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A B S T R A C T

Mapping soil nutrients can help smallholder farmers identify soil nutrient status and implement site-specific soil
management schemes. In the past, Digital Soil Mapping has seldom been utilized to guide soil nutrient man-
agement in smallholder farm settings in South India. The objective of this research was to analyze the spatial
resolution effects of different remote sensing images on soil total nitrogen (TN) prediction models in two
smallholder villages, Kothapally and Masuti in South India. Regression kriging (RK) was used to characterize the
spatial pattern of TN in the topsoil (0–15 cm) by incorporating spectral indices with different spatial resolutions.
The results suggested that soil moisture, vegetation, and soil crusts can contribute to the conservation of soil TN
in both study areas. Soil prediction models with different spatial resolutions showed a similar spatial pattern of
soil TN. The results also demonstrated that the effect of very fine spatial remote sensing spectral data inputs does
not always lead to an increase of soil prediction model performance. A RapidEye-based (5 m) soil TN prediction
model had lower prediction accuracy than a Landsat 8-based (30 m) soil TN prediction model in Masuti.
WorldView-2/GeoEye-1/Pleiades-1A-based (2 m) soil TN prediction models had the highest prediction accuracy
in both study areas. The spectral indices based on new bands of WorldView-2 such as coastal, yellow, red edge,
and new near infrared bands had relatively strong correlations with soil TN. The utilization of Very High Spatial
resolution images such as WorldView-2 in Digital Soil Mapping could improve soil model performance and
spatial characterization. Remote sensing-based soil prediction models have high potential to be widely applied in
smallholder farm settings.

1. Introduction

Low and erratic precipitation, drought stress, high temperatures,
low biomass, and low soil productivity have major impacts on crop
yields in arid and semi-arid farmland in South India (Srinivasarao et al.,
2013). Soil nutrient storage is essential and important in semi-arid
tropical soils, especially those that are used to maintain food security
and soil security in smallholder farm settings. Unlike research focusing
on soil sampling and traditional soil laboratory analysis (Ouyang et al.,
2013; Venkanna et al., 2014), Digital Soil Mapping (DSM) utilizes ca-
tegorical and continuous environmental variables to predict soil

properties on multiple scales (McBratney et al., 2003; Xu et al., 2017)
and is more practical, economical, and suitable for sustainable soil
management. However, the application of Digital Soil Mapping (DSM)
in smallholder farm settings worldwide is only in its beginning stages
due to lack of financial and technical support and historical datasets.

Remote sensing images can provide soil-landscape information such
as soil moisture (Bertoldi et al., 2014), vegetation indices (Kross et al.,
2015), and land surface temperature (Weng et al., 2014), and are
widely utilized in DSM research (Gray et al., 2016; Nigel and
Rughooputh, 2010). The past few decades have seen the emergence of
various new remote sensing products, which can provide soil-landscape
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information at various scales. Remote sensing images such as Landsat 8
images (30 m) are easily obtained throughout the world. Commercial
remote sensing satellites such as WorldView-2 (2 m) and SPOT 5 (10 m)
also provide detailed landscape information at relatively fine spatial
resolution. As a result, there is a trade-off between choosing fine spatial
resolution and coarse spatial resolution remote sensing imagery in
DSM.

Some research has indicated advantages to the use of fine spatial
resolution images for soil prediction in terms of error assessment and
accuracy (Sumfleth and Duttmann, 2008; Vaudour et al., 2013). Other
research demonstrated that the highest spatial resolution environ-
mental variables may not always produce the most accurate soil pre-
diction. According to Schmid et al. (2008), ASTER images (30 m) have
longer spectral domain and more bands than IKONOS images (4 m).
They also have higher prediction capability than IKONOS images in
predicting soil classes. Kim and Zheng (2011) demonstrated that fine
scale topographic information is not always optimal for understanding
soil spatial variability. However, there has been little research ana-
lyzing the effects of remote sensing spectral indices with fine to medium
spatial resolution (2 m to 30 m) on soil prediction models in regions
such as smallholder farm settings.

Unlike ordinary kriging, regression kriging includes deterministic
and stochastic components (Hengl et al., 2007). The deterministic
component is often a multi-linear regression model between the target
soil property and auxiliary environmental variables such as vegetation
indices and land use types (Samuel-Rosa et al., 2015). The stochastic
component is a spatially correlated random field of residuals from the
deterministic component. This spatially correlated random component
is usually fitted by variogram and interpolated by ordinary regression
(Mora-Vallejo et al., 2008). Regression kriging has been widely applied
in the DSM domain (Kuriakose et al., 2009; Mishra et al., 2012; Sun
et al., 2012), and has attained better prediction results compared with
ordinary kriging (Hengl et al., 2007; Mirzaee et al., 2016). The objec-
tives of this research were to: 1) characterize the spatial pattern of soil
Total Nitrogen (TN) in two smallholder villages, Kothapally and Masuti,
South India and 2) test and evaluate the spatial resolution effects of
spectral indices from Landsat 8 (30 m), RapidEye (5 m), and World-
View-2/GeoEye-1/Pleiades-1A (2 m) on soil TN prediction models in
both study areas.

