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ABSTRACT Pearl millet is a non-model grain and fodder crop adapted to extremely hot and dry
environments globally. In India, a great deal of public and private sectors’ investment has focused on
developing pearl millet single cross hybrids based on the cytoplasmic-genetic male sterility (CMS) system,
while in Africa most pearl millet production relies on open pollinated varieties. Pearl millet lines were
phenotyped for both the inbred parents and hybrids stage. Many breeding efforts focus on phenotypic
selection of inbred parents to generate improved parental lines and hybrids. This study evaluated two
genotyping techniques and four genomic selection schemes in pearl millet. Despite the fact that 6· more
sequencing data were generated per sample for RAD-seq than for tGBS, tGBS yielded more than 2· as
many informative SNPs (defined as those having MAF . 0.05) than RAD-seq. A genomic prediction scheme
utilizing only data from hybrids generated prediction accuracies (median) ranging from 0.73-0.74 (1000-
grain weight), 0.87-0.89 (days to flowering time), 0.48-0.51 (grain yield) and 0.72-0.73 (plant height). For
traits with little to no heterosis, hybrid only and hybrid/inbred prediction schemes performed almost equiv-
alently. For traits with significant mid-parent heterosis, the direct inclusion of phenotypic data from inbred
lines significantly (P , 0.05) reduced prediction accuracy when all lines were analyzed together. However,
when inbreds and hybrid trait values were both scored relative to the mean trait values for the respective
populations, the inclusion of inbred phenotypic datasets moderately improved genomic predictions of the
hybrid genomic estimated breeding values. Here we show that modern approaches to genotyping by
sequencing can enable genomic selection in pearl millet. While historical pearl millet breeding records
include a wealth of phenotypic data from inbred lines, we demonstrate that the naive incorporation of this
data into a hybrid breeding program can reduce prediction accuracy, while controlling for the effects of
heterosis per se allowed inbred genotype and trait data to improve the accuracy of genomic estimated
breeding values for pearl millet hybrids.
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Pearl millet [Cenchrus americanus (L.)Morrone; Syn. Pennisetum glau-
cum (L.) R. Br.] is able to grow on infertile and marginal soils under
limiting soil moisture conditions and high soil temperatures. It is a
climate resilient species, and is one of the most widely grown millets
globally Ramya et al. (2017). Pearl millet can thrive in arid environ-
ments, and successfully set seed at temperatures above 40�, which
would kill the pollen/stigmas of many other grain crops Gupta et al.
(2015). Pearl millet can also tolerate infertile andmarginal soils, limited

soil moisture, and high soil temperatures. While most pearl millet pro-
duction in Africa utilizes open pollinated varieties, Indian pearl millet
production now makes extensive use of hybrid seed generated using
three line cytoplasmic-genetic male sterility systems (CMS) Hanna
(1989). Three line CMS systems employ female lines which carry male
sterile cytoplasm and non-restoring nuclear gene(s) (A-lines), main-
tainer lines carry an identical nuclear genome to each A-line in a
compatible fertile cytoplasm, resulting in male fertile plants (B-lines)
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and are able to maintain the male sterility of A-line, and pollinator/
male lines which carry dominant nuclear restorer of fertility gene(s)
(R-lines).

Plant breeding for hybrid crops requires generating and testing large
numbers of hybrids under different field conditions. Performing crosses
togenerateF1hybrids is a labor intensiveprocess.Top-crossingbetween
B- and R-lines can reduce the amount of labor required per cross, but
only in crossing schemes where many female lines are being crossed to
one or a few male lines. Evaluating each new hybrid across field trials
with several environments also requires significant time and resources.
As a result, methods for selecting parental inbred lines and determining
which crosses are likely to yield the best hybrids is a critical part of crop
improvement. In pearl millet, a widespread approach has been used to
evaluate the phenotypes of new potential inbred parents as a first pass
screen of their potential in hybrid breeding programs.

Traditionally, mid-parental values have been a common way to
predict performance of hybrids on the basis of inbred values, combined
with estimates of General Combining Ability (GCA) in cases where
phenotypes cannot be scored in parental lines or individuals directly
Gowda et al. (2013); Xing et al. (2014); Mühleisen et al. (2015). How-
ever, for traits where significant heterosis exists, the phenotypes of
hybrids can vary significantly from what would be predicted through
the use of mid-parent values and estimated GCA. In these cases, it can
be necessary to estimate Specific Combining Ability (SCA) values for
each potential cross. The incorporation of genetic markers can improve
the accuracy with which both GCA and SCA can be predicted by
enabling the sharing of data across multiple tested lines carrying com-
mon haplotypes Schrag et al. (2007). When applied to sets of genetic
markers across the whole genome, this process is referred to as genomic
prediction (GP), which can be used to implement breeding programs
based on estimated breeding values from genome wide sets of markers,
a process know as genomic selection (GS).

