Z3 � 87-1, a hybrid widely grown in China. The lateral root length

(LRL), axial root length (ARL), maximal axial root length (MARL), axial root

number (ARN), and average axial root length (AARL) were evaluated under low N

(LN) and high N (HN) conditions in a hydroponics system. Of the 17 QTLs that

were detected by Liu et al. (2008a), 14 were located on chromosome regions where

other authors had previously reported QTLs for root architectural features (Lebreton

et al. 1995; Guingo et al. 1998; Landi et al. 2002; Tuberosa et al. 2002b; Hund et al.

2004; Mano et al. 2005a, b; Zhu et al. 2005a, b, 2006). Unexpectedly, among these

17 QTLs, no common loci were found under both LN and HN conditions for any

root traits, one possible reason being that the RIL population for QTL detection in

this study was very small. A major QTL on bin 1.06 (between bnlg1025 and

umc2029) for the AARL under LN explained 44% of the phenotypic variation

and co-localized with previously described QTLs for grain yield under low nitrogen

(Agrama et al. 1999; Bertin and Gallais 2001) and water-limited (Tuberosa et al.

2002c) conditions as well as for a number of root architectural features (Tuberosa

et al. 2002b; Zhu et al. 2006; Landi et al. 2010). Other striking coincidences were

identified on (i) chr. 8 between a QTL for LRL at HN (umc1997/umc1724) and the

QTL for LRL at high phosphorus supply (tpi5/umc07) reported by Zhu et al. (2005b),
and (ii) chr. 10, between a QTL for ARN (umc2043/umc1061) and a QTL for seminal

axial root number (pgamctg300/umc49b/umc44a) reported by Hund et al. (2004).

8.2.3.3 Root QTLs Under Low Phosphorus Conditions

Phosphorus (P) deficiency of soils can be a major yield-limiting factor in maize

production, particularly in low-input agriculture and in developing countries.

In maize, QTL studies have shown the importance of length and number of lateral
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and seminal roots in the acquisition of phosphorus (Kaeppler et al. 2000; Zhu et al.

2005a, b, c, 2006; Lynch 2007; Hao et al. 2008). At low soil P concentration, plant

growth is affected both by physiological factors inherent to the crop as well as by

their interactions with the soil biota. Among the different species colonizing the

soil, the role of mycorrhiza in nutrient uptake of crops remains largely unknown.

Kaeppler et al. (2000) identified QTLs for growth at low P and response to

mycorrhizal fungi in a (B73 � Mo17) RIL population. Three QTLs influenced

growth and shoot weight at low P in the absence of mycorrhizae and one QTL

on chr. 2 controlled mycorrhizal responsiveness. QTLs for root volume detected

for the high-P treatment were not coincident with any of the QTLs detected at

low-P concentration.

Following a study of root hair length in hydroponics under low P, Zhu et al.

(2005a, b, 2006) identified a major QTL flanked by npi409-nc007 on chr. 5. Chen

et al. (2008) evaluated 241 (Ye107 � 082) F2:3 families under normal phosphorus

(50 kg P/ha) and low phosphorus (0 kg P/ha) conditions at two sites. A total of 30

and 45 distinct QTLs were shown to influence growth and P efficiency in the

two sites. Three regions were found to influence relative root dry weight on bins

5.05 (mmc0282-phi333597 interval), 5.06 (umc1680-P5M1/c interval), and 5.07

(bnlg1346-bnlg1695 interval) at both sites. Each one of these QTLs explained

13–16% of the variation of relative root dry weight.

Another trait that has been suggested to influence P efficiency is root exudates

(Hinsinger 2001; Jones and Hinsinger 2008). Root exudates such as acid phospha-

tases, organic acid, and H+ compounds may help the mobilization of P from soils.

QTLs for P uptake in bean were found to influence H+ and total acid exudation from

the root (Yan et al. 2004), two processes capable of mobilizing soil-bound P

through soil P desorption or mineralization.

8.2.3.4 Root QTLs Under Flooding Conditions

Root features also play an important role in tolerance to soil flooding or water

logging (Ray et al. 1999; Mano et al. 2006a, b). The devastating flood of 1993 that

hit most of the corn-producing area in the Midwest USA caused $20 billion damage,

curtailing corn production by almost 30% and significantly raising the cost of corn-

based goods. Clearly, the availability of hybrids more tolerant to the negative effects

of soil anoxia caused by flooding would be beneficial for stabilizing corn production

and farmers’ income under such adverse conditions. A number of QTL studies have

investigated root features in response to flooding and water-logging conditions

(Mano et al. 2005a, b; Qiu et al. 2007). One of the major adaptations to soil flooding

is the adventitious root formation (ARF) at the soil surface. QTLs for ARF were

identified by Mano et al. (2005b) under flooding conditions in 110 F2 plants

derived from a cross between the dent line B64 with the tropical Caribbean

Flint line Na4. The QTLs for ARF were located on bins 3.07, 3.08, 7.04, 7.05,

and 8.05. At all QTLs, the Na4 alleles increased ARF. The comparison of ARF

QTLs in the B64 � Na4 population with those in a B64 � teosinte (Zea mays ssp.

186 R. Tuberosa et al.



huehuetenangensis) population showed the consistency of the QTLs on chr. 8 (Mano

et al. 2005a). Zea mays ssp. huehuetenangensis contributed all of the favorable QTL
alleles for ARF, thus supporting the conclusions of Campos et al. (2004) concerning

the value of mining genetic variation from outside cultivated maize to improve its

root architecture and functions. On a similar line, QTLs for aerenchyma formation

in roots, another important feature for adaptation to water logging, were identified

by using an F2 population generated from the B64 � teosinte (Zea mays ssp.
nicaraguensis) cross (Mano et al. 2007; Mano and Omori 2008). Seedlings of

Zea mays ssp. Nicaraguensis clearly formed aerenchyma in the cortex of adventi-

tious roots in non-flooding conditions, whereas the maize inbred line B64 did not.

Four QTLs for aerenchyma formation under non-flooding conditions were located

on chr. 1 (Qaer1.02-3 and Qaer1.07), chr. 5 (Qaer5.09), and chr. 8 (Qaer8.06-7);
collectively, these regions accounted for 47% of the total phenotypic variance for

aerenchyma formation (Mano et al. 2007). Additional QTLs for root aerenchyma

under drained conditions have been described in a B73 � teosinte (Zea luxurians)
population (Mano et al. 2008). Markers linked to QTLs for aerenchyma formation

in drained soil conditions could be used to develop maize hybrids with increased

flooding tolerance and greater yield stability under such conditions. Additionally,

increasing aerenchyma formation might improve soil exploration for a given

amount of dry matter invested in the root and might lower the metabolic cost for

maintaining root functions. Root and shoot traits were investigated in two experi-

ments to identify QTLs associated with water logging tolerance in an RIL popula-

tion derived from the cross HZ32 � K12 (Qiu et al. 2007). Several QTLs for shoot

dry weigh, root dry weight, total dry weight, plant height, and water logging

tolerance mapped on chrs. 4 and 9. These QTLs were consistently detected in

both experiments. Secondary and more trait- or environment-specific QTLs influ-

encing water logging tolerance were also identified on chrs. 1, 2, 3, 6, 7, and 10.

8.2.3.5 Root QTLs Under Lodging Conditions

The evaluation of the historical series of maize hybrids released during the past 60

years indicates that modern hybrids are considerably more resistant to lodging than

older hybrids, particularly at high planting density, a condition that clearly accent-

uates this difference (Duvick 2005; Hammer et al. 2009). Lodging resistance is the

result of two components: one acting at the level of the root and one at the level of

the stalk. Mechanically, root lodging can be caused by strong wind, particularly

following heavy rains and/or by a weakened root system following the attack

of root worms. It has been shown that root architecture is a major factor influencing

root lodging (Ennos et al. 1993). Although a rather large genotypic variability

in root lodging has been reported in maize (Melchinger et al. 1986; Stamp and

Kiel 1992), the low heritability and unpredictability of root lodging in the field

coupled with the high cost required to carry out a large-scale evaluation using

artificial devices (Guingo and Hebert 1997) have traditionally hindered the

improvement of root lodging. Guingo et al. (1998) measured a number of root traits
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for two seasons in 100 field-grown RILs from the cross between F-2 (root-lodging

susceptible) and Io (root-lodging resistant). The only QTL that concomitantly

influenced a number of root traits (adventitious root number at internodes 7 and

8, and root angle at internode 7) mapped in the SC343B-C403 interval on bin 5.05.

Epistasis was suggested by Guingo et al. (1998) as a possible factor responsible for

the small number of QTLs detected in their study. In fact, the detection of epistatic

interactions requires the evaluation of a much larger set of RILs (Beavis 1994,

1998). A major QTL affecting root traits and root lodging was described by Giuliani

et al. (2005b) and Landi et al. (2005) on bin 2.04. The details for this QTL are

reported in Sect. 8.3.1.

8.3 Production and Characterization of Near Isogenic Lines

for QTLs for Root Traits

For a given genetic background, the accurate characterization of the effects of a

QTL requires the production of near isogenic lines (NILs). Their evaluation will

remove confounding effects on the investigated trait due to unlinked QTLs for

which the parental lines of the RILs may harbour functionally different alleles

(Tuberosa et al. 2002a). A common approach for QTL isogenization relies on the

identification of F4–F5 plants still heterozygous at the target region and their selfing

for a few generations (up to F8–F9) with continued selection for heterozygous plants

before deriving the NIL pairs homozygous and contrasted for the target QTL

interval (Tuinstra et al. 1997). Ideally, the isogenization of a QTL should be carried

out using multiple plants tracing back to different F2 plants. This procedure will

insure a more solid evaluation of the effects of the QTL irrespectively of the

genomic make-up at other QTLs which may influence the target QTL. Alterna-

tively, each parental line of the original mapping population evaluated for discov-

ering the QTL can be used as recurrent parent in a backcross scheme in which a

single plant heterozygous at the QTL in question is utilized as donor of the

alternative QTL regions; in this case, the isogenic lines are identified as back-

crossed derived lines (BDLs; Alonso-Blanco and Koornneef 2000).

Regardless of the method used to obtain NILs, for a cross-pollinated species

like maize that suffers greatly from inbreeding, the evaluation of the effects of a

particular QTL on yield or other highly heterotic traits should preferably be carried

out in a highly heterozygous background. This is usually achieved by crossing the

pairs of NILs with suitable testers. Alternatively, the availability of BDLs allows for

the production of near isogenic hybrids (NIHs) which, depending on the BDLs used

as parents, are either homozygous or heterozygous at the target QTL region, while

being heterozygous for most of the remaining portion of the genome (Giuliani et al.

2005b). Therefore, the evaluation of NIHs as compared to testcrosses allows one to

accurately estimate for both additive and dominance effects of the target QTL.

Major drawbacks to a more widespread utilization of NILs are (1) the specificity

of their effect to a particular genetic background and (2) the long time required for
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their production. Commonly, several years elapse from the identification of a major

QTL to its isogenization. This hurdle can be partially overcome with the production

of introgression lines (ILs) involving parental lines preferably contrasted for the

target trait. An IL library is a collection of backcrossed NILs that differ for a small

portion (usually ca. 15–30 cM) of the donor genome. In maize, an adequate

coverage of the entire genome requires ca. 80–100 lines. Once the ILs are made

available, the fine mapping of any major QTL segregating in the original cross can

be readily undertaken (Salvi and Tuberosa 2005). Additionally, the availability of a

collection of ILs allows for testing the presence of epistatic interactions between

specific QTLs. In maize, ILs have been produced in recent years (Szalma et al.

2007; Hao et al. 2009). At DiSTA, we have developed a library of ILs derived from

B73 (recurrent parent) � Gaspé Flint (donor parent) to identify major QTLs

influencing, among other traits, root growth and architecture (Ricciolini et al.

2008). Gaspé Flint is an extremely early accession which has been used for the

identification and cloning of early flowering QTL alleles (Vladutu et al. 1999; Salvi

et al. 2002, 2007). A preliminary evaluation of root features in the ILs has allowed

Ricciolini et al. (2008) to identify four bins harbouring QTLs with major effects

on root architecture. The fine mapping of one of these QTLs is underway as a

prerequisite to its positional cloning.

The positional cloning of a major QTL (Salvi and Tuberosa 2005) requires the

availability of (1) a large mapping population (>2,000 plants) derived from the

cross of two NILs for the target QTL, (2) the genomic sequence for the physical

interval spanning the QTL region (obvious starting points are the web-based

genome browser of the target species or at least a contiged genomic BAC library),

and (3) forward- and reverse-genetics approaches for validating the identity and

testing the effects of candidate sequences (coding and non-coding). Only a handful

of the root QTLs reported so far are suitable for a positional cloning approach, the

main obstacle being the vast amount of resources needed to accurately measure

roots in the thousands of plants to be phenotyped in any QTL cloning project.

Additionally, positional cloning in maize is made more complex by its large

genome size and functional redundancy. The availability of the annotated sequence

of the entire maize genome will facilitate the identification of candidate genes and

will streamline the relevant molecular procedures as well as a more effective

comparative analysis with the sequence of other species (e.g., sorghum and rice).

8.3.1 Effects of Root-ABA1 on Root Architecture, ABA
Concentration, Root Lodging, and Grain Yield

In maize, the most extensive evaluation of NILs for root architecture has been

carried out for a major QTL originally mapped for its effects on L-ABA and other

drought-related traits on bin 2.04 in the Os420 � IABO78 background (Tuberosa

et al. 1998; Sanguineti et al. 1999). Following the production of NILs (Landi et al.

2005), this QTL was shown to influence root architecture, root lodging, grain yield,
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and other important agronomic traits (Giuliani et al. 2005b; Landi et al. 2007). In

this case, backcrossing was used to obtain pairs of BDLs contrasted for the parental

chromosome segments at the target QTL, herein identified as (+/+) and (�/�) for

their effects on L-ABA (Landi et al. 2005). When the BDLs were tested under both

water-stressed (WS) and well-watered (WW) conditions, the effect of the QTL on

L-ABA was fully confirmed. Subsequently, NIHs for the QTL were developed and

field tested for 2 years under WW and WS conditions. Relative differences among

NIHs for L-ABA and other morpho-physiological traits were not influenced by the

level of water supplied through irrigation (Giuliani et al. 2005b). Interestingly, the

QTL allele for high L-ABA markedly reduced root lodging. To further characterize

the effects of the QTL on root features and L-ABA, plants of two pairs of BDLs

were measured in soil columns at three water regimes. The results confirmed the

effects of the QTL on L-ABA and highlighted a significant effect on several root

architectural features, such as root angle, branching, number, diameter, and dry

weight. Based on these and previously published results, Giuliani et al. (2005b)

postulated a primary, constitutive effect of the QTL on root architecture and size

which, in turn, affects root lodging and also L-ABA. Consequently, the QTL

has been identified as root-ABA1. The QTL allele for a larger and more superficial

root mass was associated with a higher concentration of L-ABA, a finding that

Giuliani et al. (2005b) tentatively attributed to the fact that superficial roots are

more likely to accumulate ABA that is subsequently translocated to the leaves via

xylem flow.

Further validation of the effects of root-ABA1 on grain yield was sought in

different genetic backgrounds. For this purpose, the (+/+) and (�/�) BDLs were

crossed with five and 13 inbred lines of different origin, thus originating two sets of

testcrosses that were tested in replicated field trials carried out in Italy and China,

respectively, under both WW and WS conditions (Landi et al. 2007). In Italy,

testcrosses derived from (+/+) BDLs were confirmed as less susceptible to root

lodging across both water regimes than the TCs derived from (�/�) BDLs (28 vs.

53%), but were also lower yielding under WS conditions (4.8 vs. 6.3 Mg ha�1). The

testcrosses derived from (+/+) BDLs were also less productive in China (6.8 vs.

7.5 Mg ha�1; average of WW and WS conditions). In both sites, the lower grain

yield of the testcrosses derived from (+/+) BDLs was prevalently due to a lower

number of both ears/plant and kernels/plant. These results indicate that the (+) root-
ABA1 allele confers a lower susceptibility to root lodging but also a lower grain

yield, especially in absence of root lodging. The yield loss associated with the (+)

root-ABA1 allele has tentatively been ascribed to the negative effect of an excessive
accumulation of ABA on reproductive fertility (Landi et al. 2007). An alternative

explanation might be that root-ABA1 affects biomass production in response to

drought stress. The fine mapping of root-ABA1 is underway as a preliminary step to

its positional cloning. If successful, the positional cloning of root-ABA1 would

allow us to verify whether pleiotropy or linkage is the prevailing cause of the

multiple effects ascertained for root-ABA1. Additionally, the cloning of root-ABA1
would pave the way to an accurate profiling of elite germplasm to survey the

haplotypes present at the relevant sequence.
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Microarray analysis of the transcripts of the contrasting BDLs has been used to

investigate the effects of root-ABA1 on the transcriptome and identify functional

markers tightly linked to the QTL (Giuliani et al. 2005a). This study has led to the

identification of a number of genes preferentially expressed in one of the two BDLs;

among these genes, those which map within the supporting interval of root-ABA1
are being considered as potential candidates for the QTL effects.

8.3.2 Identifying Candidate Genes for Root Features

When a plausible cause–effect relationship can be postulated between a candi-

date gene and an overlapping QTL peak, then validation of the former could be

attempted through genetic engineering and/or the screening of knockout mutants

(e.g., knockouts, TILLING), thus avoiding the time-consuming procedures of the

positional cloning approach. Additionally, the option of the candidate gene

approach can be pursued even with no a priori availability of QTL data. In this

case, association mapping through sequencing or EcoTILLING approach carried

out on a suitable and sufficiently large panel of accessions provides clues on the

association between haplotype variation of the candidate sequence and pheno-

typic variation for the targeted trait. In view of its very low linkage disequilib-

rium, maize is particularly suited for an association mapping approach to validate

the role of candidate sequences. A compelling example of the power of this

approach in maize has been provided by Salvi et al. (2007) through the validation

of the role of a 2.3 kb non-coding sequence that positional cloning in a biparental

background had highlighted as the causative agent of Vgt1, a major QTL for

flowering time.

One merit of the candidate gene approach is that candidates can be identified on

species other than the one being targeted. A clear example in this direction is

offered by several studies conducted in the model species Arabidopsis (Scheres

and Wolkenfelt 1997; Maggio et al. 2001; Flavell 2005; Malamy 2005; Reymond

et al. 2006; Ortega-Martinez et al. 2007; Dello Ioio et al. 2007, 2008; Gonzalez

et al. 2009; Iyer-Pascuzzi et al. 2009) and rice (Ismail et al. 2007; Negrao et al.

2008). In these cases, due appreciation should be given to the fact that the morphol-

ogy and functions of the roots of these species, particularly Arabidopsis, are

considerably different from those of the maize root. Nonetheless, it is possible

that certain core functional/morphological features of root development (e.g.,

signaling cascades, cell elongation, growth and density of root hairs) may have to

a large extent been conserved across species.

The value of using Arabidopsis to elucidate the genetic and functional basis of

root growth has been shown by testing the possible role in root elongation of the

sucrose-splitting enzymes, sucrose synthase and invertase (Sergeeva et al. 2006).

Several QTLs affected both invertase activity and root length. The fine mapping of

a major QTL for root length revealed consistent co-location with the locus for

invertase activity containing a gene coding for a vacuolar invertase. The role of this
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invertase gene in root elongation was confirmed by the analysis of a functional

knockout line. Another area worthy of exploration relates to the mechanisms

regulating the level of gene expression in the root. Also in this case, the model

species Arabidopsis has provided useful insights. Although several plant micro-

RNAs (miRNAs) have been shown to play a role in plant development, a study in

Arabidopsis has shown the effect on the root phenotype due to a reduced expression
of a miRNA (Guo et al. 2005a). Arabidopsis thaliana miR164 was predicted to

target five NAC domain-encoding mRNAs, including NAC1, which transduces

auxin signals for lateral root emergence. The results of this landmark study indicate

that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1

mRNA to down-regulate auxin signals; they also show the value of using Arabi-
dopsis as a model for elucidating the complex molecular mechanisms regulating an

important feature of root growth. Genome-wide bioinformatic analysis of full-

length cDNA databases in Arabidopsis has allowed Ben Amor et al. (2009) to

show that the adaptive response of root growth to abiotic stress was controlled by a

long non-protein coding RNA (npcRNA), an emerging class of riboregulators

which either act directly in this long form or are processed to shorter miRNA and

siRNA (short interfering RNA). A number of npcRNAs were antisense to protein-

coding mRNAs, suggesting their cis-regulatory roles. Ben Amor et al. (2009)

proposed npcRNAs as candidate regulators to adapt root growth and development

to soil biotic and abiotic interactions. Nonetheless, the candidate gene approach

suffers from several notable shortcomings which might make its application risky,

particularly with inherently complex traits which are likely to be more “buffered”

from a functional standpoint and, as such, less likely to unequivocally show the

effects of allelic variation at the candidate locus.

8.4 “Omics” of Maize Root Development and Functions

The identification of suitable candidate genes can be facilitated by exploit-

ing platforms that allow us to profile in a high-throughput fashion the trans-

criptome (Schnable et al. 2004; Giuliani et al. 2005a; Guo et al. 2006), proteome

(Hochholdinger et al. 2004a, 2005; Wen et al. 2005; Sauer et al. 2006), and meta-

bolome (Steuer et al. 2003). It should be noted that while microarray platforms

allow for the simultaneous analysis of tens of thousands of transcripts in a single

experiment, or even the entire genome when the relevant sequences are available,

proteomics (Liu et al. 2006) and metabolomics (Fernie and Schauer 2009) can

indirectly report changes occurring in only a tiny portion of the genome. Moreover,

proteomics is often unable to detect the changes in gene products (e.g., transcription

factors) that, despite their low level, can play an important role in root growth and

its response to environmental constraints.

Bruce et al. (2001) were first to deploy a high-throughput approach to investigate

the root transcriptome in two maize lines characterized by contrasting root features.

Among the 13,500 cDNA fragments that were analyzed at two growth stages, 69
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showed a twofold or greater difference between the lines at both samplings,

suggesting a relationship between these genes and root anchorage traits.

Because maize roots are composed of different tissues and cell types, each with

its own peculiar signature at the transcript, protein and metabolic level, physical

separation of such cell types can greatly increase our capacity to identify the

specific functions of genes whose activity determines the specificity of root archi-

tectural features. An important breakthrough in this direction has been made

possible through the introduction of laser-capture microdissection (LCM; Schnable

et al. 2004; Balestrini and Bonfante 2008; Nelson et al. 2008), which allows for the

accurate isolation of a wide variety of cell types from complex organs comprising

different cellular types such as the root tip. Transcript profiling of LCM-derived

samples of pericycle and root cap cells in the differentiation zone of primary

roots has unveiled an unsuspected level of functional complexity that would other-

wise have gone undetected (Woll et al. 2005; Jiang et al. 2006; Hochholdinger

et al. 2008).

Transcriptome studies are particularly suited to investigate the adaptive response

of maize roots to environmental cues as evidenced by Liu et al. (2008b) in their

study to investigate the effects on gene expression of local nitrate-induced lateral

root formation in maize. These results showed that local nitrate application induced

the expression of genes related to nitrate uptake and assimilation, sugar transport

and utilization, and cell division and expansion. A similar approach was used by

Spollen et al. (2008) to elucidate the mechanisms underlying the adaptation of

maize roots to low water potential in the elongation zone of maize primary roots

grown under well-watered and water-deficit conditions. This study revealed that the

response to water stress in different regions of the maize primary root involves

different signaling and metabolic response mechanisms. It is worth noting that the

largest functional categories of differentially expressed transcripts were those

related to reactive oxygen species (ROS) and carbon metabolism in root tips and

membrane transport in the elongation zone (Spollen et al. 2008). Microarray

profiling of roots under low-oxygen conditions typically encountered under flood-

ing conditions has shown significant alterations in the expression of 39 miRNAs

(Zhang et al. 2008), several of which targeted transcription factors that were also

induced upon submergence of the maize roots. Other target genes were related

to carbohydrate and energy metabolism, and ROS removal, suggesting that sub-

mergence-responsive miRNAs regulate the adaptive response of maize roots post-

transcriptionally.

New insights into the regulation of maize root development have also

been contributed by proteome profiling studies conducted with complete roots

(Hochholdinger et al. 2004c, 2005; Liu et al. 2006; Sauer et al. 2006; Hoecker

et al. 2008) or targeting more defined sub-cellular portions (Hachez et al. 2006; Zhu

et al. 2006, 2007) of maize roots. Proteome profiling in the elongation zone of the

primary root identified a number of cell wall proteins (CWPs: e.g., endo-1,3;1,4-

b-D-glucanase and a-L-arabinofuranosidase) involved in cell wall metabolism and

cell elongation that had not been previously described in maize (Poroyko et al.

2007; Zhu et al. 2007). Targeting specific cell types via LCM in the primary root of
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the mutant lrt1 which is suppressed in lateral roots initiation, Hochholdinger et al.

(2004c) demonstrated the influence of lateral roots on the proteome composition of

the maize primary root. Additional comparative work of the proteome profiles of

primary roots from the wild-type and the rum1 mutant (also suppressed in lateral

root formation) suggested the involvement of post-transcriptional mechanisms in

regulating the mutant phenotype (Liu et al. 2006). Using LCM and combining

microarray profiling with suppression subtractive hybridization, EST sequencing,

and proteomics, Dembinsky et al. (2007) have identified pericycle-specific genes

that appear to be related to the specification of this root cell-type and in lateral root

initiation.

8.5 Conclusions and Challenges Ahead

As shown by this review, genomics allows us to partially dissect the genetic and

functional complexity governing root architecture in maize and its plastic response

to environmental cues. On an adaptive basis, the comparison of transcriptome and

proteome profiles of roots exposed to water deficit (Zhu et al. 2007), water logging

(Zhang et al. 2008), low phosphorous (Li et al. 2007), and low nitrogen (Liu et al.

2008b) has highlighted genes and proteins that might have an adaptive value under

such adverse conditions (Bramley et al. 2007), offering new avenues for more

targeted breeding activities aimed at mitigating the negative effects of environmen-

tal constraints. It is becoming increasingly clear that the response of plant genomes

to environmental stress generates both novel genetic and epigenetic (e.g., methyla-

tion) polymorphisms that may increase phenotypic diversity and plasticity to

abiotic stress (Johannes et al. 2008; Zhang 2008; Chinnusamy and Zhu 2009).

Deep sequencing of cDNA libraries of root cell types will produce extensive EST

databases and unigene sets to identify candidate genes while providing valuable

markers for functional maps (Lister et al. 2009). High-throughput genomic profiling

based on the detection of single nucleotide polymorphisms (SNPs) has vastly

improved our capacity for allele mining (Ganal et al. 2009; Waugh et al. 2009), a

key feature for optimizing the survey of natural variation and the application of

association mapping for complex traits (Weber et al. 2008).

From an architectural standpoint, the cloning of major QTLs will eventually

shed light on the genetic mechanisms governing the quantitative variability of root

structure and its influence on major functions. In this respect, new insights will

derive from a better understanding of the role of miRNAs on the modulation of gene

expression (Sunkar et al. 2007; Ding et al. 2009). Recent experiments have high-

lighted the importance of RNA interference for the regulation of the expression of

genes and QTLs (Guo et al. 2005a; Lukens and Zhan 2007). From an applicative

standpoint, the main challenge remains how to tangibly integrate into extant

breeding programs the deluge of molecular information generated through genomics

and the “omics” platforms. An equally challenging and limiting factor is our

capacity to accurately phenotype roots on the massive scale that genomics studies
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usually require (Armengaud et al. 2009). High-throughput phenotyping platforms

(Granier et al. 2006; Rajendran et al. 2009; see also the “Plant Accelerator” at http://

www.plantphenomics.org/TPA) coupled with non-destructive, advanced technolo-

gies promise to alleviate the tedious work of measuring roots, thus opening up new

opportunities to deploy more powerful mapping approaches such as nested-associated

mapping (NAM; Yu et al. 2008).