2. Material and methods

2.1. Description of the study areas

Kothapally is a smallholder village located in Ranga Reddy District,
Telangana State, India (Fig. 1). It experiences a hot and dry semi-arid
climate with an annual rainfall of 802 mm (Sreedevi et al., 2004).
Cotton (Gossypium hirsutum) and rice (Oryza sativa) are the major crops
planted in the rainy season. Sorghum (Sorghum bicolar) is the pre-
dominant crop type in the dry season. The monsoon season is from June
to September with the precipitation averaging 755 mm. Vertisols are
the major soil type in Kothapally. A detailed description of Kothapally is
given by Xu et al. (2017).

Masuti is another smallholder village located in Basavana Bagevadi
Tehsil, Bijapur District, Karnataka State, located in South India (Fig. 1).
It is 513 km from the state capital, Bangalore. It also experiences a
semi-arid climate with temperature variations between 20 °C and 42 °C.
The annual rainfall ranges from 569 to 595 mm. The soils in this area
vary between dark greyish brown and dark brown to dark reddish
brown. Soil texture varies from loam to clay according to investigation
by the International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT). Sorghum (Sorghum bicolar), tomato (Lycopersicon esculentum
var. esculentum), and onion (Allium cepa) are the three major crops in
the dry season (Table 1). Cotton (Gossypium hirsutum), rice (Oryza sa-
tiva), and maize (Zea mays) are the three major crops in the rainy season
(Table 1).

2.2. Soil sampling and laboratory analysis

Soil samples were divided into four classes (green, dark, light, and
intermediate areas) based on unsupervised classification application in
the ERDAS 2011 software (Earth Resource Data Analysis System Inc.,
Atlanta, GA). Based on the four classes of soil, a stratified random
sampling method was performed in ArcMap 10 (Environmental Systems
Resource Institute, ArcMap 10.0 ESRI, Redlands, California) using the
“SamplingTool_10” (Buja and Menza, 2013) add-in. In total, 255 soil
samples at 0–15 cm were collected in Kothapally in May 2012, and 259
soil samples at 0–15 cm were collected in Masuti from February to
March 2013 by the ICRISAT and the University of Florida (Fig. 1).
Geographic attributes of each soil sample point such as x and y co-
ordinates, were obtained from a Differential Global Positioning System
(DGPS) with sub-meter accuracy (Trimble Navigation Ltd., Sunnyvale,
California, USA). GPS post-correction was performed by Aimil Ltd.
(www.aimil.com) in Hyderabad, India. Site-specific descriptions, in-
cluding soil types, crop types, soil color and tillage methods, were re-
corded at each sampling point. After air-drying for one week, all the soil
samples in both study areas were sieved through a 2-mm sieve, then
analyzed for soil TN based on a concentration basis (mg kg−1) (Krom,
1980) in ICRISAT.

2.3. Remote sensing data collection and processing

Cloud-free satellite remote sensing imagery, including one
WorldView-2 image (2 m), one GeoEye-1 image (2 m), two RapidEye
images (5 m), and two Landsat 8 images (30 m) in Kothapally, and one
WorldView-2 image, one Pleiades-1A image (2 m), two RapidEye
images, and two Landsat 8 images in Masuti, were acquired to extract
environmental variables in soil TN prediction models (Table 2). Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (DEM) data were obtained in
order to extract topographic attributes in both study areas. Table 2 lists
all the satellite remote sensing images in the two study areas.

The original pixel values of raw remote sensing images are Digital
Numbers (DNs). Radiometric calibration was applied to transform the
DNs to top-of-atmosphere spectral radiance using different algorithms
depending on the remote sensing products. Atmospheric correction was
utilized to convert all the spectral radiance images into surface re-
flectance images using the Fast Line-of-Site Atmospheric Analysis of
Spectral Hypercubes (FLAASH) tool in the ENVI 5.0 software (Exelis
Visual Information Solutions, Boulder, Colorado).

2.4. Spectral indices extraction

Multiple spectral indices were extracted from Landsat 8, RapidEye,
WorldView-2, GeoEye-1 and Pleiades-1A in the two study areas.
Topographic attributes such as elevation (m), slope (degree), aspect
(degree), flow direction, and flow accumulation were extracted from
the ASTER Global DEM. Table 3 lists all the environmental variables
including spectral indices, topographic attributes and geographic at-
tributes in this research. Selected environmental variables were in-
corporated into the soil TN prediction models.

2.5. Regression kriging

The ordinary kriging method predicts the soil property by calcu-
lating the weighted average of the observations (Webster and Oliver,
2001):

∑= ∗
=

z s λ z s( ) ( )
i

n

i i0
1


(1)

where z s( )0 is the predicted value of the target soil properties at an
unvisited location s0, given its coordinates, the sample z(s0), z(s0), …, z
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Fig. 1. The boundary and soil samplings of Kothapally and Masuti Village.

Table 1
Description of soil samples.

