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A B S T R A C T

Agricultural intensification and efficient use and targeting of fertilizer inputs on smallholder farms is key to
sustainably improve food security. The objective of this paper is to demonstrate how high-resolution satellite and
unmanned aerial vehicle (UAV) images can be used to assess the spatial variability of yield, and yield response to
fertilizer. The study included 48 and 50 smallholder fields monitored during the 2014 and 2015 cropping
seasons south-east of Koutiala (Mali), cropped with the five major crops grown in the area (cotton, maize,
sorghum, millet and peanuts). Each field included up to five plots with different fertilizer applications and one
plot with farmer practice. Fortnightly, in-situ in each field data were collected synchronous with UAV imaging
using a Canon S110 NIR camera. A concurrent series of very high-resolution satellite images was procured and
these images were used to mask out trees. For each plot, we calculated vegetation index means, medians and
coefficients of variation. Cross-validated general linear models were used to assess the predictability of relative
differences in crop yield and yield response to fertilizer, explicitly accounting for the effects of fertility treat-
ments, between-field and within-field variabilities. Differences between fields accounted for a much larger
component of variation than differences between fertilization treatments.

Vegetation indices from UAV images strongly related to ground cover (R2=0.85), light interception
(R2=0.79) and vegetation indices derived from satellite images (R2 values of about 0.8). Within-plot dis-
tributions of UAV-derived vegetation index values were negatively skewed, and within-plot variability of ve-
getation index values was negatively correlated with yield. Plots on shallow soils with poor growing conditions
showed the largest within-plot variability. GLM models including UAV derived estimates of light interception
explained up to 78% of the variation in crop yield and 74% of the variation in fertilizer response within a single
field. These numbers dropped to about 45% of the variation in yield and about 48% of the variation in fertilizer
response when lumping all fields of a given crop, with Q2 values of respectively 22 and 40% respectively when
tested with a leave-field-out procedure. This indicates that remotely sensed imagery doesn’t fully capture the
influence of crop stress and management. Assessment of crop fertilizer responses with vegetation indices
therefore needs a reference under similar management. Spatial variability in UAV-derived vegetation index
values at the plot scale was significantly related to differences in yields and fertilizer responses. The strong
relationships between light interception and ground cover indicate that combining vertical photographs or high-
resolution remotely sensed vegetation indices with crop growth models allows to explicitly account for the
spatial variability and will improve the accuracy of yield and crop production assessments, especially in het-
erogeneous smallholder conditions.

1. Introduction

Yields in smallholder fields are often only 20% of attainable yields
(Tittonell and Giller, 2013). Yield gaps are usually defined as the

difference between water-limited and actual yields (van Ittersum et al.,
2013). These yield gaps may be caused by many factors, including
management (choice of crop variety, suboptimal plant density and
sowing dates, limited use of fertilizers, weeding, pest and disease
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control) and biophysical constraints (pH, macro- and micro nutrient
availability). There is an urgent need to sustainably intensify to feed the
fast growing populations in sub-Saharan Africa, while limiting expan-
sion of agricultural land-use (van Ittersum et al., 2016). Reliable esti-
mates of attainable yields and realized production at field and farm
scales are needed to better inform policy makers, farmers and suppliers
of inputs and credit, to more effectively intensify and ensure that inputs
are targeted efficiently. Farmer investments in intensification are driven
by the expected return on investment, for which reliable knowledge
about the expected yield response (the additional kg of yield per kg of
nutrient applied) is key information but known to vary strongly over
small distances, governed mostly by influence of past management
(Zingore et al., 2011). Better information about the differences in the
response to applied nutrients within and between fields may help
maximize financial returns for smallholders and other investors.

Quantitative information about crop management and crop growth
may help inform government agencies and actors in agricultural value
chains. This will help to accelerate the intensification of smallholder
farming systems by improving credit facilities, input supply mechan-
isms and market options. Smallholder farming systems in sub-Saharan
Africa are highly diverse. Spatial variability is large intra-field, as trees
are omnipresent in fields and inter cropping or relay cropping (e.g.
peanuts and watermelon) is common. Environmental conditions (soil
type, fertility and water availability) vary strongly within landscapes
and even within fields (Tittonell et al., 2008). Natural spatial variability
is further compounded by heterogeneous management practices
(Tittonell et al., 2005a). Socio-economic factors also play an important
role as nutrient re-distribution by grazing animals and use of crop re-
sidues cause strong gradients in soil fertility, typically decreasing with
distance to the homestead (Tittonell et al., 2005b).