The need and urgency to fill the genotype-to-phenotype gap (Yano and Tuberosa

2009) has never been more evident than with the study of root architecture, particu-

larly under drought conditions (Tuberosa and Salvi 2006). The limitations inherent to

quantitative trait dissection suggest that only a fraction of the available genotypic

variability will be accessible and amenable to a more direct manipulation via marker-

assisted selection. Even though positional cloning may become a reality for a handful

of major QTLs governing root architecture, the multitude of minor QTLs that control

variability in root features will remain undetected even with the most accurate

phenotyping platforms and sophisticated statistical approaches. Genome-wide selec-

tion bypasses QTL identification (Bernardo and Yu 2007; Bernardo 2008, 2009;

Heffner et al. 2009). Nonetheless, also genome-wide selection relies on accurate

phenotyping which is often considered the main limiting factor for the dissection of

quantitative traits.

Growing attention is being devoted to the opportunities offered by modeling in

order to expand our capacity to predict the effects that specific environmental (e.g.,

water and nutrient availability) and genetic (e.g., QTL effects; Tardieu 2003;

Welcker et al. 2007; Collins et al. 2008; Hammer et al. 2009) variables might

have on plant growth and final yield. Crop modeling has also the potential to help

resolving genotype� environment interactions as well as the genetic basis of traits’

plasticity (Chapman et al. 2003; Reymond et al. 2004; Cooper et al. 2009). For

this approach to be effective, crop models that are capable of predicting yield

differences among genotypes in a population under various environmental condi-

tions are needed (Tardieu 2003; Hammer et al. 2005, 2006; van Eeuwijk et al. 2005;

Cooper et al. 2007). The ultimate goal of the modeling approach is to empower

an in silico selection able to pinpoint the combinations of the desirable alleles

at the target loci, including those that dictate root growth and its morphology,

thus providing clues on the desired root phenotype. Clearly, integrative and

interdisciplinary approaches will be instrumental to advance our understanding of

root growth and, eventually, effectively exploit marker-assisted selection and

genetic engineering to tailor root architecture in maize for improving yield and its

sustainability.
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9.1 How Did the Roots Evolve?

The general structure and function of roots and shoots are so different that the two

organs are often conveniently separated for the purposes of research. Functionally,

roots absorb water and nutrients, and anchor the plant, while shoots photosynthesize

and transpire and are the site of sexual reproduction (Groff and Kaplan 1988). The

exact time when root started appearing has been difficult to ascertain, and the fossil

records are also less helpful for roots unlike shoots. It is possible that delicate

structures such as root caps, root branches, etc. were not properly preserved in fossil

remains (Gensel et al. 2001). Evidences suggested that root-like structures appeared

sometime during the early Devonian period (Elick et al. 1998). Although the early

fossils did indicate the possibility of a root structure positioned to anchor the shoot
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firmly, their role in water- and nutrient-absorption was not clear (Raven and

Edwards 2001). Plants colonizing land must have faced powerful evolutionary

pressures, which must have forced the roots to increase the absorptive surface to

match the development of photosynthetic organs (Brundrett 2002).

In the present scenario, with the continued emission of green house gases, a

definite change in the weather, both locally and globally, is expected. Most predic-

tions suggest that this climate change is inevitable and would lead to a significant

alteration in the pattern and distribution of rainfall in the warmer world (IPCC

report 2007). Hence, water shortage would be the most predominant constraint for

achieving potential productivity of crop plants, especially in tropical regions.

9.2 Why Are Roots Important for Crop Productivity?

Over two-thirds of the world’s human population consumes rice and wheat as staple

cereals, which are predominantly grown under irrigated conditions. With the

changing scenario, it would be difficult to produce the required cereals through

irrigated ecosystems. Furthermore, almost all the pulses, oilseeds, and other crops

are cultivated in dry land conditions, where water is the major constraint. Depen-

dence on dry land agriculture is inevitable in arid and semi-arid tropical parts of the

world. Ironically, these areas are the most populated locations in the world!

Because of the demand from the domestic and industrial sectors, neither expanding

area for agriculture nor finding more water for irrigation would be possible.

Therefore, increasing the productivity per unit of available water appears to be

the only plausible strategy for achieving food security.

Enhancing productivity in the resource-poor dry land conditions is a formidable

challenge. Conserving resources through management practices and engineering

plants for superior extraction of these resources coupled with an increased effi-

ciency of resource utilization deserve emphasis. Though resource conservation

through management practices are equally important, development of superior

resource use efficiency as a seed-based technology always has greater acceptance

and adaptability.

Roots are essential for higher plants for several important reasons. The firm

anchorage of the plant in their soil substratum and the absorption and effective

supply of water and nutrients to the shoot are the most important roles of the root

system. Furthermore, a number of plant growth hormones, especially cytokinins

and ABA, originate in roots, thus having significant influence on growth and

development of plants. Ecologically, roots play a pivotal role in weathering of

rocks, leading to the formation of soil. A mat-like network of root system prevents

soil erosion as well. The evolution of the symbiotic association between roots and

microbes such as Rhizobia, Micorhiza, etc. represents yet another spectacular

feature of plant root system. From the survival and crop productivity point of

view also, roots have a greater role to play. Water mining from deeper soil profiles

is considered as one of the important adaptive strategies evolved by plants to
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survive water-scarce conditions. Having realized the importance of root traits in

crop growth and productivity, improving root traits is worth an effort.

In this chapter, we make an attempt to identify a few root-related traits and

review the information describing the relevance of root traits in determining crop

growth and productivity, especially under water-limited conditions. Since the major

emphasis is on breeding for root traits, we also review the genetic variability in root

traits and describe suitable methodology for the assessment of variations in root

traits. In the present scenario, greater success in crop improvement can be achieved

only through a trait-based approach. Introgression of complex traits is best achieved

either by a well-focused molecular breeding strategy or through transgenic technol-

ogy. A better understanding of the basic mechanisms of root growth and develop-

ment is necessary for these modern biotechnological approaches to become

successful.

9.3 Molecular and Hormonal Regulation of Root Growth

In both the dicot and monocot plant species, the short-lived delicate roots perform

the function of absorption, while the more long-lived roots help in anchoring the

plants. The basic features of root development has been analyzed by dividing the

root tip into different parts such as root cap, the meristematic zone, elongation zone,

and maturation zone. Root growth occurs due to the division, elongation, and

differentiation of the root apical meristematic cells present in the root tip. The

lateral growth of roots occurs only after the complete elongation of apical meristem

and at a distance away from the root tip (Malamy and Benfey 1997). The pattern of

the root growth is strongly controlled by both external and internal factors. While

external factors such as soil structure, availability of water and nutrient, etc.

determine root growth and patterning, the internal factors are predominantly

under hormonal control, which determine the plant’s ability to respond to the

external stimuli. The internal control of root growth by genes and their regulatory

network in root development is partly examined in Arabidopsis through global gene
expression studies. Many mutants that affect root development have also been

identified and characterized, which has led to a clear understanding of the genetic

mechanisms of root development (Schiefelbein 2003; Casimiro et al. 2003; Casson

and Lindsey 2003; Inukai et al. 2005). These efforts resulted in the discovery of a

large number of structural and regulatory genes. Several of the regulatory genes,

also referred to as Transcription factors (TFs), have been cloned and characterized

and their functional relevance clearly demonstrated. A few of the important genes

and their regulatory functions are summarized in Table 9.1.

Further, plant roots show an impressive degree of plasticity in adapting their

branching patterns to the ever-changing growth conditions. The adaptation ability

depends upon the interaction between hormonal, developmental, and environmental

signals. Root growth and development is also influenced by hormones. Research

reports accruing in the recent years point towards auxin as one of the prominent
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internal controlling factors of root growth (Xu et al. 2005; Lucas et al. 2008). The

process of root development can be divided into two successive stages: lateral root

initiation and lateral root development/emergence. Auxin controls the emergence of

lateral root primordia and also helps in the growth and development of lateral roots

(Bhalerao et al. 2002; Casimiro et al. 2001; De Smet et al. 2007; Fukaki et al. 2007).

There are experimental evidences to show that the number of lateral roots can be

altered either by application of auxin or perturbation of internal auxin levels (Blakely

Table 9.1 Some important transcription factors (TFs) and their role in root growth in plants

Transcription factor Phenotypes Reference

SLR/IAA14 Blocks lateral root formations in

Arabidopsis
Fukaki et al. (2002)

CRL1 Encodes for protein family that govern

asymmetric leaves/lateral organ

boundaries. Positive regulator for

crown and lateral root formation

Inukai et al. (2005)

ARL1 Encodes lateral organ boundaries

(LOB); adventitious root formation

Liu et al. (2005)

NAC1 More lateral roots Xie et al. (2000, 2002)

Class III HD-Zip Promote the meristematic activity,

positive regulators of lateral root

formation

Hawker and Bowman (2004)

SCR-SCARECROW

SHR-SHORT-ROOT

Auxin responsive: organization and

quiescent center cells and root cap

Wysocka-Diller et al. (2000),

Gao et al. (2004),

Helariutta et al. (2000)

Alfin1 Over expression enhances root growth

under normal and saline conditions

in Alfalfa

Winicov (1993, 2000),

Bastola et al. (1998),

Winicov and Bastola

(1999)

OsRAA1 Root development in rice initiation and

growth of adventitious roots

Ge et al. (2004)

Ca2+-dependent protein

kinase1 (CDPK1)

Regulates diverse processes including

root growth

Ivashuta et al. (2005)

CAP2 encoding

APETALA2 (AP2)

Over expression of chickpea CAP2

caused drastic increase in the

number of lateral roots

Shukla et al. (2006)

HARDY (AP2-family) Better root growth and drought

tolerance

Karaba et al. (2007)

ARABIDILLO 1 and 2 Armadillo-related b-catenin-like
proteins Over expression increased

lateral root formation

Coates et al. (2006)

QHB (QC SPECIFIC

Homeodomain)

Maintenance of root meristem by

inhibiting the differentiation of the

adjacent initial cells

Kamiya et al. (2003)

MYB77 Controls lateral root growth through

interaction with Auxin response

factor (ARF)

Shin et al. (2007)

KNAT6 Member of the knotted-like (KNOX)
gene family. Prevent production of

supernumerary lateral roots

Dean et al. (2004)
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and Evans 1979; Blakely et al. 1988). The hormone is synthesizedmainly in the young

apical tissues and then transported downwards to different parts, including roots, by a

polar transport system (Muday and DeLong 2001). A number of auxin influx carriers

(e.g., AUX1 and LAX gene family) and efflux carriers (e.g., PIN gene family) have

been characterized (Bennett et al. 1996; Friml et al. 2002; Reinhardt et al. 2003) and

relevance of such auxin-related genes in root development has been demonstrated. For

example, Arabidopsis mutant called pin-formed (pin1) fail to establish endogenous

auxin gradient and show development disorders in root (Okada et al. 1991; Benková

et al. 2003). A gene similar to Arabidopsis PIN1 has been identified in rice (OsPIN1),
which, through transgenic approach, has been implicated for altering tiller number

and adventitious root development in rice (Xu et al. 2005).

Though a clear implication of auxin is seen in the root growth and development,

understanding of the molecular basis of this regulation is not complete (Weijers and

Jurgens 2005). However, investigative evidences accruing in the literature have

provided significant lead towards understanding the response of root growth to

auxin in plants. Transcription factors (TF) called auxin-response factors (ARFs)

bind to auxin response elements (AuxREs) in the promoters of auxin-response

genes to mediate auxin-induced responses (Ulmasov et al. 1997). The auxin recep-

tor TIR1 (F-box protein), which acts by mediating the degradation of AUX/IAA

(AUXIN-RESPONSIVE PROTEIN/INDOLE ACETIC ACID INDUCED PRO-

TEIN) repressor is the most important member involved in the auxin response

process promoting the lateral root initiation (Gray et al. 1999, 2001). The F-box

gene called CEGENDUO (CEG) negatively regulates auxin-mediated lateral root

formation, which is expressed abundantly in vascular tissues of the primary root and

is induced by auxin (Dong et al. 2006).

Interaction of growth regulator jasmonate with auxin to regulate lateral root

formation has been recently reported (Sun et al. 2009) by characterizing an Arabi-
dopsis mutant called jasmonate-induced defective lateral root1 (jdl1/asa1-1). The

JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE alpha1

(ASA1), which is required for jasmonate-induced auxin biosynthesis and affects

auxin transport (Sun et al. 2009). Jasmonate also has a role in the attenuation of

auxin transport in the root and the fine-tuning of local auxin distribution in the root

basal meristem.

Cytokinin suppresses the growth of roots as reported in Arabidopsis (Werner

et al. 2001) by reducing the size and cell division of roots. The roots of cytokinin-

deficient (AtCKK1) plants were larger than those of wild-type, suggesting that the

hormone inhibits root growth. Although most studies have reported genes that are

directly associated with auxin in root development, a few indicate auxin-indepen-

dent mechanisms. For instance, a novel gene called ALF4, which appears to be

localized in the nucleus, was demonstrated to be required for lateral root formation

(DiDonato et al. 2004). The ALF4 functions independent of auxin signaling and has

a role in maintaining the pericycle in the mitotically competent state required for

lateral root formation.

Most other plant hormones seem to have an indirect effect on root growth

through their independent effects on auxin synthesis, transport, and distribution.
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For instance, ethylene regulates growth through effects on auxin biosynthesis and

auxin distribution through altered transport. ABA, an otherwise growth-retarding

hormone, promotes root growth possibly by inhibiting ethylene production (Saab

et al. 1990; Sharp 2002).

Genomic approaches have therefore provided immense information about the

array of structural and functional genes involved in various aspects of root growth,

development, and water and nutrient uptake. Use of these genes in overexpression

studies would help validate the utility of these in root trait improvement.

9.4 Functions of Root in Uptake of Water and Nutrients

Other than anchorage, the next important function of roots is to take up water and

nutrient. This trait of roots enables the plants to tide through different environmen-

tal conditions. Terrestrial plants are constantly exposed to an impinging heat load

because of the incident solar radiation. To cope with this heat load and to maintain

the canopy cool, plants transpire enormous amount of water. Plants recycle over

half the amount of global precipitation per annum (Chahine et al. 1992). Hence, the

roots must be able to extract water from the soil and supply it to the plant to match

the evaporative demand of the canopy.

Vascular tissues and guard cells are mainly involved in conducting water and

controlling the transpiration stream. During this, water has to flow in and out of the

cells. This flow of water can be across cell walls (apoplastic path), between cells

across plasmodesmata (symplastic path), or traversing cell membranes (transcellu-

lar path). A better understanding of the conductance of living cells has come from

the discovery of a class of water channel proteins called “Aquaporins” (Agre et al.

1998). These are proteins embedded in the cell membrane and regulate the flow of

water. These aquaporins are integral membrane proteins belonging to a family of

major intrinsic proteins (MIP) that form channels in the membrane for water

movement. More than 50% of the water moving across plant cells would traverse

aquaporins.

In plants, aquaporins are divided into four subfamilies:

1. Plasma membrane intrinsic protein (MIP)

2. Tonoplast intrinsic protein (TIP)

3. Nodulin-26 like intrinsic protein (NIP)

4. Small basic intrinsic protein (SIP)

However, all the aquaporins have six membrane spanning domains with highly

conserved Asn-Pro-Ala motif.

Aquaporins may be involved in a large number of physiological functions in

plants such as response to drought or salinity, mineral nutrition, transpiration, cell

elongation, etc. (Maurel and Chrispeels 2001). The discovery of aquaporins has

showed the importance of membranes in plant–water relations. Further, aquaporins
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serve as spatial markers to explore the flow of water and solutes that play a

phenomenally important role throughout plant development.

Besides enhancing water uptake, aquaporins also contribute significantly to the

total hydraulic conductivity of the roots. A significant reduction in water flux

through membranes in the presence of HgCl2 and its reversal with the removal of

mercury by an excess of mercaptaethanol provided the initial proof to the involve-

ment of aquaporins to the hydraulic conductivity of roots in tomato (Maggio and

Joly 1995). Although transpiration pull sufficiently explains water uptake and

distribution in plants, the hydraulic conductivity, the ease with which water

moves through the roots, is an equally important factor. The fact that hydraulic

properties of roots vary with plant species and environmental conditions has been

well-known from a very long time (Brewig 1937; Brouwer 1954). Several factors

influence the hydraulic conductivity of plant, viz. number of roots that are absorb-

ing water (Vandeleur et al. 2005), nitrate nutrition (Radin and Boyer 1982), and

ABA (Hase et al. 2000).

During evolution, plants have also optimized hydraulic conductivity to enhance

their chances of survival under dry and harsh conditions. The evidences to this view

were provided recently by Zhao et al. (2005) using wheat lines with different

ploidy. They clearly demonstrated that root hydraulic conductivity significantly

increased as ploidy level increased during wheat evolution. Since hydraulic con-

ductivity was positively related to plant biomass, the authors opined that increasing

water flux into the shoot would enhance photosynthetic efficiency leading to an

increase in water use efficiency.

9.5 Nutrient

The proper development of roots at all stages will have profound effects on root

system architecture as well as nutrient acquisition. The development of roots is

particularly sensitive to the changes in the internal and external concentrations of

nutrients. Recent information points to the existence of nutrient-specific signal

transduction pathways that interpret the external and internal concentrations of

nutrients to modify root development. Progress in this field has led to the identifi-

cation of regulatory genes that play pivotal roles in nutrient-induced changes in root

development (Lopz-Bucio et al. 2003).

Nitrogen is an important and critical nutrient that determines crop growth and

productivity. For plants, nitrate is the most preferred form of nitrogen and is taken up

by active transport through the roots. Changes in nitrate availability has been found

to have contrasting effects on lateral root formation and elongation (Zhang and

Forde 1998), which is suppressed by both high nitrate and high phosphate availabil-

ity. Some of the components of the signaling pathways that regulate root-system

architecture in response to nutrient availability have been identified. In Arabidopsis,
the NITRATE-REGULATED1 (ANR1) gene encodes a nitrate-inducible MADS-box

transcription factor whose role is speculated in root plasticity in response to nitrate.
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In another scenario, crosstalk was found to exist between nodulation and lateral

root development in Lotus japonicus. It was found that HAR1, which encodes a

putative serine/threonine receptor kinase that had homology with CLAVATA1,

was involved. HAR1 is required for shoot-controlled regulation of root growth,

nodule formation, and nitrate sensitivity of symbiotic development (Nashimura

et al. 2002).

Phosphate is one among the least-available macronutrients required by plants

and is a constituent of key molecules such as ATP, nucleic acids, and phospholi-

pids. Phosphate deficiency limits plant growth and development, resulting in

adaptive stress responses. Over the past decade, many genes including phosphate

transporters, phosphatases, RNases, and others of unknown function that help

plants adapt to Pi stress have been characterized. SIZ1, a SUMO E3 ligase, was

identified to control Pi homeostasis at the posttranslational level through sumoyla-

tion (Miura et al. 2005). Earlier, Phi-2, coding for a bZIP transcription factor in

tobacco was reported to be induced during Pi starvation (Sano and Nagata 2002).

Another transcription factor, PHR1, was first reported to play a regulatory role in Pi

starvation responses in Arabidopsis (Rubio et al. 2001). Similarly, tolerance to

phosphate starvation in rice was brought about by OsPTF1, a bHLH transcription

factor (Yi et al. 2005). Very recently, the role of WRKY75 in regulation of Pi

starvation responses in Arabidopsis was evaluated (Devaiah et al. 2007a). To

continue the growing evidence that transcription factors are key components of

nutrient regulation, ZAT6 (zinc finger of Arabidopsis 6), a cysteine-2/histidine-

2 zinc finger transcription factor, is induced during Pi starvation (Devaiah et al.

2007b).

Sulfur is another nutrient important for plant growth. Under deprived sulfur

conditions, plants develop a branched root system. This has been related to the

transcriptional activation of the NITRILASE3 (NIT3) gene, a member of nitrilase

gene family. It is suggested that NIT3 plays direct role in auxin synthesis and root

branching.

Optimum uptake of nutrients from the soil is a very important aspect of nutrient

use efficiency. For this, plants require specialized transporters that are at the root/

rhizosphere interface to take up nutrients. These comprise of high and low affinity

transporters, which allow the plants to transport nutrients from soil to plant.

This need of quenching nutrients make plants to modify their organ development

to enhance their ability to capture water and nutrients. Many species have evolved

mechanisms that allow them to detect nutrient-rich patches in the soil (Zhang

and Forde 1998). In Arabidopsis, nitrate transporter, NRT1.1 has been identified

(Remans et al. 2006). It is seen that NRT1.1 is a key component of the nitrate-

sensing system that enables the plants to detect and exploit nitrate-rich soil patches.

Likewise, transporters have been identified for phosphate as well. Two different

families of transporters have been identified, viz. PHT1 (Liu et al. 2008) and

PHT2 (Versaw and Harrison 2002), which influence the allocation of phosphate

within the plant under phosphate starvation. More recently, another transporter

has been identified recently in Arabidopsis called the PHT64;6, which belongs

to the family of permeases and is found to be a determinant of salt tolerance
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(Cubero et al. 2009). Similarly, a high affinity sulfate transporter has been identified

in Arabidopsis thaliana called the HstAt1.

9.6 Relevance of Root Traits in Drought Tolerance

Among a number of stresses that affect crop growth and productivity, drought is

perhaps the most prominent stress. A yield loss ranging between 20 and 60% is

generally noticed in tropical regions. Hence, improving drought tolerance in crop

plants is one of the most essential trusts in global research.

Drought tolerance is the ability of a plant to “avoid” the buildup of stress or to

“tolerate” stress effects at the organism level (Levitt 1972; Blum 2005). However,

improvement in drought tolerance has largely remained academic owing to the

complexity of drought stress and equally complicated crop response to drought.

Past research experience point strongly towards trait-based breeding, notwithstand-

ing the significant progress made by selecting for high yield under water limitation.

Avoidance of stress through conservation strategies such as rapid physiological

development, sensitive stomatal behaviour, heleonastic movements leaves, etc.,

though relevant, are normally counter productive. Ability of the plant to explore

water source and extracting water from deeper profiles of soil thus has great

relevance in maintaining water relation as well as carbon assimilation.

Deep-rooted plants have been shown to be better productive under water-limited

conditions (Li et al. 2005; Reynolds and Tuberosa 2008). Such a trend was recently

noticed also in C4 crop such as finger millet at our centre (Fig. 9.1). Several of the

root-related traits described above have been shown to be related with improved

growth under stress.

Hence, improving these component traits has significance in sustaining produc-

tivity under water-limited conditions. After having achieved considerable under-

standing of root growth and development both at the whole plant level and at the

molecular level, strategic approaches for crop improvement can be formulated.

Trait improvement can be effectively achieved either by introducing validated

genes through transgenic technology or by introgressing desirable alleles through

molecular breeding approaches. The traits relevant for drought tolerance and

productivity are highly species-specific. While the distance from transition zone

to first main lateral root, tap root weight, rapidity of root system development, and

root to shoot ratio are important for cotton’s (Cook 1985; Pace et al. 1999) ability to

penetrate hard pan, root length, basal thick mass, and deep root biomass are

important for rice and wheat.

Though deep-rooted plants produced more grains under low water availability,

these plants had the risk of exhausting soil water early. Hence, Condon et al. (1993,

2004), Richards et al. (2002), and Sheshshayee et al. (2003) have emphasized that

soil factors also need to be considered before attempting to improve root traits.

Despite the realization of the relevance of root traits in imparting drought

tolerance and a good understanding of the molecular mechanisms of root growth,
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a thorough exploitation of root traits has not been successfully achieved. Accurate

measurement of root traits is one of the most significant constraints in crop

improvement programs.

9.7 Improving Drought Tolerance Through Exploitation

of Root Traits

O’Toole and De Datta (1986) suggest that drought is a syndrome because of the

uncertainty of its occurrence, duration of its persistence, and the intensity. The soil

characteristics, the crop species, and stages of crop growth all further complicate

the process of understanding drought tolerance. Therefore, addressing drought

tolerance requires a very comprehensive approach.

From the physiologist’s perspective, plant water relations play a very curial role

in determining the level of drought tolerance in plants. Root once again occupies

the pivotal position through its role in extracting water from deeper soil profiles.

Maintenance of tissue water status is linked with (a) better extraction of water

through deep root systems and (b) better water conservation strategies associated

with sensitive stomatal behavior and deposition of waxes on the cuticular surface

(O’Toole and Chang 1979; Ludlow 1993; Ingram et al. 1994). Though the conser-

vation strategies are very useful under water-limited conditions, most of these traits

are counterproductive. Agronomically, any drought tolerance trait would be rele-

vant only when they are also associated with better growth and productivity. Simple

Fig. 9.1 Differences in total biomass of Finger millet accessions differing in root traits grown

under well watered and water limited conditions. Note: Stress was imposed by gravimetric

approach and maintained for a period of 45 days between 30 and 75 days after sowing.

Source: Shankar (unpublished data)
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growth models provide the framework for identifying such traits, and one such

model was proposed by Passioura (1986). As per this model, yield of any plant is

a fraction of the amount of water used, the efficiency of water use for biomass

production, and the partitioning of biomass to harvestable parts. Hence, root

traits are strongly associated in enhancing crop productivity under water-limited

conditions.

Significant developments have been achieved in understanding the physiology

of drought resistance and developing physiological screening techniques for

drought resistance, which reduce time in selection programs (Blum 1988; Ludlow

and Muchow 1990). In recent reviews, Sheshshayee et al. (2003) and Reynolds

and Tuberosa (2008) have discussed various traits that deserve exploitation to

achieve drought tolerance coupled with sustained productivity under water-limited

conditions.

A root system that extends the root zone to fully extract available soil water has

the potential to increase yield under drought (Mambani and Lai 1983). Water

uptake and transport by rice roots are most important as they affect yield, especially

under water-limited conditions (Ingram et al. 1994). Individual root characteristics,

such as thickness, depth of rooting, and the ability to penetrate compacted soils,

have been associated with drought avoidance (O’Toole and Chang 1979; Yoshida

and Hasegawa 1982; Ekanayake et al. 1985). Significant genetic variability in some

of these root traits have been demonstrated and implicated for improved drought

tolerance in crop plants (O’Toole and De Datta 1986; Thangaraj et al. 1990; Sharma

et al. 1994; Sinclair and Muchow 2001). Biomass accumulation in plants is always

a function of total water used (Angus and Van Herwerdeen 2001: Passioura 1986).

Plants with deep root system hence have the ability to supply water to support a

higher transpiration demand, thereby enhancing total biomass (Yadav et al. 1997;

Li et al. 2005). In their simulation experiments, Sinclair and Muchow (2001)

demonstrated an increase in biomass and yield when root growth was better.

These studies emphasized the relevance of breeding to improve root traits to

achieve better productivity under water -limited conditions (Reynolds et al. 2007;

Reynolds and Tuberosa 2008).

Besides the inherent genetic variability among most plant species in root traits,

roots are quite dynamic in responding to both biotic and abiotic stresses as well as

soil characteristics. An increase in root length when plants are stressed for water

and for nutrients is well known (Pace et al. 1999). However, when stress levels

become severe, a significant reduction in root growth becomes inevitable (Prior

et al. 1995; Plaut et al. 1996). Variation among genotypes for shifting root distribu-

tion downwards in response to drought has been found in cowpea (Matsui and

Singh 2003), white clover (Annicchiarico and Piano 2004), and chickpea (Yusuf

et al. 2005; Benjamin and Nielsen 2006; Kashiwagi et al. 2006). Absence of

suberized hypodermis would permit rapid desiccation of delicate roots, leading to

an increased root mortality in drying soils (Shone and Flood 1983; Jupp and

Newman 1987; Smucker et al. 1991). A plant’s root growth and extension decrease

as the soil strength increases. Soil strength greater than 0.3–0.5 MPa and soil

bulk density greater than 1.5 g cm�3 hamper root growth and penetration below
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10–15 cm from the soil surface (Hasegawa et al. 1985; Thangaraj et al. 1990).

