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Chapter 8
Biological Control as a Tool for Eco-friendly
Management of Plant Pathogens

Mamta Sharma, Avijit Tarafdar, Raju Ghosh, and S. Gopalakrishanan

Abstract Crop protection is pivotal to maintain abundant production of high
quality. Over the past 100 years, use of chemical fertilizers and pathocides and
good agronomical practices enabled growers to maintain improved crop productiv-
ity. However, extensive use of chemicals during the last few decades in controlling
pests and diseases resulted in negative impacts on the environment, producing
inferior quality and harming consumer health. In recent times, diverse approaches
are being used to manage and/or mitigate a variety of pathogens for control of plant
diseases. Biological control is the alternative approach for disease management that
is eco-friendly and reduces the amount of human contact with harmful chemicals
and their residues. A variety of biocontrol agents including fungi and bacteria have
been identified but require effective adoption and further development of such
agents. This requires a better understanding of the intricate interactions among
the pathogen, plants and environment towards sustainable agriculture. Beyond the
field assessment, the analysis of microbial communities with culture-independent
molecular techniques including sequencing technologies and genomics information
has begun a new era of plant disease management.

Keywords Biocontrol agent - Plant-pathogen interaction - Eco-friendly plant

disease management - Sustainable agriculture - Socio-economic impact

8.1 Introduction

During the last 40 years, the world population has increased by 90%, while food
production has increased only by 25% per head. It is estimated that 39% more
production is needed worldwide to feed an additional 1.5 billion mouths by 2020
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and the production needed to be doubled by 2050. However, attack by pest and
diseases causes a loss to the tune of 40% of the gross crop production. Further, with
the rapid change in climatic factors, plant pathogens are becoming more aggressive,
breaking the plant resistance, and inhibit the crops to reach its optimum yield.
Current practices for integrated disease management are largely based on genetic
host resistance and synthetic chemicals. Continuous use of those chemicals in
controlling plant diseases has negative effects on the environment, causes pollution
in the biosphere and harms the human beings. Further, those chemicals themselves
are acting as selective agents, making the pathogens more resistant, and help these
pathogens to persist as they are slowly becoming resistant to these agents. Thus,
there was a necessity to execute new methods which would supplement conven-
tional strategies for plant disease control and are competent to minimize adverse
effects of chemical pathocides on human health and the environs. Control of plant
diseases using biological agents like live microbial cells, or byproducts produced by
them, is a powerful alternative way, called biological control. Biological control is
eco-friendly, and the diversified microbial world provides endless resources for
biologically active molecules which can stably inhabit the environment as
nondominant species but maintain their effectiveness in suppression of plant
pathogens. For instance, in the 1880s, the cottony cushion scale in citrus was the
major threat to citrus industry in California. Vedalia beetle (Rodolia cardinalis
Mulsant), a predatory insect, was introduced in California to cease the effect of the
pest (Icerya purchasi Maskell). That was the first success story of the biological
control. Since this success, scientists have developed diverse techniques to manage
a variety of pests and pathogens using diverse biological agents. In recent years,
they diverted their attention towards the potential of beneficial microbes. Therefore,
dynamic research efforts for developing and exploring innovative tools for the
control of diseases have become imperative.

8.2 Why Eco-friendly Management Is Important
to Control Plant Pathogen?

Control of the diseases is very important for securing human food sources and
agriculture-based industries. There are two main ways to manage diseases and
pests, using chemicals (chemical control) and by predators or parasites (natural
control/biological control). Controlling of diseases in economically important crops
with chemicals has long been practiced in agricultural settings, and use of this
method is more acceptable by the farming community, as it is typically less
expensive and immediate than natural control methods. But extensive use of
those chemicals for an extended period has long lasting negative effects on the
environment, including human life and other living organisms existing in the
ecological niches. Being detrimental to both beneficial and harmful organisms,
they can damage the ecological balance and also contaminate the food chain
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Fig. 8.1 Harmful chemicals enter the food chain and deposition increased tissues of the organisms
belonging to the higher tropic level

through bioaccumulation of toxic residues. In this way the chemicals become worse
for the organisms belonging to the higher tropic levels (Fig. 8.1).

The term ‘biocontrol agent’ (biopesticide), as a generic definition, has been
applied with a narrow focus on preparations containing living microorganisms,
through to a wider definition that includes botanical compounds and
semiochemicals (e.g. pheromones) (Kiewnick 2007). The biocontrol agents and
the process of biological control have several other benefits.