Precise monitoring of crop growth in smallholder fields with
abundant trees requires a time-series of very high resolution (VHR)
images, as observed spatial patterns in vegetation indices over cropland
areas change through time due to interactions between site, weather
and management. Interpreting these spatial patterns is therefore not
straightforward. For example, spatial patterns in the landscape may
emerge during the season due to staggered planting practices and dif-
ferences between crops in phenology, such as greening up rate and
plant senescence (Schut et al., 2010). Interpreting such spatial patterns
in smallholder landscapes in terms of yield or nutrient response is
therefore not straightforward, especially if only one single image is
available as sowing windows are typically wide, with frequent re-
sowing or transplanting when needed. A time-series of images may
resolve these temporal aspects in the observed spatial patterns, and may
be much more useful to assess differences in yield than one in-season
image. Further, a very high-resolution dry season-image provides
means to map evergreen tree locations, needed to eliminate the influ-
ence of trees on signals from the crop. Available optical satellite pro-
ducts are limited in that regard by their temporal resolution and their
cost (e.g. DigitalGlobe, Pleiades), by their spatial resolution (e.g.
MODIS, SPOT-Vegetation, Proba-V), and by cloud cover during the
growing season (all).

Unmanned Aerial Vehicle (UAV) systems do not suffer from such
strong cloud cover limitations and may present a useful alternative to
monitor crop growth. Also, they can be used to upscale plot data col-
lected at a limited number of locations to wider areas (van der Heijden
et al., 2007), providing means to upscale plot-based assessments at
relatively low costs. Unmanned aerial vehicles have been widely used
experimentally to monitor crops, e.g., for assessment of plant survival
and necrosis (Khot et al., 2016), precision agriculture (Zhang and
Kovacs, 2012), and plant phenotyping (Sankaran et al., 2015). With
UAV high-resolution images, crop height can be derived from surface
models (Bendig et al., 2014), and strong relationships with biomass
have been reported (Li et al., 2016). Most uses of UAV images are in the
context of high-input farming systems. To our knowledge, there is no
example of UAVs used to assess crop yield and its response to nutrients

in smallholder landscapes (Burke and Lobell, 2017).
In previous work, we showed that only about 50% of the within-

field variation in vegetation index values can be explained by fertili-
zation treatments (Blaes et al., 2016). We further showed that on a
landscape scale, the fraction in normalized difference vegetation index
(NDVI) variability attributable to fertilization treatment (1–23%) was
much smaller than the fraction attributable to between-field differences
arising from soil variability or other field management practices. Fields
within the same soil catena position were shown to be more alike, in-
dicating that catena and the interaction with farm management
strongly affect vegetation index values. Vegetation indices most
strongly respond to ground cover, while both ground cover and vege-
tation indices correlate with light interception by the crop. Interception
of photosynthetically active radiation is causally related to the crop
growth rate (Sinclair and Muchow, 1999) and accumulated crop growth
rates during grain filling determine crop yield (Goudriaan and Van
Laar, 1994).

Combining vegetation indices from image time-series with crop
growth models may provide means to develop a better understanding of
underlying processes (Bouman and Goudriaan, 1989). Images may also
inform about field conditions and crop status, e.g. spatial variability at
small scales may inform about plant density variations. We aim to
improve quantitative information on smallholder crop growth that
enable better links between crop growth models and actual farmer
yields using UAV and satellite data. The objective of this work is to test
whether UAV images can be used to assess differences in light inter-
ception and crop yields between smallholder fields, and responses to
fertilizer therein. The latter may be interpreted as an approximation of
the nutrient gap, i.e. the extra yield that can be obtained when com-
paring to an adequate fertilization reference. Secondly, we expect that
small-scale spatial variation may be an indicator of plant heterogeneity
and a proxy for poor crop growth conditions. We hypothesize that
knowledge of light interception and coefficients of spatial variation
helps to assess and explain differences in crop yield and response to
fertilizer between fields.

2. Materials and methods

2.1. Field data

During the 2014 and 2015 growing seasons, we collected ground
data in respectively 48 and 50 farm fields near Sukumba (Koutiala
District, Mali). The Sukumba village is located in the Sudano-Sahelian
climate zone, with an average annual rainfall of about 900mm (Traore
et al., 2013). Crops monitored included Maize, Peanut, Sorghum, Millet
and Cotton. Fields were located along a catena, covering light colored
alluvial valley soils with deep sandy loams (subsoil: clay loams),
shallow red colored sandy loams with gravelly material on intermediate
landscape positions and again somewhat deeper soils with sandy loam
topsoils and higher sub-surface clay contents, on plateau positions.
Fields were thus grouped into three broad strata (valley, intermediate
and plateau) based on combinations of soil type and elevation. Soil
types were derived from a map used for a regional study (PIRT-Projet
Inventaire des Ressources Terrestres, 1983). Each field included five or
six plots of 225m2 (15×15m) with different crop-specific fertilizer
application rates. Plot A reflected farmer practice, plot B did not receive
fertilizer and plots C to F received increasing amounts of fertilizer.
These plots were located at least 5 m away from the crown of trees,
ensuring that trees did not influence crop growth or UAV images. On
average, fields were sown around June 2nd (millet), June 5th (cotton)
and June 19th (maize, peanut and sorghum). Crops were mostly
manually sown, leading to wide sowing windows with standard de-
viations around these mean sowing dates of 16.4, 9.6, 7.9, 9.2 and
21.7 days for millet, cotton, maize, peanut and sorghum, respectively in
2014. Harvest dates varied a bit more: peanut was harvested first
around October 3rd (± 5.2 days), followed by cotton (November
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1st ± 5.2), maize (November 7th ± 17.2), sorghum (November
17th ± 5.6) and millet (November 29th±7.3).