Kothapally Masuti

Soil types Vertisols Vertisols, Entisols
Crop types Major types: Cotton, rice, sorghum

Other types: Beet, bitter gourd, eggplant, carrot, chiles, chickpea, cucumber, coriander,
flowers, limes, maize, mango, okra, onion, potato, pigeon pea, turmeric, safflower,
tomato

Major types: Cotton, rice, maize, sorghum, tomato, onion
Other types: Banana, chickpea, eggplant, groundnut, millet, onion,
pigeon pea, peanut, sugarcane, safflower, sunflower, wheat

Land use Grassland land, fallow land, farmland Forest Land, fallow land, grassland, bare land, farmland
Soil color dark greyish brown, dark brown, dark reddish brown dark greyish brown, dark brown, dark reddish brown
Tillage methods Rainfed, Irrigation Rainfed, Irrigation
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(s0), and their coordinates. The weights λi are chosen such that the
prediction error variance is minimized, yielding weights that depend on
the spatial autocorrelation structure of the variable.

The regression approach predicts the soil property by modelling the
relationship between the target soil property and auxiliary environ-
mental variables (e.g. spectral indices) at soil sampling locations and,
then applying it to unvisited locations using the known value of the
auxiliary variables at those locations (Hengl et al., 2007). Multiple
linear regression was used to model the relationships between soil TN
and spectral indices from different remote sensing images.

Regression kriging (Hengl et al., 2007) combines these two ap-
proaches: multiple linear regression is used to fit the explanatory
variables, and ordinary kriging is used to fit the residuals of the mul-
tiple linear regression:

̂ ∑ ∑= + = ∗ + ∗
= =

z s m s e s β q s λ e s( ) ( ) ( ) ( ) ( )
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k k
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(2)

where m s( )0 is the fitted drift, ̂e s( )0 is the interpolated residual, βk are
the estimated regression coefficients, qk(s0) are the values of the en-
vironmental variables, and p is the number of predictors or environ-
mental variables. λi are the kriging weights determined by the spatial
dependence structure of the residual, and e(si) is the residual at location
si. The regression coefficients βk are estimated from the sample by or-
dinary least squares (OLS) in this study.

Several R software (R Development Core Team, 2014) packages
such as sp., gstat, geoR, rgdal, maptools, and lattice, were utilized to
build the regression kriging models and map soil TN.

2.6. Validation of model accuracy

For each soil TN prediction model, all the soil sampling points were
randomly split into a calibration set (70%, Kothapally: 179 points,
Masuti: 76 points) for model calibration and a validation set (30%,
Kothapally: 180 points, Masuti: 79 points) for independent model va-
lidation. The Kolmogorov-Smirnov test was applied for the soil cali-
bration and validation sets to ensure that they had the same distribu-
tion. A log-transformation was applied to the whole soil dataset,
calibration soil data set, and validation soil dataset to ensure the normal
distribution of soil data. The coefficient of determination (R2), root
mean squared error (RMSE), and residual prediction deviation (RPD)
(Bellon-Maurel et al., 2010) were computed using R software and used

Table 2
Environmental variables from remote sensing images.

Remote sensing images (acquisition date) Abbreviation Spatial resolution (m)

Kothapally
Landsat 8 image (2013-4-13) LTa 30
Landsat 8 image (2013-4-29) LTb 30
RapidEye image (2010-4-19) REa 5
RapidEye image (2013-2-24) REb 5
WorldView-2 image (2011-12-14) WVa 2
GeoEye-1 image (2011-1-21) GE 2

Masuti
Landsat 8 image (2013-4-20) LTc 30
Landsat 8 image (2013-5-22) LTd 30
RapidEye image (2012-12-11) REc 5
RapidEye image (2013-4-13) REd 5
WorldView-2 image (2011-2-28) WVb 2
Pleiades-1A image (2013-3-3) PL 2

Bands of Landsat 8: Coastal, Blue, Green, Red, Near Infrared (NIR), Short Wavelength
Infrared band 1, Short Wavelength Infrared band 2, Panchromatic, Cirrus, Long
Wavelength Infrared band 1, Long Wavelength Infrared band 2.
Bands of RapidEye: Blue, Green, Red, Red edge, NIR.
Bands of WorldView-2: Coastal, Blue, Green, Yellow, Red, Red edge, NIR band1, NIR
band2.
Bands of GeoEye-1 and Pleiades-1A: Blue, Green, Red, NIR.

Table 3
Environmental variables from remote sensing images.

Environmental variables Abbreviation References

Coastal band reflectance Coastal
Blue band reflectance Blue
Green band reflectance Green
Yelllow band reflectance Yellow
Red band reflectance Red
Red edge band reflectance Rededge
Near Infrared band reflectance NIR
Near Infrared band 1 reflectance NIR1
Near Infrared band 2 reflectance NIR2
Short Wavelength band 1 reflectance SWIR1
Short Wavelength band 2 reflectance SWIR2
Green/Blue ratio GB
Red/Blue ratio RB
Red/Green ratio RG
Red edge/Blue ratio REB
Red edge/Green ratio REG
Red edge/Red ratio RER
NIR/Blue ratio NB
NIR/Green ratio NG
NIR/Red ratio NR
NIR1/Blue ratio N1B
NIR1/Green ratio N1G
NIR1/Red ratio N1R
NIR1/Red edge ratio N1RE
NIR2/Blue ratio N2B
NIR2/Green ratio N2G
NIR2/Red ratio N2R
NIR2/Red edge N2RE
NIR2/NIR1 ratio N2N1
SW1/Blue ratio S1B
SW1/Green ratio S1G
SW1/Red ratio S1R
SW1/NIR ratio S1N
SW2/Blue ratio S2B
SW2/Green ratio S2G
SW2/Red ratio S2R
SW2/NIR ratio S2N
SW2/SW1 ratio S2S1
Normalized Difference Vegetation