Presence of compacted soil layers acts as physical and physiological constraints to

overall plant growth (Tu and Tan 1991) and impede the downward growth and

distribution of the plant root system (Yu et al. 1995). Compacted soil layers reduce

leaf area, dry matter accumulation, root elongation rate, transpiration rate, and crop

yields (Masle and Passioura 1987; Assaeed et al. 1990; Ludlow et al. 1989; Masle

1992). Mechanical disruption of the compacted soil layers has been done to

increase yield in cotton (Camp et al. 1984) and soybean (Khalilian et al. 1991).

But mechanical disruption is expensive, and compacted layer often reform in a few

years (Busscher et al. 1986).

9.8 Measurement of Root Traits

Determination of genetic variability in root traits represents the most difficult

challenge in crop improvement programs. Despite the undeniable importance of

root traits in better water mining, progress in breeding for these traits has been

extremely slow. A few important root-related traits have been enumerated that have

direct relevance for maintaining the balance between water relations and carbon

assimilation of the plant. Several methodologies have also been developed and are

being adopted for studying these root traits.

The simplest and more frequently used method is Hydroponics (Martinez et al.

1998; Tuberosa et al. 2002). This method involves raising of plants in suitable tanks

filled with a nutrient solution. This system provides a very convenient approach for

assessing the variability in root traits. However, lack of proper aeration to the roots is

one of the major disadvantages of this method. Further, large-scale screening of

germplasm and breeding lines would be very tedious. Growing plants in mini-

rhizotrons (Drouet et al. 2005) or mini-lysimeters (Udayakumar et al. 1998) has

also been extensively used for root studies. The rhizotrons can bemade of transparent

material that readily allows the direct visual monitoring of root growth and pattern-

ing. Though very effective, extending this method for large-scale screening is quite

difficult. Scientists attempted to raise plants in tubular containers of varying lengths.

These tubes are split in half at the time of harvest and the soil is washed off carefully

to obtain the entire root mass. Normally, one plant is maintained in each container

(Venuprasad et al. 2002; Ayyappa 2004; Giuliani et al. 2005). Plants grown in tubes

can also be used for what is often known as “core-break” technique (Taylor et al.

1991). The soil core is taken completely from the tubes and cut into sizes as desired.

Each of these pieces is then washed and the roots are taken out carefully.

A few destructive sampling techniques are also being adopted for root trait

studies where the root mass is entirely excavated from the soil. Though this method

is quite convenient, it is very difficult to completely excavate the roots, and hence

this method has a significant random error, which would hamper accuracy of

measurements. More sophisticated techniques of determining root growth have

also been developed. A capacitance-based method has been used for monitoring
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root growth (Van Beem et al. 1998). This method demands wetting of the soil at

least up to field capacity and hence cannot be effectively used in assessing root

growth in soils with water deficit. X-ray imaging and light transmission imaging are

also being adopted for root trait measurements. A more recent technique of scan-

ning the root system was evolved for cotton, where sampling was done for every

10 cm row for a depth of 0–100 cm of soil using a root sampler. The sampled soil

was washed and scanned using a hand scanner at 200 dpi. The resultant image was

analyzed using a DT-SCAN software (version 1.0; Delta, Inc., UK) to measure root

length, average diameter, and surface area (Bouma et al. 2000; Zhang et al. 2005).

Most of the techniques available for root measurements suffer either due to the

cumbersomeness of the procedure or due to their inability to screen large number of

accessions. Further, root studies using pipes or mini lysimeters do not present the

correct phenotypic expression of the root traits as they do not experience interplant

competitions. Because the space provided in pipes directs more of a longitudinal

growth, lateral root development gets constrained.

Most of these disadvantages can largely be overcome by raising plants in specially

constructed “root structures” (Fig. 9.2). Although various dimensions can be

adopted, the most suitable would be 5-ft tall, 10-ft wide, and 60-ft long structures

built using cement bricks (Fig. 9.2). An additional 5-ft tall wall can be built in the

middle of the structure to make two halves, each 5-ft wide, which provide additional

strength to the structures. Soil is filled in these structures and compacted to mimic the

real field conditions. Crop can be sown or planted in rows, and an exact plant

population can be maintained. This approach provides the near-natural condition

for phenotyping. Since the plant population is maintained as that in themain field, the

plants would experience the interplant completion, which might have an important

effect on the phenotypic expression of root growth. Thus, the measurements of the

root traits from plants grown in such root structures would be very accurate. At the

end of the experiment, the brick walls along the sides can be dismantled with care and

the soil washed away using a strong jet of water. The roots are separated carefully

Fig. 9.2 Specially constructed root structures to assess genetic variability in root traits in large

number of accessions. Note: Each of these structures measure 60-ft long, 5-ft tall and 10-ft wide

and is constructed using cement bricks. A wall is built in the center for dividing the structures into

two halves of 5-ft wide each
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from soil particles and then used to record various parameters such as root length,

number of primary and secondary roots, root volume, etc. The roots can then be

separated from the shoots and oven dried tomeasure root biomass. Except for the fact

that the plants are grown in raised structures, this approach provides an option for

determining genetic variability among large number of accessions in several root

traits in conditions that are almost natural.

9.9 Oxygen Isotope Ratio as a Surrogate for Root Traits

Alteration in the stable isotopic composition of water has been well known to occur

during evaporation. Although the theory explaining the phenomenon of oxygen

isotopic enrichment during evaporation of water from ocean surface has been

known for almost four decades (Craig and Gordon 1965), the application of this

theory to predict differences in transpiration rate has been fairly recent (Flanagan

et al. 1991, 1994; Farquhar and Lloyd 1993; Bindumadhava et al. 1999). However,

discrepancy between the Craig-Gordon prediction and the measured d18O of the

leaf water has been reported (e.g., White et al. 1994; Buhay et al. 1996). Further, the

relationship between stomatal conductance and leaf water 18O enrichment has

remained equivocal (Farquhar et al. 2007), though increased transpiration has

been clearly shown to enrich leaf water 18O (Gonfiantini et al. 1965; DeNiro and

Epstein 1979). We recently provided experimental evidences and demonstrated that

oxygen isotope enrichment is a powerful time-averaged surrogate for transpiration

rate (Fig. 9.3) (Sheshshayee et al. 2005)
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Fig. 9.3 Relationship between oxygen isotope enrichment (D18O) and transpiration rate in rice

genotypes (from Sheshshayee et al. 2005)
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In most plant species, the total biomass accumulated is a function of the total

water used through transpiration. Total transpiration is further a function of the

evaporating surface area of the canopy and the extent of root development to supply

water to match the evaporative demand. Hence, transpiration at a given leaf area

must be related to root biomass and hence a good indicator of root traits. Oxygen

isotope enrichment values at a given leaf area was found to be strongly correlated

with root biomass in both annual and perennial crop species (Fig. 9.4). Being high

throughput and very accurate, stable isotope ratio is a very useful approach for the

determination of root traits in plants.

9.10 Genetic Variability in Root Traits and Their Relevance

in Improving Crop Growth

Success in breeding for any trait entirely depends on the existence of exploitable

genetic variability in that trait with moderate to high heritability. Research on the

genetic variation and heritability of rice root traits was reviewed by O’Toole and

Bland (1987). Geneticists have estimated both broad sense and narrow sense herita-

bility for root traits and have reported additive gene action and polygenic inheritance

of most root traits. Maximum root length, root diameter, root dry weight, root length

density, root number, root–shoot ratio, root dry weight, thick root number below

30 cm, and root mass density at different depths of soil layers are a few such traits.

Significant genetic variability in these traits has also been reported (Chang et al.

1982; Armenta-Soto et al. 1983; Sharma et al. 1994; Ekanayake et al. 1985).

These traits have significant implication to the growth of plants, especially under

water limitation. Root morphology and rooting patterns directly influence the

amount and timing of water supplied to the crop canopy (Champoux et al. 1995).

Root penetration ability associated with a few thick and long root axes helps to

31
0

4

8

R
oo

t w
t (

g 
l–

1 )

12

y = 2.475x –79.52
R2= 0.828

16

20

32 33 34 35

δ18O(permill)

36 37 38 39

Fig. 9.4 Oxygen enrichment

accurately reflects root

biomass in rice. Note: root

traits were measured by

growing contrasting

genotypes in root structure.

Leaf samples were taken for

the determination of oxygen

isotope ratio using IRMS at

department of Crop

Physiology, UAS, Bangalore

(Mohankumar and

Sheshshayee – Unpublished

data)

9 Phenotyping for Root Traits and Their Improvement 219



penetrate the compacted soil layer to reach the water source (Yoshida and

Hasegawa1982; Ekanayake et al. 1985; Ingram et al. 1994; Yu et al. 1995;

Zheng-Xiang et al. 1998). These long roots through efficient absorption of water

have a positive influence on biomass (Yadav et al. 1997). Longer and larger roots

have wider xylem diameter, thus contributing to higher hydraulic conductivity and

better water uptake (Passioura 1982; Ludlow and Muchow 1990). Variability in

root traits among a few important crop species was noticed in various experiments

conducted at our center. The mean and range of a few important root traits are

indicated in the Table 9.2.

Similarly, several workers reported exploitable genetic variability in many root-

related traits (Cook 1985; Pace et al. 1999; AbouKheir et al. 2008) and demon-

strated variation in root hair density, hydraulic conductivity, and root length density

in chickpea (Kashiwagi et al. 2005, 2006); analysis of the genetic control of these

traits has revealed a multigenic inheritance with a predominance of additive gene

action. Most of the research on assessing root traits has concentrated on cereals like

rice and wheat. Price et al. (1997), while examining both Indica and Japonica
varieties of rice, showed a significant additive and dominance effects on several

root-related traits.

9.11 Breeding for Drought Tolerance Through Root Traits

Despite the realization of the importance of roots in crop growth and productivity,

especially under water-limited conditions, no serious breeding efforts have been

initiated till date to improve root traits (Blum 2005). Lack of a proper phenotyping

strategy for root traits is perhaps the most important constraint. Though several

techniques have been developed and are being used to assess root traits, screening

large number of accessions is still a major challenge.

Among all the different abiotic stresses, drought is the most complex and devas-

tating on a global scale (Pennisi 2008). Hence improving drought tolerance of crop

plants deserves the greatest emphasis. However, progress towards this endeavour has

been show primarily because of an ambiguous definition to drought and drought

tolerance in the literatures (Tardieu 2003; Blum 2005; Collins et al. 2008). Remark-

able dehydration tolerance has been achieved by adopting genetic engineering

strategies that have targeted improvement in a range of processes including cell

protection mechanisms (Jenks et al. 2007; Nelson et al. 2007), detoxification of

reactive oxygen species that accumulate under stress (Lee et al. 2007; Yang et al.

2007), and hormonal manipulations that regulate adaptive strategies (Rivero et al.

2007). Nevertheless, these approaches have only provided drought tolerance in a

laboratory condition while having little yield advantage under a much milder and

intermittent drought conditions that are normally encountered in commercially

cultivated field conditions (Collins et al. 2008). In contrast, exploration of natural

variation in drought-related traits has resulted in a slow but a definite progress in crop

performance (Rebetzke et al. 2002; Ribaut et al. 2004; Reynolds and Tuberosa 2008).
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Maintenance of transpiration rate is crucial for productivity both under well-

watered and water-limited conditions, and hence roots play a pivotal role. Being

quantitatively inherited improvements in root traits can be best achieved with the

use of molecular marker technology. A number of studies have reported QTLs for

root architecture and have investigated their influence on yield under varying

moisture regimes in rice (MacMillan et al. 2006; Steele et al. 2006, 2007) and

Maize (Tuberosa et al. 2003; Landi et al. 2007). After identifying four major QTLs

in rice (Courtois et al. 2000), marker-assisted backcrossing was performed to

introgress the alleles for greater root length from Azucena into KalingaIII, an

upland indica variety (Steele et al. 2006, 2007). Similarly, in maize, a major QTL

originally reported for leaf ABA concentration (Tuberosa et al. 1998) was later

shown to affect root size and architecture (Giuliani et al. 2005) and grain yield

(Landi et al. 2007). These studies clearly demonstrate the possibility of enhancing

root traits, thus leading to a better field performance of crop plants under water-

limited conditions.

9.12 Transgenic Approach for Root Trait Improvement

Transgenic technology has had a great impact on crop improvement. This technol-

ogy of precision not only allows the validation of identified genes but also helps

identification of new genes. In the present scenario as well, this technology could be

exploited and utilized to check the efficacy of the identified genes and select the

gene(s) that help to obtain the right phenotype.

There are clear overexpression and downregulation studies available on the

role of specific TFs and regulatory proteins in root growth and abiotic stress

tolerance. A salt stress-inducible gene called Alfin1 (Winicov 1993; Bastola et al.

1998; Winicov and Bastola 1999), which encodes a putative Zn–finger regulatory

protein, is predominantly expressed in roots. This TF in alfalfa roots binds to

promoter elements of salt-inducible MsPRP2 gene and induces the gene expression

(Winicov and Bastola 1999). The Alfin1 from alfalfa shows conservation among

diverse plants such as rice and Arabidopsis (Bastola et al. 1998). In alfalfa, over-

expression of Alfin1 enhances root growth under normal and saline conditions,

resulting in salt tolerance (Winicov and Bastola 1999; Winicov 2000). An auxin-

induced gene called OsRAA1 was identified and characterized by reverse genetics

approach in regulating root development in rice (Ge et al. 2004). OsRAA1 is

constitutively expressed in rapidly growing cells such as primordia of the lateral

roots, meristem, and division zone of root apex. The expression of OsRAA1 is

regulated by auxin, and in transgenic rice plants, overexpressing the gene initiation

and growth of adventitious roots were more sensitive to auxin treatment (Ge et al.

2004). It has been suggested that OsRAA1 can be a candidate gene in root

development and root response to gravity. Similarly, in another study, Ca2þ-
dependent protein kinase1 (CDPK1) has been predicted to be associated with root

development in Medicago truncatula (Ivashuta et al. 2005). The TFs that regulate

diverse processes of plant development are also shown to be involved in root
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growth. For example, CAP2, a gene encoding APETALA2 (AP2)-family TF, has

been shown to improve root growth and abiotic (dehydration and salt) stress

tolerance (Shukla et al. 2006). Constitutive expression of chickpea (Cicer arieti-
num) CAP2 protein in tobacco caused drastic increase in the number of lateral

roots. Overexpression of NAC1 gene enhanced lateral root formation (Xie et al.

2002). Similar to this, overexpression of Arabidopsis gene, HARDY, an AP2-

family TF, induced better root growth and imparted drought and salt tolerance

(Karaba et al. 2007).

Further, components of signaling pathways have also been identified and vali-

dated. In plants, Ca2þ is a ubiquitous secondary messenger, and changes in cyto-

solic concentration of Ca2þ are associated with plant developmental processes

including root growth. Ca2þ -dependent protein kinase 1 (CDPK1) is involved in

Ca2þ signaling events. By using RNA interference-based approach, the importance

of CDPK1 in root development was demonstrated (Ivashuta et al. 2005), and the

authors suggest that CDPK1 is a key component in signaling pathways. Similarly,

Calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CIPK)

mediate a variety response to external stresses in plants. In Arabidopsis, CIPK6 is

required for growth and development, and tobacco plants expressing a homologous

gene (CaCIPK6) from chickpea showed improved abiotic stress tolerance (Tripathi

et al. 2009). It has been concluded that CIPK is associated with auxin transport and

consequently in root development, and salt-stress response, by regulating the

expression of downstream genes. Some of these TFs and regulatory genes can be

used to improve abiotic stress tolerance in candidate crops by transgenic approach

since some of these genes produced desirable phenotype under overexpressed

condition without abnormal phenotype.

Similarly, nutrient acquisition traits can be improved by overexpression of both

structural and functional genes involved. Overexpression of ZAT6, a zinc finger

transcription factor, resulted in altered root architecture with changes in Pi acquisi-

tion (Devaiah et al. 2007a, b).

Therefore, in a broader perspective, transgenic approach could be used to target

the modifications of the root systems with the genes involved. This could provide an

opportunity to improve the anchorage, hasten the growth of plants by enhancing

their exchange abilities, improve the tolerance of plants to drought and salinity,

their ability to penetrate compact soils, as well as synthesize important secondary

metabolites produced by the root and required by the plants.

9.13 Conclusions

Crop improvement for the future requires a very focused and orchestrated strategy

through exploitation of genomic resources. With the advent of modern molecular

biological tools, genes that regulate the growth and development of roots have been

identified. After convincing validation, several candidate genes have also been

identified that are being effectively used for improving drought tolerance through
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transgenic technology. Though this technique holds tremendous potential in enhanc-

ing tolerance to severe stress levels, their field performances have not shown

significant advantage. Plants experience much milder stresses under field conditions

that are often intermittent. On the other hand, a trait improvement has had a definite

improvement in crop performance, albeit with a slower pace. To enhance the field

performance under water-limited conditions, introgressing relevant QTLs governing

root traits appears to be the most plausible strategy. Based on the stability of their

effect across environments, “constitutive” and “adaptive” QTLs have been identi-

fied. While the constitutive QTLs are consistently detected across most environ-

ments, the adaptive QTLs are detected only in specific environments. With the

advent of marker-assisted breeding technologies, it is now possible to introgress

relevant QTL for a specific target environment. However, the reliability of a QTL

entirely depends on the accurate phenotyping of the root traits in large number of

accessions and breeding lines. We have described suitable methodology for such a

large-scale screening for traits under field conditions. Phenotyping for root traits in

specially constructed root structures would be closest to that observed under field

conditions. In this approach, root traits are measured under near-natural field

condition, and hence, it is a robust phenotyping technique. Further, a more powerful

and high throughput approach based on the oxygen isotope enrichment has been

shown to be a good surrogate for root traits at a given leaf area.
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Brewig A (1937) PermeabilitaÈ tsaÈnderungen der Wurzelgewebe, die vom Spross beein¯usst
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10.1 Chickpea Crop

Chickpea is a valuable agricultural crop of South Asia and the third most important

pulse crop in the world after dry bean (Phaseolus vulgaris L.) and field pea (Pisum
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sativum L.). Cultivated chickpea, Cicer arietinum L., is a self pollinated, diploid

(2n ¼ 2x ¼ 16) annual pulse crop with a genome size of 750 Mbp (Arumuganathan

and Earle 1991). There are two types of chickpea: desi (brown colored small seed)

and kabuli (white or beige colored large seed). Desi type covers about 85% of

global chickpea area and is predominantly grown in South and East Asia, Iran,

Ethiopia, and Australia, and the kabuli type is grown mostly in the countries of the

Mediterranean regions, West Asia, North Africa, and North America. The wild

ancestor of domesticated chickpea is Cicer reticulatum. Chickpea originated in

southeastern Anatolia (Turkey) and was traditionally cultivated in Asia, the Medi-

terranean, the Middle East, and northern Africa (Ladizinsky and Adler 1976). In

contemporary times, chickpea has become popular throughout the temperate

regions in countries such as Mexico, Canada, and Australia (Duke 1981).

Chickpea ranks third among pulses, fifth among grain legumes, and 15th among

grain crops of the world. In 2006, the world chickpea cultivation area was 10.7 Mha

with over 8 Mha grown in India, Pakistan, and Iran, with a further 1 Mha grown in

other countries of Asia, the Middle East, and Canada. Total production was 8.4 Mt,

and the average yield was 772 kg/ha (FAOSTAT 2006). Although chickpea is

cultivated in about 50 countries, 95% of its area is in the developing countries

where South Asia alone covers almost 71% of the world chickpea harvested area.

Most of the chickpea harvested is consumed locally and the global trade is about

12% of the total production. The global demand for chickpea is projected to be

11.1 Mt in 2010. Under optimum growing conditions, the yield potential of

chickpea is 6 t/ha (Singh 1987), which is much higher than the current global

yield average of ~0.8 t/ha (Ahmad et al. 2005).

10.2 Drought Stress in Chickpea

The main constraints in chickpea production are the abiotic stresses such as

drought, heat, cold, and high-salinity and the biotic stresses such as Ascochyta
blight, Fusarium wilt, and the pod borer. The estimated collective yield losses due

to abiotic stresses (6.4 Mt) are higher than that of the biotic stresses (4.8 Mt) (Ryan

1997). In the order of importance, drought, cold, and salinity are the three main

abiotic stresses that affect chickpea growth and productivity worldwide (Croser

et al. 2003). Drought stress alone causes a 40–50% reduction in yield globally

(Ahmad et al. 2005). It is estimated that if the yield loss due to drought stress is

alleviated, chickpea production could be improved up to 50%, equivalent to

approximately US$ 900 million (Ryan 1997).

As 90% of chickpea crops are cultivated under rainfed conditions, drought is of

major concern (Kumar and Abbo 2001), with terminal drought as the major con-

straint limiting productivity. Terminal drought stress is typical of the post-rainy

season crop in the semiarid tropical regions, where the crop grows and matures

on a progressively receding soil moisture profile (Ludlow and Muchow 1990;

Krishnamurthy et al. 1999), and the intensity of terminal drought varies depending
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on previous rainfall, atmospheric evaporative demand, and soil characteristics such

as type, depth, structure, and texture. In the arid and semiarid tropics of South and

Southeast Asia, chickpea is grown in the winter season immediately after the end of

the rainy season. Similarly in the Mediterranean environments, it is grown in spring

on stored soil moisture from the winter and early spring rainfall. In both the environ-

ments, the soil moisture recedes to deeper soil layers with the advancement in

crop growth, and the crop experiences increasing soil moisture deficit at the critical

stage of pod filling and seed development (Saxena 1984; Siddique et al. 2000).

10.3 Strategies to Tackle Drought Stress

Two main strategies are envisaged to tackle drought stress in chickpea (1) develop-

ing early maturing varieties and (2) developing drought tolerant varieties (Gaur

et al. 2008a, b). The breeding strategy for development of early maturing cultivars

is straight forward. One of the parents used in crosses should be a well-adapted

cultivar, and another parent should be an early maturity germplasm accession/

cultivar. In segregating generations, plants that flower early, for instance, in

25–30 days at ICRISAT-Patancheru, are selected and their progenies are further

evaluated. Selection for time to flower is effective even in early segregating

generations as it is controlled by a few major genes. Early flowering is a recessive

trait and controlled by a major gene ppd in ICC 5810 (Or et al. 1999) and by a major

gene efl-1 in ICCV 2 (Kumar and van Rheenen 2000). Early phenology (early

flowering, early podding, and early maturity) is the most important mechanism to

escape terminal drought stress. At ICRISAT, the chickpea breeding program has

placed high emphasis on development of early maturing varieties for enhancing

adaptation of chickpea to environments prone to terminal drought stress (Gaur et al.

2008b). Several varieties (e.g., ICCV 2, ICCC 37, JG 11, and KAK 2) have been

developed that mature in 85–100 days at Patancheru, as compared to >110 days

taken by the traditional varieties. The short-duration varieties have greatly con-

tributed to the expansion of area and enhancement of productivity of chickpea in

terminal drought-prone areas of peninsular India (Gaur et al. 2008b) and Myanmar

(Than et al. 2007). Breeding lines have been developed, which are extra-early in

maturity (75–80 days at Patancheru) and offer further opportunities for expanding

cultivation of chickpea in new niches (Kumar and Rao 1996; Gaur et al. 2008b).

Early maturing varieties that escape terminal drought and heat stress were

developed by the breeders and were adopted by farmers with considerable success

(Kumar and Abbo 2001). However, this drought escape fixes a ceiling on the

potential yield and cannot utilize the opportunities, as and when available, of

extended growing periods. Therefore, for achieving high and stable yields under

drought, it is necessary to develop drought-tolerant/avoiding varieties (Johansen

et al. 1997). Thus, several studies in the recent years have focused on identification

of morphological and physiological traits associated with drought tolerance.

Cultivated chickpea (Cicer arietinum) has a narrow genetic base, making it difficult
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for breeders to produce new elite cultivars with durable tolerance to drought stress.

In addition, drought tolerance is inherited in a quantitative manner, and the direct

yield or biomass assessment under field is prone to confounded environmental

effects. Therefore, selection of drought-tolerant plants in the field becomes difficult.

Recent advances in genomics can assist crop improvement efforts (Varshney et al.

2005). In fact, marker-assisted selection (MAS) approach has been successfully

deployed in developing improved varieties/lines/hybrids in several crop species

(see Varshney et al. 2006, 2010). Quantifying the effects of drought stresses,

however, involves measurement of various factors like days to flowering and mat-

urity, early shoot growth vigor, yield, shoot biomass production, rooting depth, root

length density, root to shoot ratio, total transpiration, and transpiration efficiency.

Therefore, developing molecular markers for drought tolerance per se is a difficult
task. Dissection of such complex traits into components or identification of highly

related surrogate traits can enhance the heritability of such traits and facilitate

development of molecular markers associated with each of such traits.

10.3.1 Targeting Root Traits for Drought Tolerance

Root traits, such as root depth and root proliferation, have been identified as the

most promising traits in chickpea for terminal drought tolerance, as these help in

greater extraction of available soil moisture. As these traits are quantifiable under

drought stress conditions, it seems feasible to develop molecular markers for these

traits and thereby can be used to screen the germplasm for drought tolerance.

One of the important physiological reasons to target root traits under the water-

limiting environments is the capability of root systems to absorb relatively more

water from deeper soils and/or absorb water relatively rapidly. Chickpea is a crop

that is often grown in deeper and heavier soils such as vertisols under progressively

receding soil moisture with little precipitation during the crop growth period.

Heavier soils are characterized with soil cracking as a consequence of shrinking

when dry. These soil cracks aid in enhancing soil evaporation from deeper soil

layers, more so under increasing atmospheric evaporative demand coinciding with

the reproductive growth stage of the crop. Therefore, it becomes necessary to

maximize transpiration over evaporation (Johansen et al. 1994) and to enhance

crop growth before the water is lost in cracking heavier soils. More prolific roots at

the early stages of growth have been shown to be advantageous for such maximi-

zation as the root length density (RLD) values recorded in chickpea were subopti-

mal (Krishnamurthy et al. 1996; Kashiwagi et al. 2006). However, root prolificacy

may not be expected to maximize transpiration in environments where the evapo-

rative demands are too extreme, and also this trait may not help under environments

characterized with excessive vegetative growth and poor partitioning. Similarly,

deeper rooting or higher proportion of deeper root length can help in mining water

from deeper soil profiles, provided the soil profiles are fully saturated in the

previous rainy season or the soils are deep enough for the roots to penetrate.
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Under such soil conditions, transpiration (T) gets maximized over evaporation,

which can increase the total water loss under water-limited conditions. The rela-

tionship of grain yield to water-related parameters has been described by Passioura

(1977) and Fischer (1981) as:

Yield ðYLDÞ ¼ Transpiration ðTÞ � Transpiration Efficiency ðTEÞ
� Harvest Index (HI):

The above formula indicates that the grain yield under drought could be

improved through improving any one or the combinations of the above compo-

nents. Also, these yield components have been shown to interact with each other.

For example, the timing of water availability is shown to affect the HI. Providing

small amounts of water across the growing period in comparison to the application

of all the water that is required at one time was shown to favor the wheat yields

through improved HI (Passioura 1977). Also, a deeper root system was found to be

associated with better HI and seed yield in chickpea (Kashiwagi et al. 2006). As

compared to HI, the other two factors, T and TE, can be improved by relatively less

efforts. The total shoot biomass can be increased either by increasing T or TE.

In some legume crops, e.g., common bean (White and Castillo 1990), ground-

nuts (Wright et al. 1991), and soybean (Cortes and Sinclair 1986), deep root

systems have already demonstrated to have positive effects on seed yield via

improved T. These studies emphasize that the T improvement strategy for better

soil moisture absorption through root systems could be applied in drought tolerance

breeding program in general or at least in legumes. However, until recently, little

breeding effort has been made to improve the root systems for seed yield or shoot

biomass under drought environments in chickpea. The reasons include the lack of

techniques that allow for large scale screening of genotypes, limited information on

genetic variability in root traits, and poor understanding of the genetics of root

attributes. It is also important to note that while targeting root traits in several crops

has been successful to tackle drought stress in several crops, the root traits may not

work in all environments.