From the second week of August 2014 onwards, data was collected
fortnightly in the field in five 4m2 quadrats. One quadrat was placed in
the center of the plot, the other four quadrats were placed on each plot
diagonal at 1/3 of the distance from the plot corners towards the center
(Fig. 1). In each quadrat, we measured the height of five individual
plants with a ruler and we assessed ground coverage with a downward
facing, vertical photograph using a 3m telescopic pole. These digital
images were processed with CAN-EYE freeware (www6.paca.inra.fr/
can-eye) and ground cover (GC) was estimated as the fraction of pixels
that was classified as green material (Blaes et al., 2016). Classification
in CAN-EYE relies on visual assessment of thresholds, these were de-
termined for each image separately. Ground cover for millet and sor-
ghum were only measured until flowering when crops grew beyond the
3m pole. At the end of the growing season, all quadrats were harvested.
At harvest, fresh matter weights were recorded with a field scale for
both reproductive (yield) and vegetative (stover and/or residues) parts.
Further details about the data collection protocol can be found else-
where (Blaes et al., 2015; Blaes et al., 2016).

In 2015, these fortnightly field-based observations and UAV flights
were continued during the full growing season, on the same crops but in
different fields within the landscape. Blaes et al. (2015) provide a more
complete description of experimental details.

2.2. UAV data

The SenseFly eBee UAV in use carried a Canon S110 NIR camera
with green, red and near-infrared filters. The camera system limitations
included spectral overlap in the red and green bands and wide pass-
bands (up to about 0.1 μm at half maximum). Channel 2 featured a
better visual contrast than channel 1. This section describes how eBee

image data was acquired, mosaicked and processed to correct for var-
iations in illumination resulting in pseudo-reflectance values that were
used to derive vegetation index values.

The eBee was flown over seven field clusters, including experi-
mental fields and plots (Fig. 1). Each cluster was revisited every fort-
night, although exact dates varied due to weather and other operational
conditions. The eBee was flown between 10 and 12 a.m. at 286m above
the ground surface, resulting in about 10×10 cm pixel sizes. The ex-
ploitable spatial resolution however, is coarser due to pervasive image
blur, noise and sensor limitations. Image acquisition settings ensured
70% lateral and 75% longitudinal overlap (Blaes et al., 2016).

Generation and mosaicking of ortho-images involved the use of a
network of 52 accurately geo-referenced ground control points, pro-
duction of digital surface models (DSM) for each flight, and correction
for variations in illumination conditions with a sensor-specific per-
pendicular vegetation index, the eBeePVI, following the soil line ap-
proach (Rondeaux et al., 1996; Xu and Guo, 2013). Full details on UAV
processing steps are provided as supplementary material. In the analysis
here, only eBeePVI and the difference DSM (dDSM, the difference be-
tween pre-and in-season DSM value) was used.

2.3. eBeePVI versus light interception and ground coverage

Relationships between eBeePVI, ground cover and measured light
interception were determined in an experiment at the ICRISAT research
station in Bamako in 2015. The experiment included plots with cotton,
sorghum, millet, maize and peanut. Every week, digital pictures were
taken from above the canopy and light interception was measured
weekly with an AccuPAR instrument (Decagon Devices, USA). Ground
coverage was determined from the digital pictures using the protocols
as described above. The eBee was also flown over these plots and
median plot eBeePVI was determined. From these measurements,

Fig. 1. The 2014 experimental layout for UAV and ground monitoring of 48 farmer fields (colored outlines), each including up to six fertility treatment plots of 225m2 each, within which
five quadrats of 4 m2 were used for ground data collection. The 48 fields were organized in seven flight clusters (black outlines), each including ground control points (black triangles).
The colors for the field boundaries reflect crop type (yellow for cotton, cyan for millet, blue for sorghum, red for maize and orange for peanut). The 2015 layout was similar with 50 fields
monitored from the same flight area (with about half reconducted from 2014 owing to crop rotations). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

A.G.T. Schut et al. Field Crops Research 221 (2018) 98–107

100



relationships between measured ground coverage, light interception
and eBeePVI were determined.

2.4. Satellite images

For comparison purposes, cloud-free WorldView-2, GeoEye-1 and
Quickbird images acquired on 22 and 30 May, 26 June, 29 July, 26
August, 25 September, 4 and 18 October and on 1 and 14 November in
2014 were orthorectified and atmospherically corrected using STARS
processing procedures (Stratoulias et al., 2015), and aligned to the first
image of the growing season with Erdas Autosync using a 2nd order
polynomial. From these corrected satellite images, median NDVI and
PVI values per plot were determined.