Index
NDVI Rouse et al. (1974)

Normalized Difference Green Index NDVIg Gitelson et al. (1996)
Simple Ratio SR Cohen (1991)
Transformed Spectral Index TVI Nellis and Briggs (1992)
Green Chlorophyll Index CIg Gitelson et al. (2005)
Soil Adjusted Vegetation Index SAVI Qi et al. (1994)
Atmospherically Resistant Vegetation

Index
ARVI Kaufman and Tanré

(1996)
Crust Index CI Karnieli (1997)
Modified Chlorophyll Absorption in

Reflectance Index
MCARI Daughtry et al. (2000)

Red-edge Chlorophyll Index CIr Gitelson et al. (2005)
Normalized Difference Red-edge

Index
NDVIr Gitelson and Merzlyak

(1994), Sims and Gamon
(2002)

Transformed Chlorophyll Absorption
in Reflectance Index

TCARI Haboudane et al. (2002)

Moisture Stress Index MSI Rock et al. (1986)
Normalized Difference Water Index NDWI Gao (1996)
Mid-infrared Index MidIR Musick and Pelletier

(1988)
Bare Soil Index BSI Rikimaru and Miyatake

(1997)
Normalized Difference Soil Index NDSI Rogers and Kearney

(2004)
At-satellite brightness temperature

for band 10 (10.30–11.30 μm)
(K)

T1

At-satellite brightness temperature
for band 11 (11.50–12.50 μm)
(K)

T2

Elevation (m) Elevation
Aspect (degree) Aspect
Flow accumulation FlowAccu
Flow direction FlowDir
Slope (degree) Slope
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to compare different regression kriging models.

3. Results

3.1. Descriptive analysis of soil TN

Descriptive analysis of soil TN and log-transformed soil TN is shown
in Table 4. TN showed a positive-skewed distribution, with a mean of
869 mg kg−1, a median of 856 mg kg−1, and a range of 1492 mg kg−1

in Kothapally. Total nitrogen showed a positive-skewed distribution,
with a mean of 514 mg kg−1, a median of 487 mg kg−1, and a range of
1016 mg kg−1 in Masuti. The mean of soil TN is lower in Masuti
compared to that in Kothapally. After the log-transformation, all the
datasets (whole, calibration, and validation) of soil TN were Gaussian
distributed in the two study areas.

3.2. Correlation coefficients between soil TN and spectral indices from
different remote sensing images

Table 5 shows Spearman's rank correlation coefficients between soil
TN and spectral indices from different remote sensing images. The At-
mospherically Resistant Vegetation Index (ARVI) and Crust Index (CI)
from Landsat 8, RapidEye, WorldView-2, GeoEye-1, and Pleiades-1A
showed positive correlations with TN in both study areas. Near-in-
frared-related spectral indices from all remote sensing images, such as
Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and
Transformed Spectral Index (TVI), and red-edge-related spectral indices
from WorldView-2 and RapidEye, such as Normalized Difference Red-
edge Index (NDVIr) and Red-edge Chlorophyll Index (CIr), as well as
the band ratio between NIR band 2 to red-edge (N2RE), showed rela-
tively strong positive correlations with TN in both study areas. Band
ratios such as red to green (RG), red to blue (RB), and short wavelength
(SWIR) band 2 to SWIR band 1 (S2S1), as well as the band reflectances
such as red band (Red), yellow band (Yellow) and blue band (Blue)
from remote sensing images showed relatively strong negative corre-
lations with TN in both study areas. Bare soil indices such as the Bare
Soil Index (BSI) and Normalized Difference Soil Index (NDSI) from
Landsat 8 showed relatively strong negative correlations with TN in
both study areas. Thermal band-related spectral indices from Landsat 8
such as at-satellite brightness temperature for thermal band 1
(10.30–11.30 μm) (T1) and thermal band 2 (11.50–12.50 μm) (T2) also
showed relatively strong negative correlations with TN.

3.3. Multiple linear regression models

Six multiple linear regression models between log-transformed TN
(calibration soil data set) and spectral indices in Kothapally (K1, K2,
K3), and in Masuti (M1, M2, M3) are shown in Table 6. All six multi-
linear regression models showed relatively low coefficients of

determination (< 0.3). Ordinary kriging was performed on the re-
siduals of the six multiple linear regression models. Six regression kri-
ging models of TN based on the multiple linear regression models in
Kothapally (KR1, KR2, and KR3) and Masuti (MR1, MR2, and MR3)
were built to predict soil TN and characterize the spatial pattern of TN
in both study areas (Table 7).