Approximately 90-100 pearl millet hybrids are currently cultivated
on about 5million hectares in India Yadav et al. (2016). Both public and
private sector organizations, including 30-40 seed companies, perform
thousands of test-crosses each year. Resulting hybrids are then evalu-
ated over multiple years and multiple locations to identify small num-
bers of new hybrids with superior performancewhich can bemarketed/
released for cultivation. The high investment of time and resources into
initial hybrid evaluation would benefit significantly from the use of GP/
GS to exclude many potential test crosses which can be discarded as
unlikely to outperform existing hybrids prior to field evaluation, re-
ducing the vast number of crosses which must be performed and
evaluated.

The use of GP/GS to obtain estimated breeding values have been
widely evaluated and employed in inbreeding crops such as wheat
Poland et al. (2012), barley Zhong et al. (2009), rice Spindel et al.
(2015). In crops where production is based upon hybrids, genomic

prediction for single-cross hybrid performance are only starting to
appear in the public sector literature Technow et al. (2014); Kadam
et al. (2016), although genomic predictions for hybrid performance
across populations all crossed to a single common tester are more
common Windhausen et al. (2012); Albrecht et al. (2014). Pearl millet
presents an intriguing opportunity in that both hybrid and open pol-
linated production systems are widely employed, and phenotypic data
are thus available from both hybrids and inbred R- andB- lines. A-lines,
being male sterile, do not produce grain when grown in isolation.

Here we evaluated two potential genotyping strategies – RAD-seq
Miller et al. (2007) and tGBS Ott et al. (2017) to characterize a set of
inbred pearl millet lines developed by ICRISAT in Hyderabad, India,
and then evaluated the utility of GP/GS to predict optimal hybrid
combinations among possible combinations of these inbreds using a
scheme trained using phenotypic data collected from hybrid trials
alone, inbred trials alone, or both.

MATERIALS AND METHODS

Field Traits
Field trialswere conductedat four locations in India, spanning two agro-
ecological zones (A- and B- zone, having rainfall of.400mm/annum)
of pearl millet cultivation. The Hisar and Jamnagar sites fall within the
A zone of pearl millet cultivation in northwest India, while Dhule and
Patancheru are located in the B zone of pearl millet cultivation in
southern (peninsular) India Gupta et al. (2013). While pearl millet is
also grown in the A1 zone - highly drought prone areas with less than
400 mm of rainfall per year - the majority of hybrid pearl millet is
confined to the A and B agroecological zones. Data were collected from
320 hybrids and 37 inbreds at field trials in four locations in 2015 in
India (Dhule: N20.90�,E74.77�; Patancheru: N17.53�,E78.27�; Jamna-
gar: N22.47�,E70.06� and Hisar: N29.10�,E75.46�). In CMS system,
A-lines are sterile and hence will not produce grain when grown in
isolation. Therefore, genotyping and phenotyping were conducted on
non-sterile B-lines carrying the same nuclear genome as A-lines in a
compatible cytoplasm, rendering them male fertile. Lines in plots were
grown in an alpha lattice design with two replicates and 28 15-plot
blocks in each location. Each block included two common control
lines/hybrids (ICMH 356 and 9444) and 13 experimental lines. Hybrid
plots were randomly assigned to the first 25 blocks of each replicate,
and inbred plots were randomly assigned to the last three blocks of each
replicate (Experimental design, plot distribution and recorded pheno-
types was provided in FigShare https://figshare.com/articles/pearl_
millet_genomic_selection_field_layout/5969230).

Phenotype measurement
Phenotypic traits scored include days to 50% flowering (days), plant
height (centimeters), grain yield (kilograms/hectare), and 1000-grain
weight (grams). The criteria used to measure each of these four traits
were as follows. 1) Plant height (centimeters): Plant height for a given
plant wasmeasured fromwhere themain stemmeets to soil to the tip of
the panicle of the primary tiller at the time of harvest. For each plot, five
randomplantswere randomly selected for heightmeasurements and the
mean value of these five measurements was reported; 2) Days to 50%
flowering (days): Days to flowering was measured as the time between
the planting date and the date at which at least 50% of plants within a
given plot exhibited the initiation of stigma emergence on the panicle of
their primary tiller; 3) 1000 seedweight (grams): 200 seedswere counted
out from the pooled grain collected from a given research plot, weighed,
andmultipliedby a factor of 5 todetermine 1000 seedweight (grams); 4)
Grain yield (kilograms/hectare): For each entry, all panicles within a