1. Biocontrol agents are safer both for the environment and the persons who are
applying them and avoid environmental pollution (soil, air and water) by leaving

no toxic residues.
2. It is comparatively easier to manufacture biocontrol agents, sometimes less

expensive than chemical agents.



156 M. Sharma et al.

3. The biggest advantage of using biocontrol agents is that it can eliminate the
specific pathogens effectively from the site of infection and can be used in
combination with biofertilizers.

4. Biocontrol agents are very effective for a large number of soil-borne pathogen
where using of chemical fungicide is not possible.

5. Biocontrol agents do not cause any toxicity to the plants; rather these increase
crop yields by enhancing the root and plant growth through the encouragement
of beneficial microflora in rhizosphere. It also helps in the mobilization of plant
nutrients and makes it available to the plant.

6. Biocontrol agents avoid problems of resistance and also induce systemic resis-
tance among the crop species.

7. Biological control is self-regulating, does not require any intricate management
and helps to preserve the ecosystem.

However, despite the fascinating advantages of biocontrol of plant diseases,
there might be few adverse effects on humans and the environment. Increasing the
population of a certain biological agents artificially could be the reason of paying
unexpected concerns. An organism that has been introduced from another area to
destroy a pathogen in a new habitat may itself become a pathogen or predator for
some beneficial organisms present in natural habitat or crops. Other than that it has
the following limitations.

1. Biocontrol agents work slowly and less effectively in comparison to the chem-
ical pesticides, as their efficacy almost completely depends on environmental
conditions.

2. Biocontrol agents are mainly used against specific diseases as a preventive
measure, not as a curative measure.

3. The antagonists and shelf life of biocontrol agents are short. For example, the
shelf life of Pseudomonas fluorescens is 3 months and of Trichoderma viride is
4 months only. To maintain the effective level of biocontrol agents in cropping
area, periodical checking is needed and this requires skilled persons.

4. Skilled persons are also required for multiplying and supplying the biocontrol
agents without contamination.

5. At present, biocontrol agents are available only in a few places and in less
quantities.

8.3 Groups of Biological Control Agents

After the development of the first commercial biological agent, a range of micro-
organisms, including virus, bacteria, actinomycetes, fungi, oomycetes, protozoa,
etc., were identified for the purpose of plant disease management. Many organisms
are found to be very effective against a variety of plant diseases. A few of those
organisms are now being used for successful disease management in plants at fields
and greenhouse conditions (Table 8.1).
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8.4 Plant Extract

Plants are capable of synthesizing an overwhelming variety of small organic
molecules, the secondary metabolites, which help the plants overcome from path-
ogen infection. Identification of novel effective secondary metabolites as fungicide
or insecticide is essential to inhibit increasing resistance rates of the pathogens. The
botanical extracts are more effective as insecticidal compounds (Table 8.2). But
nowadays plant extracts are being used as effective biocontrol agents for inhibiting
fungal diseases of plants. The plant extracts from Cymbopogon proximus, Allium
sativum, Carum carvi, Eugenia caryophyllus and Azadirachta indica were found to
have inhibitory effects on some phytopathogens including Botrytis cinerea, Fusar-
ium oxysporum f. sp. lycopersici and Rhizoctonia solani (Alkhail 2005). The
methanolic plant extracts from Salvadora persica, Lantana camara, Thymus
vulgaris, Ziziphus spina-christi and Zingiber officinale have antifungal properties