3.4. Characterization of soil TN in smallholder farms

3.4.1. Spatial pattern of TN at different spatial resolutions in Kothapally
Spatial variations of soil TN in Kothapally generally showed a si-

milar pattern in three maps in Fig. 2. Total nitrogen in the southwestern
and northern areas of the village was relatively lower compared with
other areas. The east-west strip areas in the center of the village and the
southeastern area of the village had relatively higher TN. TN variation
based on Landsat 8 images (Fig. 2(A)) was smoother than in the other
two maps in Fig. 2. The finer characterization of the TN pattern ex-
emplified the advantages of model KR3 (Fig. 2(C)) based on World-
View-2 and GeoEye-1 spectral indices in depicting the TN pattern in
small farmlands.

Spatial variation of soil TN in Farmland A (a small farmland in
Kothapally) demonstrated the similarities and differences of the three
models more clearly (Fig. 3). Generally, Fig. 3(A), (B), and (C) showed
relatively low TN in the northwestern and southeastern areas of
Farmland A and relatively high TN from the southwest to northeast
across Farmland A. Fig. 3(A) generalized the TN distribution, and it
may mix the spatial pattern of TN in different field blocks owned by
many farmers. Fig. 3(B) had a higher capability to detect the fine var-
iations in Farmland A, such as the fragmented TN pattern across the
Farmland A. Fig. 3(C) showed the evident rectangular patchy pattern of
TN in each field block, the linear low TN pattern in the western area of
Farmland A, and subtle variations of TN in each field block.

3.4.2. Spatial pattern of TN at different spatial resolutions in Masuti
The distribution of TN based on models MR1, MR2 and MR3 showed

similar spatial patterns (Fig. 4). Total nitrogen was relatively higher in
the southwestern area of the village compared with other areas (Fig. 4).
An irrigation channel was located in this region that it may bring more
water and increase soil moisture in the region. Total nitrogen was re-
latively low in the northern area of the village where most of the area
was permanently fallow, and the main soil types were Entisols ac-
cording to the ICRISAT. Venkanna et al. (2014) also concluded that TN
was higher in cultivated fields than in permanently fallow soils, and
higher under irrigated conditions than under rainfed conditions in the
semiarid region of South India. The farmland close to a dam in the
north-central area of the village also had relatively high TN. Vertisols
are the main soil type in the southern area of the village, and this soil
type is rich in montmorillonite clay and has a relatively high ex-
changeable buffering capacity in South India (Krishna, 2010).

Table 4
Descriptive analysis of original and log-transformed TN.

Location Transform Data type N Mean Median SD Min Max Range Skew Kurtosis CV

Kothapally Total 255 869 856 221 329 1821 1492 0.47 1.05 0.25
Calibration 179 874 856 222 400 1821 1421 0.63 1.37 0.25
Validation 76 856 860 217 329 1507 1178 0.06 −0.02 0.25

Masuti Total 259 514 487 186 166 1182 1016 0.59 0.14 0.36
Calibration 180 514 487 191 166 1182 1016 0.63 0.17 0.37
Validation 79 515 487 177 206 1059 853 0.47 −0.12 0.34

Kothapally log10(x) Total 255 2.92 2.93 0.11 2.52 3.26 0.74 −0.46 0.53 0.04
log10(x) Calibration 179 2.93 2.93 0.11 2.6 3.26 0.66 −0.32 0.42 0.04
log10(x) Validation 76 2.92 2.93 0.12 2.52 3.18 0.66 −0.71 0.52 0.04

Masuti log10(x) Total 259 2.68 2.69 0.16 2.22 3.07 0.85 −0.3 −0.25 0.06
log10(x) Calibration 180 2.68 2.69 0.16 2.22 2.98 0.76 −0.35 −0.35 0.06
log10(x) Validation 79 2.69 2.68 0.17 2.23 3.07 0.84 −0.21 −0.15 0.06

Abbreviations: N, number of samples; SD, standard deviation; CV; coefficient of variation.
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Venkanna et al. (2014) and Srinivasarao et al. (2009) also indicated
that soil organic carbon and soil nitrogen are relatively higher in Ver-
tisols than in other soil types in South India. As a result, the TN in the
southern area of the village was relatively higher than in the northern
area of the village. Unlike the homogeneous and smooth variation of TN
in the 30 m map produced by MR1 (Fig. 4(A)), there is a heterogeneous

and fragmented spatial variation of TN in the 2 m map produced by
model MR3 (Fig. 4(C)). Fig. 4(A) showed a large continuous area in the
northern area of the village containing TN at lower concentrations than
400 mg kg−1. However, Fig. 4(B) and (C) revealed a mosaicked spatial
pattern of TN in the northern area of the village.

Fig. 5 shows the prediction for TN in Farmland B (a small farmland
in Masuti). All three maps in Fig. 5 show relatively low TN in the
northern and southeastern Farmland B, and relatively high TN in the
western Farmland B. The Landsat 8-based TN map (Fig. 5(A)) only
showed a few pixels. The RapidEye-based TN map (Fig. 5(B)) identified
high TN in the northern area of Farmland B and a more detailed TN
pattern. The WorldView-2/Pleiades-1A-based TN map (Fig. 5(C))

Table 5
Linear correlations between soil TN and spectral indices different remote sensing images.