UAV-satellite image pairs were selected only when 6 days apart or
less, to limit the confounding influences of crop growth and, more
importantly, field management between the two dates. For example,
weeding practices may cause field greenness to change rapidly in time
and space.

2.5. Statistical analysis

For each UAV flight, per-plot vegetation index distributions, means,
standard deviations, skewness, kurtosis, coefficients of variation and
median values were determined. Observed distributions of eBeePVI and
estimated light interception values were tested for normality
(p < 0.05) using the one-sample Kolmogorov-Smirnov test. Temporal
means were computed over the period from 1 July (2015) or 1
September (2014) to 31 October (or date of harvest, whichever oc-
curred first) for each image-derived variable (median eBeePVI, satellite
NDVI, spatial CV values and light interception estimates).

Linear regression models were used to test whether estimates of
light interception in combination with coefficients of variation of ve-
getation indices can: 1) predict relative differences between fields
within one crop type; 2) assess crop response to fertilizer; and 3) assess
the importance of seasons. Additionally, we tested whether if the dif-
ference DSMs (dDSM, indicator of crop height) contained additional
information.

To account for yield differences between crop types, plot re-
productive material (Y, or kg fresh yield/ha) was divided by the mean Y
over all plots (p) in all fields (f) with the same crop type (ct), resulting
in relative Y values (RY). These RY values were used to determine the
RY response (RYR).

=RY
Y

Yct f p
ct f p

ct
, ,

, ,

The difference between the RY and RV of the fertilizer treatment
plot p, and the relative yield of unfertilized plot “B” in the same field
provided the relative yield response.
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The same was done for fresh vegetative (V) material, (providing RV
and RVR), and the natural logarithm of both GC and eBeePVI-derived
light interception estimates.

The B plots received either zero fertilizer (2015 and some fields in
2014) or the same as the farmer practice (plots A) due to late instalment
of trials in 2014. This is expected to have little effect as most farmers
apply only a limited amount of fertilizer and only for cotton and maize.
Further, absolute differences in plot averages between the B plot and
plots C, D, E and F were determined for UAV derived eBeePVI and light
interception.

In total, six general linear models (GLM) were used to estimate the
fraction of variation that can be explained by crop type, catena position,
temporal means of light interception and the coefficient of variation of
vegetation index values within plots, and interactions among them.
Combined data from 2014 and 2015 were used and are presented here,

results of a per year analysis are presented in the supplementary ma-
terials. Each of these models was used to explain variation in RY, RV,
RYR and RVR and included a year factor to account for year-to-year
differences. Explanatory variables used for models to explain RYR and
RVR variation only included the above-mentioned difference with B-
plot values.

The first GLM model (model I) used destructive plant measurements
to assess the total amount of variation in yield that was explained by
field (farmer management and crop type), and plot (fertilization) ef-
fects. The second GLM model (model II) evaluated how accurate dif-
ferences within a field could be assessed using vertical photographs.
The factor plot in model I was therefore replaced by the negative
logarithm of ground cover derived from vertical photographs taken in
each quadrat on every field visit. The third GLM model (model III)
evaluated how differences within a field could be assessed with UAV
imagery. Here, explanatory variables derived from eBee images (tem-
poral means of light interception, and coefficient of variation) sub-
stituted the plot term in Model 1 to assess the error, and the amount of
variation left unexplained. The fourth GLM model (model IV) assessed
how much of the between- and within-field variation could be ex-
plained using crop type, catena position, mean light interception and
the coefficient of variation of vegetation index values within plots and
interactions as explanatory variables. The field term was not included,
in contrast to models I, II and III. The fifth GLM model (model V) in-
cluded only estimates of light interception and the spatial coefficient of
variation, derived from the distribution of eBeePVI values within one
plot. Vegetation indices respond to ground cover, but are also sensitive
to chlorophyll contents, leaf stacking and leaf angle distributions. This
model provides an estimate of the loss of information when only light
interception estimates are used. The sixth GLM model (model VI) was
included to analyse the influence of dDSM. It followed the same
structure as model V but included year and crop interactions as an extra
explanatory factor and dDSM as variable.

Components of variation were assessed using an analysis of var-
iance. Leave-three-random-plots-out and leave-field-out cross-valida-
tions were used to test robustness of the regression models. When a field
was excluded, it means that all plots on that field were excluded from
calibration, similar to using the calibrated model for predictions of
relative yield and the response to applied fertilizer for an independent
field.

3. Results

3.1. Observed yields and biomass in the on-farm experiments

The observed average dry matter yields and total biomass amounts
are higher in 2014 than in 2015 for cotton, maize and sorghum,
whereas peanut yields were higher in 2015 (Table 1). The average yield
response to the fertilizer treatments was small, but spatial variability in
both yields and yield responses was large with CV values of 0.36–0.66
(Table 1) and standard deviations of yield responses frequently ex-
ceeding the means (Table S1, supplementary material), which reflects
the wide range of responses that were observed in the experimental
fields.