Copyright © 2018 Liang et al.
doi: https://doi.org/10.1534/g3.118.200242
Manuscript received March 14, 2018; accepted for publication May 21, 2018;
published Early Online May 24, 2018.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material available at Figshare: doi: https://doi.org/10.6084/
m9.figshare.5969230; doi: https://doi.org/10.6084/m9.figshare.5566843.
1Present Address: St. Jude Children’s Research Hospital, Memphis, TN.
2Corresponding author: Beadle Center E207, Department of Agronomy and
Horticulture & Plant Science Innovation Center, University of Nebraska-Lincoln,
Lincoln, NE 68583. E-mail: schnable@unl.edu

2514 | Z. Liang et al.

https://figshare.com/articles/pearl_millet_genomic_selection_field_layout/5969230
https://figshare.com/articles/pearl_millet_genomic_selection_field_layout/5969230
https://doi.org/10.1534/g3.118.200242
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.5969230
https://doi.org/10.6084/m9.figshare.5969230
https://doi.org/10.6084/m9.figshare.5566843
mailto:schnable@unl.edu


given a plot were harvested at physiological maturity, and these panicles
were sun dried for 10 to 15 days and then threshed for grain yield.
Planting density and plot size varied across locations, but for each
location the total yieldwasmultiplied by the number of plots per hectare
to estimate the final yield per hectare.

DNA extraction and library construction
Thirty to thirty five seeds from each inbred line were sown in a four inch
pot in a darkroom at ICRISAT�s Patancheru. The pots were maintained
at a temperature between 18� and 25�. Etiolated leaf tissues were har-
vested eight days after planting. Pooled leaf tissue from 20 to 25 seedlings
per line was collected for DNA extraction. DNA was extracted using a
modified DNA extraction method described by Mace et al. (2003). The
DNA was stained by 5 ng/ml of ethidium bromide and checked us-
ing 0.8% (w/v) agarose gel electrophoresis in Tris-acetate-EDTA (TAE)
buffer for 1 h at 90Vwith visualization under ultraviolet (UV) light. tGBS
sequencing libraries for 192 B-lines and 192 R-lines were prepared fol-
lowing the protocol outlined in Ott et al. (2017). RAD-seq libraries for a
set of inbreds including all but 12 of the lines genotyped using tGBS were
constructed as described in Varshney et al. (2017). RAD-seq libraries
were sequenced using an HiSeq 2000 and tGBS libraries were sequenced
using an Ion Proton (Table 1).

SNP calling and filtering
Raw sequence data obtained from both genotyping strategies was
analyzed using the same analytical pipeline to enable accurate compar-
isons between the two. Raw reads were aligned to the pearl millet
reference genome (v1.1 Varshney et al. (2017)) using default settings
of GSNAP Wu and Nacu (2010).

After alignment, SNPs were called using the software package
123SNP Yu et al. (2012) ignoring the first and end 3bp of aligned reads.
After ignoring the first and last 3 bp of each read, polymorphic sites
were determined using the following criteria: 1) 5 aligned reads cover-
ing the position in the genome; 2) PHRED quality greater than 20.
Genotype calls for individual samples were determined in the following
fashion. The genotype for a given SNP marker in a given sample was
determined to be homozygous if the site was covered by 5 aligned reads
from that individual samples and one allele had a frequency.0.9. The
genotype for a given SNP marker in a given sample was determined to
be heterozygous if the site was covered by 5 reads, at least 90% of the
reads support the twomost frequent alleles, at least two reads supported
the two most frequent alleles, and both alleles had a frequency .0.2.
Any cases which did not satisfy the conditions for either a homozygous
or heterozygous SNP call were treated as missing data.

The initial set of SNPswasfiltered to exclude any SNP sitemore than
two alleles were identified, sites where only one genotype call was
present, sites where more than 10% of samples with genotype calls
heterozygous, sites where the minor allele was not identified in at least
5 samples, and sites where,20% of individuals had a genotype call for
the site. These sets of filtered SNPs were used to calculate missing data
rate (# of samples withmissing data / total sample), heterozygosity (# of
samples with heterozygous genotype calls / (# samples with homo-
zygous genotype calls + # of samples with heterozygous geno-
type calls)) and minor allele frequency ((2·# of samples with
homozygous minor allele genotype calls) + # of samples with het-
erozygous genotype calls) / 2 · total sample without missing sam-
ple). Then they were imputed using Beagle (Version: 16-06-2016).
The filtered but unimputed and imputed SNP sets used in this paper
have been uploaded to FigShare (https://doi.org/10.6084/m9.fig-
share.5566843.v1). Genetic markers with low MAFs (Minor Allele
Frequency) are frequently removed prior to quantitative genetic
analysis Tabangin et al. (2009). In downstream analysis, only SNPs
with MAF larger than 0.05 were employed.