Kothapally

Landsat 8 RapidEye WV and GE

Index R Index R Index R

LTbRG −0.419 REbRed −0.429 GECI 0.475
LTbARVI 0.409 REbARVI 0.421 GERB −0.475
LTaARVI 0.397 REbCI 0.412 GERed −0.474
LTbCI 0.390 REbRB −0.412 GERG −0.440
LTbRB −0.390 REbRG −0.404 GEBlue −0.395
LTaRG −0.373 REbBlue −0.387 WVaCI 0.393
LTbT2 −0.373 REbNDVIr 0.385 WVaRB −0.393
LTbT1 −0.368 REbCIr 0.385 GEGreen −0.390
LTaCI 0.364 REbNRE 0.385 WVaRG −0.372
LTaRB −0.364 REaARVI 0.381 GEARVI 0.351
LTbRed −0.353 REbNDVI 0.367 WVaRed −0.325
LTaRed −0.339 REbSR 0.367 WVaYellow −0.318
LTbBSI −0.318 REbTVI 0.367 GENDVI 0.262
LTaT1 −0.309 REbNR 0.367 GESR 0.262
LTaMidIR 0.289 REbGreen −0.364 GETVI 0.262

Masuti

Landsat 8 RapidEye WV and PL

Index R Index R Index R

LTcARVI 0.481 REcCI 0.414 WVbCI 0.45
LTcRG −0.481 REcRB −0.414 WVbRB −0.45
LTcBSI −0.478 REcRededge −0.388 PLRG −0.44
LTdRG −0.465 REcRed −0.379 PLCI 0.437
LTdCI 0.454 REdRededge −0.371 PLRB −0.437
LTdRB −0.454 REdCI 0.368 PLRed −0.424
LTcCI 0.45 REdRB −0.368 WVbRG −0.417
LTcRB −0.45 REcREB −0.365 WVbRed −0.405
LTdBSI −0.447 REcGreen −0.351 WVbYellow −0.402
LTcRed −0.442 REdRed −0.346 PLGB 0.397
LTdARVI 0.441 REcGB −0.344 PLBlue −0.384
LTdRed −0.441 REdGreen −0.339 WVbN2RE 0.381
LTcSWIR2 −0.432 REcARVI 0.338 WVbARVI 0.379
LTcNDWI 0.416 REcRG −0.335 PLARVI 0.376
LTcMSI −0.416 REdGB −0.32 PLGreen −0.369

Nomenclature of the variables in Table 5: Remote Sensing Image (Abbreviations in Table 2) + Spectral Index (Abbreviations in Table 3). All the spectral indices in Table 5 show
significant correlations with soil TN (p < 0.05).

Table 6
Multi-linear regression model of soil TN.

Model Multi-linear regression model Spatial
resolution (m)

R2

K1 logTN = 6.09 + 1.02*LTbCI-
0.014*LTbT2 + 0.07*LTbS2B-0.008*Slope

30 0.22

K2 logTN = 3.16 + 0.21*REaARVI-0.08*REbRed
+ 0.59*REbCI

5 0.21

K3 logTN = 2.19 + 0.77*GECI-0.01*Slope
+ 1.45*WVaBlue + 0.37*WVaNDVIr

2 0.26

M1 logTN = 5.90 + 0.44*LTcARVI + 0.15*LTcBSI-
0.89*LTcSWIR1-0.01*LTcT1

30 0.24

M2 logTN = 2.77 − 0.23*REcRB + 0.19*REcGB-
0.13*REcRededge + 0.15*REcARVI

5 0.20

M3 logTN = 1.13 + 1.02*WVbCI
+ 0.69*WVbN2RE-0.73*WVbCIr

2 0.31

Table 7
Model validation results of regression kriging models for TN.

Model Adj R2 RMSE (mg kg−1) RPD Spatial resolution (m)

KR1 0.28 179.46 1.16 30
KR2 0.36 167.89 1.24 5
KR3 0.42 159.36 1.31 2
MR1 0.48 146.24 1.33 30
MR2 0.41 148.70 1.30 5
MR3 0.56 130.73 1.49 2
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characterized the gradient variation and fragmented pattern of TN in
Farmland B, which demonstrated the paramount advantages of Model
MR3 in displaying the TN in different field blocks and depicting the
subtle variation of TN in each field block.

3.4.3. Validation of regression kriging model for TN
Table 7 shows the validation results of soil TN prediction models in

both study areas. In Kothapally, the RK model of TN based on World-
View-2 and GeoEye-1 images (KR3) attained the highest model fit
(R2 = 0.42) and lowest prediction error (RMSE = 159.36 mg kg−1)
compared with the RK models of TN based on Landsat 8 (KR1) and
RapidEye (KR2). In Masuti, the Landsat 8-based model MR1 can still
attain fair prediction accuracy (R2 = 0.48; RMSE = 146.24 mg kg−1)
regardless of its relatively coarse spatial resolution (30 m). RapidEye-
based model MR2 attained lower prediction accuracy (R2 = 0.41;
RMSE = 148.70 mg kg−1) compared with Landsat 8-based model
MR1. Model MR3 based on WorldView-2 and Pleiades-1A attained the
highest prediction accuracy (R2 = 0.56; RMSE = 130.73 mg kg−1).