At ICRISAT, near Patancheru in southern India (altitude: 545 m above the mean

sea level, latitude: 17�270N, longitude: 78�280E), a team of multidisciplinary

scientists has been working on root traits to improve the chickpea productivity.

More than 1,500 chickpea germplasm accessions plus released varieties were

evaluated under rainfed as well as irrigated field conditions at ICRISAT to gather

information on the yield under terminal drought conditions and potential yields

(Saxena 1987, 2003). Some genotypes, e.g., Annigeri, ICC 4958, ICC 10448, ICC

5680, and JG 62, were identified as drought-tolerant lines using a drought-tolerant

index in which the effects of early flowering could be removed (Saxena 1987),

although each had a different trait/mechanism to cope with the terminal drought.

For example, in Annigeri and ICC 10448, narrow (lanceolate) leaves, in ICC 5680

fewer pinnules per leaf and a rapid rate of grain filling through production of twin

pods at the early flowering nodes in JG 62 seem to be the mechanism contributing to
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drought tolerance. The genotype, ICC 4958, showed the best performance not only

at ICRISAT field trials but also at several other locations in India and in the

Mediterranean climate in Syria, which was found to possess higher root biomass

(ICARDA 1989; Saxena et al. 1993; Krishnamurthy et al. 1996; Ali et al. 1999,

2005). Subsequently, field experiments at ICRISAT with 12 diverse chickpea

germplasm including ICC 4958 showed that a prolific root system, especially in

the 15–30 cm soil depth, had positive effects on seed yield under moderate terminal

drought intensity, and a deeper root system to improved yield under severe terminal

drought conditions (Kashiwagi et al. 2006). The large variation in root systems

within such a small group of genotypes (Fig. 10.1), and the relation between root

length density (RLD) and yield under drought, suggests that an extensive and

systematic screening of the chickpea germplasm might offer a promising range of

variation for RLD. Furthermore, the RLD was increased under more severe stress

conditions, particularly in more tolerant genotypes, and the RLD at the deeper layer

was related to yield under more severe drought stress. These data suggest that the

dynamics of root growth under drought conditions might be a key factor in

understanding the contribution of roots to drought tolerance.

Fig. 10.1 Comparative root profiles in three chickpea genotypes. The figure shows 35-day-old

plants of three chickpea genotypes, namely ICC 4958, KAK 2, and Annigeri. These plants were

grown in pots in glasshouse conditions. It is evident from the figure that the root biomass for ICC

4958 is relatively higher than the other two chickpea genotypes. Higher root biomass confers high

level of drought tolerance in ICC 4958 genotype.
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The research on root systems under field conditions is very laborious, expensive,

and time-consuming (Subbarao et al. 1995). To overcome this problem, a modified

monolith method was standardized at ICRISAT (Serraj et al. 2004). This method

provided systematic field root extraction at a sampling rate of 3.3 root profiles/

worker/day. Although this method was fairly reliable to assess the field perfor-

mance, it still did not provide an adequate sampling rate for large scale screening of

genotypes. Although the less cumbersome pot-culture method was tested, the

rooting profile could not be estimated in shallow pot grown plants. Thus, extensive

efforts were made at ICRISAT to standardize a PVC cylinder-culture system for

screening large numbers of genotypes. When the plants were grown in PVC

cylinders (18 cm diameter, 120 cm height) filled with a sand–vertisol mixture

containing a 70% field capacity soil moisture, the extracted root biomass was

significantly correlated with the ones extracted from the field (r ¼ 0.62,

p < 0.05) (Kashiwagi et al. 2006). Moreover, the sampling efficiency of chickpea

roots could be improved upto 25 profiles/worker/day. Furthermore, an image

capturing and analysis system was introduced to scan the roots and convert

the intact root samples into digitalized images for a large number of samples

(>150 root samples/day). By using the digital image of roots, the WINRHIZO

software (Regent Instruments, Inc., Canada) could generate numerical data, e.g.,

root length and root diameter, from more than 500 images/day.

10.3.2 Physiological Mechanisms of Root Traits

Plants take up water from soil profile using either an active or a passive water

uptake pathway (Hirasawa et al. 1997). In nonstress conditions, i.e., when a plant

transpires, the magnitude of active water uptake is far less than that of passive water

uptake. Under severe drought conditions, however, the plants close the stomata,

so as not to deplete the internal water, and active water uptake becomes more

important under such non-transpiration situations. In active water uptake, one of the

relevant root-related traits would be osmotic adjustment. However, using such traits

is difficult in breeding programs (Turner et al. 2006).

The passive water uptake takes place by gradient of water potential from the

roots to shoots, where Vapor Pressure Deficit (VPD) in the air is the principle

driving force. Thus, higher VPD causes more transpiration to occur via stomata,

which pulls down the leaf water potential. Subsequently, it reduces the xylem

pressure potential in the stems and then in the roots. This creates a gradient in

water potential, which forces the soil water into the xylem in roots and then to the

leaves. Under normal circumstances, this passive water uptake plays a major role in

terms of the plant water. Under the passive water uptake, the relevant root traits

are root hydraulic conductivity (vertical water flow from roots to leaves) and root

permeability (transverse water flow from the root surface to xylem). The root

permeability could be further dissected into three different paths (1) apoplastic
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(inter-cells), (2) symplastic (cell-to-cell), and (3) transcellular (cell-to-cell) (Steudle

2000). The symplastic path more closely relates to the active water uptake.

Chickpea is known to have varying root distribution across soil depths depend-

ing on the soil water availability. It has substantially smaller RLD than that of

several cereals, e.g., barley (Thomas et al. 1995), but has an efficient water uptake.

The difference for water uptake between chickpea and cereal species has been

attributed to the function of root hydraulic conductivity, which is mainly governed

by the diameter and the distribution of the meta-xylem vessels (Hamblin and

Tennant 1987). Chickpea could develop its root systems upto two to three times

greater in the surface soil layer (0–15 cm) at mid-pod filling stage when irrigated.

On the other hand, the proportion of RLD distributed at deeper soil layers

(115–120 cm) was found higher under receding soil water conditions compared

to that of the well-watered condition (Ali et al. 2002). In another study, chickpea

had a greater proportion of the root system in the deeper soil layer under dryland

environments than field pea (Benjamin and Nielsen 2006). In addition, chickpea

possesses greater root surface area to root weight ratio, compared to field pea or

soybean. These studies suggest that chickpea plants are better equipped in terms of

the soil water uptake to cope with the drought environments. Enhancing root traits

would, therefore, be one of the promising approaches to improve drought avoidance

in chickpea under terminal drought conditions.

10.4 Genetic Dissection of Root Traits

In order to target the root traits in chickpea breeding to improve drought tolerance,

understanding the genetics of root traits is crucial. In the first instance, to have a

knowledge about the genetic variability of root traits in chickpea germplasm, a mini

core collection consisting of 211 chickpea genotypes developed by Upadhyaya and

Ortiz (2001) was assessed in the cylinder culture with image capturing and analysis

systems in two seasons. A large and significant variation was observed among the

accessions of the mini-core collection in terms of root length density (RLD), root

dry weight (RDW), rooting depth (RDp), and root to total plant weight ratio (R/T)
(Krishnamurthy et al. 2004; Kashiwagi et al. 2005). Although a significant geno-

type � season interaction was observed for RLD and R/T, it was a noncrossover

type. Therefore, a rank correlation analysis was performed between the accession

means of two seasons to identify the contrasting genotypes in terms of root traits.

The studies identified two accessions namely, ICC 4958 and ICC 8261, as having

large and prolific root systems. In addition, the root traits of ten accessions of annual

wild Cicer species were also evaluated in one season. The wild relatives had smaller

root systems than C. arietinum except for the most closely related species

C. reticulatum whose root systems were similar to that of the average root system

of C. arietinum. It has to be mentioned here that these findings need further

validation keeping in mind the effect of phenology on the timing of root growth.

240 R.K. Varshney et al.



Most of the wild accessions tested here were late in flowering, and these evaluations

have been carried out using 35-day-old plants. As most of the wild Cicer species are
late in phenology, it may be appropriate to measure the root system differences of

wild species accessions at a later growth period.

Subsequently, in a study conducted to estimate the gene effects for root traits,

two contrasting pairs of chickpea genotypes, ICC 283 and ICC 1882 (smaller roots)

and ICC 8261 and ICC 4958 (larger roots), were identified for developing popula-

tions for the genetic analysis (Kashiwagi et al. 2008). In these analyses, the additive

gene effect and additive � additive gene interaction have been found to play

important roles in determining the RLD and RDW. In addition, the direction of

the additive gene effects was consistent and toward increasing the root growth. The

results encouraged the ICRISAT team to proceed with the breeding program for

root systems in chickpea, although delaying selections until later generations with

larger populations was proposed (Kashiwagi et al. 2008).

In order to identify the genomic regions or quantitative trait loci (QTLs) for root

traits, three recombinant inbred line (RIL) populations were developed at ICRI-

SAT. The first population consists of 257 RILs from the cross Annigeri � ICC

4958. Two other RIL populations involving parents more genetically and pheno-

typically distant, selected after screening the mini core collection as mentioned

above, were developed: 281 RILs from the cross ICC 283 � ICC 8261 and 264

RILs from the cross ICC 4958 � ICC 1882.

The Annigeri � ICC 4958 RILs were evaluated for two seasons under termi-

nal drought conditions, and approximately 40 molecular markers (SSR) were

genotyped in the population. A QTL responsible for 33% of the phenotypic

variation for root length and root biomass was detected (Chandra et al. 2004).

The root trait phenotyping has been done for the two other mapping populations

(ICC 4958 � ICC 1882 and ICC 283 � ICC 8261), and genotyping is underway

with a variety of molecular markers. Limited level of polymorphism in intra-

specific mapping populations of chickpea is a major constraint in mapping of

any trait in chickpea. To aid in mapping, a set of 311 SSR markers have been

developed from an SSR-enriched genomic DNA library (Varshney et al. 2007),

and a set of 1,344 SSR markers have been developed after mining about 46,270

BAC-end sequences (Nayak et al. 2008). With the existing set of SSR markers in

public domain and newly developed markers at ICRISAT (in collaboration with

University of California, Davis, CA, USA; University of Frankfurt, Germany)

and National Institute of Plant Genome Research (NIPGR), New Delhi, India

(Sabhyata Bhatia, pers. commun.), more than 2,000 SSR markers are available in

chickpea (Varshney et al. 2008, 2009a; Nayak et al. 2010). An integrated genetic

map with 521 loci has been developed by Nayak et al. (2010). In addition to

SSR markers, Diversity Arrays Technology (DArT) markers are currently being

used for genotyping the two mapping populations (ICC 4958 � ICC 1882 and ICC

283 � ICC 8261). Given the large phenotypic and genotypic contrast between

the parents involved in these populations and high density marker genotyping,

the chances to identify additional major QTLs for root traits as defined above

are high.
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10.5 Transcriptomics Approaches for Identification of Genes

from Root Tissues

Plant stress responses are complex and diverse, and every gene involved, from

recognition to signaling to direct involvement, forms part of a coordinated response

network. Controlling gene expression is one of the key regulatory mechanisms used

by living cells to sustain and execute their functions. Although the final activity of a

gene is determined by encoded protein, measurements of mRNA levels have proven

to be a valuable molecular tool. In order to obtain a complete picture of a plant’s

response to stress, it would be ideal to study the expression profiles of all possible

genes in its genome or at least those involved in conferring stress tolerance.

Traditional approaches for undertaking genome-wide expression studies involve

the use of microarray or cDNA macroarrays. Although in chickpea, transcriptomic

approaches are not in an advanced stage, they progress in this direction that has

already been initiated (Coram and Pang 2007).

The first step toward transcriptomics studies is the identification or cataloging

of genes involved in the trait. One of the most simple and straight forward approach

is the generation of expressed sequence tags (ESTs), which involves large-scale

single-pass sequencing of randomly selected clones from cDNA libraries con-

structed from mRNA isolated at a particular developmental stage and in response

to a particular stress (Sreenivasulu et al. 2002). Functional identification of sequenced

clones is becoming easier by the availability of rapidly growing sequence data-

bases, such as Genbank and genome sequence data of several crop species including

the three legumes, i.e., Medicago truncatula, Lotus japonicus, and Glycine max.
The EST datasets can be used in gene expression/functional genomics studies to

identify putative genes with differential expression and to generate the gene-based

functional molecular markers such as EST-SSRs, EST-SNPs, and single feature

polymorphisms (SFPs) (Varshney et al. 2005). EST analysis has become a popular

method for gene discovery and mapping in cereal crops (Varshney et al. 2006). The

first resource of ESTs (ca. 2800) in chickpea was developed at ICRISAT from root

tissues challenged by drought stress (Buhariwalla et al. 2005; Jayashree et al. 2005).

The EST library was constructed after subtractive suppressive hybridization (SSH)

of root tissue from two chickpea genotypes (the landrace ICC 4958 and a popular

local variety Annigeri), which were considered to possess important sources of

drought tolerance (Saxena et al. 1993; Saxena 2003). A total of 2,179 ESTs were

generated with putative identification that resulted into 477 unigenes. A total of 106

EST-based markers were designed from the unigene sequences with functional

annotations. To enrich the resource of ESTs involved in drought and salinity stress

tolerance (or response), ten different cDNA libraries were constructed from the root

tissues of ICC 4958, ICC 1882, JG 11, and ICCV 2 (parental genotypes of the

mapping populations segregating for drought and salinity), challenged by different

types of drought (chemical induction using polyethylene glycol (PEG), sudden

dehydration stress, slow drought stress to potted plants grown in the greenhouse,

and prolonged drought stress under field conditions) and salinity stresses (treated
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with 80 mM NaCl solution). In summary, a total of 20,162 ESTs have been

generated in the study using Sanger sequencing approach at ICRISAT and have

been deposited in GenBank (Varshney et al. 2009b). A detailed analysis of ESTs

has provided a set of 6,404 unigenes.

In addition, “whole transcriptome sequencing” using Solexa sequencing tech-

nology (see Varshney et al. 2009c) has been initiated by ICRISAT in collaboration

with colleagues from the National Center for Genome Resources, Santa Fe, New

Mexico, USA (Greg May and Andrew Farmer), and the University of California,

Davis, USA (Doug Cook). In this approach, the RNA isolated from drought stress

challenged root tissues of different stages and were pooled for ICC 4958 and ICC

1882 genotypes separately. Half run of Solexa sequencing on the pooled RNA

samples from ICC 4958 and ICC 1882 yielded 5.2 � 106 and 3.6 � 106 sequence

reads (May et al. 2008), respectively. The preliminary results of the Solexa

sequencing are summarized in Table 10.1. Ideally for analyzing the Solexa datasets,

genome assembly (reference assembly) of the same species is prerequisite for

aligning the short tags (~36 bp). In case of chickpea, however, no genome assembly

was available during the analysis. To analyze the generated Solexa datasets, the

following three set of sequence resources were used (1)M. truncatula (Mt) IMGAG

(International Medicago Genome Annotation Group) gene assembly representing

29.5 Mb sequence data, (2) C. arietinum transcript assembly (Ca TA) of JCVI

(The James Craig Ventor Institute) representing 681 kb sequence data and (3)

C. arietinum (Ca) BAC-end sequence (Ca BES) data representing 16.4 Mb

sequence data. As a result, the Solexa datasets showed matches with 5,886 and

7,338 genes in cases of ICC 4958 and ICC 1882, respectively (Table 10.1). These

datasets are being analyzed for identification of gene-based SNPs between ICC

4958 and ICC 1882 so that the polymorphic genes could be integrated in the genetic

maps. Such efforts should lead to the identification of drought QTL-associated

genes that would be useful for molecular breeding.

Other functional genomics studies using the chickpea/legume-based gene

microarrays have also been undertaken for identification of genes for drought

tolerance; however, these were not exclusively focused on root traits. For example,

Table 10.1 Preliminarily gene discovery in two chickpea genotypes by employing the Solexa

sequencing technology

Features ICC 4958 ICC 1882

Number of reads 36,15,433 52,07,099

Average read length 36 36

Average read quality 26 21

Alignment with TA

Read aligned 11,95,622 (33%) 21,22,069 (41%)

Reads uniquely aligned 5,72,751 (16%) 9,67,102 (19%)

Alignments with BES

Aligned 10,48,614 (16%) 17,88,936 (34%)

Uniquely aligned 5,11,148 (14%) 8,54,085 (16%)

Overall number of gene matches 5,886 7,338
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Boominathan et al. (2004) carried out a gene expression study of drought adaptation

in chickpea using subtractive suppressive hybridization in combination with differ-

ential DNA array hybridization and northern blot analysis and identified 101

drought-inducible transcripts. Similarly, Coram and Pang (2006) developed a

“Pulse Chip” microarray and applied it to identify the genes expressed in response

to abiotic stresses such as drought, cold, and high salinity. In another study,

transcript profiling of tolerant and susceptible chickpea genotypes under drought,

cold, and high salinity was conducted (Mantri et al. 2007). These studies provide

opportunities for illuminating the mechanisms of drought tolerance in chickpea and

indicate the molecular pathways used by the plant as well as the function of the

candidate genes involved. It would be interesting to see the colocalization of such

genes with QTLs related to root trait in chickpea.

10.6 Prospects for Molecular Breeding for Root Traits

The role of root traits in conferring drought tolerance in chickpea is well estab-

lished. A significant challenge to the selection for root traits is the difficulty of

evaluating root phenotypes, since many root traits are phenotypically plastic, roots

are difficult to extract from the soil, such extraction may change certain traits such

as architecture, and many root sampling procedures are destructive. Research on

drought tolerance still has to deal with many complicated aspects, especially

concerning root functions. The reason is that the root is difficult to visualize and

extremely sensitive to the surrounding environmental factors because of the G� E

interactions. So, many efforts have been made to characterize and identify varietal

differences based on root traits (Kashiwagi et al. 2005). These challenges make

the prospects of marker-aided selection an attractive alternative to phenotypic

selection.

The availability of appropriate molecular markers is an important prerequisite

for marker-assisted selection. The availability of more than 2,000 SSR markers

and DArT arrays in chickpea will enable the development of the genetic maps

and mapping of traits in intraspecific populations. The integration of the candid-

ate genes showing differential expression as well as SNPs between contrasting

genotypes into QTL maps will provide genes and markers associated with root

trait QTLs.

After identifying the QTLs, molecular markers associated with these QTLs

need to be validated on a range of germplasm to select the most promising QTLs.

For introgression of these QTLs, the drought-tolerant (possessing the QTLs) and

drought-sensitive lines (showing the polymorphism at QTL with drought tolerant

genotypes) are selected. After generating the F1s by crossing the susceptible

drought-sensitive varieties (recurrent) with drought-tolerant donor variety, the F1
seeds are raised and backcrossed to the recipient varieties. After raising the BC1F1
population, these plants are genotyped with the identified molecular marker(s)

associated with targeted QTLs. Based on marker genotyping data, the desired plants
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are used further for backcrossing to produce the BC2F1 populations. Similar cycles

of backcrossing and selection of lines with molecular markers for making them

homozygous for the next generations are continued until the necessary recovery of

the recurrent parent genotype is achieved. Many molecular breeding programs do

not involve the use of markers in background selection. However, the availability of

Diversity Array Technologies (DArTs), a low cost marker system in chickpea,

creates the possibility to use DArT markers for background selection. Subse-

quently, the marker-assisted backcross (MABC) lines are evaluated in replications

on-station and on-farm trials for agronomic performance. Eventually, the successful

products of MABCs are selected and advanced to release as varieties in targeted

environments.

Indeed, the above scheme of introgressing of QTLs/genes into varieties of

interest has been successfully utilized in several cereal species (Varshney et al.

2006, 2007). It is anticipated that introgression of root trait QTLs in drought-

sensitive chickpea varieties should be feasible in the coming years.

10.7 Looking Ahead on Root Trait Research and Applications

in Chickpea

This chapter presents the importance of root traits in conferring drought tolerance in

chickpea. However, molecular mechanisms of root traits at the physiological and

genetic level are yet to be understood. On the one hand, the simple screening

methods have been developed for precise phenotyping root traits at a large scale,

enabling phenotyping of large segregating populations possible. In parallel, the

genomic resources including large number of SSR markers, BAC and BIBAC

libraries, BAC-end sequences, ESTs, and Solexa tags have been developed (Varshney

et al. 2009a). These resources offer the possibility to develop the dense genetic

map, transcript maps, and integrated genetic-physical maps of chickpea. These

genomic tools should identify the root trait QTLs at a higher resolution that can

be used in molecular breeding for drought tolerance in chickpea.

In order to understand the genetic basis of root traits at the molecular and cellular

level, it will be possible to delimit root trait QTLs and dissect them at nucleotide

level with the help of genomic resources in chickpea as well as in M. truncatula,
L. japonicus, and G. max by using comparative genomics. The approaches like

“genetical genomics” or “expression genetics” that involves the analysis of gene

expression data together with the phenotyping data should provide the insights on

direct involvement or regulation of QTL/gene for root trait on drought tolerance.

The function of candidate genes can further be validated by using the chickpea

TILLING populations recently developed at Washington State University, USA

(Rajesh et al. 2007), and ICRISAT. With such available resources, we envision a

more rapid understanding of the genetic and functional basis of root traits for

drought tolerance.
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Finally, the advancement in chickpea genomics and refinement of root physiol-

ogy approaches would provide access to agronomically desirable alleles present at

QTLs for root traits. A scheme has been proposed in Fig. 10.2, showing the

utilization of root traits for chickpea improvement. The combined approach of

genomics and physiology in chickpea breeding would enable us to improve the

drought tolerance and yield of chickpea under water-limited conditions more

effectively.
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Fig 10.2 A scheme to utilize the root traits for chickpea improvement. The figure represents the

holistic approach combining genomics, physiological, and breeding strategies. For instance, the

molecular marker profiling and physiological screening of germplasm provides the contrasting

genotypes at genetic as well as physiological level for developing (a) the mapping populations and

(b) the reference collection. The mapping populations can be genotyped with molecular markers

and phenotyped for root traits. Linkage analysis together with phenotyping data on the mapping

population will provide the QTLs and markers associated with root traits. Similarly, the genome

wide molecular genotyping or candidate gene sequencing of the reference collection together with

phenotyping data for root traits can be subjected for association genetics and the markers/genes

tightly associated with root traits can be identified. Molecular markers/genes identified by linkage

analysis or association genetics can be used for marker-assisted breeding to introgress the drought-

tolerant genomic regions from drought-tolerant genotypes into drought-sensitive genotypes to

develop improved drought-tolerant cultivars of chickpea
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11.1 Introduction

Soil acidity limits the production of cereals on over 1.5 billion hectares worldwide

and possesses a serious threat to world food security (FAO stat). Crop productivity

on acid soils is often restricted due to multiple stresses. On acid soils, there are

several limiting factors for plant growth, including toxic levels of aluminum (Al3+),

manganese, and iron, as well as deficiencies of essential elements, such as phos-

phorus, nitrogen, potassium, calcium, magnesium, and some micronutrients (2004).

Al toxicity is a major factor limiting crop production on highly weathered acid soils

(Kochian 1995). The Food and Agriculture Organization of the United Nations

(FAO) lists Al toxicity as affecting 14% of all soils worldwide, with the level

greater than 50% in many countries (http://www.fao.org/ag/agl/agll/terrastat/wsr.

asp#terrastatdb). At low pH (<5), dissolution of Al-containing compounds is

enhanced and the release of toxic Al3+ cations into soil solution can rapidly inhibit

root growth (Delhaize et al. 1993b). Subsequently, Al toxicity may inhibit supply of

nutrients, growth hormones, and water mainly due to poorer root penetration (Pan

et al. 1989).

A number of key cereal crops such as wheat (Triticum ssp.) (Polle et al. 1978),

rice (Oryza sativa L.) (Nguyen et al. 2001), maize (Zea mays L.) (Ceretta 1988;

Mazzocato et al. 2002), barley (Hordeum vulgare L.) (Reid et al. 1969), sorghum

(Sorghum bicolor L.) (Blamey et al. 1992), and rye (Secale cereale L.) (Gallego and
Benito 1997) are sensitive to Al toxicity. The Al resistance order has been reported

as maize > rye> triticale (X TriticosecaleWittmack) > wheat > barley (Polle and

Konzak 1985), rye > oat (Avena sativa L.) > millet (Panicum miliaceum L.) >
bread wheat (T. aestivum L.) > barley > durum wheat (T. turgidum ssp durum L.)

(Bona et al. 1993), and rice > maize > pea > barley (Ishikawa et al. 2000). Most

Al-sensitive genotypes show greatly reduced root growth and either die within a

few weeks after germination on acidic soils or yield very poorly. The effects of Al

toxicity can be more pronounced under drought and heat stress environments.

Symptoms of Al phytotoxicity are not always easily identified in the field;

however, the initial and the most dramatic symptom of Al toxicity is inhibition of

root elongation, which can occur within minutes of exposure to micromolar toxic

concentrations of Al3+. Aluminum permeates the plasma membrane and accumu-

lates in the root tips (Samuels et al. 1997). The root apex, where cell division and

elongation occurs, is recognized as the main site of Al accumulation and toxicity in

sensitive cultivars (Delhaize et al. 1993b; Sivaguru and Horst 1998). However, in

maize, distal transition zone is the most Al-sensitive region in the Al-sensitive

cultivars such as “Lixis” (Kollmeier et al. 2001; Sivaguru and Horst 1998). Alumi-

num results from the binding of Al to extracellular and intracellular substances

because of the high affinity of Al for oxygen donor compounds. When the root

elongation is inhibited by Al, most of the Al is localized on the epidermis and the

outer cortex (Jones et al. 2006).

Two strategies have been used to extend cultivation and enhance yield per unit

area on acid soils (1) an application of lime for neutralizing the acidity and/or (2)
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cultivation of Al-resistant varieties. An application of lime is often not practical

because of its slow movement, especially in the deeper layers of subsoils (Foy et al.

1965; Mugwira et al. 1976), and adequate liming may not be economically feasible

in many regions of the world (Pandey et al. 1994), especially in low-yielding

environments. In addition, heavy application of lime may also have adverse effects

on some crops in the rotation or cause deficiencies of certain nutrients (Rao et al.

1993; Whitten 1997). In the literature, both the terms Al tolerance and Al resistance

have been used interchangeably. In this review, the term Al resistance is used to cite

relevant research on Al resistance/tolerance in cereals.

There are two prerequisites for exploiting resistance genes in breeding programs

to develop new varieties (1) presence of genetic variability for Al resistance and (2)

understanding the genetic control of Al resistance within the species involved.

Genetic variability for Al resistance has been reported among the cultivated and

wild germplasm of wheat, barley, rice, rye, oats, sorghum, and maize (Ali et al.

2008; Cançado et al. 1999; Ceretta 1988; Minella and Sorrells 1992; Raman et al.

2008a, b, c; Read and Oram 1995; Reid et al. 1969; Silva et al. 2006) and has been

exploited in breeding programs to develop high-yielding varieties with greater

resistance to Al toxicity. Crop improvement programs worldwide have developed

hundreds of varieties suitable for cultivation on acid soils.

In this chapter, we will describe new advances in understanding of genes and

gene complexes conditioning Al resistance in cereals and their further use in

molecular breeding via marker-assisted selection and genetic engineering.

11.2 Evaluation of Germplasm for Aluminum Resistance

Most methods for testing Al resistance in plants are based upon inhibition of root

growth due to Al toxicity. Different methods have been employed for screening

germplasm for aluminum resistance including nutrient solution culture (hydropon-

ics), pot assays in the glasshouse, and field evaluation on acidic soils; see review

Wang et al. (2006a). However, laboratory and greenhouse-based techniques are

widely employed, which are usually nondestructive, and can be performed in early

stages of plant development from, only a few days-old seedlings to flowering stage

of the plants. There are several advantages of the nutrient solution method over the

soil-based assays. In nutrient solution culture, the dose of Al3+ and conditions (e.g.,

pH, light, temperature, humidity, etc.) for screening plants can be precisely con-

trolled. Root measurements from the nutrient solution culture method are much

easier as compared with soil assays, as the primary effect of Al toxicity on the plants

is the inhibition of root elongation, and the roots are easily observed under nutrient

culture. However, root growth measurements are relatively more time-consuming.

