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Abstract
Advances in genomics technologies, coupled with the availability of
several high-throughput genotyping and sequencing platforms during
recent years, provided a kick start to the adoption of modern breeding
approaches to develop climate-resilient crops. Chickpea is the most
important grain legume crop for global food and nutritional security in the
context of population explosion and climate vagaries. During last ten
years, it has transformed from orphan legume to genomics resource-rich
legume like any other model legume plants. There has been a paradigm
shift in the outlook of the scientific community in translating the genomic
resources including the genome sequence and re-sequence information for
developing superior lines with enhanced resistance or tolerance to
important abiotic and biotic stresses. In addition, pan-genome and
re-sequencing information of several germplasm lines will enable tailoring
climate smart chickpeas. In addition, efforts to broaden the genetic base
and enhanced utilization of the available trait-specific germplasm lines,
multi-parent advanced generation inter-cross (MAGIC), nested association
mapping (NAM) populations in breeding programs will accelerate the
genetic grains at a faster pace.

Chickpea (Cicer arietinum L.) is a cool season
legume cultivated by resources-poor farmers in
South Asia and sub-Saharan Africa. Despite its
economic importance, productivity is lower than
1 ton per hectare because the crop is exposed to
several biotic and abiotic stresses. Genomics
research has accelerated the crop improvement in
crops like rice, maize. In case of chickpea until
2005, about 150 SSR markers and sparse genetic
maps were available which were of limited
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usefulness for trait dissection and implementing
them in breeding programs. During last decade,
efforts of chickpea research community espe-
cially at ICRISAT in collaboration with several
partners across the globe developed >3,000 SSRs
(Nayak et al. 2010; Thudi et al. 2011; Agarwal
et al. 2015), transcriptomic resources (Hiremath
et al. 2011; Kudapa et al. 2014), millions of
SNPs and structural variations (Varshney et al.
2013a; Thudi et al. 2016a, b). Both desi and
kabuli draft genomes have been decoded
(Varshney et al. 2013a; Jain et al. 2013). In
addition, several genetic maps, a physical map,
consensus maps and high-density genetic maps
have been made available for trait dissection
(Gujaria et al. 2011; Millan et al. 2010; Varshney
et al. 2014b, c; Gaur et al. 2015; Jaganathan et al.
2015; Kale et al. 2015). Furthermore, the geno-
mic regions responsible for abiotic stress (Vadez
et al., 2012; Varshney et al. 2014c; Purushotha-
man et al. 2015; Pushpavalli et al. 2015), biotic
stresses (Sabbavarapu et al. 2013) and agro-
nomically important traits like early flowering
(Mallikarjuna et al. 2017; Samineni et al. 2016),
protein content (Jadhav et al. 2015) have been
identified. Thus, the availability of several
genomics resources and draft genomes has
transformed chickpea from orphan legume to
“genomics resource rich” legume crop (Varshney
2016). This provided new opportunities for
accelerating genetics research and use of these
resources in breeding applications for faster
genetic gains.

Recent climate changes, availability of irri-
gation facilities encouraged farmers in north
India for cultivating commercial crops such as
paddy and wheat. As a result, chickpea cultiva-
tion has expanded in the southern part of India
that has been exposed to more frequent droughts
and thus contributing to yield loses. Chickpea is
being important for food and nutritional security,
development of improved lines and cultivars that
adapt to new niches in the context of climate
change is a prerequisite. This chapter focusses on
strategies and issues that need to utilize available
genomic tools together with genetic resources for
enhancing the chickpea yields to meet the future
demands.

12.1 Germplasm Lines
Re-sequencing
and Pan-genomes

The availability of draft genome sequence of
both kabuli and desi chickpea genomes (Varsh-
ney et al. 2013a; Jain et al. 2013) offers novel
opportunities for understanding the genome
architecture and identification of genes for crop
improvement. Following the draft genomes, in
recent years, efforts were also made to improve
the genome assemblies using sequence data from
flow cytometry isolated chromosomes to identify
misplaced contigs (Ruperao et al. 2014). In
addition, an improved version of desi genome
assembly was reported (Parween et al. 2015) and
draft genome assembly of Cicer reticulatum, the
wild progenitor of chickpea, has also become
available (Gupta et al. 2017). As a single genome
sequence may not be enough to explain the
variation existing in >93,000 chickpea, germ-
plasm accessions being conserved in genebanks
across the world. Hence, re-sequencing of
diverse germplasm lines is a necessary task ahead
to understand the genome wide variations and
harnessing the existing variations for designing
new strategies for chickpea improvement.
Towards this direction, 90 elite lines, 35 parental
genotypes of mapping populations, 129 released
varieties were re-sequenced (Varshney et al.
2013a; Thudi et al. 2016a, b) and efforts are
underway at ICRISAT to re-sequence 3,000
germplasm lines, the composite collection.