4. Discussion

4.1. Spectral indices with different spatial resolutions

The reflectance of vegetation was low in both blue and red spectrum
regions due to the absorption by chlorophyll for photosynthesis. In

contrast, the reflectance of bare soil increased steadily in the visible and
near-infrared (VNIR) spectral region. Most research has already con-
firmed that the visible band spectral reflectances of bare soils are higher
than those of vegetated areas (Holben, 1986), and the visible band
spectral reflectances of relatively dry soils are higher than those of re-
latively wet soils (Fabre et al., 2015). The strong negative relationship
between visible band reflectances and soil TN suggested that less ve-
getated areas tend to have less soil TN than richly vegetated areas, and
drier soils tend to have less soil TN than wetter soils. The Crust Index
(CI) and ARVI of different remote sensing images all showed relatively
strong positive correlations with TN. As soil crusts contribute to soil
stability, soil build-up, soil fertility, and soil water regime in arid and
semi-arid areas, the strong positive relationship between CI and TN
confirmed the importance of soil crust for soil TN conservation in the
study areas. ARVI, which uses the difference in the radiance between
the blue and the red channels to correct the radiance in the red channel,
is four times less sensitive to atmospheric conditions compared to NDVI
(Kaufman and Tanre, 1992). Red-edge measurement is valuable for the
assessment of vegetative chlorophyll status and leaf area index in-
dependent of ground cover variations (Horler et al., 1983; Mutanga and
Skidmore, 2004). The strong correlations between red edge-related
indices (e.g., NDVIr and red-edge spectral reflectances) and soil TN in
both study areas also suggested that those indices have strong pre-
dictive capability in soil TN prediction models in South India.

Spectral indices from SWIR have the potential to provide

Fig. 2. Soil total nitrogen (TN) prediction at 0–15 cm depth in Kothapally from (A) Model KR1: Regression kriging of TN based Landsat 8 images; (B) Model KR2: Regression kriging
model of TN based on RapidEye images; (C) Model KR3: Regression kriging model of TN based on WorldView-2 and GeoEye-1 images.
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information about soil moisture conditions, as water has pronounced
absorption features in the SWIR region (van der Meer, 2004). This
suggests that the soil water can increase the absorption of SWIR and
decrease the reflectance in SWIR region. The strong negative relation-
ship between soil TN and SWIR reflectances suggests the accumulation
of soil TN in low SWIR reflectance areas (wet soils or vegetation areas).
The results of Musick and Pelletier (1988) showed that the Mid-infrared
Index (MidIR, band ratio of SWIR band 1 to SWIR band 2) had a po-
sitive relationship with soil water content. The relatively strong positive
relationship between the MidIR from Landsat 8 and TN demonstrated
the importance of soil water content in retaining soil TN in this area.

The negative correlations between Thermal infrared (TIRS) indices,
such as at-satellite brightness temperatures of thermal bands (band 10
and band 11) from Landsat 8 and TN suggested that soils with relatively
lower at-satellite brightness temperatures (higher water content) were
likely to contain higher TN than soils with relatively higher at-satellite
brightness temperatures (lower water content). Many researchers have
also tried to estimate soil moisture from at-satellite brightness tem-
perature data using multiple algorithms (Paloscia et al., 2006; Song
et al., 2014).

Due to the limited remote sensing images in the two study areas,
there is a discrepancy between the acquisition date of the remote sen-
sing images and soil collection time. This problem may explain the low
correlations between some spectral indices and soil TN in Table 5
(< 0.4). The spectral behavior of the spectral indices from different
remote sensing images is similar. For example, the ARVI and CI from

remote sensing images in both study areas all had relatively strong
positive correlations with TN. The spectral reflectances and band ratios
from remote sensing images in both study areas all had relatively strong
negative correlations with TN. These results suggested the transfer-
ability of important spectral indices in soil prediction models in dif-
ferent semi-arid smallholder farms. The correlation relationships be-
tween multiple spectral indices and soil TN also suggested that soil
moisture, vegetation, and soil crusts could contribute to the conserva-
tion of soil TN in both study areas. In all, the Crust Index, which showed
the soil crust, NIR band-related and red-edge band-related vegetation
indices, which reflected the vegetation cover and biomass, and band
reflectances and band ratios, which indicated the soil moistures, were
the indices that displayed relatively strong correlations with TN and
were included in the regression model (Table 6).