Table 8.2 Botanical pesticides used to control different pests and pathogens

Botanical
compounds | Insect pests Mode of actions Plant source
Nicotine Aphids, thrips, Cholinergic acetylcho- Nicotiana spp.,
caterpillars line nicotinic receptor Haloxylon
Agonist/antagonist salicornicum, Stemona
Jjaponicum
Rotenone Bugs, aphids, potato bee- | Inhibitor of cellular res- | Lonchocarpus spp.
tles, spider mites, car- piration (mitochondrial
penter ants complex I electron trans-
port inhibitor, METI)
Ryania Codling moths, potato Affect calcium channels | Ryania spp.
aphids, onion thrips, corn
earworms, silkworms
Sabadilla Grasshoppers, codling Affect nerve cell mem- Schoenocaulon
moths, armyworms, brane action officinale
aphids, cabbage loopers,
squash bugs
Pyrethrum | Caterpillars, aphids, leaf- | Sodium and potassium Chrysanthemum
hoppers, spider mites, ion exchange disruption | cinerariaefolium
bugs, cabbage worms,
beetles
Essential Caterpillars, cabbage Inhibition of acetylcho- | Azadirachta indica,
oils worms, aphids, white- linesterase (AChE) Mentha spp., Lavendula
flies, land snails spp., Cedrus spp., Pinus
spp., Citronella spp.,
Eucalyptus spp.
Neem prod- | Armyworms, cutworms, | Hormonal balance Azadirachta indica
ucts/ stem borers, bollworms, disruption
azadirachtin | leaf miners, caterpillars,
aphids, whiteflies, leaf-
hoppers, psyllids, scales,
mites and thrips
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against Fusarium oxysporum, Rhizoctonia solani and Pythium aphanidermatum
(Hussin et al. 2009). Ethyl acetate extracts of Lantana camara showed inhibitory
effects against Colletotrichum gloeosporioides which causes anthracnose in papaya
(Carica papaya L.).The mother tincture extract of Myroxylon balsamum showed
antifungal activity against the filamentous fungi Fusarium guttiforme and Chalara
paradoxa, causing pineapple fusariosis.

8.5 Different Mechanisms of Biological Control
8.5.1 Direct Antagonism
8.5.1.1 Parasitism

Parasitism is an interactive mechanism in which two phylogenetically unrelated
organisms live together over a prolonged period of time. In this type of relationship,
one organism, usually benefitted, called the ‘parasite’ and the other called the
‘host’, is harmed. For instance, Trichoderma is a parasite of a range of fungi and
oomycetes in the soil, which produce toxic metabolites and cell wall-degrading
enzymes and inhibit the growth of others.

8.5.1.2 Hyperparasitism

Hyperparasites are the agents that are parasites of harmful plant pathogens. A
classic example is the Hypovirus, a hyperparasitic virus on Cryphonectria
parasitica, a fungus causing chestnut blight. The hypovirulence of Hypovirus
reduces the disease-producing capacity of C. parasitica (Tjamos et al. 2010).
Some strains of fungi have hyperparasitic activity against other fungi. The fungus
Ampelomyces quisqualis grows on mildew pathogen; similarly Nectria inventa and
Gonatobotrys simplex are parasites of Alternaria (Kiss et al. 2004). The fungus
Phlebiopsis gigantea is used to control Heterobasidion annosum, a fungal pathogen
that causes rots in freshly cut stumps of pine trees that can spread subsequently to
intact trees by root-to-root contact (Pratt et al. 1999). The fungal species,
Acremonium alternatum, Acrodontium crateriforme, Cladosporium oxysporum
and Gliocladium virens, have the capacity to parasitize powdery mildew pathogens
and be used as biocontrol agent (Heydari and Pessarakli 2010).

8.5.1.3 Commensalism
Commensalism is a unidirectional association between two unrelated species by

living together, in which one population (commensals) benefits from these relation-
ships, while the other (the host) is not harmed. Microbes present in the rhizosphere
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control soil-borne pathogens through competition for nutrients and production of
antibiotics and help the plants survive pathogen infection (Kumar et al. 2016a, b).
On the other hand, the microbes have an important role on the growth of the plant
by increasing solubilization of minerals or by synthesizing amino acids, vitamins
and growth regulators that stimulate the plant growth.

8.5.2 Mixed-Path Antagonism by Synthesis of Allochemicals
8.5.2.1 Siderophores

Siderophores are ligands with low molecular weight having high affinity to seques-
ter iron from the micro-environment. It has the ability to sequester ferric ion and
competitively acquire iron from iron-limiting microenvirons, thereby preventing
growth of other microorganisms. Two major classes of siderophores, classified on
the basis of their functional group, are catechols and hydroxamate. A mix of
carboxylate-hydroxamate group of siderophores is also reported (Hider and Kong
2010) (Table 8.3). Numerous strains of Streptomyces spp. have been reported as
siderophore producers, namely, S. pilosus (Muller et al. 1984; Muller and Raymond
1984), S. lydicus (Tokala et al. 2002) and S. violaceusniger (Buyer et al. 1989).
Biological control of Erwinia carotovora by several siderophore-producing and
plant growth-promoting Pseudomonas fluorescens strains Al, BK1, TL3B1 and
B10 was reported for the first time as an important mechanism of biological control
(Kloepper et al. 1980). On the other hand, increased efficiency of iron uptake by the
commensal microorganisms is thought to dislocate pathogenic microorganisms
from the possible infection sites by aggressive colonization in plant rhizosphere.