Projecting Hybrid Genotypes
Hybrid genotypes for each possible combination of an A/B-line and an
R-line were derived from genotypes of the corresponding parental
inbred lines. If both parental lines were homozygous for the same allele
at a givenmarker, the F1 progeny received the same genotype call at that
marker. If the parental lines were homozygous for opposite alleles at a
given marker, the F1 progeny received a heterozygous genotype call at
that marker. If either parent was genotyped as heterozygous at a given
marker was treated as having a genotype of (parent 1 genotype + parent
2 genotype)/2 on a scale of 0 to 2, where 0 is a genotype call of
homozygous reference allele, and 2 is a genotype call of homozygous
non-reference allele.

Phenotype calculation
A linear mixed model was used to estimate the best linear unbiased
prediction (BLUP)for thephenotypic traitsof inbredandhybrid lines. In
the model, genotype (G), location (L), genotype by location interaction
(G·L), replication (R) and block (B) were treated as random effects.

In addition, the calculated variance of factors were used to estimate
broad-sense heritability ðH2Þ using the following formula (from
Holland et al. (2003)):

H2 ¼ VG

VG þ VG·L=NL þ Ve=ðNR ·NLÞ (1)

n Table 1 Comparison between RAD-seq and tGBS genotyping technologies

RAD-seq tGBS

Total number of samples genotyped 372 384
Sequencing platform Paired-end Single-end

Illumina HiSeq 2000 Ion Proton
Average (Median) Reads/Sample after QC 12,221,976 (12,097,256) 1,793,300 (1,365,265)
Average (Median) Sequence/Sample after QC 965,295,176 (955,561,340) 195,057,311 (146,026,776)
Average (Median) missing rate / SNP 41.39% (41.67%) 58.65% (63.02%)
Average (Median) Proportion Het Calls / SNP before imputation 2.05% (0.42%) 4.12% (3.82%)
Average (Median) Proportion Het Calls / SNP after imputation 1.63% (0.53%) 4.72% (2.86%)
Average (Median) MAF / SNP before imputation 1.89% (1.18%) 11.69% (5.43%)
Average (Median) MAF / SNP after imputation 1.24% (0.67%) 10.37% (3.26%)
Total SNPs 649,067 73,291
SNPs with MAF .0.05 after imputation 15,306 32,463
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where NL is the number of locations and NR is the number of repli-
cates. VG; VG·L and Ve represent the variance of the studied pheno-
types controlled by genotype (G), interaction between genotype and
environment (G·E) and residual factors.

In the analysis presented in Figure 2A, variance attributed to residual
includes bothVe as well as block and replicate variance. A customized R
package (available at: https://jyanglab.github.io/g3tools/) was used to
perform the above analyses.

Themid-parentheterosis for eachtraitwascalculated fromtheBLUP
values using the following formula:

Yhybrid 2
�
Yfemale þ Ymale

��
2�

Yfemale þ Ymale
��
2

(2)

Genomic selection and cross-validation
BLUP values for lines with genotypic information – either direct gen-
otyping for inbred lines or projected genotypes for hybrids – were used
as training data for genomic prediction. For each approach described in
results, predictions were conducted using the implementation of
RR-BLUP (Ridge Regression Best Linear Unbiased Prediction) in the
R-package rrBLUP Endelman (2011). The genomic prediction model
was represented as:

y ¼ mþ
Xk

i¼1

xigi þ e (3)

where y is the matrix of BLUPs of all individuals, m is the overall
mean, k is the total number of SNPs, xi is the ith SNP genotype, gi is
the effect for ith SNP and e is the residual.

For each trait, randomly selected subsets of SNPs ranging from64 (26)
to 16,384 (214) plus total projected hybrid SNPs were tested. For each
subsampled set of SNPs, the individuals were divided into 5 groups, and
five separate genomic prediction analyses were conducted, using four of
the five groups as training data and the remaining group as testing data.
The mean correlation coefficient across these five sub-predictions was
treated as a single estimate of the accuracy of the prediction model for
estimates of accuracy and standard deviation.