4.2. Selection of remote sensing images for Digital Soil Mapping in
smallholder farms

Due to the wider spectral range and larger number of spectral bands
of the Landsat 8 images, spectral indices from the visible-NIR-SWIR-TIR
spectrum region can provide spectral information about soil moisture,
vegetation and soil temperature, which affect the spatial pattern of soil
properties. In addition, Landsat 8 has higher temporal resolution than
commercial satellites and can reflect multi-period soil-landscape in-
formation. As a result, models KR1 and MR1 can still attain fair pre-
diction results at a relatively low spatial resolution (30 m). Due to the

Fig. 3. Soil TN prediction at 0–15 cm depth in Farmland A from (A) Model KR1; (B) Model KR2; (C) Model KR3 in Kothapally.
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Fig. 4. Soil TN prediction at 0–15 cm depth in Masuti from (A) Model MR1: Regression kriging of TN based Landsat 8 images; (B) Model MR2: Regression kriging model of TN based on
RapidEye images; (C) Model MR3: Regression kriging model of TN based on WorldView-2 and Pleiades-1A images.
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availability of freely available remote sensing images such as Landsat
and Sentinels, the application of DSM in data poor regions such as
smallholder farms can be promoted with little human and financial
support.

The application of Very High Resolution (VHR) remote sensing
images in the DSM domain in smallholder farms is in its infancy. The
comparison of soil prediction models based on different remote sensing
images also suggested that the spectral indices from VHR remote sen-
sing did not necessarily result in higher prediction accuracy for soil
prediction models compared with those from medium resolution re-
mote sensing data. For example, the prediction accuracy of Model MR2,
based on RapidEye was lower than that of Model MR1, based on
Landsat 8. The spatial pattern of soil properties such as TN in small-
holder farm settings may also be affected by micro-scale topographic
attributes and human agricultural practices. These factors cannot be
captured in their entirely by even fine resolution spectral indices.

The complexity and variation of TN in Kothapally (Fig. 2(C)) and

Masuti (Fig. 4(C)) confirmed that the soil prediction models based on
WorldView-2, GeoEye-1 and Pleiades-1A have paramount advantages
over other models in depicting the subtle variation of soil properties in
small farmlands. WorldView-2/GeoEye-1/Pleiades-1A-based soil TN
prediction models attained the highest model accuracy (R2 > 0.4) in
both study areas. WorldView-2 images have a red-edge band
(705–745 nm), a new NIR band (860–1040 nm) and finer spatial re-
solution compared with other images. The WorldView-2 image is the
first sensor to include the yellow, red-edge, coastal, two separate NIR
and traditional visible bands in a single focal plane (Wolf, 2010). The
new coastal band has the potential to produce more spectral indices to
reflect subtle moisture differences, such as soil and surface moisture
levels, which are not exploitable by traditional Visible-NIR multi-
spectral images (Wolf, 2010). These VHR remote sensing spectral in-
dices can capture more detailed and unmixed spectral and spatial in-
formation in fine landscape agricultural fields.

Fig. 5. Soil TN prediction at 0–15 cm depth in Farmland B from (A) Model MR1; (B) Model MR2; (C) Model MR3 in Masuti.
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4.3. Site-specific soil management schemes based on DSM in smallholder
farms

To help smallholder farmers identify the soil nutrient status in their
fields, it is important to map soil nutrients such as soil TN in small-
holder villages. Soil TN prediction models only incorporating remote
sensing spectral indices can still attain fair prediction accuracy. This
research suggests that digital soil models utilizing remote sensing
spectral indices from Landsat 8 have a high potential to be widely ap-
plied in smallholder farms due to the free acquisition of the images, fine
temporal resolution, and fair model performance. Digital soil models
utilizing Very High Resolution (VHR) images such as WorldView-2 and
Pleiades-1A have a strong capability to characterize the spatial pattern
of soil properties in fine scale farmland and provide more site-specific
soil recommendations in smallholder farms, due to the fine spatial re-
solution and fair model performance. As commercial satellites usually
required image purchases and more processing time and have limited
image acquisitions, the wide application of DSM research based on VHR
images in the smallholder farm settings is less practical. Agricultural
experts, policymakers and other end-users of DSM can choose different
types of Very High Resolution images as options for building soil pre-
diction models, and guide the soil management in smallholder farms
according to financial budget and data availability.

In future research, hyperspectral images such as Hyperion, airborne
visible/infrared imaging spectrometer (AVIRIS) and Unmanned Aerial
Vehicle (UAV)-based remote sensing products also have potential to be
utilized in Digital Soil Mapping research and help smallholder farmers
implement field-specific soil nutrient management schemes.

5. Conclusions

The results demonstrated that soil moisture, vegetation, and soil
crusts could contribute to the conservation of soil TN in both study
areas. Soil TN models with different spatial resolutions showed similar
spatial patterns of soil TN. The effect of very fine spatial remote sensing
spectral data inputs does not always lead to an increase in soil pre-
diction model performance. This research suggested that soil prediction
models utilizing satellite imagery-derived spectral indices from Landsat
8 have a high potential to be widely applied in smallholder farm set-
tings due to the free acquisition of images, high temporal resolution and
relatively strong prediction capability. Agricultural experts, policy-
makers and other end-users of DSM can choose different types of Very
High Resolution images as options for building soil prediction models,
and guide soil nutrient management in smallholder farms according to
financial budget and data availability.
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