Table 8.3 Examples of siderophores produced by various bacteria and fungi

Types of
siderophores Siderophore Organism
Hydroxamate Ferrichrome Ustilago sphaerogena
Fusarinine C Fusarium roseum
Desferrioxamine B Streptomyces pilosus, Streptomyces
coelicolor
Desferrioxamine E Streptomyces coelicolor
2,3- Bacillus subtilis
Dihydroxybenzoylglycine
Ornibactin Burkholderia cepacia
Rhodotorulic acid Rhodotorula pilimanae
Catecholate Enterobactin Escherichia coli, enteric bacteria
Bacillibactin Bacillus subtilis, Bacillus anthracis
Mixed ligands Azotobactin Azotobacter vinelandii
Pyoverdine Pseudomonas aeruginosa
Yersiniabactin Yersinia pestis
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Sneh et al. (1984) and Elad and Baker (1985) showed a direct correlation between
in vitro inhibition capacity of chlamydospore germination of F. oxysporum and
siderophore synthesis in fluorescent pseudomonads.

8.5.2.2 Antibiosis

The term ‘antibiosis’ came from the term antibiotics, which refers to organic
substances produced by microorganisms that affect the metabolic activity of other
microbes and inhibit the growth (Roshan et al. 2013). The result of antibiosis is
often death of microbial cells by endolysis and breakdown of the cell cytoplasm.
Agrobacterium radiobacter K-84, produced commercially as Agricon 84, was first
recognized as a valuable control agent of crown gall since 1973. It is very effective
against A. tumefaciens attacking stone fruit (e.g. plums and peaches), but not
effective against A. tumefaciens strains that attack grapes, pome fruit (e.g. apples)
and some ornamentals. A variety of antibiotics have been identified, including
compounds such as 2,4-diacetylphloroglucinol (DAPG), amphisin, oomycin A,
hydrogen cyanide, pyoluteorin, phenazine, tensin, pyrrolnitrin, cyclic lipopeptides
and tropolone produced by pseudomonads and kanosamine, oligomycin A,
xanthobaccin and zwittermicin A produced by Streptomyces, Bacillus and
Stenotrophomonas spp. (Kumar et al. 2014) (Table 8.4). For instance, antibiotic
2,4-diacetyl phloroglucinol is reported to be involved in the suppression of Pythium
Spp., iturin suppresses the pathogens Botrytis cinerea and Rhizoctonia solani, and
phenazine carboxylic acid antagonist the pathogen Rhizoctonia solani in rice
(Padaria et al. 2016) and phenazines control Gaeumannomyces graminis var. tritici
in wheat.

8.5.2.3 Volatile Substances

Apart from the production of antibiotics, some biocontrol agents are also known to
produce volatile compounds as tools for pathogen inhibition. Common volatile
compounds are hydrocyanic acid (HCN), certain acids, alcohols, ketones, alde-
hydes and sulphides (Bouizgarne 2013). HCN production is reported to play a role
in disease suppression (Wei et al. 1991), for instance, Haas et al. (1991) reported
HCN production by strains of P. fluorescens that helped in the suppression of black
root rot of tobacco. Reports on the production of HCN by beneficial microbes in
order to minimize the deleterious effect of pathogenic fungi and bacteria are
available (Ahmad et al. 2008; Gopalakrishnan et al. 2011a, b, 2014).

8.5.2.4 Lytic Enzyme Production

Many microorganisms secrete and excrete lytic enzymes that can hydrolyse a wide
range of polymeric compounds, including hemicellulose, cellulose, chitin, DNA



170

M. Sharma et al.

Table 8.4 Selected examples of antibiotics produced by biocontrol bacteria

Antibiotic Source Target pathogen
2,4-Diacetyl Pseudomonas Pythium spp.
phloroglucinol | fluorescens F113
2,4-DAPG Pseudomonas sp. Xanthomonas oryzae pv. oryzae
2-Hexyl, P. fluorescens Rosellinia necatrix
5-propyl
resorcinol
Agrocin 84 Agrobacterium A. tumefaciens
radiobacter
Amphisin P. fluorescens Pythium ultimum and Rhizoctonia solani
Bacillomycin Bacillus subtilis Aspergillus flavus
D AU195
Bacillomycin, | B. amyloliquefaciens Fusarium oxysporum
fengycin FZB42
Cyclic Pseudomonas sp. Phytophthora infestans
lipopeptides
Geldanomycin | Streptomyces R. solani
hygroscopicus var.
geldonus
Gliotoxin Trichoderma virens R. solani
Herbicolin Pantoea agglomerans | Erwinia amylovora
C9-1
Iturin A B. subtilis QST713 Botrytis cinerea, P. ultimum, R. solani,