The creation of the five individual sub-predictions varied somewhat
across the four different prediction schemes described below (Figure 1).
For each set of parameters with each scheme, a total of 20 sets of fivefold
of cross-validation were performed. Thus, for each number of SNPs for
each trait, a total of 20 · 5 = 100 sets of predictions were made. In
scheme 1 (M1), the total set of genotyped and phenotyped inbreds was
divided into five equal groups. Each sub-prediction used four of these
five groups to predict phenotypic values for all genotyped and pheno-
typed hybrids. Scheme 2 (M2) utilized conventional five fold cross
validation where the total set of genotyped and phenotyped hybrids
was divided into five equal groups, and each sub-prediction used train-
ing data from four of the five groups to predict the remaining 20% of
the data. The other two schemes utilized the same system as scheme 2,
with the addition of all genotyped and phenotyped inbreds to the
training dataset for all five subpredictions which either used BLUPs
calculated across all individuals (M3A) or BLUPs calculated separately
for inbred and hybrid populations (M3B).

To assess the accuracy of predictions for hybrids where one or more
parents are completely unobserved, one B-line and one R-line were
selected as “hold out” parents, and all hybrids which had either of these
lines as a parent were excluded prior to the division of the remaining

data into five groups. Each sub-prediction consisted of training the
model using the hybrids four of these the five groups, and then predict-
ing the genomic estimated breeding values of the hybrids with a “hold
out” parent. Relative to the analysis without hold-out parents, predic-
tion accuracy in this scenario decreased modestly and variance in pre-
diction accuracy increased dramatically (Figure S2). Finally, all hybrids
with genotype and genotype data were used to train a model that then
produced genomic estimated breeding values for all 36,864 possible
hybrid (Figure S3).

Data availability
The authors affirm that all data necessary for confirming the conclusions of
this article are represented fully within the article and its tables and figures.
Supplemental material available at Figshare: doi: https://doi.org/10.6084/
m9.figshare.5969230; doi: https://doi.org/10.6084/m9.figshare.5566843.

RESULTS

Phenotype analysis
Phenotypic variance was partitioned into four components: genotype
(G), environment (E), interaction between genotype and environment
(G·E), residual (R). For each trait, the pattern of relative contribution
of each of these factors was roughly similar between inbred and hybrid
pearl millet populations (Figure 2A). Plant height was the trait with the
greatest proportion of variance explained by purely genetic factors,
while flowering time had the great proportion of variance explained
by environments. As expected, grain yield had the highest residual
value, making this critical trait the most difficult to predict accurately
using quantitative genetic models. Broad sense heritability – i.e., the
proportion of total variance in trait values explained by genetic factors –
for grain yield, plant height, flowering time and 1000-grain weight were
estimated to be 0.60, 0.86, 0.88 and 0.74 respectively for pearl millet

Figure 1 Four approaches taken to training and testing genomic
prediction schemes. Scheme 1 (M1) uses different sets of 4/5s of the
inbred phenotypic data to build a model which is tested by comparing
predicted and measured traits for all hybrids. Scheme 2 (M2) is
conventional fivefold cross validation, where the hybrids tested are
divided into five equal parts, and the genomic estimated breeding
values for hybrids in each are predicted using a model trained with the
other four parts of the dataset. Scheme 3A (M3A), follows the same
strategy outlined for M2, with the the training set extended to include
the phenotypic and genotypic data for the inbred lines from M1.
Scheme 3B (M3B) follows the same strategy as M3A but normalizes for
the separate mean trait values of the inbred and hybrid populations
prior to combining them into the training dataset.
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hybrids and 0.72, 0.92, 0.88 and 0.74 for inbreds. However, caution
should be used in interpreting differences between the inbred and
hybrid heritability values, given the large difference in the number of

individuals between the two populations. BLUP values were calculated
for these four traits (see methods). Each trait exhibited an approxi-
mately normal distribution (Figure 2B). Heterosis can be defined in

Figure 2 (A) Proportion of phenotypic variance explained
by genotype, location (considered as a environmental
factor), genotype by location (GxE) interaction for either
inbred pearl millet lines or hybrid pearl millet lines. (B)
Phenotype investigation of four studied traits in pearl
millet population. ��� p value of the significance of this
correlation is # 0.001, �� p value of the significance of this
correlation is # 0.01 and � p value of the significance of
this correlation is# 0.05; (C) Distribution of observed mid-
parent heterosis for each of the four traits scored in this
study.
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different ways but the definition employed here is mid-parent heterosis
which is the degree to which the measured trait values of hybrids tend
to exceed the average of measured values for the same trait in both
parents. Mid-parent heterosis was observed for all four traits with
median values of 8% (flowering time), 15% (1000-grain weight), 37%
(plant height) and 84% (grain yield) (Figure 2C). Note that the direct of
effect for heterosis was reversed for flowering time. This is consistent
with studies in maize which indicate that hybrid tend to flower earlier
than their parents Dickert and Tracy (2002).