Root measurements are also dependent upon concentration of particular ions

(nutrient status of solution), genetic vigor, and age of seedlings.

Nutrient solution culture-based evaluation is more suited for large-scale screen-

ing of germplasm for Al resistance. Several hundred seedlings can be evaluated for
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Al resistance, within a week, in a small space, whereas soil-based assays are more

labor-intensive, expensive, and require additional glasshouse space. Under nutrient

solution culture, Al resistance has been evaluated using hematoxylin (Cançado

et al. 1999; Polle et al. 1978), eriochrome cyanine staining (Furukawa et al. 2007;

Gruber et al. 2006; Magalhaes et al. 2004), root growth (Raman et al. 2005), and

relative root regrowth (Raman et al. 2002, 2005, 2008c). Hematoxylin and erio-

chrome cyanine stain-based methods are based on the ability of Al-resistant seed-

lings to continue root growth following a short pulse treatment involving a high Al

concentration, while the relative root growth (RRG) method uses the root growth

and root resistance index to judge Al resistance over a period of time (usually 2–4

days). Root elongation has been suggested to be one of the most important markers

when screening genotypes and cultivars for Al toxicity (Taylor and Foy 1985).

Since root growth under Al stress is a combination of root vigor (long roots) and Al

resistance, selection of Al resistant genotypes using RRG is preferred as it allows

for a better differentiation of genotypes, and it is often used to measure relative

level of Al resistance. For example, Hede et al. (2002) evaluated 63 rye accessions

from a world spring rye collection for Al resistance using the hematoxylin and the

root growth method and demonstrated that the hematoxylin method and the root

growth parameter identified genotypes with long root growth under Al stress, but it

failed to detect Al resistance in genotypes with poor root vigor. RRG/relative root

length or root resistance index has been measured as

RRG ¼ Root growth under Al stress=control root length �ve Alð Þ � 100:

This technique is very simple to measure and eliminates the genetic difference in

root vigor under nutrient culture. Massot et al. (1992) showed that scoring for Al

resistance, using root elongation as a single criterion, may avoid the misclassifica-

tion of genes, which allows for the accumulation of a large amount of Al in shoots.

Nutrient culture-based selection for Al resistance has been highly correlated with

hematoxylin stain method and field evaluation. Stodart et al. (2007) compared the

minimum and maximum root regrowth measures and reported a good relationship

between hematoxylin score and the regrowth measure (Fig. 11.1).

Baier et al. (1995) suggested that hydroponic screening of wheat seedlings for Al

resistance may be used in breeding programs or in screening germplasm collections.

This study correlated root lengths of 43 wheat genotypes grown in Al-containing,

acidic hydroponic solutions with root weights from acid-soil experiments and field

scores from Brazilian acid-field trials and revealed highly significant correlations

(r ¼ 0.71–0.85) between root length or a root tolerance index in the Al solutions vs.

acid-soil experiments and acid-field trials.

Besides the hematoxylin and eriochrome staining methods, Maltais and Houde

(2002) reported that nitroblue tetrazolium (NBT) reduction is a simple biochemical

marker that is correlated with the degree of Al resistance in wheat, rye, maize, and

rice. All the plants were able to grow, demonstrating that this scoring technique is

rapid and nondestructive. This Al resistance marker was the first to provide a strong

signal in resistant plants rather than in sensitive plants (Bennet 1997; Horst et al. 1997;
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Massot et al. 1992, 1999). NBT test is suitable for screening thousands of plants in a

single day/person (Maltais and Houde 2002).

11.3 Genetic Variability for Al Resistance

Natural genetic variability for resistance to Al exists within different species of

cereals (Bernal and Clark 1997; Bona et al. 1993; Khan and McNeilly 1998;

Khatiwada et al. 1996; Pineros et al. 2008; Sivaguru et al. 1992). Among cereal

crops, rye is the most resistant cereal (Aniol and Gustafson 1984; Aniol and Madej

1996; Hede et al. 2002; Little 1988; Mugwira et al. 1976), whereas durum wheat is

the most Al-sensitive (Bona et al. 1993). In the literature, very limited genetic

variability for aluminum resistance has been reported in tetraploid wheats. Raman

et al. (2008a) evaluated 408 genotypes of the subspecies durum, dicoccon, and
carthlicum of Tritticum turgidum (2n ¼ 4x ¼ 28, genomes¼AABB) for Al resis-

tance using nutrient solution culture techniques. The authors used a new measure

“Incremental crop tolerance (ICT)” that reflect the incremental root regrowth

between genotypes associated with Al resistance, over and above difference in

underlying root vigor. Statistical analysis indicated that three accessions were
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Fig. 11.1 Comparison of 250 wheat landrace accessions for Al tolerance evaluated using root

regrowth measurements and hematoxylin staining (Unstained: Al-resistant, Stained: Al-sensitive,
and Partial stained: Intermediate Al-resistant). Al-tolerant reference cultivar, Carrazhino is

indicated (after Stodart et al. 2007)
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Al-resistant in a nutrient solution containing 20 mM of Al. The genetic identity

(AABB) of these genotypes was confirmed using genome-specific markers Dgas44,

TaALMT1, QSSR (domestication gene-based marker), and gamma gliadin. Despite

extensive use of interspecific and intergeneric hybridization to introgress genes for

Al resistance, only few wild species have been utilized. Berzonsky and Kimber

(1986) evaluated various accessions of goat-grass Aegilops uniaristata (2n ¼ 2x
¼ 14, genome: NN) and identified useful variation for Al resistance and exploited

further to improve Al resistance in wheat (Iqbal et al. 2000).

Rye has been used to introgress superior alleles into wheat, without much

success. Triticale, a wheat/rye hybrid, is recognized as particularly Al resistant

cereals and is adequate for cultivation in acid soils (Antunes et al. 1996). Among the

triticales evaluated, “Arabian” ranked higher in resistance with only 30% reduction

in the root growth in contrast with “Beagle,” which presented the strongest inhibi-

tion (75%). Zhang et al. (1999) performed comparative analyses of genetic varia-

bility of Al resistance response in a range of triticale genotypes consisting of six

Australian cultivars, eight South African lines, and an Australian control utilizing

a solution culture technique and screening under controlled growth cabinet con-

ditions. Results showed that “Tahara,” Tahara “S,” and “Abacus” were the most

Al-resistant triticales among the Australian genotypes in terms of root regrowth

characteristics at 10 mg/g Al.

11.4 Genetic Control of Al Resistance

The genetics of Al resistance in cereals is reasonably well-understood. Monogenic

inheritance for Al resistance has been reported in various populations of wheat

(Baier et al. 1995; Delhaize et al. 1993b; Johnson et al. 1997; Kerridge and

Kronstad 1968; Luo and Dvorak 1996; Milla and Gustafson 2001; Raman et al.

2005; Somers et al. 1996); barley (Ma et al. 2004; Raman et al. 2003; Reid et al.

1971; Tang et al. 2000; Wang et al. 2006b, 2007), rye (Zhang and Jessop 1998), oats

(Wight et al. 2006), sorghum (Gourley et al. 1990; Magalhaes et al. 2004), and

maize (Moon et al. 1997; Rhue et al. 1978). Most of the cereals display a range of

genetic variation for Al resistance, which seems to be under control of different

alleles conditioning different levels of Al resistance (Minella and Sorrells 1992;

Raman et al. 2005). However, multigenic inheritance for Al resistance has been

observed in wheat, barley, rice, and maize (Berzonsky 1992; Echart et al. 2002;

Lima et al. 1992; Nguyen et al. 2001, 2002; Ninamango-Cardenas et al. 2003;

Raman et al. 2005). Aniol and Gustafson (1984) associated chromosome arms 6AL,

7AS, 2DL, 3DL, 4DL, 4BL, and 7D with Al resistance in the wheat landrace

cultivar “Chinese Spring.” A single gene with multiple alleles conditioning various

degrees of Al resistance appears to be common in wheat, maize, and rice (Nguyen

et al. 2001; Raman et al. 2008c; Sibov et al. 1999).

Al resistance and malate efflux has been reported to be under the control of a

single gene in wheat populations derived from ET3/ES3 (Delhaize et al. 1993a),
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Diamondbird/Janz and CD87/Currawong (Raman et al. 2005), and locus XME
involved in malate efflux and Alt gene for aluminum resistance has been colocated

on the long arm of chromosome 4D (Raman et al. 2005) where Al resistance has

been mapped in other populations (Luo and Dvorak 1996; Riede and Anderson

1996). Besides one major QTL on chromosome 4DL, two additional QTLs located

on 5AS and 2DL and one region located on chromosome 7AS were identified to

contribute Al-resistance in Chinese Spring (Ma et al. 2006; Papernik et al. 2001). In

the wheat cultivar “Atlas66,” a minor QTL was located on chromosome 3BL (Cai

et al. 2008; Zhou et al. 2007).

Rye is an obligate outcrossing species in which Al resistance is conditioned by at

least four major independent and dominant loci, Alt1, Alt2, Alt3, and Alt4, located
on chromosome arms 6RS, 3R, 4RL, and 7RS, respectively (Aniol 2004; Aniol and

Gustafson 1984; Camargo et al. 2000; Collins et al. 2008; Gallego and Benito 1997;

Gallego et al. 1998a, b; Matos et al. 2005; Miftahudin et al. 2002, 2005).

Triticale, the hybrid between wheat and rye, has considerable variation for Al

resistance. Zhang et al. (1999) investigated genetic variation in root regrowth

characteristics among eight triticale genotypes using root regrowth, following Al

stress. Highly significant variation due to both general combining ability and

specific combining ability effects indicated that both additive and nonadditive

effects were important in explaining the genetic variation for Al resistance. The

high estimates of heritability and the predictability ratio for root regrowth

revealed the preponderance of additive genetic variance in the inheritance of Al

resistance.

Al resistance genes have been reported to be dominant across a range of Al

concentration in wheat (Delhaize et al. 1993b; Kerridge and Kronstad 1968).

However, incomplete transfer of genes for aluminum resistance has been reported

in wheat (Delhaize et al. 1993b). Tang et al. (2002) observed that neither wheat

cultivars “Centuary-T” nor “Chisholm-T,” which each contain an Al resistance

genes from “Atlas 66,” possessed the same level of Al resistance as “Atlas 66,” as

previously suggested (Johnson et al. 1997). Similarly, the reduction of Al resistance

genes from rye when they are present in a wheat background was observed. Aniol

and Gustafson (1984) suggested that “some genes” are acting as modifiers and thus

alter the expression of Al resistance gene. Aniol and Gustafson (1984) also reported

that the loss of number of different wheat chromosome arms reduced Al resistance.

The loss of the short arm of wheat chromosomes 5A or 7A, or the long arm of

chromosome 4D, resulted in a much lower rate of Al-induced malate release from

the root apex (Tang et al. 2002). These findings suggest that there are loci located on

wheat chromosomes 5A and 7A that have the capacity to modify the expression of

Al resistance via malate efflux. Besides one major QTL located on wheat chromo-

some arm 4DL, two additional QTLs located on wheat chromosome arms 5AS and

2DL and one region located on wheat chromosome arm 7AS were identified to also

contribute to Al resistance (Ma et al. 2006).

It has been documented that Al resistance is a dosage-dependent trait (Minella

and Sorrells 1997); therefore, there is a need to develop varieties resistant to high

concentration of Al.
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11.5 Molecular Mapping of Al Resistance Loci

The identification of DNA markers diagnostic for Al resistance can accelerate the

development of acid-soil-resistant cultivars that can remain productive even under

Al stress. Molecular markers have proven to be efficient tools in identifying specific

loci controlling qualitative and quantitative traits including for Al resistance. Al

resistance loci have also been mapped using cytogenetical (Aniol and Gustafson

1984; Lagos et al. 1991; Minella and Sorrells 1997) and linkage mapping

approaches (see reviews Garvin and Carver 2003; Wang et al. 2007). Two methods

based upon bulk-segregant analysis and QTL mapping (Ma et al. 2004; Magalhaes

et al. 2004; Nguyen et al. 2001, 2002, 2003; Ninamango-Cardenas et al. 2003;

Raman et al. 2002, 2005; Tang et al. 2000; Wu et al. 2000) have been used

predominantly for locating loci associated with Al resistance in cereals (Table 11.1).

Marker-trait linkages are typically determined by linkage and QTL mapping

approaches utilizing F2, DH, or recombinant inbred line (RIL) populations devel-

oped from contrasting-phenotypic parental genotypes. Al resistance loci

(Table 11.1, Fig. 11.2) have been tagged using molecular markers based upon

randomly amplified polymorphic DNA-RAPDs (Loarce et al. 1996; Masojć et al.

2001; Philipp et al. 1994; Senft and Wricke 1996), restriction fragment length

polymorphism-RFLPs (Riede and Anderson 1996; Tang et al. 2000), simple

sequence repeat-SSR (Cai et al. 2008; Ma et al. 2005; Masojć et al. 2001; Raman

et al. 2001, 2002, 2006; Saal and Wricke 1999; Wang et al. 2007), amplified

fragment length polymorphisms-AFLP (Miftahudin et al. 2002; Raman et al.

2002; Wu et al. 2000), diversity arrays technology-DArT techniques (Wang et al.

2007; Wenzl et al. 2006), and candidate gene markers (Fontecha et al. 2007; Raman

et al. 2005, 2008c; Wang et al. 2007) in biparental populations.

Table 11.1 Wheat and Aegilops tauschii genotype by Al resistance phenotype, TaALMT1 coding
allele, and GenBank accession number (adapted from Raman et al. 2005)

Genotype Phenotype* Allele NCBI genbank accession no.

“ET8” Al-res TaALMT1-1 DQ072260

“Tasman” Al-res TaALMT1-1 DQ072270

“Diamondbird” Al-res TaALMT1-1 –

“Halberd” Al-res TaALMT1-2 DQ072265

“Chinese Spring” Al-res TaALMT1-2 DQ072262

“Maringa” Al-res TaALMT1-2 DQ072267

“Embrapa” Al-res TaALMT1-1 DQ072264

“Currawong” Al-res TaALMT1-2 –

“Cranbrook” Al-sens TaALMT1-1 DQ072263

“Spica” Al-sens TaALMT1-2 DQ072268

“Sunco” Al-sens TaALMT1-2 DQ072269

“Janz” Al-sens TaALMT1-2 DQ072266

“CD87” Al-sens TaALMT1-2 –

“ES8” Al-sens TaALMT1-2 DQ072261

Aegilops tauschii Al-sens TaALMT1-1 DQ072271

Al-res* and Al-sen* refer to Al-Resistant and Al-Sensitive, respectively
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Association mapping can be utilized for investigating linkage disequilibrium

close to Al resistance gene. This technique allows the utilization of germplasm and

advanced breeding lines rather than structured segregating populations, which

allows for genes associated with traits of interest to be identified by correlating

phenotype (Al resistance) with specific alleles at the linked loci. Most of the

breeding programs have phenotyping data with Al resistance of the breeding

populations/germplasm. Genotyping can be performed using whole genome scan-

ning at marker loci and then correlating with performance of plants under Al stress

(e.g., acid soils/nutrient solution).

11.5.1 Rye and Triticale

At least four independent and dominant loci associated with Al resistance, Alt1,
Alt2, Alt3, and Alt4, located on chromosome arms 6RS, 3R, 4RL, and 7RS,

respectively, have been described (Aniol 2004; Aniol and Gustafson 1984; Collins

et al. 2008; Fontecha et al. 2007; Gallego and Benito 1997; Gallego et al. 1998a; Ma

et al. 2000; Matos et al. 2005; Miftahudin et al. 2002, 2004). Previously, Alt3 was

mapped to the long arm of chromosome 4R (4RL) in the population derived from

M39A-1-6 � M77A-1 (Miftahudin et al. 2002, 2004, 2005). More recently, Collins
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Fig. 11.2 Location of qualitative and quantitative loci conditioning Al tolerance in wheat, barley,

rice, and rye that were mapped on homologous group 4 chromosomes. Bold letters indicate

position of loci associated with Al tolerance. (a) IR64/O.rufipogon (Nguyen et al. 2002),

(b) IR1552/Azucena (Wu et al. 2000), (c) Dayton/Harlan Hybrid (Raman et al. 2003), (d) Milla

and Gustafson (2001), (e) Miftahudin et al. (2002)¼Alt4 on 7RS and (f) Dayton/Gairdner (Wang

et al. 2007)
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et al. (2008) confirmed that Al resistance is controlled by an Alt4 locus that maps on

the short arm of chromosome 7R (7RS) instead of 4RL (Alt3) in the mapping

population from the M39A-1-6 � M77A-1 cross. This location is consistent with a

previous report of Benito et al. (2009). Ma et al. (2000) compared 3DS.3RL

translocation line (ST22) and a nonsubstitution line (ST2) of triticale for aluminum

resistance and suggested the location of Al resistance gene on the short arm of

triticale chromosome 3R.

11.5.2 Barley

The cultivar “Dayton” is one of the most Al-resistant genotypes (Minella and

Sorrells 1992), and a single locus (Alp) on the long arm of the chromosome 4H

(4HL) conditions Al resistance in different “Dayton” derived populations (Raman

et al. 2003; Tang et al. 2000; Wang et al. 2004a). Stølen and Andersen (1978)

reported a dominant allele at Pht locus (4HL), which controls high resistance to

acidic soils. The same locus conditions Al resistance in other populations

(Table 11.1) including those generated from “Harrington”/“Brindabella” (Raman

et al. 2001), “Yambla”/“WB229,” “Mimosa”/“WB229” (Raman et al. 2002),

“Murasakimochi”/“Morex” (Ma et al. 2004), “Ohichi”/“F6ant28B48-16” (Raman

et al. 2005), and “F6ant28B48-16”/“Honen” (Wang et al. 2006b). Minor gene

effects for Al resistance in barley have also been suggested (Echart et al. 2002;

Raman et al. 2005) and require further validation.

11.5.3 Oat

Wight et al. (2006) utilized a mapping population of diploid oat A. strigosa Schreb

derived from a cross between “CIav 2921” (Al sensitive) and “CIav 9011” (Al

resistant) and identified four QTLs. The largest QTL explained 39% of the varia-

tion, was associated with the bcd1230 marker, and is possibly orthologous to the

major gene found in the Triticeae as well as Alm1 in maize and a minor gene in rice.

A second QTL may be orthologous to the Alm2 gene in maize. Two other QTLs

were associated with anonymous markers, which together accounted for 55% of the

variation.

11.5.4 Rice

QTL studies have identified 40 Al resistance loci on all 12 rice chromosomes,

although the number and locations vary depending on the cross or species used

(Ma et al. 2002; Nguyen et al. 2001, 2002, 2003; Wu et al. 2000). Epistatic effects
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have also been observed (Wu et al. 2000). However, the greatest effect on Al

resistance was associated with genomic regions on chromosome 1 and 3 (Nguyen

et al. 2001, 2002, 2003; Wu et al. 2000). One of the QTLs mapped on chromosome

12 was linked with RG9 marker, which was linked with the major QTL for

phosphorus uptake efficiency in rice (Ni et al. 1988). Recently, Chuan-zao et al.

(2004) identified QTLs for relative root length on chromosomes 1, 9, and 12 and

one QTL for root length under Al stress on chromosome 1.

11.5.5 Maize and Sorghum

In maize, at least seven QTLs associated with Al resistance have been found on

chromosomes 2, 6, 8, and 10; the number and locations varied depending on the cross

(Ninamango-Cardenas et al. 2003; Sibov et al. 1999). In sorghum, a single locus,

AltSB, was found to control Al resistance in two highly Al resistant sorghum cultivars

and was mapped near the end of sorghum chromosome 3 (Magalhaes et al. 2004).

Generally, molecular markers that map within 5 centimorgan from the target

gene are recognized as “good” markers for utilization in marker-assisted selection

crop improvement programs. However, these markers are of limited value for map-

based cloning of the Al resistance gene as it requires very high-density map of the

target gene. Furthermore, most of the mapping studies in cereal utilized very small

mapping populations to locate loci associated with Al resistance, and their linkage

with marker loci may not be very accurate. High-resolution mapping can be

achieved by selecting molecular markers flanking “target” gene of interest (Al

resistance) from low resolution mapping studies and selecting recombinant plants,

which are then selfed and their F2:3 progeny are assessed for Al resistance, from a

large F2 population comprising 1,000–3,000 individuals. The main advantage of

this strategy is to select informative genotypes and to avoid extensive cost and time

required in comprehensive and accurate phenotyping. Intercross populations are

preferred over the doubled haploid populations as they are more informative due to

more accurate recombination frequencies and are easy to generate. This strategy

has been used to construct high density map of Al resistance loci in barley, rye, and

sorghum (Magalhaes et al. 2007; Wang et al. 2007) and to clone a AltSb gene for

aluminum resistance in sorghum (Magalhaes et al. 2007). Map-based cloning

approach has been used successfully to clone Al resistance genes in cereals.

Transposon-tagging strategy has not been feasible due to the lack of an active

transposon system in key cereals except in maize.

11.6 Molecular Synteny

Comparative mapping studies using molecular markers have revealed extensive

synteny or colinearity among the genomes of rice, wheat, barley, rye, oat, maize,

and sorghum (Devos and Gale 2000). A conserved genomic region on the long arm
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of group 4 chromosomes: wheat 4D, barley 4H, rye 4R and short arm of 7R, and rice

3 exhibit macrosynteny (Devos and Gale 2000; Gale and Devos 1998; Miftahudin

et al. 2004; Namuth et al. 1994; Nguyen et al. 2003; Raman et al. 2002; Rognli et al.

1992; Tang et al. 2000; Van Deynze et al. 1995; Vos et al. 1995), and all harbor loci

for Al resistance (Luo and Dvorak 1996; Matos et al. 2005; Miftahudin et al. 2002,

2004; Nguyen et al. 2003; Raman et al. 2005; Riede and Anderson 1996; Tang et al.

2000; Wang et al. 2007).

Comparative mapping of the Al resistance loci in cereals can be assessed and

validated with a set of common markers linked with different Al resistance loci. For

example, Wang et al. (2007) showed that a wheat SSR marker (GWM165-4DL)

was located 0.45 cm from the Alp locus on the long arm of barley chromosome

4H and has also been located 1.5 cm apart from BCD1117 in the cMap of wheat

chromosome 4D (http://rye.pw.usda.gov). Tang et al. (2000) reported that BCD1117

and CDO1395 markers flank the Alp locus (Fig. 11.2). Marker CDO1395 that maps

on rice chromosome 3S also explained approximately 20–40% of the genetic

variation for Al resistance in the rice and wheat populations (Nguyen et al. 2003;

Riede and Anderson 1996). The marker BCD1230 exhibited tight linkage with the

Al resistance locus Alt4 in rye (Collins et al. 2008; Miftahudin et al. 2004), and

AltBH in wheat (Riede and Anderson 1996), but was mapped 33 cm away from Alp
locus in barley. This suggests that a colinearity breakage due to DNA rearrange-

ment between the chromosomes 4H of barley and 4D of wheat (Tang et al. 2000).

Milla and Gustafson (2001) reported a high degree of synteny between wheat, rye,

barley, rice, maize, and oat in the regions around the BCD1230 locus. This gene

encodes for a ribulose 5 phosphate 3 epimerase (R5P3E) gene, which is present in

one single copy in barley, rye, rice, and wheat. Interestingly, rye marker B4, which

is tightly linked with the Alt4 locus on 7RS (Collins et al. 2008; Miftahudin et al.

2004), mapped to chromosome 2H in barley instead of the expected 4H (Gruber

et al. 2006; Wang et al. 2007). Authors suggested that multiple copies of B4 may

exist in the barley genome, or there may be some conservation of genes between

chromosomes 2H and 4R. Silva-Navas et al. (2008) reported another ScAMLT2
gene in rye that showed sequence identities with barley ALMT1 homologHvALMT1
(Delhaize et al. 2007; Gruber et al. 2006) and maps on the long arm of chromosome

2R. This suggests that there may be multiple copies of TaALMT1 at least in

genomes of barley and rye.

If genetic mapping anchors similar traits (such as Al resistance) to the collinear

chromosomal regions in different genomes, there is a good reason to suspect that these

loci are encoded by different alleles of a single gene (Bennetzen and Freeling 1997).

Al-resistance genes from wheat, barley, and sorghum (i.e., TaALMT1, HvMATE, and
ScMATE) have been recently isolated and mapped using biparental populations – see

Fig. 11.3 (Magalhaes et al. 2007; Sasaki et al. 2004; Wang et al. 2007). TaALMT1 has
shown a complete linkagewithAl resistance locus on the long arm of chromosome 4D

of wheat (Raman et al. 2005; Ma et al. 2005). Fontecha et al. (2007) reported a

TaALMT1 homolog in rye, ScALMT1, and exhibited cosegregation with Alt4 locus of
rye on 7RS, which is consistent with the expected synteny relationships between the

wheat 4DL and barley 4HL. Sequence identities between TaALMT1 gene in wheat on
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4DL and ScALMT1 gene on 7RS indicate that both genes are orthologous. However,

TaALMT1 gene does not show any sequence identities with rice chromosome 3

pseudomolecules but showed an approximately 90% sequence identities to the rice

genes located on the long arm of chromosome 4 (Delhaize et al. 2007). This suggests

breakdown of macrosynteny among members of triticeae.

In barley, Wang et al. (2007) delineated the Alp locus to a 0.2 cm region in the

high resolution mapping population by the flanking markers HvGABP and

ABG715 on the long arm of barley chromosome 4H. This region is syntenic with

120 kb sequence on chromosome 3 (Wang et al. 2007). Within this region, there

were no orthologs of wheat TaALMT1 gene. Instead, Wang et al. (2007) identified a

gene encoding a multidrug and toxic compound extrusion (MATE) within this

syntenic region, which showed cosegregation with the Alp locus for Al resistance

(Fig. 11.3). These results clearly indicate that despite a similar chromosomal

location for Al resistance loci in wheat and barley, the genes are likely to encode

different proteins and are therefore not orthologous. In rye, ortholog of HvMATE,
ScMATE was mapped within 27.5 cm from Alt4 locus on chromosome 7RS (Collins

et al. 2008). Ryan et al. (2009) also reported a correlation between expression of

TaMATE gene with citrate efflux involved in Al resistance in an F2 population

(Egret/Carazinho) of wheat on chromosome 4B. Existence ofMATE and associated

Al resistance loci on chromosomes 4BL in wheat (Ryan et al. 2009), 4HL in barley

(Furukawa et al. 2007; Wang et al. 2007), 7RS in rye (Collins et al. 2008), and 3S in

rice (Nguyen et al. 2003) indicates genetic synteny for Al resistance via citrate

efflux. Members of the MATE family were also shown to facilitate citrate efflux

from Arabidopsis and sorghum (Durrett et al. 2007; Magalhaes et al. 2007). Al

resistance locus in sorghum AltSBwas not also located within the syntenic region of

group 4 chromosomes. Therefore, AltSB appears to be different from the major Al

resistance loci in the Triticeae. Intertribe map comparisons suggest that a major

Al resistance rice chromosome 1 QTL is likely to be orthologous to AltSB. In maize,

Al resistance loci have been identified on chromosomes 2, 6, and 10 (Brondani and

Paiva 1996; Sibov et al. 1999). Comparative mapping analysis indicated that the

maize QTL region bin 6.05 (Ninamango-Cardenas et al. 2003) is homoeologous to

rice chromosome 5, where Nguyen et al. (2001, 2002, 2003) mapped a QTL for Al

resistance in rice. Another QTL region (bin 8.07) of Al (Ninamango-Cardenas et al.

2003) was found to be syntenous with rice chromosome 1 and sorghum linkage

group G (Magalhaes et al. 2004).

LPF CAPSSSR

indelSPF 

1 2 3 4 5 6

Fig. 11.3 Structure of the TaALMT1gene – Adapted from Raman et al. (2005, 2006, 2008c).