F. oxysporum, Sclerotinia sclerotiorum and
Macrophomina phaseoli

Iturin A and B. subtilis R. solani

surfactin

Kanosamine B. cereus Phytophthora medicaginis
Kasugamycin | S. kasugaensis Pyricularia oryzae

Mycosubtilin B. subtilis BBG100 Pythium aphanidermatum
Oligomycin A | S. libani B. cinerea

Phenazines P. fluorescens 2—79 Gaeumannomyces graminis var. tritici

and 30-84

P. chlororaphis

F. oxysporum

P. aureofaciens

Sclerotinia homeocarpa

Phenazine-1-

P. chlororaphis

F. oxysporum £. sp. radicis-lycopersici

carboxamide

Polyoxin D S. cacaoi R. solani

Pyoluteorin P. fluorescens P. ultimum

Pyoluteorin, P. fluorescens Pf-5 P. ultimum and R. solani

pyrrolnitrin

Pyrrolnitrin, Burkholderia cepacia | R. solani and Pyricularia oryzae
pseudane P. fluorescens Gaeumannomyces graminis var. tritici

R. solani

Enterobacter
agglomerans

A. tumefaciens, Clavibacterium michiganense,
Xanthomonas campestris, Pseudomonas syringae
pv. syringae

(continued)
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Table 8.4 (continued)

Antibiotic Source Target pathogen
Polyenes S. violaceusniger P. ultimum
Citrinin Penicillium citrinum B. cinerea
Viscosinamide | P. fluorescens R. solani, P. ultimum
Xanthobaccin | Lysobacter sp. strain Aphanomyces cochlioides
A SB-K88
Zwittermicin A | B. cereus UW85 P. medicaginis and P. aphanidermatum
B. cereus and Phytophthora spp.
B. thuringiensis
Bacillus spp. S. sclerotiorum
B. cereus Phytophthora parasitica var. nicotianae

and proteins (Table 8.5). These extracellular hydrolytic enzymes play an important
role in the suppression of plant pathogens. Chitinase secreted by Streptomyces sp.,
Paenibacillus sp. and Serratia marcescens was found to be inhibitory against
Sclerotium rolfsii, Botrytis cinerea and Fusarium oxysporum f. sp. cucumerinum.
Similarly, modifying plant growth substratum with chitosan inhibits the root rot in
tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici. B-1,3-Glucanase
produced by Actinoplanes philippinensis and Micromonospora chalcea was found
to hydrolyse Pythium aphanidermatum in cucumber (El-Tarabily 2006).

8.5.2.5 Unregulated Waste Products

Few soil microbes release a range of unregulated waste products or harmful gases,
e.g. ethylene, methane, nitrite, ammonia, hydrogen sulphide, other volatile sulphur
compounds, carbon dioxide, etc., and suppress the growth of other pant pathogenic
bacteria. This interaction between two species is called ammensalism. Bacillus
megaterium produces ammonia and has an inhibitory effect on the growth of
Fusarium oxysporum (Shobha and Kumudini 2012).

8.5.2.6 Detoxification and Degradation of Virulence Factor

Biological control by detoxification involves production of a protein that binds with
the pathogen toxin and detoxifies pathogen virulence factors, either reversibly or
irreversibly, ultimately decreasing the virulence potential of pathogen toxin. For
example, the biocontrol agents Alcaligenes denitrificans and Pantoea dispersa are
able to detoxify albicidin toxin produced by Xanthomonas albilineans. Similarly,
strains like B. cepacia and Ralstonia solanacearum can hydrolyse fusaric acid, a
phytotoxin produced by various Fusarium spp. The protein has the ability to bind
reversibly with the toxins of both Klebsiella oxytoca and Alcaligenes denitrificans,
as well as irreversibly with the toxin albicidin in Pantoea dispersa.