Characteristics of the tGBS and RAD-seq datasets
A total of 4,550 million barcoded RAD-seq reads were generated on an
Illumina HiSeq 2000, for an average of 12.2 million reads per sample.
tGBS librarieswere sequenced using seven IonProton runs, generating a
total of 810million raw reads included584millionof barcoded reads, for
an average of 2.1 million reads per sample.

After aligning to the pearl millet reference genome and quality
filtering (See Methods), 649,067 polymorphic SNPs were identified
using RAD-seq data and 73,291 SNPs were identified using tGBS data.
As expected given the different subsets of the genome targeted by these
two technologies Miller et al. (2007); Ott et al. (2017), there was
only minimal overlap between the two methods with only 439 SNPs
identified and scored by both technologies. The missing data rates for
RAD-seq genotypes exhibited a bimodal distribution while tGBS geno-
types exhibited a unimodal distribution skewed toward high missing
data rates. RAD-seq genotyping was much less likely to genotype sites
as heterozygous, which may reflect a difference in the technologies, or
may be explained by the observation that many SNPs identified by
RAD-seq had low minor allele frequencies, while tGBS SNPs, tended
to have higher minor allele frequencies (Figure 3). A more detailed

comparison of the outcomes of RAD-seq and tGBS genotyping is pro-
vided in Table 1. Downstream analyses utilized only those SNPs with
MAF.0.05 from each dataset (15,306 RAD-seq SNPs and 32,463 tGBS
SNPs).

Evaluating the accuracy of genomic prediction
Theabilityof genomicpredictionusingprojectedhybridgenotypes from
both genotyping methods was then assessed for each phenotype using
cross validation. For each tested set of SNPs, 20 random rounds of
fivefold cross validation were performed. The median correlation co-
efficient of 1000-grain weight, days to flowering time, grain yield and
plant height using all available SNPs was 0.73, 0.89, 0.51 and 0.72 for
RAD-seq and 0.74, 0.87, 0.48 and 0.73 for tGBS (Figure S1). The
differences inpredictionaccuracies observed for the twomethods, either
utilizing random sub-sampling of equal numbers of SNPs for each
dataset or all SNPs obtained using each genotyping method were not
statistically significant (student’s t-test).

Comparison of prediction models
Four different approaches (see Methods) to genomic prediction were
evaluated to test whether inbred phenotypic data can add value to
genomic prediction as part of a hybrid breeding program. Scheme M1,
which used trait trait from inbreds to predict genomic estimated
breeding values of hybrids performed the worst of all four approaches
for all four phenotypic traits tested. Notably, the rank of traits by mid-
parent heterosis had a perfect negative correlation with the rank of the
traits by phenotypic prediction accuracy using inbred parent training
data. Scheme 2 (M2) produced a significant increase (P , 0.05) in
accuracy relative to the scheme 1 (M1) for all four phenotypes, al-
though, consistent with its high residual values when fitting the original

Figure 3 Distribution of missing data rates (A, D), heterozygosity (B, E), and minor allele frequency (C, F) for SNPs identified and scored in either
the RAD-seq or tGBS dataset. A-C summarize raw SNP data prior to imputation. D-F show densities for the same characteristics subsequent to
imputation. However, no missing sites were left after imputation, hence panel D is blank. Dashed line in C & F indicates the cut off of MAF = 0.05
for SNPs which were utilized in downstream genomic prediction.
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BLUP, the accuracy of prediction for yield was the lowest of the four
phenotypes (Figure 4). Scheme 3A (M3A), which merged phenotypes
from both inbred parents and hybrid trials to predict hybrid trials
performed equivalently to scheme 2 (M2) for 1000-grain weight
(1kwt) and flowering time (D2F), the two traits with the lowest degree
of mid-parent heterosis. However, for traits with significant amounts of
mid-parent heterosis (grain yield and plant height), adding inbred
parent phenotype data to the prediction model either provided no
benefit (plant height, P = 0.17) or significant decreases in predic-
tion accuracy (grain yield, P = 0.09e-2) compared to a purely hybrid
phenotype data training set. Scheme 3B (M3B), which, instead of
employing absolute trait values for inbreds and hybrids, summarized
phenotypes as the differences between the predicted trait value for a
given inbred or hybrid line and the mean trait value for either all
hybrids or all inbreds (Figure 5D), performed approximately equal
to, or sometimes marginally better than M2 (hybrid only scheme).
An additional 1,000 permutations of fivefold cross validation were
conducted for scheme 2 (M2) and scheme 3B (M3B) using the “All
SNPs” dataset. The increase in prediction accuracy in M3B relative to
M2 was statistically significant for two out of four traits tested: flower-
ing time (P = 6.00e-4), and grain yield (P = 5.03e-9).