3.2. Estimates of light interception

The strong and negative exponential relationship between ground
cover (GC) and light interception (LI) explains 86% of the variation
(Fig. 2). The light extinction coefficient for an additional percentage of
ground cover is 0.0231. The eBeePVI is strongly related to ground cover
with an R2 value of 0.85. In principle, when eBeePVI is zero, ground
cover should also be zero. However, the intercept of the relationship is
negative, indicating that some soil pixels can also be found between 0
and 0.053, where the line intersects the x-axis. Therefore, an additional
term was included in the relationship between eBeePVI and light
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interception to accommodate for this shift. The estimated shift in this
relationship is 0.04, within the range of values for soil pixels. The re-
sulting model explains about 79% of the variation in LI. The negative
exponential relationship is commonly used to describe attenuation of
light within the canopy as function of leaf area index (LAI), with normal
light extinction coefficients of around 0.65 for LAI vs. LI (or LI= 1-
exp(−0.65 × LAI)). This also means that eBeePVI is linearly related to LAI
(LAI=−0.3704+9.26× eBeePVI).

3.3. Differences between fields within the landscape

There were large differences between fields in the observed yields
and the within–plot coefficients of variation at various positions along
the catena. In general, fields in the valley yielded more and were less
heterogeneous within plots in 2014, but these patterns differed in 2015
(Fig. 3). There was a strong crop type and catena position interaction,
evidenced by the large differences in yield and within-plot variability
for millet, while differences for sorghum were small. As expected, the
within-plot variability was much smaller when satellite images were
used, and observed differences between catena positions were not
comparable to the UAV.

Relative differences in seasonal mean values of the natural loga-
rithm of ground cover between plots with the same crop type, as de-
rived from the vertical photographs of the quadrats in the plots, were
moderately to strongly related to relative differences in yield (R2 values
of 0.38–0.71) and vegetative biomass (R2 values of 0.15–0.89, Fig. 4).
Relationships were much stronger for millet and sorghum than for
maize.

3.4. UAV-derived PVI vs. WorldView-derived NDVI

The UAV-derived vegetation indices are strongly related to satellite
image-derived NDVI (Fig. 5). The eBeePVI seemed less sensitive to sa-
turation when compared to satellite NDVI, most notably at NDVI values
above 0.6. The estimates of the spatial coefficients of variation at the
plot scale strongly differed between the two image sources. Here, eBee
mosaics always feature much higher CV values than satellite imagery,
as eBee’s much smaller instantaneous field of view results in a larger
number of contributing values per plot. This higher spatial resolution
resolves missing individual plants within rows, and smaller gaps in
plant canopies are not visible in WorldView-2 images.

Table 1
Means of yield and total biomass per treatment. The CV values reflect spatial variability in dry matter yield between fields, values were computed as standard deviations of yields recorded
per plot, divided by the mean of all plots with the same treatment. Dry matter contents are also provided for grain/beans and for other plant components.

Plot Cotton Maize Peanut Millet Sorghum

2014 2015 2014 2015 2014 2015 2014 2015 2014 2015

Yield, kg DM ha−1

A 1542 1017 3737 3179 1079 1204 1342 1388 852 1008
B 1163 792 4639 2664 890 1560 1348 1042 1131 1111
C 1162 1172 5213 3191 1135 1523 1290 1494 1205 1242
D 1502 1093 4939 3536 1037 1520 1573 1672 1697 1510
E 1631 1175 5711 3586 1129 1492 1954 1960 1999 1526
F 1961 1603 1795 1504

CV 0.48 0.50 0.36 0.58 0.41 0.44 0.66 0.47 0.50 0.51
DMc grain 0.93 0.92 0.86 0.74 0.61 0.60 0.92 0.80 0.90 0.80

Biomass, kg DM ha−1

A 3845 2462 6930 6310 – 1682 5427 4219 2747 4553
B 3340 1612 8283 5594 – 2278 5255 4423 3217 4839
C 3794 2755 9215 6326 – 2204 5279 6199 3440 6001
D 4555 2990 8735 6560 – 2169 5692 7372 6117 6633
E 5960 3774 9675 7153 – 2189 6215 7396 7013 4725
F 6501 5699 7102 5454

DMc other 0.48 0.48 0.75 0.52 0.26 0.18 0.67 0.54 0.53 0.44

Fig. 2. Relationships between ground cover (GC), eBeePVI, and light interception (LI).

A.G.T. Schut et al. Field Crops Research 221 (2018) 98–107

102



3.5. Distributions of vegetation index values within plots

The eBeePVI, and therefore also GC and LI, display a wide range in
temporal average CV (Fig. 3). For the 2014 WorldView images, all crops
except sorghum had smallest CV values for valley fields and largest
values for fields in intermediate landscape positions. The eBee CV va-
lues for 2014 followed the same pattern, although maize was,

surprisingly, least variable for plateau fields. This was likely due to the
late stage in the season with senescent maize crops and the influence of
weeds. Coefficients of variation were smaller around the peak of season
than in earlier or later growth stages (not shown).