The allelic variations available in a gene of
interest that may lead to desirable phenotype
within a species are quite limited. Hence, Tattelin
et al. (2005) proposed the concept of
“pan-genome” to capture the complete gene set
from different species of genera. The
pan-genome is essential to fully understand the
genetic control of phenotypes. Further, under-
standing the interconnection of genome and
phenome is essential for achieving faster genetic
gains in crop improvement programs. Insights
into pan-genomes of several crop plants are now
available for soybean (Li et al. 2014), maize
(Hirsch et al. 2014; Lu et al. 2015), Brassica
oleracea (Golicz et al. 2016), hexaploid wheat
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(Montenegro et al. 2017) and a pan-genome
browser was developed in case of rice (Sun et al.
2016). The draft genomes and/or re-sequence
information in any species is not of much use if
no biological sense is made out of the data. It is
also a herculean task to store as well as to analyse
the huge amount of data. The tools available for
pan-genome analysis have been extensively dis-
cussed by Xiao et al. (2015).

12.2 Functional Genomics

Plant stress responses are complex and form a
coordinated response network with every gene
involved from recognition to signaling to direct
involvement. Functional genomics facilitates
understanding the stress response at the genomic
level and to characterize specific genes involved in
resistance to biotic and abiotic stresses in chick-
pea. Functional genomics approaches such as
suppression subtractive hybridization (SSH),
super serial analysis of gene expression (Super-
SAGE), microarray and EST sequencing have
been performed to identify the abiotic
stress-responsive transcripts in chickpea (Molina
et al. 2008; Varshney et al. 2009; Buhariwalla
et al. 2005; Garg et al. 2016). In addition,
sequencing and de novo assembly of chickpea
transcriptome using short reads have been repor-
ted in chickpea (Garg et al. 2011a, b). Since gene
expression is post-transcriptionally regulated by
microRNAs, recent studies used high-throughput
small RNA sequencing approach to discover
tissue-specific and stress-responsive expression
profile of chickpea microRNAs (Jain et al. 2014;
Kohli et al. 2014). The availability of
next-generation sequencing technologies accel-
erated the development of gene expression pro-
files at the whole genome level (Jain 2012;
O’Rourke et al. 2014) and transcriptome
sequencing as well as NGS-based large-scale
discovery and high-throughput genotyping of
informative markers like simple sequence repeat
(SSR), single nucleotide polymorphism (SNP) in
chickpea (Garg et al. 2014; Hiremath et al. 2012;
Jhanwar et al. 2012; Agarwal et al. 2012; Kudapa
et al. 2014; Pradhan et al. 2014; Parida et al. 2015).

12.3 Next Generation Mapping
Populations

Linkage mapping studies use family-based pop-
ulations like F2, recombinant inbred lines (RILs),
near isogenic lines (NILs) and double haploid
populations, but alleles in these mapping popu-
lations come from only two parental lines.
Hence, specialized mapping populations with a
broad genetic base such as multi-parent advanced
generation inter-cross (MAGIC) and nested
association mapping (NAM) populations need to
be developed and used. MAGIC population is
generated from multiple parents of diverse ori-
gin, and the genome of the founder parents is
reshuffled in different combinations (Huang et al.
2015). It serves as an important resource for
high-resolution mapping and identification of
target genomic regions, besides useful in the
breeding programmes. A MAGIC population
comprising of 1136 RILs using eight parental
genotypes has been developed in chickpea.
Nested association mapping (NAM), which
combines the benefits of both linkage analysis
and association mapping approaches, is used for
high-resolution mapping of target traits. Devel-
opment of NAM population is underway in
chickpea to generate new breeding material with
enhanced diversity. In addition, some other
next-generation multi-parental populations like
multiline cross inbred lines and recombinant
inbred advanced intercross lines can also be
developed in chickpea.

12.4 High-Resolution Mapping
for Must Have Traits

Chickpea is cultivated under a wide range of
agro-climatic conditions around the world and is
adversely affected by diseases, insect pests, soil
and environmental stresses. In addition, climatic
variability and change in cultivation niches also
have further implications on the cultivation of
chickpea in different regions. Hence, future
varieties must be able to withstand adverse and
more variable conditions. Making of genetic
adjustments of chickpea is needed to increase
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adaptation to drought, heat stress in semi-arid
areas, cold stress tolerance in the Mediterranean
region, resistance to biotic stresses like Fusarium
wilt, Ascochyta blight and pod borer.