Increases in prediction accuracy coming from increasing numbers of
markers tended to plateau at smaller total marker numbers for scheme
1 (M1which is inbredonly) thanfor scheme2 (M2which ishybridonly),
with scheme 3 (M3 which is inbreds plus hybrids) was intermediate
between the two. However, even 64 (26) random SNPs provided

significant (P , 0.05) predictive ability for all traits and all schemes
tested. The relatively small set of inbred parents used to create the set
of hybrids tested as part of this analysis may have resulted in inflated
apparent prediction accuracies for each trait. When using a hold-two-
parents out approach to segregating hybrids with common parentage
between the training and testing datasets (see Methods), accuracy
was lower and standard deviations of prediction accuracy were higher
(Figure S2), indicating that our estimates of prediction accuracy are likely
to be optimistic relative to the ability to predictions for hybrids where one
or both parents have not previously served as parents for tested hybrids.

Finally, grain yield and time to flowering were predicted for every
possibleF1hybridbetweenagenotypedA/B-line andagenotypedR-line
in thedataset.Within thispredictionspace, thehighest yieldingpotential
hybrids tend to be associated with somewhat longer flowering times
defining a production possibility frontier for the trade off between
growing season length and yield among the pearl millet hybrids which
could be generated using the inbred germplasmgenotyped as part of this
study (Figure S3).

DISCUSSION
Here we found that the naive integration of trait data collected from
inbred lines into genomic prediction for a hybrid breeding program can
actually reduce prediction accuracy, particularly for traits exhibiting
significant heterosis. However, controlling for the effect of heterosis per
se by calculating BLUPs separated for inbred and hybrid lines elimi-
nated this negative impact on prediction accuracy and could in fact

Figure 4 Prediction accuracy for each of four phenotypes scored in this pearl millet population employing the four schemes outlined in Figure 1
using tGBS SNP calls. Scheme 3A (M3A) employed absolute predicted trait values for inbreds and hybrids to train a genomic prediction model,
while scheme 3B (M3B) employed predicted trait data for inbreds and hybrids calculated relative to the separate mean trait values for inbred and
hybrid lines.
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increase prediction accuracy for some traits relative to predicting using
data from hybrid lines alone. In addition we found prediction accuracy
was equivalent for SNPs generated through either RAD-seq or tGBS.
Given the greater number of high MAF (.0.05) SNPs generated per
million reads with tGBS, this methodology is likely to be more cost
effective in the context of many genomic selection based breed-
ing programs. In addition, the more rapid turn-around time enabled
by Ion Proton sequencing (�4 hr) relative to Illumina HiSeq
2000 (�8 days for 2x100 sequencing) increases the feasibility the uti-
lizing genomic prediction to guide real time breeding decisions. How-
ever, it should also be noted that there is nothing inherent about either
the RAD-seq or tGBS protocol which prevents the adaptation of either
protocol to sequencing using either instrument.

Longer growing seasonswill generally – in the absence of constraints
from temperature, or resources abundance – result in more total fixed
carbon Dohleman and Long (2009). Whether this increase in carbon
fixation results in an increase in yield depends, among other factors on
harvest index, the partitioning of carbon between vegetative and re-
productive development. In our data, grain yield displayed only weak
correlations with flowering time (Figure 2B). Grain yield and plant
height show a strong positive correlation with each other which is
not what would be expected based on models of carbon partitioning.
One potential explanation is that, in small plot trials with substantial
height variation among accessions, tall plots can shade shorter plots if
the experimental design is not blocked by height. This shading effect
produces an apparent yield penalty for short accessions which does not
translate to larger scale yield trials or commercial production. However,
there may also be significant room to improve the yield and resource
use efficiency of pearl millet through selection for improved harvest
index. A second explanation is loci responsible for tolerance of heat and
or drought stress are segregating in the population, sensitive genotypes
are likely to exhibit both stunted growth and low grain yields, as pearl

millet is grown in marginal soils and high levels of abiotic stress (high
temperatures and water constraint).