The eBeePVI and light interception values were never normally
distributed, as reflected in the average skewness of −0.17, −0.18 and
−0.31 and kurtosis values of 3.32, 3.28 and 3.49 for plateau,

Fig. 3. Boxplots showing differences in yields and temporal means of within-plot coefficient of variation (CV) measured with a UAV, (CV of eBeePVI) in 2014 (4) and 2015 (5) or with a
satellite (CV of NDVI, only for 2014) between fields located on the plateau (P), intermediate (I) or valley (V) positions of the landscape. Relative yields were calculated as plot yields
divided by the means of all plots with the same crop.

Fig. 4. Relationships between the seasonal mean of the natural logarithm of ground coverage (GC) relative to all other plots (times−1), relative yield and vegetative (stover) biomass for
the five crop types in 2014. Symbols with green circles, red diamonds and black squares indicate plots in valley, intermediate and plateau fields respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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intermediate and valley fields respectively. This means that light in-
terception based on the average eBeePVI of a plot overestimates the
actual light interception, as that relationship saturates at high eBeePVI
values.

3.6. UAV data to assess differences in yield and response

Relative yields are positively correlated with the temporal mean LI,
but are negatively correlated with the CV of eBeePVI (Fig. 6). In general,
relationships were weakest for maize as crops were already senescing
and turning brown in the last part of the 2014 campaign.

3.7. Quantification of relative yield and response to fertilizer

The adjusted R2 values for model I ranged between 0.66–0.77
(Table 1). The factor field was by far the most important term in the
linear models (Table S2). The fertilizer application in plots and inter-
actions with crops accounted for about 0.14–0.18 of total variation
(Model I). The error term included about 0.22 and 0.23 of the total
amount of variation in relative yield and relative yield response to
fertilizer. Interactions between the factors plot and crop were sig-
nificant (as expected) indicating that the yield response to fertilizer
differed between crop types (Table S2).

Replacing the factor plot reflecting the treatments by ground cover
derived from vertical photographs (Model II) explained more of the

total variation (R2 of 0.64–0.79, Table 2). This means that the temporal
mean of ground coverage also captured some of the within-field, be-
tween-plot variation that was not due to the fertilization treatments.

In model III, the plot term was excluded. This model explained most
of the variation (R2 of 0.69–0.82, Table 2), as it still explicitly ac-
counted for differences between fields. But when image-derived ex-
planatory variables were included, the plot term was also no longer
significant. Image-derived information could therefore explain fertilizer
(i.e. plot) effects but also some of the field effect evidenced by the re-
duced mean squares for the field term when comparing model III with
model I (not shown). Temporal means of plot median eBeePVI explained
more variation than weighted temporal means of light interception
(derived from the distributions of eBeePVI values) while both terms
were significant (Table S2). Also within-plot variation was significant.
Significant interactions with the factor crop indicate that eBeePVI re-
sponses differed between crop types, as expected. The predictions when
assessed using the leave-three-plots-out approach, proved robust with
Q2 values of 0.75 for relative yield and 0.55 for differences in relative
yield within one field (Table 3). These values were slightly better for
Model III including eBee image information than for Model II including
GC estimates from vertical photographs taken in the field (not shown).

Model IV indicates how well differences between plots located in
different fields with the same crop can be assessed. This now includes
variation due to management, as fields may vary in seeding time, weed
control (etc.), sources of variations that are not explicitly accounted for

Fig. 5. Relationships between spatial coefficients of variation (CV, standard deviation/mean) and median eBeePVI/eBeeNDVI values for plots derived from 2014 UAV mosaics and
WorldView-2 satellite images (PVI/NDVI).
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in the model. Excluding the term field in the model, strongly reduced
the total amount of variation that was explained from 0.69-0.82 for
model III to 0.45-0.59 for model IV (Table 2). The factors crop light
interception and their interactions were significant terms in the model
estimating relative yields, but not in the model for estimating differ-
ences in relative yield responses to fertilizer (Table S2). Catena position
was not included in the model as an explanatory variable, this factor
was no longer significant when interactions between the coefficient of
variation and light interception with crop were included. Median
eBeePVI was more important than light interception, reflected by the
larger fraction of variation that it accounted for. The coefficient of
variation of eBeePVI within plots was significant (p< 0.001), where a

larger CV value reduced the RY and RYR to fertilizer, but explained only
about 3% of the total variation (Table S2).

The models IV–VI for 2014 proved more robust than for 2015 (Table
S3) or for 2014 and 2015 combined with a Q2 value of 0.11–0.52
(Table 3). For example, the relationships fitted with Model IV are rea-
sonably robust when predictions are made for 2014 as the Q2 and R2

values are very similar (Table S3) indicating that no systematic error or
bias was encountered. The models predicted relative yields and relative
yield responses for fields that were excluded during model calibration
reasonably well with Q2 values of 0.38–0.39 for the leave-field-out and
0.47–0.59 for the leave-three-plots-out procedures (Table S3). These
values were only slightly better for vegetative material. For 2015
however, these leave-field-out Q2 values were only 0.06–0.36 in the
leave-field-out and 0.39–0.43 in the leave-three-out procedures for RY
and RYR (Table S3).