172

M. Sharma et al.

Table 8.5 Examples of lytic enzymes produced by biocontrol bacteria

Enzyme Producing bacteria Target phytopathogen Host plant
Chitinases Aeromonas caviae Rhizoctonia solani and Cotton
Fusarium oxysporum f. sp.
vasinfectum
Sclerotium rolfsii Beans
Arthrobacter sp. Fusarium sp. Carnation
F. moniliforme var. Southern
subglutinans pines
Streptomyces sp. Macrophomina Sorghum
phaseolina
Enterobacter agglomerans, Bacil- | R. solani Cotton
lus cereus
B. circulans and Serratia Phaeoisariopsis Peanut
marcescens personata
E. agglomerans, B. cereus R. solani Cotton
Paenibacillus illinoisensis R. solani Cucumber
Pseudomonas sp. F. oxysporum f. sp. Cucumber
cucumerinum
Serratia plymuthica Botrytis cinerea and Cucumber
Sclerotinia sclerotiorum
Serratia marcescens S. rolfsii Beans
R. solani Cotton
Streptomyces lydicus Pythium and -
Aphanomyces
Serratia plymuthica Botrytis cinerea Many
host
Glucanases Streptomyces sp. Phytophthora fragariae Raspberry
Pseudomonas cepacia R. solani, S. rolfsii,
Pythium ultimum
Actinoplanes philippinensis and Pythium aphanidermatum | Cucumber
Micromonospora chalcea
Lysobacter enzymogenes Pythium Sugar
beet
Paenibacillus, B. cepacia F. oxysporum, R. solani, -
S. rolfsii and Pythium
ultimum
Chitinases and | Serratia marcescens, Streptomyces | Sclerotinia minor Lettuce
glucanases viridodiasticus, Micromonospora
carbonacea
L. enzymogenes F. graminearum Wheat
Streptomyces sp. and Paenibacillus | F. oxysporum f. sp. Cucumber
sp. cucumerinum
Chitinases, B. subtilis, Erwinia herbicola, Eutypa lata Grapevine
proteases and | Serratia plymuthica and
cellulases Actinomycete
Proteases Stenotrophomonas maltophilia P. ultimum Sugar
beet
Laminarinase Pseudomonas stutzeri F. solani -
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8.5.3 Indirect Antagonism
8.5.3.1 Competitive Root Colonization

From the microbial perspective, living plant surfaces and soils are often nutrient-
restricted environments. Nutrient limitation is an important mode of action of some
biological control agents. Carbon plays an important role for competition of root
colonization for nutrients such as Trichoderma spp. (Sivan and Chet 1989). Carbon
competition between pathogenic and non-pathogenic strains of F. oxysporum is one
of the main mechanisms in the suppression of Fusarium wilt (Alabouvette et al.
2009). The disease suppression of bacterium Erwinia amylovora causes fireblight
by the closely related saprophytic species E. herbicola due to competition of the
nutrient on the leaf surface. Competition between rhizosphere bacteria and Pythium
ultimum, a common cause of seedling damping-off for the same carbon source, has
resulted in an effective biological control of the latter organism in several crops.
Germination of the conidia of Botrytis cinerea is inhibited by Pseudomonas species
due to competition for amino acids. This mechanism may not be useful in
suppressing biotrophs such as powdery mildews and rusts, because they do not
require exogenous nutrients for host infection.