As described above, we found that the naive incorporation of inbred
genotype and trait information into training datasets decreased pre-
diction accuacy for high heterosis traits. In Figure 5, we propose amodel
to explain this finding.When BLUP values for a trait with a high degree
of heterosis are calculated in a population containing a mix of inbred
and hybrid individuals, most inbreds will be assigned negative BLUP
scores and most hybrids postive BLUP scores (Figure 5A). Distribu-
tions of allele frequencies will vary between inbred and hybrid popu-
lations. As a result, inbred individuals may be relatively more common
among the population of individuals with AA or BB genotypes. Alleles
more common in inbred individuals relative to hybrid individuals will
tend to be assigned a more negative or less positive effect value by a
genomic prediction model trained with a mixed hybrid/inbred popu-
lation than by a genomic prediction model trained on a purely hybrid
or purely inbred population (Figure 5B Figure 5C). Calculating BLUPs
separately for inbred and hybrid individuals removes this source of bias
in the training data by centering the distributions of both inbred and
hybrid individuals (Figure 5D).

Consistent with earlier studies in maize, we found that inbred trait
valuesalonewerepoorpredictorsofhybridperformance,particularly for
yield e Gama and Hallauer (1977); Smith (1986), although the pre-
diction values in scheme 1 (M1), trained only on inbred data were at
least statistically significantly greater than zero (P , 0.05). Here we
found that when using a conventional additive genomic prediction
model (RR-BLUP), traits with higher median heterosis (grain yield
and plant height) experienced a decrease in prediction accuracy when
inbred data were naively incorporated into the training dataset (M3A).
Segregating BLUP means for inbreds and hybrids (M3B) statistically
significantly moderately enhanced prediction accuracy for grain yield
(P = 5.03e-9) and flowering time (P = 6.00e-4), compared to a scheme

Figure 5 A proposed model for
the decrease in genomic pre-
diction accurary for high het-
erosis traits when inbred
individuals are introduced into
training populations. A) Distribu-
tion of BLUP scores for yield for
populations of hybrid and inbred
individuals based on a combined
BLUP analysis. B) Distribution of
scores for a hypothetical marker
having an equally large effect
size in inbred and hybrid individ-
uals. When allele frequencies
differ between these popula-
tions, and the ratio of hybrid to
inbred individuals may vary be-
tween the groups of individuals
with genotype AA or with geno-
type BB. C) Distribution of scores
for a hypothetical marker with no
effect on trait value. D) Distribu-
tion of BLUP scores for yield for
populations of hybrid and inbred
individuals based on a separate
BLUP analysis for hybrid and in-
bred individuals.
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which excluded phenotypic data from inbred parents (M2). While
statistically significant, the absolute values of the increases in prediction
accuracy are moderate: flowering time (M2: 0.87, M3B: 0.87) and grain
yield (M2: 0.50, M3B: 0.52). Yield was both the most difficult trait to
predict, and the trait where the inclusion of inbred trait data provided
the largest increase in prediction accuracy. In this study the number of
inbred lines for which genotypic and phenotypic data were available
was quite small. Even in scheme 3B, inbred lines made up less than 15%
of the training dataset. Given that extensive inbred trait datasets exist
for pearl millet, it may be that the incorporation of genotypic and
phenotypic data from larger numbers of inbred lines would produce
a larger absolute increase in prediction accuracy. As inbred lines
must be grown prior to the production of hybrid seed, the collection
of trait data from these lines comes at relatively low cost, and may
have additional value when integrated into training datasets which
also include genotypic and phenotypic data from a sample of hybrid
lines.

Even small numbers of selected SNPs can achieve relatively high
prediction accuracy in this pearlmillet population. The implementation
of a hybrid GS/GP guided pearl millet breeding program has the
potential to significantly improve the efficiency of breeding efforts
(Figure 4). However, it must be noted that in our training set the high
representation of haplotypes drawn from 33 common parental lines
produces close relationships between sub-sampled training and testing
populations, and this could also be a reason to explain why a smaller
number set of SNPs can reach plateaus in accuracy for genomic pre-
diction of some studied traits. As a result, our estimates of model pre-
diction accuracy are likely inflated relative to predictions on unrelated
populations Isidro et al. (2015). To expand the applicability of this
genomic prediction model to a wider pearl millet genomic selection
assisted breeding program, it will be necessary to incorporate data from
a hybrids derived from a broader genetic basis.
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