White arrows represent the six exons that are interrupted by five introns (black blocks). LPF and

SPF represent long and short promoter fragments of the TaALMT1 gene (Sasaki et al. 2004, 2006).
Locations of SSR motif (intron 3) and SNP in exon 4 are indicated with down arrows
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11.7 Mechanism of Aluminum Resistance

A number of physiological and biochemical mechanisms underlying aluminum

resistance have been proposed; see reviews (Kochian 1995; Larsen et al. 1998;

Moroni et al. 1991; Pellet et al. 1996). Ma et al. (2001) proposed two main

mechanisms of Al resistance (1) external resistance mechanisms, by which Al is

excluded from plant tissues, especially the symplastic portion of the root meristem;

and (2) internal resistance mechanisms, allowing plants to tolerate Al3+ in the plant

symplasm where Al that has permeated the plasmalemma is sequestered or con-

verted into an innocuous form. The details of these mechanisms are reviewed in a

separate chapter of this book (see Kochian). Among different mechanisms, Al-

activated exudation of low molecular weight organic acids (malate, citrate, and

oxalacetate) from root tips is now reasonably well-understood (Table 11.2) and has

been tested in an array of germplasm (Furukawa et al. 2007; Miyasaka et al. 1989,

1991; Raman et al. 2008c; Zhao et al. 2003). For example: Al-resistant wheat

genotypes release greater amounts of malate from their root apices as compared

to Al-sensitive wheat (Christiansen-Weniger et al. 1992; Delhaize and Ryan 1995;

Delhaize et al. 1993b; Raman et al. 2005, 2008c; Rincon and Gonzales 1992;

Snowden and Gardner 1993; Tang et al. 2002).

Al-activated efflux of organic acids is hypothesized to protect the root apices

from Al toxicity by chelating and detoxifying the harmful Al3+ cations in the

apoplasm or in the soil adjacent to the root apices, the most sensitive part of

the root system (Aniol 1996; Basu et al. 2001; Delhaize and Ryan 1995; Kinraide

et al. 2005; Miyasaka et al. 1989). This is further supported by studies showing that

Al3+ ions activate anion currents at the root apices of Al-resistant seedlings (Ryan

et al. 1997) via secretion of organic acids such as malate (Zhang et al. 2001). Al3+-

inducible resistance mechanisms in rye, and triticale, where a lag in Al-activated

Table 11.2 Examples of organic acid secreted by root apices of the key cereals

Genotype Organic acids Reference

Bread wheat Malate Ishikawa et al. (2000), Papernik et al. (2001),

Raman et al. (2005)

Citrate Ryan et al. (2009)

Barley Citrate Ma et al. (2004), Wang et al. (2007)

Rice Citrate Ma et al. (2002)

Rye Citrate and malate Li et al. (2000), (Ma et al. 2000)

Corn Citrate, malate,

and oxalate

Pineros et al. (2002, 2005), Piñeros and

Kochian (1999), Kidd et al. (2001),

Kollmeier et al. (2001), Mariano and

Keltjens (2003), Pellet et al. (1995), Wang

et al. (2004b)

Oat Citrate, malate Zheng et al. (1998a)

Sorghum Citrate Magalhaes et al. (2007)

Triticale Citrate and malate Stass et al. (2008), Ma et al. (2000)

Buckwheat (Fagopyrum
esculentum Moench.)

Oxalate (Ma et al. 1997), Zheng et al. (1998b)
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organic acid efflux and the rate of exudation increases over the first 12–24 h of Al

exposure, has been reported (Ellis et al. 2000). However, in wheat, malate exuda-

tion is rapidly activated by Al exposure and the rate of efflux does not seem to be

increase over time. This is further supported by the presence of different organic

acid transporters such as TaALMT1 (Delhaize et al. 2004), HvMATE/HvAACT1

(Furukawa et al. 2007), and SbMATE (Caniato et al. 2007) in wheat, barley, and

sorghum, respectively. In addition, other genes such as cysteine synthase have been

implicated in Al response in rice. More recently, Ryan et al. (2009) reported a

TaMATE gene associated with citrate efflux at least in two populations of wheat

derived from “Carazinho” – an Al-resistant wheat cultivar from Brazil. This gene

was located on the long arm of chromosome 4B. Above evidence suggest that Al

resistance is a multigenic trait.

11.8 Functional Genomic Approaches in Elucidating and

Validating Al Resistance Mechanisms

Whole genome sequencing approaches have allowed sequencing the genomes of

more than ten plant species including poplar and papaya. Wheat and barley

genomes are being sequenced under international consortia and will provide

insights into gene functions, evolution, and the origin of different cultivars. Further

research in genomics, sequencing, and bioinformatics platforms will enable us in

deciphering and manipulating the aluminum resistance in key cereals. Some of

these advancements on gene discovery, high-throughput gene expression using

microarray, altering gene expression by transformation technologies, and func-

tional characterization of Al resistance genes are discussed below:

11.8.1 TaALMT1 Gene Family

Various molecular and physiological studies have provided evidence that organic

acid efflux and internal detoxification are the key mechanisms in Al resistance in

cereals. During the last 5 years, significant advancements have been made in the

discovery of candidate functional genes for Al-resistance such as TaALMT1 (origi-

nally named ALMT1) in wheat (Sasaki et al. 2004, 2006; Yamaguchi et al. 2005),
HvAACT1/HvMATE in barley (Furukawa et al. 2007; Wang et al. 2007), and

MATESb in sorghum (Magalhaes et al. 2007). ALMT1 members facilitate transport

of malate in wheat and rye (Collins et al. 2008; Sasaki et al. 2004), whereas MATE
proteins transport citrate in Arabidopsis, barley, rye, and sorghum (Furukawa et al.

2007; Wang et al. 2007; Magalhaes et al. 2007; Collins et al. 2008).

TaALMT1 encodes a membrane-localized transporter (Yamaguchi et al. 2005)

that facilitates an Al-activated malate efflux. This gene has been isolated and

11 Molecular Breeding of Cereals for Aluminum Resistance 265



characterized from different wheat genotypes (Raman et al. 2005; Sasaki et al.

2004). Molecular analysis has indicated that the TaALMT1 locus harbors two

alleles: TaALMT1-1 and TaALMT1-2 (Table 11.1). These alleles differ by six

nucleotides of which only two nucleotides encode for different amino acids in the

predicted protein (Sasaki et al. 2004).

The coding region of TaALMT1 is interrupted by five introns ranging from 0.1 to

1.8 kb (Fig. 11.4). TaALMT1 possesses at least 44 SNPs or small insertions/

deletions (InDels) (Raman et al. 2005). These polymorphisms in the introns are in

addition to six SNPs in the exons. Two of the six SNPs located in exons result in

amino acid changes in the predicted protein, and one of these, in exon 4, was used to

develop a CAPS marker to distinguish TaALMT1-1 from TaALMT1-2 (Sasaki et al.
2004). The intron 3 region is the largest and shows considerable allelic variability

(Raman et al. 2005, 2006, 2008c). These variations have been reported to be due to

simple sequence repeat motifs (SSR) with variable copy numbers and InDels.

Upstream and downstream sequence of the TaALMT1 was characterized to

identify allelic variations in 69 wheat lines (Sasaki et al. 2006). The first 1,000 bp

downstream of TaALMT1 was conserved among the lines examined apart from the

presence of a transposon-like sequence, which did not correlate with Al resistance.

However, the first 1,000 bp upstream of the TaALMT1 coding region was more

variable and six different promoter patterns could be discerned (types I–VI). Type I

had the simplest structure, while the others had blocks of sequence that were

duplicated or triplicated in different arrangements (Sasaki et al. 2006). Besides
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Fig. 11.4 Molecular mapping of the major genes conditioning Al tolerance in wheat, barley, rye,

and Sorghum. (a) Diamondbird/Janz (Raman et al. 2005), (b) Dayton/Zhepi 2 (Wenzl et al. 2006;

Gruber et al. 2006; Wang et al. 2007), (c) Ailes/Riodeva (Fontecha et al. 2007), (d) Dayton/

Zhepi 2 (Wang et al. 2007), (e) (Magalhaes et al. 2007), and (f) Physical map of rice (http://www.

tigr.org), validated on 31st Jan 2008
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six promoter patterns, allelic variants were also reported recently in highly diverse

germplasm comprising wheat cultivars, subspecies, and landraces of wheat (Raman

et al. 2008c).

11.8.2 Homologs and Paralogs of TaALMT1

Given that TaALMT1 encodes Al-activated malate transporter that facilitates Al-

activated malate exclusion in roots, it is quite likely that other Al-resistant plant

species that secrete organic acids from root apices may harbor “similar” gene.

Molecular analysis data has revealed that TaALMT1 homologs exist in Arabidopsis,

wheat, barley, maize rye, lupin, and Brassica.

In barley, Gruber et al. (2006) identified a TaALMT1 homolog HvALMT1.
Recently, Fontecha et al. (2007) identified a homolog to wheat TaALMT1 in rye,

ScALMT, at the Alt4 locus for Al resistance on chromosome 7RS in rye. This gene

encodes protein with 86% identity to TaALMT1. PCR primers were designed from a

TaALMT1, and this enabled to clone a paralog rye gene designated as ScALMT1.
This gene was found to cosegregate with the Alt4 located on 7RS by PCR amplifi-

cation using the wheat–rye addition lines (Fontecha et al. 2007). SNP polymorph-

isms for this gene were detected among the parents of three F2 populations that

segregate for the Alt4 locus. Aluminum induces expression of ScALMT1 particu-

larly to a higher level in root apices of Al-resistant cultivar as compared to a

sensitive cultivar.

Recently, Pineros et al. (2008) cloned ZmALMT1, a maize gene homologous to

the wheat TaALMT1 and Arabidopsis AtALMT1 genes. Transient expression of a

ZmALMT1::GFP chimera confirmed that the protein is targeted to the plant cell

plasma membrane. Gene expression data as well as biophysical transport charac-

teristics obtained from Xenopus oocytes expressing ZmALMT1 by Pineros et al.

(2008) further indicated that this transporter is implicated in the selective transport

of anions involved in mineral nutrition and ion homeostasis processes rather than

mediating a specific Al-activated citrate exudation response at the rhizosphere of

maize.

A gene from Arabidopsis (AtALMT1; At1g08430) encoding a TaALMT1-like
protein is located within an Al3+ resistance QTL located on chromosome 1

(Hoekenga et al. 2006). Aluminum not only activates AtALMT1 to trigger malate

efflux but also is required to induce its expression (Gabrielson et al. 2006;

Hoekenga et al. 2006). An Al3+-sensitive mutant of Arabidopsis Columbia ecotype

with a disrupted AtALMT1 gene is reported to lose the capacity for Al3+-activated

malate efflux (Hoekenga et al. 2006).

In rapeseed Brassica napus, two TaALMT1 paralogs BnALMT1 and BnALMT2
encoding proteins with 80% amino acid sequence identity to AtALMT1 and in

Brassica oleracea (BoALMT1) were cloned (Delhaize et al. 2007; Ligaba et al.

2006). BnALMTs conferred an Al3+-activated efflux of malate and increased Al3+

resistance in tobacco cell suspensions (Ligaba et al. 2006).
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11.8.3 MATE Gene Family

The multidrug and toxic compound extrusion (MATE) family proteins are pro-

posed to transport small, organic compounds (Omote et al. 2006) and are the

members of a large and complex family of transporters. The human genome also

contains MATE1 and MATE2 genes encoding MATE transporters and is reported

to transport various organic cations including toxins (Hiasa et al. 2006; Masuda

et al. 2006; Otsuka et al. 2005). In contrast to MATE genes in the bacterial and

animal kingdom, plants contain more MATE-type transporters. For example,

there are 58 MATE orthologs in the genome of Arabidopsis thaliana (Omote

et al. 2006). However, the functions of most genes are still unknown. The first

report of a plantMATE transporters concerned AtALF5, which was identified from
a mutant-defective, aberrant lateral root formation in Arabidopsis (Diener et al.

2001). Heterologous expression of AtALF5 in yeast conferred resistance to tetra-

methylammonium, suggesting that its function involved detoxification as an

efflux transporter for xenobiotics.

Recently, several MATE transporters conferring Al resistance have been

reported. Two independent studies indicated that the HvMATE gene conditions Al

resistance in barley (Furukawa et al. 2007; Wang et al. 2007). Furukawa et al.

(2007) identified essentially the same gene (HvAACT1) responsible for the Al-

activated citrate secretion by fine mapping combined with microarray analysis,

using an Al-resistant barley cultivar, “Murasakimochi,” and an Al-sensitive culti-

var, “Morex,” and found the gene to be localized in barley root tip epidermal cells.

The study utilized an F4-derived mapping population from the “Murasakimochi”/

“Morex” population (Ma et al. 2004). The Al-resistant cultivar “Murasakimochi”

secreted a large amount of citrate from the roots in response to Al while “Morex”

did not (Ma et al. 2004). Furukawa et al. (2007) performed a microarray analysis

with Barley 1 GeneChip (Affymetrix Co.) to identify up- or downregulated tran-

scripts between “Murasakimochi” and “Morex” with and without Al treatment.

This analysis identified the transcript that encodes a member of the multidrug and

toxic compound extrusion (MATE) family (Barley1 probe name: Contig9960_at).

The homolog of this gene exists on rice chromosome 3, which corresponds to

HvAACT1 in barley. In Arabidopsis, MATE family members, FRDL showed the

highest homology to HvAACT1 with 59% identity and 86% similarity. The coding

region of HvAACT1 was 1,668 bp long, and the deduced polypeptide was 555

amino acids.

The MATE gene also conditions Al resistance in sorghum. Magalhaes et al.

(2007) performed high resolution mapping of Altsb by screening 4,170 gametes

from an F2 population derived from “SC283” (Al resistant) � “BR007” (Al

sensitive) and identified a gene encoding a member of the multidrug and toxic

compound extrusion (MATE) family, an Al-activated citrate transporter, as respon-

sible for the major sorghum Al resistance gene locus. Aluminum-inducible Altsb
expression was associated with induction of aluminum resistance via enhanced root

citrate exudation (Magalhaes et al. 2007).
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In white lupins (Lupinus albus L.), LaMATE is involved in citrate efflux and is

highly expressed under phosphorus deficiency (Uhde-Stone et al. 2005). Lupin

secretes citrate from the roots in response to phosphorus deficiency, suggesting

that MATE is also involved in the phosphorus deficiency-induced citrate secretion.

The FRD3 – a MATE protein member is also known to be involved in iron nutrition

and conferred enhanced Al resistance, presumably due to the increase of root citrate

release (Durrett et al. 2007). AtFRD3 was reported to be involved in the xylem

loading of citrate (Durrett et al. 2007) and was localized to the pericycle and cells

internal to the pericycle cells in the roots of Arabidopsis (Green and Rogers 2004).

Collins et al. (2008) reported on the presence of a cluster of genes homologous to

the TaALMT1, at the Alt4Al-resistance locus of an Al-resistant rye. High-resolution
genetic mapping identified two resistant lines resulting from recombination within

the gene cluster. It appears that all genes flanking the gene cluster can be excluded

as candidates for controlling Alt4 resistance, including a homolog of the barley

HvMATE Al-resistance gene. In the recombinants, one hybrid gene containing a

chimeric open reading frame and the ScALMT1-M39.1 gene, each appeared to be

sufficient to provide full Al resistance. mRNA splice variation was observed for two

of the rye ALMT1 genes, and one gene contained a ~400 bp insertion in one of its

introns.

11.8.4 Expression Analysis of MATE and ALMT1 Homologs

Although members of the ALMT and MATE families differ from one another in

sequence and structure, they confer Al3+ resistance in a similar fashion: by facil-

itating organic anion efflux from roots. Aluminum resistance in wheat relies on the

Al-activated malate efflux from root apices, which appears to be controlled by an

Al-activated anion transporter encoded by the TaALMT1 gene on wheat chromo-

some 4DL (Sasaki et al. 2006). A strong correlation between malate efflux and Al

resistance in wheat (Sasaki et al. 2006) suggested that malate efflux is the primary

mechanism for Al resistance. It remains to be established whether (1) Al upregu-

lates malate efflux by interacting with TaALMT1 protein or via other intermediate

steps involved in malate efflux and/or (2) plays the role of a promoter in relation to

gene expression and Al resistance (Raman et al. 2008a, b, c).

In rye, the ScALMT1 gene was found to be primarily expressed in the root apex

and upregulated when Al was present in the medium. Fontecha et al. (2007)

reported fivefold differences in the expression between the Al-resistant and the

Al-nonresistant genotypes. Additionally, much higher expression was detected in

the rye genotypes than the moderately resistant “Chinese Spring” wheat. These

results suggest that the Alt4 locus encodes an Al-activated organic acid transporter

gene that could be utilized to increase Al resistance in plant species. Collins et al.

(2008) reported that Al-tolerant (M39A-1-6) and Al-intolerant (M77A-1) rye hap-

lotypes contain five and two genes, respectively, of which two (ScALMT1-M39.1
and ScALMT1-M39.2) and one (ScALMT1-M77.1) are highly expressed in the root
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tip, the main site of Al-tolerance/susceptibility. All three transcripts are upregulated

by exposure to Al.

In barley, the relative expression of the HvMATE gene was 30-fold greater in

“Dayton” (Al resistant) than the Al-sensitive cv. “Gairdner” (Wang et al. 2007).

HvMATE expression was significantly correlated with Al resistance and Al-acti-

vated citrate efflux (Wang et al. 2007). When expressed in Xenopus oocytes,

HvAACT1/HvMATE protein mediated the efflux of citrate, and it did not mediate

malate secretion. HvAACT1 was presumed to be localized to the plasma membrane.

Transgenic tobacco expressing HvAACT1 showed higher citrate secretion in the

presence of Al and exhibited higher resistance to Al, but the citrate secretion was

not altered in the absence of Al despite the constitutive promoter in the heterolo-

gous host (Furukawa et al. 2007).

In Sorghum, an induction of Al resistance correlated closely with an increase in

root citrate exudation over time (over the 6 day period) in Al and the incremental

increase in SbMATE expression in response to Al (Magalhaes et al. 2007). Citrate

release mediated by the SbMATE was regulated at multiple levels not only by

changes in gene expression but also by a direct effect of Al3+ on transporter activity

and/or by Al-mediated posttranslational mediation of SbMATE (Magalhaes et al.

2007). SbMATE expression in a genetically diverse sorghum panel indicated that

the variation in Al resistance was due to an allelic series at the AltSb locus.

Differences in SbMATE expression explained over 95% of the phenotypic variation

for Al resistance in the panel, providing strong evidence that SbMATE underlies

Altsb and the differences in gene expression constituted the basis for allelic varia-

tion at this Al resistance locus. Similarly, (Magalhaes et al. 2007) found a signifi-

cant correlation between SbMATE expression and Al-activated root citrate release

and between citrate release and Al resistance, suggesting that differences in expres-

sion conditions the Al resistance phenotype primarily by modulating root citrate

exudation. Instead, the level of expression of either allele appears to be the major

determinant of Al3+ resistance in wheat (Raman et al. 2005). TaALMT1 is constitu-

tively expressed in root apices and the level of expression in different genotypes

correlates positively with Al3+ resistance (Sasaki et al. 2004).

Comparisons were made among Al3+-resistant and -sensitive genotypes of wheat

to correlate the level of TaALMT1 expression with sequences upstream and down-

stream of the TaALMT1 coding region, as well as the introns (Raman et al. 2005,

2008c; Sasaki et al. 2004, 2006). Polymorphisms in the introns and downstream

sequences did not correlate with Al3+ resistance. However, the promoter region

upstream of TaALMT1 was highly polymorphic between genotypes (Raman et al.

2008a, b, c; Sasaki et al. 2006). These studies reported up to seven promoter types

in the upstream region of the TaALMT1 gene. Promoter alleles differ from one

another in a number of arrangements of tandem repeats, which are thought to

influence the level of TaALMT1 expression and Al resistance (Raman et al.

2008a, b, c). The origin of these tandem repeats is unclear but may have originated

by inadvertent replication of genomic DNA by the “rolling circle” machinery used

by some viruses and transposons (Piffanelli et al. 2004) as suggested for the Mlo
locus in barley. Promoter that possess three tandem repeats but are otherwise
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identical to those with two tandem repeats as shown in a study by Raman et al.

(2008a, b, c) could have arisen by unequal cross over events during recombination. .

MATE proteins are known to facilitate citrate efflux from Arabidopsis, barley,
and sorghum (Durrett et al. 2007; Magalhaes et al. 2007; Wang et al. 2007). Wang

et al. (2007) measured HvMATE gene expression in the root apices of “Dayton”

(Al-resistant) and “Gairdner” (Al-sensitive), using qRT-PCR, and found that the

relative expression of the HvMATE gene in “Dayton” was 30-fold higher than

“Gairdner.” Expression of the HvMATE gene was correlated with Al resistance

and Al-activated citrate efflux in an F2:3-derived population from Dayton/Gairdner

(Wang et al. 2007), and the expression of HvMATE was significantly correlated

with Al resistance and Al-activated citrate efflux. Of the F2:3 families assayed,

HvMATE expression and citrate efflux were greater in the homozygous Al-resistant

families than in homozygous Al-sensitive families, while families heterozygous for

Al resistance were generally intermediate for expression and citrate efflux.

11.9 Discovery of Candidate Genes Expressed Under Al Stress

Aluminum has to affect numerous physiological parameters in order to reach the

plasma membrane and the cytosol in less than 30 min (Lazof et al. 1994). Alumi-

num may induce several genes associated with oxidative stress (Richards et al.

1998) including those regulating the organic acid pathway featuring the citrate

synthase gene (Anoop et al. 2003; Garvin and Carver 2003.; Raman et al. 2005), or

the antioxidant pathway with genes for superoxide dismutase and glutathione

peroxidase (Milla et al. 2002; Richards et al. 1998), or the pathogen defense pathway

genes such as b-1,3-glucanase and phenylalanine ammonia-lyase (Cruz-Ortega

et al. 1997; Snowden and Gardner 1993), or signal transduction genes such as

cell wall-associated receptor kinase 1 gene (Sivaguru et al. 2003), or the general

stress-responsive pathway genes such as blue copper-binding protein gene

(Richards et al. 1998; Milla et al. 2002). However, most of these genes can also

be induced by other biotic and abiotic stresses. Furthermore, identification of these

genes was based on comparisons of gene expression levels using a single genotype

under Al-stressed vs. nonstressed conditions, or between two genotypes with diff-

erent genetic backgrounds under Al-stressed conditions. Recently, a gene encoding

a putative ABC transporter (ALS3) was found to be contributing to an Al resistance
mechanism in Arabidopsis, possibly by facilitating the redistribution of absorbed

Al away from sensitive root tissues (Larsen et al. 2005). Seven different genes

termed wali1–wali7, whose expression is induced by Al stress, were isolated from

root tips of Al-treated wheat (Richards et al. 1994; Snowden and Gardner 1993).

These gene sequences exhibited high similarities to rali2 (Gallego et al. 1998b).

With the availability of various genomic tools, it is possible to study transcript

abundance of many genes simultaneously on a genome-wide scale with respect to

their structure and function. Such studies have identified and characterized a set of
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genes and families identified by traditional and genomic studies (Furukawa et al.

2007; Guo et al. 2007). To understand the mechanisms of Al resistance and to

identify genes responsible for Al resistance in wheat, Guo et al. (2007) constructed

suppression subtractive hybridization libraries from Al-stressed roots for two

wheat near-isogenic lines (NILs), “Chisholm-T” (Al-resistant) and “Chisholm-S”

(Al-sensitive). Relative gene expression levels between “Chisholm-T” and

“Chisholm-S” were compared at seven time points of Al stress: 15 min to 7 days.

Twenty-eight genes including genes for Al-activated malate transporter-1, entkaur-

enoic acid oxidase-1, b-glucosidase, lectin, histidine kinase, and phospoenolpyr-

uvate carboxylase showed more abundant transcripts in “Chisholm-T” and

therefore may facilitate Al resistance. In addition, genes related to senescence

and starvation of nitrogen, iron, and sulfur, such as copper chaperone homolog,

nitrogen regulatory gene-2, yellow stripe-1, and methyl-thioribose kinase, were

highly expressed in “Chisholm-S” under Al stress. The results suggested that Al

resistance is probably coregulated by multiple genes with diverse functions in

enhancing Al resistance and protecting root growth under Al stress. The highly

expressed genes in “Chisholm-S” under Al stress may be symptomatic of root

growth repression and restricted uptake of essential nutrient elements, leading to

root senescence.

11.10 Molecular Breeding for Al Resistance Using Genetic

Transformation

Several research studies indicate that Al resistance can be manipulated using

various candidate genes either involved in organic acid biosynthesis or stress

responsive genes. For example, aluminum resistance in canola (Brassica napus)
(Anoop et al. 2003; Basu et al. 2001), Arabidopsis thaliana (Koyama et al. 2000),
tobacco (Nicotiana tabacum) (de la Fuente et al. 1997), papaya (Carica papaya L)

(de la Fuente et al. 1997), and alfalfa (Medicago sativum L.) (Tesfaye et al. 2001)
has been reported to be enhanced by increasing organic acid biosynthesis through

overexpression of citrate synthase or malate dehydrogenase genes. TaALMT1 has

shown to increase Al resistance in root of transgenic tobacco cells and barley via

Al-activated malate efflux (Delhaize et al. 2004; Sasaki et al. 2004). SbMATE
conferred an Al-activated citrate efflux that results in Al resistance in wheat and

Arabidopsis (Magalhaes et al. 2007). Furukawa et al. (2007) reported the heterolo-

gous expression of HvAACT1 in Xenopus oocytes and showed efflux activity for

14C-labeled citrate but not for malate. Overexpression of this gene in tobacco

enhanced citrate secretion and Al resistance compared with the wild-type plants.

A good correlation was found between the expression of HvAACT1 and citrate

secretion in ten barley cultivars differing in Al resistance. Findings of Wang et al.

(2007) and of Furukawa et al. (2007) suggest that HvAACT1/HvMATE Al-activated

citrate transporter conditions Al resistance in barley.
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Overexpression of genes induced with Al stress has also been reported to

enhance Al resistance in Arabidopsis, tobacco, and canola (Basu et al. 2001;

Ermolayev et al. 2003; Ezaki et al. 2000; Sivaguru et al. 2003).

In highly acidic soils, toxicity of Fe2þ and Mn2þ can occur as a result of an

excess of these elements in associations with Al toxicity. Genetic variability for

Fe2þ and Mn2þ toxicities has been reported in wheat (Camargo et al. 1989, 1992,

2000; Camargo and Ramos 1989; Moroni et al. 1991). Advanced breeding lines that

showed resistance to Al3þ, Mn2þ, and Fe2þ toxicities, under acid soil conditions,

exhibited a high grain yield as compared with the control (Camargo et al. 1989,

2000). Genomic region associated with Al resistance on chromosome 1 has also

been related to the ability of the rice root to exclude excessible Fe2þ toxicity (Wu

et al. 1998). Pyramiding QTLs associated with resistance to Fe and Mn and

Al toxicity would allow to develop cereal germplasm for resistance to acid soils.

As an experimental proof, the overexpression of AtFRD3, which enhanced exuda-

tion of citrate and malate from roots of transgenic Arabidopsis, led to the higher

resistance to aluminum (Durrett et al. 2007). MATE family members are of

particular importance as they have a wide range of transport functions including

anthocyanin uptake, iron translocation, and aluminum resistance. Furthermore,

FRD3 does not require Al3þ for activation; therefore, it can be manipulated to

improve the phosphorus efficiency as outlined by Delhaize et al. (2007).

11.11 Molecular Breeding for Al Resistance Using

Marker-Assisted Selection

While genetic transformation enables us to increase Al resistance in plant species

that are generally “Al-sensitive,” DNA markers allows to fast-track genes condi-

tioning Al resistance including in transgenics. Table 11.3 describes the linkage

between markers based upon RFLP, AFLP, SSR, DArT, and SNP and Al resistance

loci in different cereals. Some of these Al resistance-marker associations have been

validated in different genetic backgrounds (Raman et al. 2002, 2005, 2008c; Wang

et al. 2006b, 2007).