8.5.3.2 Plant Growth Promotion Through SAR and ISR

Chemical stimuli are produced by some biocontrol agents, i.e. non-pathogenic plant
growth-promoting rhizobacteria (PGPR) and fungi (PGPF), or by soil- and plant-
associated microbes. Such stimuli can either induce a sustained change in the plants
which increase the capacity of tolerance to infection by pathogens or induce the
local and/or systemic host defences of the whole plant against broad-spectrum
pathogens. This phenomenon is known as induced resistance. Two types of induced
resistance are distinguished in plants, systemic acquired resistance (SAR) and
induced systemic resistance (ISR). The first of the two pathways is mediated by
salicylic acid (SA) which is frequently produced after pathogen infection and
induces the expression of pathogenesis-related (PR) proteins that include a variety
of enzymes. The second method is mainly jasmonic acid (JA) and/or ethylene
mediated following the applications of some nonpathogenic rhizobacteria
(Fig. 8.2). The SAR-induced resistant was observed when Trichoderma harzianum
was inoculated in roots and leaves of grapes, and it provides control of diseases
caused by Botrytis cinerea from the site of application of T. harzianum (Deshmukh
et al. 2006). It was found that the biocontrol agent P. fluorescens strain CHAO
induces accumulation of salicylic acid and by inducing SAR-associated proteins
confers systemic resistance to a viral pathogen in tobacco. Colonization of Glomus
intraradices on the roots of Oryza sativa conferred resistance through induction of
defence-related genes (Campos-Soriano et al. 2012). Penicillium simplicissimum
enhanced the resistance of barley to Colletotrichum orbiculare by inducing
salicylic acid accumulation, formation of active oxygen species, lignin deposition
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and activation of defence genes. In addition, Fusarium equiseti and Phoma
sp. elicited Arabidopsis thaliana systemic resistance against Pseudomonas
syringae pv. tomato and Pythium oligandrum against Ralstonia solanacearum.
However, different ISR elicitors like secondary metabolites and proteins involved
in mycoparasitism and antibiosis have also been identified. Secondary metabolites
like trichokinin, alamethicin, harzianopyridone, harzianolide and 6-pentyl—apyrone
have antagonist effects at high doses but in low doses act as ISR inducers.
Expression of endochitinase Ech42 of Trichoderma atroviride was found to act as
an ISR inducer in barley, resulting in an increased resistance to Fusarium
sp. infection. Similarly, chitinase Chit42 of T. harzianum expression increased
resistance in potato and tobacco against the foliar pathogens, B. cinerea, Alternaria
solani and A. alternata, and soil-borne pathogen, Rhizoctonia solani.

8.6 Genomic Approaches of Biocontrol Agent

Recent advances in molecular technologies have brought a revolution in microbial
worlds and unzipped the immense diversity in microbial population helping scien-
tific community to find out novel biocontrol agents (Kumar et al. 2014; Sharma
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et al. 2016). Utilizing bioinformatics tools and inexpensive sequencing techniques
has led to the assembly of genomic data for microbial biocontrol agents and
exploring the untapped and novel microbial isolates for important secondary
metabolites and enzymes.

Seventy-eight percent of the genes functionally associated with antagonism were
found to be distributed in Trichoderma species, described as the best fungal
biocontrol agent till date. This is followed by Coniothyrium, Pythium and
Clonostachys with 6, 5 and 4%, respectively. The way of antagonism is different
in different microbes and sometimes depends on the pathogens. The genes associ-
ated with antagonism are diverse and involved in antibiosis, signalling, parasitism
or transport. Of the identified genes, 44% are related to mycoparasitism, and 26%
were for the antibiosis, whereas ISR-, signalling- and competition-related genes
represent only 12, 11 and 5%, respectively. The role of different glucanases and
chitinases during mycoparasitism is demonstrated with the functional characteriza-
tion by gene-by-gene study in Trichoderma spp. (Daguerre et al. 2014). However,
molecular mechanisms involved in the antagonism are not well known for all the
cases. Now metatranscriptomic analyses appear as a more powerful tool as they
provide generous information on different aspects of the antagonism allowing for
comparison from the early stages to the later ones. The use of metatranscriptomic
analyses prior to functional characterization seems to be the most sensible strategy.
However, functional characterization is needed for verifying and ensuring the
molecular mechanisms of antagonism.

The use of advanced molecular technique and genomic approaches in the
identification of novel biocontrol agent is in its initial stages, but in the near future,
latent biochemical products may arise as the key of antagonism of major phyto-
pathogens as well as PGP in crops. For example, a total number of six genera of
actinobacteria, viz. Corynebacterium, Mycobacterium, Arthrobacter, Frankia,
Rhodococcus and Streptomyces, have been sequenced and analysed for potential
secondary metabolite and gene diversity (James and William 2013).

8.7 Commercially Available Eco-friendly Biological Agents

Formulation of biopesticide based on a variety of microorganisms, e.g. nematodes,
protozoa, fungi, bacteria, viruses, etc., is known as microbial pesticides or biocon-
trol agents. Predominantly five microbes, P. fluorescens, B. subtilis, Gliocladium
spp., Verticillium lecanii and Trichoderma spp., are used for the purpose of
commercial microbial pesticides. Several biopesticides are commercially available
(Table 8.6) globally. However, in India only 35 microbes have been included in the
Insecticides Act (1968) till now for commercial production of biocontrol agent,
since the first biopesticide was notified in the Gazette of India dated 26 March 1999.
In India, Singh (2006) identified novel Trichoderma strain with enhanced nemati-
cidal, fungicidal and growth promotion property and used for developing biocontrol
agent. The technology was transferred to Department of Agriculture, Government
of UP, for its commercial production. Later on, this technology has also been
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transferred to Gujarat State Fertilizer and Chemicals Limited (GSFC), Gujarat
Green Revolution Company Limited (GGRC) and Balaji Crop Care Pvt. Ltd.,
Hyderabad, for commercial production. The products ‘Sardar Eco Green
Biofungicide’ and “TRICHA’ based on a potential strain of Trichoderma harzianum
NBRI-1055 are in market for controlling phytopathogenic fungi. A talc-based
formulation of Trichoderma viride strain 2953 has recently been transferred to
Balaji Crop Care Pvt. Ltd., Hyderabad, for large-scale production.