Advances in chickpea genomics and avail-
ability of genome sequences (Jain et al. 2013;
Varshney et al. 2013a; Gupta et al. 2017) and
re-sequencing data from hundreds of germplasm
lines in chickpea have offered a different kind of
marker genotyping platforms. For instance,
large-scale SSR markers (Nayak et al. 2010;
Thudi et al. 2011), VeraCode assays (Roorkiwal
et al. 2013) and KASPar assays (Hiremath et al.
2012) have become available for genotyping
germplasm collections and mapping populations.
Genotyping of different populations with
above-mentioned marker systems, however, is an
expensive and time-consuming business. Fur-
thermore, for undertaking association mapping,
there is a need to genotype populations with
high-density markers. In this direction, Axiom®

arrays comprising 50 K single nucleotide poly-
morphism (SNP) markers have been developed
in chickpea. These arrays have been proven very
useful for generating large-scale polymorphisms
in bi-parental mapping populations (Roorkiwal
et al. unpublished). In addition, genotyping by
sequencing and skim sequencing-based bin
mapping approaches were adopted for fine
mapping the traits (Jaganathan et al. 2015; Kale
et al. 2015). Nevertheless, unlike genotyping the
entire population, approaches like sequencing
bulk segregant analysis (BSA-Seq) and QTL-Seq
approaches have been deployed to identify the
causal SNPs and candidate genes in legumes
including chickpea (Singh et al. 2015, 2016;
Pandey et al. 2017). We believe that in coming
years trait mapping can be faster by using
QTL-Seq approaches and use of MAGIC popu-
lation, NAM with high-density arrays like
Axiom® will help fine map the QTLs.

12.5 Next Generation Breeding

Development of large-scale genomic resources in
chickpea (Varshney et al. 2012) and availability
of pedigree information combined with

optimized precision phenotyping methods make
it possible to undertake new generation of
breeding approaches in chickpea. Some of the
genomics assisted breeding approaches like
marker-assisted backcrossing (MABC) have
been successfully employed to introgress disease
resistance (Varshney et al. 2014a) and drought
tolerance (Varshney et al. 2013b) into elite cul-
tivars of chickpea. Marker-assisted recurrent
selection (MARS) is another breeding approach
proposed for pyramiding of superior alleles at
different loci/QTLs in a single genotype (Ber-
nardo and Charcosset 2006) is also being initi-
ated to assemble favourable alleles for drought
tolerance in chickpea (Thudi et al. 2014b). In
addition, Advanced backcross (AB-QTL) analy-
sis is another useful approach to introgress
desired QTL or a gene especially from
wild/exotic species (Tanksley and Nelson 1996)
that can be developed in chickpea.

12.6 Genomic Selection

Genomic selection (GS) is a novel approach that
predicts the breeding values of a line based on
historical phenotyping data and the genotyping
data. For addressing complex traits controlled by
many small effect QTLs, genome-enabled selec-
tion of genotypes based on their breeding value
(i.e. the genomics estimated breeding values) has
potential relevance (Meuwissen et al. 2001). GS
utilizes genome wide markers data along with
phenotypic data to increase the accuracy of the
prediction of breeding and genotypic values.
This has become feasible due to the availability
of a large number of SNP discovered by various
NGS approaches and cost-effective genotyping
platforms available in chickpea (Hiremath et al.
2012; Varshney et al. 2012). Genomic selection
has been successfully used in animal breeding for
predicting breeding values (Hayes et al., 2009)
and also in crop plants like oil palm (Wong and
Bernardo, 2008) and maize (Zhao et al. 2012).
Recent study showed that genomic-enabled pre-
diction as a promising avenue for improving
yield in chickpea (Roorkiwal et al. 2016).
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In addition to the above, we believe that
diagnostic markers associated with must have
traits can be used in an early generation in
chickpea breeding programs which we call as
“early generation selection (EGS)”. Right now,
diagnostic markers are being used in EGS for
drought tolerance, Fusarium wilt and Ascochyta
blight in chickpea. We believe that in coming
years, we will have more markers for must have
traits and all loci. In summary, we need to adopt
MABC approach for elite varieties deficient of
one or two traits. For normal breeding, we pro-
pose to use diagnostic markers for EGS for target
trait improvement and genomics selection
approach for multiple traits. We envisage the use
of a combination of EGS, GS and genome edit-
ing in chickpea in coming years.

12.7 Conclusion

As evident from different chapters of the book,
we got large-scale germplasm and genomic
resources for trait mapping, etc. It is high time to
use the markers in regular breeding programs.
We believe that combination of EGS and GS will
accelerate genetic gains in breeding programs.
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