Among different marker systems, SSR and SNP markers appear to be suited to

marker-assisted selection (MAS) as they are abundant in plant genome, highly

reproducible and polymorphic, more amenable for high throughput marker screen-

ings. However, the use of markers in breeding programs depends upon the cost of

phenotyping, genotyping, number of lines to screen, and time. With the revolution

of technologies for genotyping such as capillary electrophoresis and SNP-typing,

the cost of marker screening is becoming more affordable. Molecular markers for

Al resistance have been applied in various cereal breeding programs in Australia

and elsewhere and have monitored the expression of desirable alleles in genetic

backgrounds. The Department of Agriculture and Food, Western Australia

(DAFWA), is planning to release an Al resistance barley variety developed using
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Table 11.3 Linkage of aluminum resistance loci with PCR-based markers suitable for marker

assisted selection in cereal crops

Screening

method

Population Chromosome Markers location Reference

Barley (Hordeum vulgare L.)
RG Yambla/WB229 4HL Bmag353, Bmac310 Raman et al. (2002)

WB229/Mimosa HVM68

Harrington/

Brindabella

4HL Bmag353, Bmac310 Raman et al. (2001)

Ohichi/

F6ant28B48-

16

4HL Bmag353, Bmac310 Raman et al. (2005)

Dayton/Zhepi2 4HL Bmag353, HvMATE,

HVM68, HvMATE,

GBM1071

Wang et al. (2007)

Dayton/

F6ant28B48-

16

4HL Bmag353, Bmac310,

HVM68

Raman et al. (2003)

RRG Dayton/Zhepi2 4HL HvGABP, Bmag353,

HVM68, HvMATE,

GBM1071

Wang et al. (2007)

Hematoxylin

staining

Dayton/Harlan

Hybrid

4HL Bmag353, Bmac310,

HVM68

Raman et al. (2003)

Eriochrome

cyanine

Dayton/Zhepi2 4HL HvGABP, Bmag353,

HVM68, HvMATE,

GBM1071

Wang et al. (2007)

Dayton/Gairdner 4HL HvGABP, ABG715,

GWM165, Bmag353

Wang et al. (2007)

F6ant28B48-16/

Honen

4HL Bmag353, HVM68 Wang et al. (2006b)

Root/shoot

fresh wt

ratio

Murasakimochi/

Morex

4HL Bmag353 Ma et al. (2004)

Wheat (Triticum aestivum L.)

Hematoxylin Diamondbird/

Janz

4DL TaALMT1, WMC331 Raman et al. (2003,

2008c, 2005)

Currawong/CD87 4DL TaALMT1, WMC331 Raman et al. (2008c,

2005)

Spica/Maringa 4DL TaALMT1, GWM165 Raman et al. (2008c,

2005)

Atlas66/Century 4DL WMC125, GDM125,

TaALMT1

Ma et al. (2005)

Root growth BH1146/

Anahuac

4DL BCD1230, GDM125,

TaALMT1

Riede and Anderson

(1996), Milla and

Gustafson

(2001), Raman

et al. (2008c)

RRG Diamondbird/

Janz

4DL TaALMT1, WMC331 Raman et al. (2005)

Cranbrook/

Halberd

TaALMT1 Raman et al. (2005,

2008)

Sunco/Tasman TaALMT1

(continued)
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MAS (Reg Lance, per communication). So far, no epistatic or pleiotropic effects of

Al resistance loci are known except in rice. Major genes/QTL effects for Al

resistance can be tested via the association mapping approach. It is expected that

advanced breeding lines and cultivars will have high linkage disequilibrium as

compared to wide diverse germplasm, and that flanking markers will be better

suitable for MAS as compared to single markers associated with the trait of interest.

Potential MAS schemes include selection of the parental genotypes for making

crosses, allele enrichment among F1 individuals, selection of marker alleles during

Table 11.3 (continued)

Screening

method

Population Chromosome Markers location Reference

Raman et al. (2005,

2008)

Atlas66/Century WMC125, GDM125,

TaALMT1

Ma et al. (2005)

Atlas66/

Chisholm

4DL TaALMT1, WMC331,

GDM125

Zhou et al. (2007)

3BL BARC164 Zhou et al. (2007)

FSW/ND35 4DL TaALMT1 Cai et al. (2008)

3B BARC164, BARC344 Cai et al. (2008)

2A GWM515, GWM296 Cai et al. (2008)

Carazhino/EGA-

Burke

4BL GWM495, GWM513 Ryan et al. (2009)

Rice (Oryza sativa L.)

RG, RRG IR64/O rufipogon QTLs RFLP/SSR markers (Nguyen et al. 2003)

CT9933/IR62266 QTLs RFLP/SSR markers (Nguyen et al. 2002)

Rye (Secale cereale L.)
RG,RRG Ailes � Riodeva

(Alt1)
6RS ScR01600, ScB15790 Gallego and Benito

(1997)

(AR6-17, AR1-

13)

SCR01600 Gallego et al.

(1998a, b)

Ailes � Riodeva

(Alt3)
4RL ScOPS17705 Benito et al. (2009)

M39A-1-

6 � M77A-1

(Alt4)

7RS B1, B4, B11, B25, B26,

B27, BCD1230

Collins et al. (2008),

Miftahudin et al.

(2002, 2004,

2005)

Ailes x Riodeva

(Alt4)
7RS B1, B4, B26,

ScALMT1,

Benito et al. (2009),

Fontecha et al.

(2007)

Oats (Avena sativa L.)

CIav2921/

CIav9011

– SCA08 and calretB1_3 Wight et al. (2006

#646)

Maize (Zea mays L.)
L53/L1327 QTLs SSR Ninamango-

Cardenas et al.

(2003)

RRG/RRE Relative root growth, RG/RE Root growth, RFLP Restriction fragment length

polymorphism
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recurrent backcrossing and intercross populations, and genome-wide selection for

restored background genotype. The usefulness of markers in the breeding programs

will depend upon polymorphic content (PIC) value of the markers. The higher the

PIC, the more useful will be linked markers, which makes it important to test the

polymorphism on a suite of markers linked with the locus of interest. In order to

increase selection efficiency of MAS for Al resistance, diagnostic markers based on

functionally associated variation in the candidate genes for Al resistance, such as

TaALMT1, HvMATE, and SbMATE, have been developed, but unfortunately, some

of these markers were not found to be “diagnostic” (Raman et al. 2005). Nevertheless,

these candidate gene-based functional markers are preferred for association-

mapping studies and MAS as compared with whole genome marker scans. Associ-

ation mapping approach circumvents the need for construction of linkage maps and

linkage analysis in the biparental populations.

11.12 Allele Mining

The gene pool of cereals present in nature has tremendous allelic variation for

different traits of agronomic importance. Considerable genetic variation for Al

resistance also exists in all key cereals including wheat, rice, and barley (Aniol

1996; Bona et al. 1993; Camargo et al. 1991; Caniato et al. 2007; Ceretta 1988;

Mazzocato et al. 2002; Minella and Sorrells 1992; Mugwira et al. 1976; Raman

et al. 2008c; Reid et al. 1969; Stodart et al. 2007; Wu et al. 2000; Xu et al. 2004). An

array of molecular techniques is available to detect and understand the overall

diversity for Al resistance genes within species including RFLP, RAPDS, SSRs,

DArT, AFLP, and SNP. Furthermore, genomic approaches also provide the mean to

access genes directly via gene discovery programs. Functional gene-specific mar-

kers are more suited for allele mining, as they are functionally relevant directly to

the trait of interest.

Among various cereals, at least three candidate genes, TaALMT1, HvMATE, and
SbMATE, have been correlated with Al resistance in wheat, barley, and sorghum,

respectively, and could be utilized to determine allelic diversity within the genes

conditioning Al-resistance. Raman et al. (2008a, b, c) characterized more than 300

genotypes of wheat for aluminum resistance using a two-step approach that involves

(1) screening of germplasm using hematoxylin staining method, and (2) reevalua-

tion of Al-resistant germplasm using the TaALMT1 gene-specific markers for exon 4

(Sasaki et al. 2004), intron 3 (Raman et al. 2006), and long/short promoter sequence.

Analysis of TaALMT1 exon sequences has identified two alleles neither of which is
diagnostic of Al resistance (Sasaki et al. 2004; Raman et al. 2005). By contrast,

intronic regions display significant polymorphisms (Raman et al. 2005). Among the

different introns, three regions show considerable allelic variability (Raman et al.

2006). These variations are due to SSR motifs with variable copy numbers and

Indels (Raman et al. 2005; 2006). These markers identify at least eight alleles

(Raman et al. 2006, 2008a, b, c). Analysis of upstream region of TaALMT1 (Sasaki

et al. 2006) revealed at least six types of promoter region (Sasaki et al. 2006).

276 H. Raman and P. Gustafson



Raman et al. (2008c) utilized TaALMT1 gene-specific markers to characterize

over 400 cultivars, landraces, and subspecies of bread wheat and found that at least

23 haplotypes. Among different haplotypes, promoter V was present in most of the

Al-resistant germplasm. Correlation of gene haplotype structure and phenotypic

variation provided the basis for a new paradigm in wheat marker-assisted breeding

based on direct selection of superior alleles. Magalhaes et al. (2007) also found that

the large differences in aluminum resistance in sorghum are largely due to an allelic

series at the AltSb. Molecular markers have proved to be useful in understanding the

origin and distribution of Al resistance. Raman et al. (2008c) demonstrated that

markers based on TaALMT1 intron, exon, and promoter regions can trace the

inheritance of the Al resistance locus within wheat pedigrees and track Al resistance

in breeding programs. Molecular and pedigree analysis suggested that Al resistance

in modern wheat germplasm has been derived from several independent sources

and that most of the promoter alleles associated with Al resistance preexisted in

Europe, the Middle East, and Asia prior to the dispersal of domesticated germplasm

around the world.

Genetically diverse sorghum accessions indicated that the Al resistance related

mutations are located in regulatory regions of AltSb, and this may be due to

regulatory MITE sequences (Magalhaes et al. 2007). Further analysis of sorghum

near isogenic lines indicated that significant allelic variation occurs at the AltSb loci
for the lines in the 1.9 kbMITE insertion class, and they have been shown to possess

alleles that encode significant different Al resistance levels (Caniato et al. 2007).

For plant species that do not display significant variability for aluminum resis-

tance such as barley, rice, and durum wheat, there is an urgent need to broaden the

gene pool for enhancing Al resistance. It is well known that wild species and

landraces have unique alleles that are not found in the cultivated gene pool and

can be especially potent sources of abiotic stress resistance traits (Ellis et al. 2000).

Discovery of such alleles in landraces and wild progenitors such as Aegilops
uniaristata, and A tauschii, conditioning Al resistance, would provide new means

to develop varieties suitable for cultivation on acidic soils. Novel alleles from

resistant landraces/wild species can be introgressed/backcrossed into adapted

high-yielding genetic backgrounds to ensure “optimum” yield required for local

adaptation.

11.13 Conclusions

Significant achievements have been made in the identification and utilization of

genetic variability for Al resistance in cereals. Thousand years of untargeted

selection by early farmers and targeted selection by the modern breeding programs

have narrowed down genetic variation in cereal germplasm. Genepools including

landraces and wild relatives need to be exploited by screening, intercrossing, and

subsequently introgressing desirable gene complexes, minus any associated linkage

drag, into the target species. Further efforts need to be focused upon screening plant
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germplasm for better sources for Al resistance, identifying new sources of Al

resistance, understanding origin and transmission of superior alleles from cultivated

and wild relatives, and understanding other mechanisms involved with Al resis-

tance (besides organic acid efflux) and regulatory networks associated with Al

resistance, in conjunction with value-added trait genes involved in yield and other

abiotic stresses functioning under acid soil conditions. New data on regulatory

pathways involved in Al stress response generated using functional genomic

approaches is becoming available and may be useful to develop and enhance

level of Al resistance in crop species. There is no doubt that genomics-assisted

breeding will accelerate the development of stable Al-resistant crop varieties. A

higher degree of Al resistance might also be achieved by pyramiding multiple

copies of gene complexes conditioning Al resistance (such as 4DL, 4BL, 3BL,

and 2AL in wheat) into selected germplasm and/or by genetic manipulating expres-

sion of endogenous genes or by expressing foreign genes in desired germplasm. In

order to make MAS and GMO approach more effective, careful establishment of

breeding strategy is required.
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12.1 Introduction

Problem soils are globally widespread and seriously constrain agriculture produc-

tion. These soils generally contain toxic amounts of minerals or are deficient in

some essential plant nutrients. They are generally of limited agricultural use

because of variable factors, including toxic levels of salts or elements such as

iron, aluminum, and heavy metals, as well as deficiency in other essential nutrients,

such as phosphorus, iron, and zinc. Both acid and alkaline soils have low produc-

tivity. Globally, acid soils constitute about 2,500 Mha, of which over 1,700 Mha are

in the tropics. These soils provide great potential for agriculture expansion if

effectively utilized. Soil acidification problems are also likely to increase with

rising CO2 levels in the atmosphere, continuous use of ammonium-based nitroge-

nous fertilizers, removal of nutrients in farm products without replenishment, and

nitrate leaching. The highly weathered acid soils of the tropics are inherently low in

productivity with high Al and Fe and low in phosphorus.
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Problem soils constitute a considerable proportion of rice production areas,

which are mostly inhabited by poor communities because of limited opportunities.

Vast areas of lands suitable for rice production in South and Southeast Asia, South

America, and Africa are currently underused or entirely unused because of these

soil problems; however, these soils remain potential targets for extra food produc-

tion and can significantly contribute to the elimination of global hunger and poverty

if sufficiently exploited. For example, in rice-producing areas, high-yielding vari-

eties with sufficient tolerance of predominant soil problems are expected to provide

a yield advantage of over 2 tons per hectare on these problem soils (Ponnamperuma

1994).

Problem soils bring about their primary effects on plant growth and productivity

essentially via plant roots. These effects either directly or indirectly suppress root

growth, with considerable negative impacts on water and nutrient uptake, as well as

on plant growth and productivity. Mineral toxicities (excess salts, soil acidity, Fe

and Al toxicity, and numerous heavy metals) as well as deficiencies (Zn, P, and Fe)

can have direct effects on root growth. These factors can also lead to indirect

responses in growth and yield exerted through roots in problem soils, such as

excessive uptake of cations and anions when these elements are in abundance,

causing toxic effects in relatively more sensitive plant tissues as young leaves,

growing tissues, and reproductive organs. Moreover, even mild soil problems can

result in chemical and/or hydraulic signals, which induce responses in shoots that

can negatively impact growth and productivity. Multiple abiotic stresses are com-

monly experienced in these soils, such as P- and Zn-deficiencies and Fe and

Al-toxicities in acid and alkaline soils. Tolerance of these stresses involves a

plethora of complex traits and mechanisms, and this complexity has slowed previ-

ous breeding efforts to develop high-yielding varieties with sufficient adaptation to

such conditions (Ismail et al. 2007). These challenges forced breeders to search for

innovative strategies to make further progress on the seemingly intractable pro-

blems that have continued to hamper conventional breeding efforts. New

approaches are necessary to genetically dissect and incorporate these complex

adaptive traits into high-yielding rice varieties while simultaneously retaining

their good agronomic and quality attributes. This could be achieved if the genes

responsible for tolerance of these stresses were identified and exploited for crop

improvement using modern breeding and biotechnological approaches.

Recent developments in genomics and molecular biology and the advances in

molecular marker techniques have made it possible to unravel the genetic determi-

nants of complex traits underlying stress tolerance in crop plants. Genetic linkage

mapping of polygenic traits has led to the identification of quantitative trait loci

(QTLs) that control complex traits in plants. Furthermore, by using natural genetic

variation to investigate the intricate systems plants have developed to deal with

the multitude of abiotic stresses in natural ecosystems, geneticists can now identify

superior tolerance alleles and transfer them into high-yielding varieties that are

intolerant of a particular stress. These efforts led to the development of marker-

assisted breeding systems for cultivar improvement through the transfer of

major QTLs into popular varieties and advanced breeding lines. While transgenic
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approaches will ultimately play an important role in developing abiotic stress-tolerant

plants, a marker-assisted approach provides a useful alternative when the required

traits are available within the species gene pool and particularly in instances where

genetically modified food crops such as rice are still far from being widely accepted.

In this chapter, we will present cases where molecular markers are being used as

tools for dissecting complex traits associated with tolerance of abiotic stresses

encountered in problem soils. We will then provide several cases where these tech-

niques are currently being used in rice to identify and transfer major loci associated

with tolerance, particularly those that are directly or indirectly mediated through plant

roots.We also present some insights into how future advances inmarker development

and high throughput genotyping could impact progress in breeding tomore efficiently

develop high-yielding, stress-tolerant varieties to enhance and stabilize productivity

in problem soils as well as in other areas facing similar abiotic stresses.

12.2 Abiotic Stresses Affecting Root Growth in Problem Soils

Adaptation to unfavorable soil conditions generally involves several complex and

interrelated physiological and morphological tolerance mechanisms, most of them

expressed at the root level. Understanding the mechanisms that are involved in

these processes and how they are integrated and regulated will ultimately speed the

efforts to improve the performance of crop plants for problem soils. Traits that

allow traditional cultivars to survive and produce well under such extreme condi-

tions need to be incorporated into popular varieties and elite breeding lines, without

substantial changes in their adaptive and quality traits. This will require a system-

atic analysis of the genetics and physiology of such characters, together with a

thorough evaluation of the target environments to select for relevant traits. Mechan-

isms associated with tolerance of various abiotic stresses encountered in problem

soils can now be dissected into component elements that can then be targeted for

molecular breeding through the use of molecular markers that are linked to genes

controlling each specific trait component. Research over the past few decades

uncovered many agronomically useful characters within and between cultivated

and wild rice germplasm, making genetic improvement more feasible. We will

highlight the progress made in several abiotic stresses common to rice problem

soils, particularly those affecting root growth and function.

12.2.1 Salt Stress

Excessive salt stress is a major constraint for crop production in vast areas of the

world, affecting over 12 million ha of rice land in Asia. Salinity in coastal areas

fluctuates within the year, being high during the dry season because of tidal inundation

and intrusion from saline shallowwater tables but decreasingwith the freshwater flush

during the rainy season. Secondary salinization can also occur as a result of misuse
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of irrigation water with poor drainage, and recently this has become an alarming

problem in inland areas worldwide, steadily leading to soil deterioration and eventual

abandonment by poor farmers. About 10 million ha of agricultural lands in the world

are believed to be lost annually to salinization (Pessarakli and Szabolcs 1999).

12.2.1.1 Salt Stress Tolerance in Rice

Rice is moderately sensitive to salt stress, yet it is still preferred as an initial crop

during soil reclamation because of its unique ability to thrive in standing water.

Sensitivity also varies with the climate and the stage of development, with poor

association between tolerance at the two most sensitive stages, early seedling, and

reproduction (Moradi et al. 2003; Peng and Ismail 2004). Considerable genetic

variation in salinity tolerance was reported in rice (Flowers and Yeo 1981), and

progress has been made in developing elite breeding lines with a reasonable level of

tolerance, some of which were released as commercial varieties (Gregorio et al.

2002; Senadhira et al. 2002; Salam et al. 2007). Salinity tolerance in rice is complex

and involves several physiological and adaptive mechanisms (Yeo and Flowers

1986; Peng and Ismail 2004; Ismail et al. 2007). The physiological bases of salt

tolerance during early seedling stage are fairly well understood, involving key traits

such as high seedling vigor to dilute salt concentration in plant tissues, selective ion

uptake by roots, compartmentation of harmful ions in structural and older tissues

(particularly older leaves, stems, leaf sheath and roots), responsive stomata that

regulate water and salt uptake in response to increasing salt stress in the rhizosphere,

high tissue tolerance through sequestering salts in the apoplast, and recirculation of

sodium back to roots to avoid accumulation of toxic concentrations in the cytoplasm.

The latter is probably achieved through a set of active processes involving a gene

family of ion transporters such as Na+/H+ antiporters that sequester salt in vacuoles

(Blumwald et al. 2000) or move it out of the cell cytoplasm and recirculate it back to

the roots (Berthomieu et al. 2003). Responsive stomata that quickly close upon

initial exposure to salt stress, probably in response to signals from roots, but partially

reopen after a period of acclimation could also contribute to tolerance by minimizing

salt uptake. Antioxidant scavenging systems also seem to play an important role

through neutralizing toxic radicals generated during stress (Moradi and Ismail

2007). Overexpression of superoxide dismutase, a key enzyme in the ascorbate–

glutathione pathway, conferred tolerance of salinity in Arabidopsis (Gao et al. 2003).
During reproductive development, tolerant genotypes also tend to exclude salt from

flag leaves and developing panicles (Yeo and Flowers 1986; Khatun et al. 1995).

12.2.1.2 Germplasm Improvement for Salt Stress Tolerance

Despite the fact that traits associated with salinity tolerance in rice are seemingly

independent, all known salt-tolerant landraces are superior in only one or a few of

them, and significant genetic variation exists for each particular trait. This suggests
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the possibility of identifying better donors that can provide superior combinations

of alleles at useful genes. Combining the traits that are effective at seedling and

reproductive stages will then ensure the development of rice cultivars with higher

levels of salt tolerance. Selection could essentially be made in parallel for individ-

ual traits, which can then be combined through multiple crosses. Moreover, identi-

fying and fine-mapping major QTLs and cloning of genes underlying these traits

will particularly help speed the breeding process by precise targeting of useful

alleles using marker-assisted backcrossing (MABC). By reducing linkage drag,

MABC has allowed the precise introgression of agronomically useful traits into

popular varieties without changing their adaptive or quality traits. A good example

is the transfer of the SUB1A locus into numerous rice varieties, making them

extremely tolerant of submergence (Neeraja et al. 2007; Septiningsih et al. 2009;

Singh et al. 2009).

Considerable progress was recently made in deciphering genes associated with

salt stress tolerance in plants. For example, numerous cases demonstrated the role

of sodium transporters in maintaining ion homeostasis in plants under salt stress

through mechanisms that remove sodium from the cytoplasm by either compart-

menting it into vacuoles or extruding it out of the cell (Horie and Schroeder 2004).

The salt overly sensitive (SOS) signaling pathway was characterized in Arabidopsis
as being involved in signal perception and ion homeostasis (Zhu 2003), and the role

of this system in controlling salt stress tolerance in rice was established recently

(Martinez-Atienza et al. 2007). The HKT family of transporters was also shown to

have significant roles in sodium and potassium uptake and homeostasis in a number

of plant species including rice (Horie et al. 2001; Golldack et al. 2002), and the

cloning of the rice QTL SKC1, originally detected by its effect on K+ concentration,

identified the causal gene as the sodium transporter OsHKT8 (Ren et al. 2005).

Discovery of the genes underlying tolerance of salt stress will help in designing

functional markers for more accurate and efficient use in MABC.

Several studies have identified QTLs associated with salinity tolerance in rice

(Table 12.1). A major QTL for salt tolerance was tagged with an RFLP marker on

chromosome 7 using an F2 population derived from salt-tolerant japonica rice

mutant M-20 and the sensitive original variety 77-170 (Zhang et al. 1995). Using

a cross of an indica variety of moderate tolerance (IR64) with a sensitive japonica
variety (Azucena), seven QTLs for seedling traits associated with salt stress toler-

ance were mapped, though all explained less than 20% of the variation (Prasad et al.

2000). Using a cross between two moderately tolerant elite indica breeding lines,

one of which had Pokkali in its pedigree, several QTLs were identified, of which the

QTL with the largest effect was for K+ uptake on chromosome 9, explaining 19.6%

of the variation (Koyama et al. 2001). A study employing the highly tolerant indica
variety Nona Bokra with the susceptible japonica Koshihikari identified several

QTLs of much larger effect, including the SKC1 QTL for shoot K+ concentration on

chromosome 1 and a QTL for shoot Na+ concentration on chromosome 7 (Lin et al.

2004). Furthermore, using a population of 80 recombinant inbred lines (RILs)

generated from a cross between sensitive variety IR29 and a tolerant landrace,

Pokkali, QTLs were identified on chromosomes 1, 3, 4, 10, and 12 for salinity
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tolerance during seedling stage, including a major QTL designated Saltol mapped

on chromosome 1 explaining 64% of the variation for seedling shoot Naþ/Kþ

ratio using phenotypic extremes and 43% of the variation in a subsequent study

(Gregorio 1997; Bonilla et al. 2002). Current efforts at IRRI include fine mapping

of the Saltol QTL, using MABC to incorporate this QTL into popular varieties

sensitive to salt stress, and targeting additional QTLs for salinity tolerance at

different growth stages for combining multiple QTLs to increase the level of

tolerance in salt-stressed environments. As with the SUB1 QTL, Saltol is being

transferred into popular rice varieties using MABC to precisely incorporate the

Pokkali introgression conferring tolerance while reducing any unwanted DNA

segments that may contain negative characters.

12.2.2 Mineral Deficiency

Nutrient deficiency induced by problem soils is wide spread in rice production

areas, particularly in soils with high fixing capacity as in acid and calcareous/sodic

soils. This induced deficiency is causing considerable reductions in grain yield, and

is further being worsened by the high demand for these nutrients under the newly

evolving intensive farming systems using modern varieties. The rate of plant

nutrient removal from the soil by modern high-yielding rice varieties is about

three times that of traditional varieties (De Datta et al. 1990), which further

aggravates the problem. Phosphorus and zinc are the most widely encountered

deficiencies in rice soils caused by their immobilization in forms that are not readily

available for plant roots. Varieties with greater ability to mobilize and use these

nutrients will be more efficient in these soils, especially where farmers are resource-

poor and adding sufficient nutrients to overcome these deficiencies is out of their

reach.

12.2.2.1 Phosphorus Deficiency

Phosphorus is the most important inorganic plant nutrient after nitrogen but the

least available in soils because of its limited mobility and the tendency of most soils

to fix it into forms that are hardly available for plant roots, as in most alkaline and

acid soils. This tight binding of P in the soil rather than a low total P content is often

the primary cause of its deficiency. As a result, phosphorus deficiency is widespread

in both upland and lowland rice-growing areas. In most of these areas, phosphorus

fertilizers are not always available or affordable for resource-poor farmers and the

tendency of soils to rapidly fix it reduces fertilizer use efficiency.

Breeding cultivars capable of efficient mining of the large pool of P already

existing in most rice soils will help increase and sustain yields in low-input

agricultural systems. Large variability among lowland and upland rice cultivars in

their ability to utilize soil P was observed (Wissuwa and Ae 2001a); however, no
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formal breeding program has yet been in place to develop P-efficient varieties. The

concentration of available P in soils is usually very low and coupled with its

extremely slow mobility, particularly in highly weathered soils, suggesting that

its acquisition must occur against a steep concentration gradient involving active

uptake. So far, two main types of phosphate transport systems were identified in

rice, high-affinity and low-affinity transport systems. The low-affinity transport

system appears to be expressed constitutively, whereas the high-affinity uptake

system is strongly enhanced when phosphorus is limiting (Vance et al. 2003).

In plants, two types of mechanisms are involved in P deficiency tolerance,

internal mechanisms associated with the efficient use of P by plant tissue and the

external mechanisms that allow greater P uptake by plant roots. Genetic variation in

internal P efficiency was observed in rice but is mostly associated with low P

uptake. External efficiency is probably the most important mechanism underlying

tolerance to P deficiency in rice. However, mechanisms responsible for this effi-

ciency still await further studies. The main external mechanisms observed in plants

involve (a) the ability to develop long, fine hairy roots to maximize exposure to the

rhizosphere, (b) the ability to mobilize P through pH changes or the release of

ligands or chelating agents such as organic acids, (c) the ability to utilize soil

organic P through release of phosphate enzymes, and (d) the ability to associate

with mycorrhizal fungi (Kirk et al. 1993; Hedley et al. 1994). Mycorrhizae are

expected to be less effective in fine-rooted crops such as cereals, especially in

anaerobic flooded soils.