Model V reflects how well UAV images can be used to assess dif-
ferences in yield between fields with the same crop due to differences in
light interception and small-scale spatial variability. This model also
provides a clear and direct link to crop growth rates, providing more in-
depth understanding of underlying processes. The total variation in RY
and RYR explained was only 0.38–0.43 (Table 2), indicating that other
factors such as drought and pest and disease control had a relatively
large influence on the yield differences between fields. The models IV
and V for relative yield responses were performing better than the
models for relative yield, with higher Q2 values (0.40 vs. 0.22) for the
leave-field-out procedure (Table 3).

For most crops, the absolute responses to fertilizer applications were
larger for vegetative than for generative material, reflecting low harvest
index values (Table S1). However, this did not result in much better
predictions for vegetative material, as model accuracy was reasonably
comparable between RV and RY and slightly better for RVR than for
RYR (Tables 2 and 3).

3.8. Influence of seasons and difference DSM

The difference in DSM did not help to further improve as Model VI
was not performing much better than Model V when data from 2014
and 2015 was combined (Table 3). The difference DSM values did
contain some limited amount of additional information for yield only
(0.05–0.15, Table S2), but prediction accuracy was poor for 2015 in
particular (Table S3).

Fig. 6. Relationships between relative yields and plot mean light interception and the coefficient of variation (CV) of eBeePVI derived from image mosaics for 2014. Symbols with green
circles, red diamonds and black squares indicate plots in valley, intermediate and plateau fields respectively. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 2
Fraction of variation (R2 adjusted) of relative yield (RY) and the relative yield response
(RYR) to the application of fertilizer for models I to VI. Further details can be found in
Table S2 of the supplementary materials.

Model RY RYR RV RVR

I 0.70 0.66 0.77 0.60
II 0.78 0.77 0.79 0.64
III 0.78 0.74 0.82 0.69
IV 0.45 0.48 0.46 0.59
V 0.38 0.43 0.41 0.48
VI 0.41 0.47 0.51 0.48

Table 3
Cross-validation statistics for linear models, using a leave-one-field-out (LFO) and a leave-
three-plots-out (L3O) procedure, for relative vegetative (RV) and generative (RY, yield)
plant material, and relative responses (RVR and RYR).

LFO L3O

RV RY RVR RYR RV RY RVR RYR

R2 of linear regression of measured vs. predicted values
Model III 0.72 0.75 0.62 0.55
Model IV 0.21 0.22 0.39 0.52 0.41 0.40 0.45 0.55
Model V 0.24 0.25 0.33 0.41 0.36 0.39 0.40 0.45
Model VI 0.23 0.31 0.36 0.40 0.38 0.48 0.44 0.45

Q2

Model III 0.71 0.74 0.59 0.51
Model IV 0.11 0.13 0.39 0.51 0.41 0.40 0.45 0.55
Model V 0.22 0.22 0.31 0.40 0.36 0.38 0.40 0.45
Model VI 0.18 0.26 0.35 0.40 0.38 0.47 0.43 0.45
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4. Discussion and conclusion

Estimates of light interception derived from UAV mosaics were
significantly correlated with crop yield. Although potential plant
growth is linearly related to the total amount of light intercepted in the
growing season (Monteith, 1972; Monteith, 1977), these relationships
cannot be transferred to farmer yields as yield-limiting and–reducing
factors also play an important role (van Ittersum et al., 2003; van
Ittersum et al., 2013). This analysis shows that these UAV-derived es-
timates of light interception are indicative of differences in yield be-
tween fields of the same crop and within those fields. These estimates
also provided means for robust predictions of relative yields and dif-
ferences in relative yields within fields, although differences between
fields were poorly captured. The strong relationships between eBeePVI
and satellite image-derived NDVI allows to scale up relationships from
plot to landscape (van der Heijden et al., 2007). The causal relation-
ships between light interception and crop growth rates (Monteith,
1972) provides more confidence than direct correlations between crop
yields and vegetation indices, as it also explains why yield differences
occur. This was further evidenced by the significant year factor, in-
dicating that relationships differed between 2014 and 2015. Contrast-
ingly, UAV estimates of crop height derived from the difference in di-
gital surface model values between bare soil and vegetated states,
provided limited additional information.

The differences in vegetative and generative components of the crop
at the end of the season in plots within one field could be assessed with
satisfactory accuracy without bias. The accuracy of models decreased
when the factor field was excluded in the linear models, indicating that
not all biophysical and management factors were captured by vegeta-
tion indices, estimates of light interception or within-field variation of
those values. Water deficiency and length of the effective growing
season (mostly controlled by the sowing date) are two such important
factors determining yield. It is therefore not surprising that the ex-
plained amounts of variation in these smallholder landscapes were
much lower than those reported for intensive farming systems (Li et al.,
2016).