8.8 Socio-economic Impact, Ethical Issues Winding
with the Biocontrol

Global assessment of biocontrol agents’ commercial availability in markets shows
that the percentage of users and land have steadily increased since the late 1990s
and the projected growth is continuing at a rate of 15.6% per year (Glare et al.
2012). Lehr (2010) reported that the global sales of biocontrol agents were esti-
mated at US$ 396.48 million in 2003 and have continued to increase with pro-
jections to reach up to US$ 1.068 billion by 2010. With the successful
implementation of biological agents in field for integrated plant disease manage-
ment, demand for commercial biocontrol agent is increasing within the growers.
There are approximately 225 microbial biocontrol agents which were manufactured
in 30 member countries and registered by the Organization for Economic Devel-
opment and Cooperation (Kabaluk and Gazdik 2007) for commercialization. The
rest of the global market share is distributed among the countries within the Oceania
at 20%, Latin and South American countries at 10% and less than 5% each
accredited to Asia and India (Thakore 2006). The chances of future market expan-
sion within the latter countries are likely to be variable. Organic and conventional
producers are anticipating the use of alternative biocontrol products that pose a
lower-risk exposure to human health than synthetic chemicals. Worldwide evolu-
tionary exploration with the microbial products and the illustrating actions of the
government personnel within the country, the growers and the industry have led to
changes in strategy, management and research initiatives. On the other hand,
legislation concurrently is supporting to make new policy that encouraged the
registration of lower-risk pest control products.

Quality of the inoculants available in the market, however, needs to be carefully
monitored as the formulation available in the market should contain sufficient
population of the biocontrol microbes to produce an economic gain. Many countries
such as the Netherlands, Thailand, Russia, France, Australia, Canada and the UK
have regulations for inoculant quality which lead to improvements in the quality of
commercial inoculants (Bashan et al. 2014). Canada and France have set norms that
formulated products should have 10° viable cells per seed with no detectable
contaminants (Catroux et al. 2001). However, that is not the case in developing
countries as most of the inoculants produced are of poor or sub-optimal quality.
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Brockwell and Bottomley (1995) observed that most of the inoculants produced in
the world is of relatively poor quality and 90% of all inoculants has no practical
effect on the productivity of crops for which it is used. Further, the presence and
nature of contaminants encountered in inoculants may represent a risk for humans,
plants and for the environment, which remains to be assessed. Hence, quality of
inoculants available in the market needs to be closely monitored, and make sure that
farmers use the quality inoculants so that they will have trust on biocontrol.

8.9 Future Prospects for Biocontrol

In the past five decades, an increasing number of chemical fertilizer and biocidal
molecules were the main cause for a substantial increase in crop production and
quality. Because of environmental issues and health concerns, continuous and
extensive use of those molecules has raised serious debate, and often various
biological control methods based on natural pest and pathogen-suppressing organ-
isms are being recommended as a substitute. Globally the registrations of microbial
biocontrol agents are increasing significantly. The changes in legislation in the
country level, development of new policies and management structures to address
the reduction of chemical uses are the expanding scope of biocontrol agents. On the
other hand, the researchers worldwide have been supported to discover new bio-
control agents to reinforce for entering in the industry. Being practical, at present
biocontrol agents are not comparable to chemical pesticides in meeting efficacy
which is needed for market expectations, but they still have a promising future if
knowledge and methods of various fields of biotechnology are utilized. The avail-
ability of recent molecular technologies has significantly facilitated for surveying
and identification of candidate agents, and helped to interpret the modes of action
after field applications. These new technologies like proteomics and functional
genomics will give new possibilities for insights in ecological constraints and will
help to see hitherto unseen possibilities to determine the physiological status and
expression of crucial genes present within the biocontrol agents during mass
production, formulation, storage and application.
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