Root Characteristics Associated with High P-Uptake

Because of its slow mobility in the soil, root morphological characteristics such as

length, surface area, fitness, and intensity of root hairs are found to be important for

P uptake in numerous crops (Otani and Ae 1996; Kirk and Du 1997). Using rice

cultivars of different origins, Wissuwa and Ae (2001a) observed a strong relation

between tolerance to P deficiency with both root size and root uptake efficiency but

with stronger association with the root size. A large root system may therefore be

adaptive and may provide a more reliable criterion to identify genotypes with

tolerance of P deficiency. The ability of rice cultivars to solubilize P fixed in the

soil has been suggested (Hedley et al. 1994; Saleque and Kirk 1995; Kirk et al.

1999). This could involve acidification of soils by roots, and changes of over two

pH units had been reported in the immediate vicinity of roots in flooded soils

(Saleque and Kirk 1995). Under aerobic soil conditions, mechanisms involved in

remobilization of P are expected to be different and could involve the secretion of

low molecular weight organic acids such as citrate (Kirk et al. 1999). Organic acids

may act as chelating agents for aluminum and iron to free P in soil solution, and

high rates of excretion of P-solubilizing organic acid anions from roots was

reported in rice in response to P-deficiency (Kirk et al. 1993).
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Germplasm Improvement for Higher P-Uptake Efficiency

Genotypic differences in P deficiency tolerance in rice were reported long ago;

however, breeding efforts were limited to screening available cultivars and

advanced breeding lines for superior performance in P deficient soils rather than

developing genotypes with higher efficiency of P uptake (Fageria et al. 1988;

Hedley et al. 1994; Ismail et al. 2007). Traditional landraces are more efficient in

P uptake than modern high-yielding varieties (Wissuwa and Ae 2001a). These

landraces will therefore provide potential donors of P-deficiency tolerance for

cultivar improvement using conventional approaches and also could serve as

sources of agronomically important QTLs and genes identified through mapping

and subsequent cloning.

Tolerance of P deficiency is quantitatively inherited in rice, with both additive

and dominant genetic effects. QTLs associated with P-deficiency tolerance were

identified in two mapping studies (Wissuwa et al. 1998; Ni et al. 1998). Wissuwa

et al. (1998) used a backcross inbred population with the recurrent parent Nippon-

bare (japonica, sensitive) and the landrace Kasalath (aus, tolerant) and identified

four QTLs for P uptake on chromosomes 2, 6, 10, and 12, including a major QTL on

chromosome 12 that controls most of the variation in P-deficiency tolerance. For P

uptake, this QTL had an LOD score of 10.7 and explained about 28% of the

phenotypic variation. Ni et al. (1998), using RILs from the cross of IR20 (tolerant)

with IR55178-3B-9-3 (sensitive), found a similarly strong QTL in the same loca-

tion. They measured P uptake efficiency as relative tillering ability, relative shoot

dry weight, and relative root dry weight. Moreover, an intermediate QTL on

chromosome 6 and several other minor QTLs were mapped to several chromo-

somes. The QTL on chromosome 6 explained 25–34% of the variance for the above

traits in the Ni et al. (1998) study but had a much lower effect (R2 ¼ 9.8%) in the

field study of Wissuwa et al. (1998). The QTL on the long arm of chromosome 6

was also identified in another independent mapping study using a population

developed from a cross of the tolerant Kasalath and the intolerant Gimbozu and

was found to be associated with phosphorus deficiency-induced root elongation

(Shimizu et al. 2004). Recently, the position of this QTL, named qREP-6 for root

elongation under phosphorus deficiency, as well as its role were confirmed using

chromosome segment substitution lines developed in the background of Nippon-

bare (Shimizu et al. 2008). The substitution line carrying qREP-6 had higher

tillering ability on P-deficient soils and also higher phosphorus concentration in

the shoot, suggesting that this QTL will potentially be important in breeding

cultivars with better root traits for P-deficient soils. The qREP-6 was fine-mapped

in an F2 population and a total of 37 genes were annotated in the region (Shimizu

et al. 2008), paving the way for its subsequent positional cloning. This will further

enhance our understanding of its mechanistic role and quantify its effects in

improving adaptation to phosphorus deficiency stress.

The major QTL on chromosome 12, named Pup1 for P uptake 1, controls most of

the variation in P-deficiency tolerance in the Nipponbare/Kasalath population.

Pup1 substantially increased P uptake from P-deficient soils but has no apparent
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effect when P is not limiting. Transferring Pup1 to intolerant genotypes increased

P uptake, plant biomass, and grain yield by over threefold on a P-fixing soil

(Wissuwa and Ae 2001b). Near isogenic lines containing Pup1 maintained rela-

tively higher root growth and root surface area in P-deficient soils than their

counterparts lacking the Pup1 introgression. Carbohydrate supply from leaves

to roots did not explain the reduction in root growth in lines missing the

Pup1 introgression under P deficiency as root starch concentration increased in

P-deficient roots (Wissuwa 2005). However, model simulations suggested that only

small changes in root growth are necessary to account for the large effects of Pup1
in enhancing P uptake from P-deficient soils, and these differences were mainly due

to variation in root external uptake efficiency (Wissuwa 2003, 2005). These studies

suggest that the genes involved are probably expressed in root tissue where they

either lead to higher root growth per unit P or improve P uptake per unit root size or

surface area.

Pup1 was recently fine-mapped to the long arm of chromosome 12 within the

physical interval of 15.31–15.47 Mb (Heuer et al. 2009). The genes in this locus

were initially annotated based on Nipponbare reference genome sequence; how-

ever, this annotation did not unveil obvious candidates for P-uptake efficiency.

Subsequently, the locus was sequenced in the original donor parent Kasalath, and

this revealed significant variation with the reference sequences of both Nipponbare

and 93-11, with considerable distinction in size differences caused by insertions

and deletions, together with a large number of transposon and retrotransposon-

related sequences (Heuer et al. 2009). This variation highlighted the significance

of sequencing QTL regions in the donor parent targeted for cloning, as the

underlying genes might be lacking in the two reference genomes that are currently

available. Similar observations were also made when cloning the SUB1 gene

associated with tolerance of submergence in rice (Xu et al. 2006). Several of

the newly annotated genes using Kasalath sequence are novel and are mainly

located within the insertion–deletion regions. Detailed analysis of these genes

annotated from the Kasalath sequence is ongoing and their potential role in

tolerance of P deficiency is being depicted based on physiological evidence and

sequence analyses. Identifying and cloning of Pup1 will help in designing precise

gene-based markers for use in breeding and for revealing its physiological and

molecular bases, particularly its effects on root growth under P-deficiency. This

information could also be important for enhancing tolerance in other crop species

by identifying Pup1 homologs.

A marker-assisted breeding system to introgress Pup1 into popular varieties is

also being developed, and its contribution for enhancing tolerance of P deficiency in

a wider range of genetic backgrounds and under natural field conditions is being

further quantified. SSR markers linked to the Pup1 locus were identified and tested
in a few accessions, and some of them were found to be specific to Kasalath donor

parent alleles, suggesting their potential use for monitoring the Pup1 introgression

during backcrossing (Collard et al. 2006). PCR-based markers were also developed

based on the genes annotated at the Pup1 locus and are currently being used to

transfer Pup1 into a few upland and lowland popular varieties using MABC,
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following the strategy used for SUB1 locus (Septiningsih et al. 2009). Cloning of

the gene responsible for Pup1 action will accelerate the development of this marker

system. Combining Pup1 with qREP-6 into the background of popular varieties and
advanced breeding lines could significantly enhance their performance under

P-deficient soil conditions.

12.2.2.2 Zinc Deficiency

Zinc deficiency is a widespread soil constraint for rice production, with about 50%

of lowland rice soils believed to be Zn-deficient. Zn deficiency can result from low

total soil–Zn content, but it is more frequently caused by Zn immobilization in the

soil. A range of soil conditions have been associated with binding it in forms that

are less readily available for plants, such as alkaline pH, prolonged submergence

and low redox potential, high organic matter and bicarbonate content, high Mg:Ca

ratio, and high available P (Yoshida et al. 1973; Forno et al. 1975; Neue and Lantin

1994; White and Zasoski 1999). High soil pH and bicarbonate appear to be the main

factors associated with the widespread Zn deficiency in calcareous soils as the case

of the Indo-Gangetic Plains of India and Pakistan (Qadar 2002), whereas perennial

wetness and low redox potential are the major causes of Zn deficiency in peat and

coastal saline soils (Neue and Lantin 1994; Quijano-Guerta et al. 2002). Similar to

P solubilization under flooded soils, rice roots can solubilize Zn through acidifica-

tion of the rhizosphere in the vicinity of the roots (Kirk and Bajita 1995) through the

release of H+ from the roots or during oxidation of iron by O2 released from roots.

Zinc deficiency can be effectively eliminated by using Zn fertilizers; however,

the high cost associated with applying sufficient Zn places a considerable burden on

farmers, particularly in rainfed areas of Asia, where most soils demand high Zn

application as a consequence of its immobilization in the soil. Breeding efforts to

develop rice cultivars that are more efficient in Zn uptake from these soils should

therefore be intensified to improve tolerance of Zn deficiency in rice (Quijano-Guerta

et al. 2002; Ismail et al. 2007). Incorporating tolerance of Zn deficiency also seems to

improve performance under other abiotic stresses such as alkaline soils, salinity,

P deficiency, and peat soils (Singh et al. 2004; Quijano-Guerta and Kirk 2002;

Quijano-Guerta et al. 2002). However, the mechanisms of this cross-tolerance still

awaits further investigation andmay be attributed solely to better Zn acquisitionwhen

Zn is most limiting, with the consequent improvements in root health and growth.

The major mechanisms associated with Zn deficiency tolerance in plants are still

poorly understood and several mechanisms were suggested (Hacisalihoglu and

Kochian 2003); however, the effectiveness of these different traits as well as their

physiological and molecular bases are still incomplete. Multiple symptoms are

generally observed in rice in Zn-deficient soils, including development of brown

spots on leaves that eventually entirely cover older leaves (leaf bronzing), stunted

plant growth and poor root development, and seedling mortality in severe condi-

tions. Flowering is normally delayed or even hindered and grain yield substantially

decreases (Ismail et al. 2007). These symptoms are largely under independent
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genetic control as different QTLs were associated with traits such as leaf bronzing

and plant mortality (Wissuwa et al. 2006). The results largely suggest multiple

tolerance mechanisms that can either operate in root or shoot. Mechanisms asso-

ciated with Zn uptake and root growth obviously reside in roots, whereas mechan-

isms associated with reduced leaf bronzing likely occur within leaf tissue. Our

recent studies suggested that tolerance to Zn deficiency in flooded Zn-deficient soils

was associated with rhizosphere processes that enhance availability and uptake

of Zn rather than with shoot traits or internal efficiency (Wissuwa et al. 2006).

Effects of Zn Deficiency on Root Growth in Rice

Zinc uptake into roots is either as Zn2+ ion or as a Zn-phytosiderophore complex, and

as for most cations, its transport is mediated by a low-affinity transport system and a

high-affinity system, with the latter dominating under Zn deficiency (Hacisalihoglu

et al. 2001). However, the molecular nature of these systems remains poorly under-

stood. In conditions when Zn availability is low due to binding of Zn in the soil,

adaptive root mechanisms that increase Zn availability through desorption of Zn from

binding sites in the soil are likely more important than transmembrane transport

systems. Release of Zn from soil-bound forms has been linked with two classes of

compounds secreted from plant roots, phytosiderophores, and nonprotein amino acids

that chelate a number of micronutrients (Rengel et al. 1998; Suzuki et al. 2006) and

organic acids such as citrate and malate, which were also thought to be involved in

both Zn and P deficiency tolerance in rice. The involvement of a rhizosphere effect in

maintaining Zn uptake under field conditions was further supported by the observa-

tion that increasing the plant density per hill increased shoot drymatter and Zn uptake,

with no apparent symptoms of Zn deficiency (Hoffland et al. 2006).

Root growth in rice is severely inhibited under Zn deficiency, and tolerant

genotypes tend to maintain their ability to regenerate new roots and maintain higher

root biomass in Zn-deficient soils. In both calcareous and heavily submerged soils,

Zn deficiency typically coincides with high bicarbonate concentration in the soil

solution, and sensitive genotypes showed strong suppression in root growth in

response to bicarbonate, with consequent reduction in Zn acquisition. The negative

effect of bicarbonate is probably caused by excess accumulation of organic acids

within the roots of sensitive cultivars, whereas tolerant genotypes avoid this effect

by maintaining higher rates of organic acid excretion. This might also help in

mobilizing Zn in soil solution and enhance its accessibility by plant roots, resulting

in further root growth in tolerant genotypes, commonly seen as early as 2 weeks

after transplanting in Zn-deficient soils (Hajiboland et al. 2005; Ismail et al. 2007).

Germplasm Improvement for Zn Efficiency Tolerance

Genetic variability in the ability to grow under low Zn conditions has been observed

in rice (Quijano-Guerta et al. 2002; Yang et al. 1994). However, despite this genetic
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variability and the dire need to develop Zn-efficient varieties, no formal breeding

program has yet been initiated to develop more Zn-efficient varieties. Limited

progress was achieved indirectly when selecting for tolerance of other soil pro-

blems as in alkaline soils of north India (Singh et al. 2004). Our recent efforts aimed

to identify genotypes contrasting in their tolerance of Zn deficiency under natural

field conditions to understand the mechanisms of tolerance and to develop strate-

gies to incorporate tolerance through breeding.

Identification of QTLs with reasonably large effects on Zn deficiency tolerance

is a crucial first step that will allow the eventual incorporation through MABC as

well as the identification of tolerance genes after further fine-mapping and

subsequent positional cloning. Using a mapping population developed from the

indica genotype IR74 (sensitive) and Jalmagna (tolerant), several QTLs associated

with plant mortality, leaf bronzing, and biomass were detected on a Zn-deficient

field, with only one minor QTL for plant mortality colocalized with a QTL for leaf

bronzing (Wissuwa et al. 2006). QTLs for plant mortality acted in a purely additive

manner, whereas digenic interactions were important for leaf bronzing and for

shoot biomass, and in both cases, the epistatic interactions involved the main

QTL for plant mortality mapped on chromosome 12. Currently, several of these

QTLs are being targeted for fine-mapping for further genetic dissection and for use

in breeding. Advancing our knowledge of the mechanisms of tolerance together

with the identification of genes responsible for the mapped QTL regions will enable

a precise MABC strategy to speed up breeding for tolerance of Zn deficiency.

12.2.3 Mineral Toxicity

Approximately 30% of the earth’s lands are classified as acidic and about half of the

potentially arable land is acidic (von Uexkull and Mutert 1995). Soil acidity limits

crop production through a combination of nutrient toxicities and deficiencies. These

soils constitute a serious constraint across vast portions of rice-growing areas of the

tropics. Besides mostly being deficient in major plant nutrients such as P, they also

contain toxic concentrations of other elements such as aluminum and iron, as both

Al3+ and Fe2+ ions become soluble under low pH. These in turn damage the root

system, and their excessive uptake leads to toxicity within the plant, leading to

decreased growth and yield. Research on the genetic control of tolerance of the

stresses encountered in acid soils in rice is still in its early stages despite their

enormous effects on rice production in affected areas.

12.2.3.1 Aluminum Toxicity

Aluminum is the most abundant metal in the earth’s crust, constituting approxi-

mately 7% of the soil and is predominately found in clays. Under low pH (<5), it is

solubilized as Al3+ in soil solutions, which is highly toxic to plants. Aluminum
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toxicity is the main factor limiting the productivity of crop plants in acid soils,

particularly in the tropics and subtropics. A high concentration of Al3+ severely

hampers root growth, with consequent inhibition of water and nutrient uptake,

resulting in severe reduction in growth and productivity. Al toxicity has been

extensively studied in several plant species and particularly in grasses, including

wheat, sorghum, maize, and rye (Kochian et al. 2004, 2005). The primary mecha-

nism of tolerance identified in most of these crops involves the exudation of organic

acids from the root apex, which in turn binds aluminum and excludes it from

entering the root, as was first identified in wheat (Delhaize et al. 1993). Several

organic acid exudates were documented in several plant species such as malate

exudation in wheat and Arabidopsis, citrate exudation in maize, sorghum, and

soybean, and both citrate and malate in rye, Triticale, and oilseed rape (Kochian

et al. 2004). Another potential mechanism involves tolerance of high Al accumula-

tion in roots and shoots tissue through internal detoxification (Ma et al. 1998).

Recently, genes that control tolerance of Al toxicity were cloned from wheat and

sorghum (Sasaki et al. 2004; Magalhaes et al. 2007), and in both crops, tolerance of

Al toxicity was attributed to the exudation of organic acids by roots to serve as

chelates and detoxify Al3+ in the rhizosphere, particularly around the actively

growing root tips, which are the main site of Al toxicity.

Aluminum toxicity is a major limitation to rice production in both rainfed

lowland and upland soils. Rice is the most tolerant cereal; however, little is

known regarding the physiology of this tolerance. Mechanisms of tolerance in

rice are expected to act differently compared with other cereals due to the low

organic acid excretion by rice roots, which is unlikely to play a major role in Al

detoxification in the rhizosphere. A few reports have suggested exclusion of excess

Al at the root tip to be involved in rice tolerance of Al toxicity; however, these

studies were limited to only two genotypes, one tolerant and one sensitive (Ma et al.

2002; Yang et al. 2008). Apparently, novel mechanisms are probably involved in

the high levels of Al toxicity tolerance in rice. Understanding these mechanisms

and the gene(s) underlying the tolerance traits will facilitate further improvement of

rice varieties and development of varieties of other cereals with higher tolerance of

Al toxicity than the existing varieties.

Numerous studies have identified QTLs associated with Al toxicity tolerance in

rice (Table 12.1). For example, Wu et al. (2000) identified several QTLs associated

with Al tolerance in a recombinant inbred mapping population derived from

Azucena and IR1552. Nguyen et al. (2001) also detected five QTLs for Al toxicity

tolerance distributed on five chromosomes, with a major QTL located on chromo-

some 1. Using a double haploid population developed from CT9993 (tolerant) and

IR62266 (sensitive), Nguyen et al (2002) identified 20 QTLs controlling root

growth under Al toxicity stress and control conditions, distributed over ten chromo-

somes, with the two largest QTLs identified on Chromosomes 1 and 8. The region

on chromosome 1 was found to be conserved across several genetic backgrounds,

and therefore, could be targeted for use in breeding as well as for subsequent

cloning. Using a backcross population derived from Koshihikari (tolerant) and
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Kasalath (intolerant), Ma et al. (2002) identified three QTLs on chromosomes 1, 2,

and 6, collectively explaining about 27% of the phenotypic variability in Al toxicity

tolerance in this population. In an RIL population derived from the cross of Oryza
sativa (IR64, sensitive) and Oryza rufipogon (tolerant), three QTLs were identified

for root length under Al toxicity stress and five for relative root length. O. rufipogon
contributed all favorable alleles for each of the five QTLs for relative root length as

the most important trait affected by Al toxicity. Individually, these QTLs explained

9–25% of the phenotypic variation. The QTLs for relative root length on chromo-

somes 1 and 9 were observed to be consistent among different rice populations. The

major QTL explaining 25% of the phenotypic variation was on chromosome 3 of

rice, and was conserved across cereals, suggesting the potential for its use in

breeding (Nguyen et al. 2003). Recently, Xue et al. (2006) identified three QTLs

on chromosomes 1, 9, and 11, using an RIL population derived from a japonica
cultivar Asominori (tolerant) and an indica cultivar IR24 (sensitive), with pheno-

typic variance of 13–18%; the two QTLs on chromosome 1 and 9 also were found to

be consistent among different rice populations. In a subsequent study, the QTL on

chromosome 9 was fine-mapped using a high-resolution physical map, and linked

markers that cosegregated with this QTL were identified (Xue et al. 2007). These

studies indicated the complexity of Al toxicity tolerance in rice; however, identifi-

cation of similar QTLs across different populations and backgrounds suggested that

these QTLs could be targeted for breeding through MABC. Subsequent studies are

also needed to advance our knowledge beyond the identification of QTL loci.

12.2.3.2 Iron Toxicity

Iron toxicity is a nutrient disorder, caused by excessive uptake of ferrous ions in

amounts that disrupts metabolic processes, resulting in injury and reduced growth

and yield. It commonly occurs in highly reduced soils when toxic concentrations of

ferrous iron accumulate in soil solution, or when inflow carries soluble iron from

upper slopes into highly reduced low lying areas. It is also a common problem in

acid sulfate rice soils, as in Vietnam, Thailand, Bangladesh, and Indonesia. In West

Africa, iron toxicity is widespread throughout the humid tropics, affecting about

30–40% of the cultivated lowlands.

Iron Toxicity in Rice and Bases of Tolerance

Iron toxicity was first reported in rice by Ponnamperuma et al. (1955) when they

attributed the bronzing disease of lowland rice to high concentration of ferrous iron

in soil solution and its subsequent excessive uptake and accumulation in plant

tissues. Since then, iron toxicity has been recognized as one of the most widely

spread micronutrient disorders, especially in the humid tropics of Asia, West and
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Central Africa, and South America, particularly in acid, acid sulfate, and peat soils

(Dobermann and Fairhurst 2000; Balasubramanian et al. 2007; Fageria et al. 2008).

Large areas of these wetlands ideally suited for rice production remain underused or

even unused in severe cases. In West Africa, yield losses of 12–100% were reported,

depending on the severity of the stress and the extent of tolerance of the varieties being

grown. Symptoms of damage are expressed as rusty leaf spots (bronzing), stained leaf

edges, and dark-brown rigid and poorly developed roots. The typical visual symptom

in rice is the bronzing of leaves, and the yield losses associated with the appearance of

these bronzing symptoms commonly range from 15 to 30%; however, severe stress

can cause complete crop failure (Audebert and Sahrawat 2000).

The physiological basis of tolerance of iron toxicity in rice has been studied by

various investigators, and a few strategies were proposed (1) exclusion of ferrous

irons by roots through root selectivity to avoid excessive uptake; (2) proper

compartmentation through apoplastic immobilization or storage in less active

tissues such as older leaves, leaf sheaths, old roots, and stems; and (3) high tissue

tolerance, probably through sequestration in vacuoles or enzymatic detoxification

in the symplast. Formation of iron plaque on the root surface in soils containing

high concentrations of ferrous iron in solution could also be another strategy to

reduce its uptake. Plaque formation is caused by oxidation of ferrous irons by

oxygen that leaks from rice roots to form the insoluble ferric irons, which then

precipitate on the root surface. Presumably, several mechanisms could be involved

in enhancing tolerance of rice to iron toxicity; however, the genetic and molecular

bases of these mechanisms are still not well understood.

Germplasm Improvement for Iron Toxicity Tolerance

Substantial genetic variation has been reported in rice in response to high ferrous

iron concentration in soils or in hydroponics (Gunawardena et al. 1982; Sahrawat

et al. 1996; Fageria et al. 2008). This makes it possible to breed rice cultivars with

greater tolerance of iron toxicity, which could substantially enhance rice production

in affected areas. However, despite this genetic variability, still little progress was

made in developing tolerant varieties that are high-yielding. Several studies have

identified QTLs associated with tolerance in rice. Wu et al. (1997) identified three

QTLs, two of them on chromosome 1 and one on chromosome 8, using a mapping

population derived from the tolerant japonica Azucena and the moderately sensi-

tive indica variety IR64. The phenotypic contribution of these QTLs ranges from 10

to 32%. Using a backcross population developed from Nipponbare and Kasalath,

Wan et al. (2003) identified four QTLs for various traits associated with Fe toxicity

tolerance, three of them were on chromosome 1, and one on chromosome 3. These

QTLs has LOD scores between 3.17 and 7.03, and phenotypic effects ranging from

20 to 48%. Thus QTLs of major effects on Fe(II) toxicity tolerance are present in

rice and provide future targets for MABC to introgress them into popular varieties

and breeding lines for use in target areas.
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12.3 Current and Future Prospects of Marker Assisted

Backcrossing for Breeding Varieties Adapted

to Problem Soils

Genetic linkage maps have made it possible to study the chromosomal locations of

genes for improving yield and other complex agronomic and adaptive traits impor-

tant in agriculture (Tanksley and McCouch 1997). Genetic mapping studies have

led to over 8,500 QTLs identified for many different traits in rice, including

tolerance to abiotic stresses (www.gramene.org). At the same time, advances in

physiology and genomics have led to a more detailed insight into the responses of

rice to soil stresses. While many previous studies explored differential gene expres-

sion between stress and control conditions through microarrays and RT–PCR

(Walia et al. 2005, 2007), a deeper understanding of plant responses to abiotic

stresses is now being investigated through proteomic and metabolomic profiling

(Bohnert et al. 2006; Torabi et al. 2008) and by studying small RNAs (Sunkar et al.

2007). Future techniques in high throughput sequencing will only make these

studies faster and more powerful (Sunkar et al. 2008). By integrating genomic

methods to study key traits with genetic tools such as NIL development and QTL

cloning, a better understanding of key tolerance mechanisms will lead to more

efficient methods for breeding more tolerant varieties (Varshney et al. 2005; Salvi

and Tuberosa 2005). For example, important QTLs and loci identified through

association mapping for different traits can now be combined through marker-

assisted breeding for crop improvement (Takeda and Matsuoka 2008). Furthermore,

as more genomic sequence and SNP data becomes available through resequencing

(McNally et al. 2006) and de novo whole genome sequencing, the genetic variation

of tolerance can be investigated on a scale never before possible. Having more

genome sequence data will be important when dealing with indica varieties as the

tolerant donors, since the gene content between indica and the japonica Nipponbare
reference sequence can be significantly different, as was shown by the recent study

at the Pup1 locus (Heuer et al. 2009). Moreover, high-density SNP arrays will lead to

more powerful association genetic studies that will help explore the useful genetic

variation that is captured in rice germplasm collections. High throughput SNP

genotyping platforms will also enable more efficient MABC by reducing the cost

per marker and by speeding up the process through multiplexing. As more SNP

markers in rice are characterized, then subsets of SNPs that are optimized for

different breeding applications can be selected. For example, a small number of

targeted SNPs at gene loci, including functional SNPs and key SNP haplotypes, can

be used for foreground selection in breeding programs for traits where the QTLs

have already been cloned. In addition, QTL mapping and background selection can

employ low-cost multiplexed sets of 384 SNPs, while QTL fine-mapping and more

precise tracking of introgressions may require larger multiplexed sets of 1,536 SNPs

or even 10,000 SNP chip platforms that are becoming available. By offering rapid,

cost-effective, and robust genotyping, these new technologies will allow the wider

use of the valuable QTLs that have already been identified, and will ultimately bring

marker-assisted selection into mainstream breeding efforts.
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12.4 Conclusions

The stresses encountered in problem soils are generally complex, where several

abiotic factors are commonly encountered. This complexity coupled with the

multitude of traits required for plants to withstand a particular stress has made

improvement through conventional breeding a challenging undertaking, as wit-

nessed by the slow progress in previous efforts. New approaches are therefore

necessary to identify the suite of adaptive traits and mechanisms of tolerance,

followed by swift incorporation into varieties and elite material that lack these

traits but meet farmers’ expectations. Considerable progress was made in under-

standing signaling and response pathways for most of the major soil-related pro-

blems, and the recent developments in genomics have provided powerful tools for

genetic dissection of these traits. Despite the complexity of most soil problems,

tolerance of some of themwas attributed to a fewQTLs of large effects (Table 12.1),

and the recent developments in marker technologies made it possible to tag and

incorporate these major QTLs into high-yielding varieties. Preliminary efforts to

incorporate some of these QTLs have demonstrated measurable effects on the

performance of rice varieties under stress. The recent developments in high

throughput genotyping systems also hold great potential in overcoming the obsta-

cles encountered in MABC. Complementing conventional methods with MABC

will continue to help accelerate the development of more resilient varieties that

could positively impact productivity of rice on problem soils.
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