The yield response to fertilizer was quantified with reasonable ac-
curacy. This is important as the response to fertilizer, in combination
with the price ratio between input and product, is the most important
aspect when deciding on the use of inputs in farming systems. For ad-
vice on fertilizer investments and amounts to apply, it is commonly
assumed that the response to fertilizer is the same for all fields.
However, the actual response strongly varies, due to other constraints
in e.g. non- or poorly responsive fields (Zingore et al., 2007b; Giller
et al., 2011; Kurwakumire et al., 2014). In systems with a low appli-
cation rate, the response to fertilizer is a much more important char-
acteristic than, for example, soil fertility that may not allow to predict
the response very well. We envisage a system that uses local reference
plots (van Evert et al., 2012) with or without fertilizer to assess the
response to applied nutrients at local scale. This has as advantage that a
growth response to fertilizer can be assessed mid-season, likely a better
indicator of potential response than yield response as later drought, pest
and diseases may mask the yield increase potential of fertilizer. This is
key information in landscapes with very large differences in soil fertility
and yield responses to applied fertilizer within very short distances
(< 250m) (Zingore et al., 2007a; Zingore et al., 2008; Tittonell et al.,
2013). The growing availability of affordable very-high resolution sa-
tellite imagery (Jain et al., 2016), “toy” drone systems, and low-cost
methods for non-destructive assessments of local responses to fertilizer
using in-field references will help empower extension officers and
agronomic experts to better inform farmers.

Large differences in spatial variability between fields located in
different catena positions indicate that variability itself is an indicator
of soil responsiveness and fertility. Indeed, yields were negatively cor-
related with spatial variability measured within plots and the coeffi-
cient of variation was a significant term in the linear models, for both

relative yield and the response to fertilizer. Sub-meter variability will
respond to missing plants, and thus indicates poorer growing condi-
tions, partly explaining the reduced response to fertilizer. As also shown
here, assessment of spatial variation strongly depends on the spatial
resolution of the images. We expect that missing plants or plants with
stunted growth strongly affect vegetation index values that are derived
from images with spatial resolutions< 0.5 m, while in a 4m2 pixel
these differences are averaged out.

Current plant growth models are used to estimate yields at the field
scale (van Ittersum et al., 2003; van Ittersum et al., 2013), but im-
plicitly assume homogeneous plant distributions within. Further, crop
growth models are calibrated on data from experimental plots. The
modeled water-limited yields reflect those conditions, which are gen-
erally better than those from farm fields and are, therefore, not the most
realistic benchmark to evaluate farmer field performance. Remote
sensing estimates of ground cover and light interception are sensitive to
canopy gaps associated with missing or stunted plants, as shown by
their negatively skewed, non-normal distributions. This indicates that
estimates based on only field-means will not represent actual light in-
terception accurately. These estimates can be used as forcing functions,
i.e. to provide the light interception as input rather than calculating it,
in crop growth models (Qi et al., 2005). Alternatively, they can be used
to calibrate model parameters or to filter state variables with ob-
servations (Jongschaap, 2006; Dorigo et al., 2007). Further, remotely
sensed estimates of initial and maximum radiation interception and
phenological development fosters improvement in prediction over
conventional modeling techniques (Quiroz et al., 2017). Assimilation of
such remotely sensed estimates of crop conditions will help increase the
realism and efficiency of modeling approaches in smallholder condi-
tions, enabling benchmarking to water-limited or attainable yields at
more detailed spatial scales than previously possible, and allows model
simplification (Traoré et al., 2008), and scaling from plot to landscape
scales and beyond.

The UAV system used (eBee) carried a simple S110 NIR camera with
severe radiometric limitations. Variations in ambient light conditions
are major challenges when extracting information from mosaics
(Rasmussen et al., 2016). The soil line derived from the RED vs. NIR
scatterplots allowed us to construct a robust image time-series. The
S110 NIR-derived eBee perpendicular vegetation index was strongly
related to ground cover and light interception by crops, providing
means to use these systems for meaningful assessments of the crop’s
capacity to convert sunlight into biomass (Sinclair and Muchow, 1999).
Further estimates of crop height, as derived from the difference in di-
gital surface model values between bare soil and vegetated states,
provided limited additional information.

Smallholder fields are spatially variable and, therefore, treatment
responses are difficult to interpret (Vanlauwe et al., 2016). The differ-
ences in treatment response within one field were captured robustly
with simple vertical photographs, but also with UAV estimates of light
interception. The sub-meter spatial resolution of UAV imagery allows
the capture of within-field variability in crop growth and response,
opening possibilities for more accurate management response mon-
itoring. Time-series of UAV or high-resolution satellite imagery can be
most useful for hindcasting (Jain et al., 2016), to assess crop growth
and yield at local scales (e.g. 10–100 km2) (Burke and Lobell, 2017).
Importantly, they will permit more realistic crop growth modeling and
yield forecasting in heterogeneous smallholder fields by explicitly in-
corporating spatial variability of light interception, an omission in most
current crop growth models.
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