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Abstract. Drought and heat stress are two major constraints that limit chickpea (Cicer arietinum L.) yield, particularly
during seed filling. The present study aimed (i) to assess the individual and combined effects of drought and heat stress
on oxidative metabolism during seed filling, and (ii) to determine any genetic variation in oxidative metabolism among
genotypes differing in drought and heat tolerance and sensitivity. The plants were raised in outdoor conditions with two
different times of sowing, one in November (normal-sown, temperatures <328C�208C (day–night) during seed filling),
and the other in February (late-sown, temperatures >328C�208C (day–night) during seed filling). Plants were regularly
irrigated to prevent any water shortage until the water treatments were applied. At both sowing times, the drought treatment
was applied during seed filling (at ~75% podding) by withholding water from half of the pots until the relative leaf water
content (RLWC) of leaves on the top three branches reached 42–45%, whereas leaves in the fully irrigated control plants
were maintained at RLWC 85–90%. Drought-stressed plants were then rewatered and maintained under fully irrigated
conditions until maturity. Several biochemical parameters were measured on the leaves and seeds at the end of the stress
treatments, and seed yield and aboveground biomass were measured at maturity. Individual and combined stresses
damaged membranes, and decreased PSII function and leaf chlorophyll content, more so under the combined stress
treatment. The levels of oxidative molecules (malondialdehyde (MDA) and H2O2) markedly increased compared with the
control plants in all stress treatments, especially across genotypes in the combined heat + drought stress treatment
(increases in leaves: MDA 5.4–8.4-fold and H2O2 5.1–7.1-fold; in seeds: MDA 1.9–3.3-fold and H2O2 3.8–7.9-fold).
The enzymatic and non-enzymatic antioxidants related to oxidative metabolism increased under individual stress
treatments but decreased in the combined heat + drought stress treatment. Leaves had higher oxidative damage than
seeds, and this likely inhibited their photosynthetic efficiency. Yields were reduced more by drought stress than by heat
stress, with the lowest yields in the combined heat + drought stress treatment. Heat- and drought-tolerant genotypes
suffered less damage and had higher yields than the heat- and drought-sensitive genotypes under the individual and
combined stress treatments, suggesting partial cross-tolerance in these genotypes. A drought-tolerant genotype ICC8950
produced more seed yield under the combined heat + drought stress than other genotypes, and this was associated with
low oxidative damage in leaves and seeds.

Additional keywords: ascorbate peroxidase, catalase, chlorophyll content, electrolyte leakage, glutathione reductase,
superoxide dismutase.
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Introduction

Drought and heat stress are two major environmental factors
that can markedly affect plant productivity (Lipiec et al. 2013).
These two stresses often coincide to severely limit crop growth
andproductivity (Prasad et al. 2008;Grigorova et al. 2012;Lipiec
et al. 2013). In combination, drought stress and heat stress affect
the yield of many crops more than the individual effects of each

stress (Rollins et al. 2013). Prolonged exposure of plants to
stress can significantly alter plant biochemistry and metabolism,
thereby influencing an array of processes including growth,
development, yield and quality (Prasad et al. 2008; Farooq
et al. 2009). Although water and heat stress have been
extensively studied independently, relatively little is known
about their combined effects on crops (Queitsch et al. 2000).
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Studies have examined the combined effects of water and heat
stress on the growth and productivity of cereal crops such as
sorghum (Sorghum bicolor L.; Machado and Paulsen 2001),
wheat (Triticum aestivum L.; Bahar and Yildirim 2010) and
maize (Zea mays L.; Kebede et al. 2012), and some legume
crops such as cowpea (Vigna unguiculata L. Walp.; Hall 2004),
groundnut (Arachis hypogaea L.; Hamidou et al. 2013) and
chickpea (Cicer arietinum L.; Gan et al. 2004; Canci and
Toker 2009; Awasthi et al. 2014). However, the physiological
and biochemical responses remain largely unknown.

Seed filling is the final stage of growth for any grain crop
and involves transport processes to import constituents and
biochemical processes related to the synthesis of carbohydrates,
proteins and lipids in seeds. Periods of water limitation as well
as heat stress during seed development cause substantial yield
losses in various crops, as reported for cereals (Barnabas et al.
2008) and legumes (Leport et al. 1998; Davies et al. 1999; Canci
and Toker 2009). Legumes are highly sensitive to abiotic stresses
during seed filling (Krishnamurthy et al. 2010; Devasirvatham
et al. 2012; Hamidou et al. 2013; Farooq et al. 2016).

The production of reactive oxygen species (ROS) is an
inevitable consequence of aerobic metabolism during stressful
conditions (Bhattacharjee 2012; Sharma et al. 2012). Heat
stress and drought stress, individually or in combination, lead
to the overproduction of ROS (O2–, 1O2, H2O2, OH

–) in different
organelles, providing a major threat to cellular metabolic
processes. The overproduction of ROS leads to deleterious
reactions that damage biological structures including thylakoidal
membranes and the photosynthetic apparatus, resulting in DNA
nicking, and amino acid and protein oxidation (Asada 1999;
Vranova et al. 2002). ROS directly attack membrane lipids and
increase lipid peroxidation (Mittler 2002). Several studies
have reported increased malondialdehyde (MDA, a product
of lipid peroxidation) and H2O2 content under drought in
species including hyacinth bean (Lablab purpureus; D’Souza
and Devaraj 2011), chickpea (Patel and Hemantaranjan 2012),
maize (Voothuluru and Sharp 2013), sugarcane (Saccharum
officinarum L.; Boaretto et al. 2014) and wheat (Du et al.
2012, 2013; Wang et al. 2016), and under heat stress in
species including cotton (Gossypium hirsutum L.; Mohammed
and Tarpley 2010), rice (Oryza sativa L.), maize (Kumar
et al. 2012) and sorghum (Tan et al. 2011). Little is known
about the combined effects of these two stresses on oxidative
damage in plants.

Plants tend to combat ROS production by inducing an
antioxidant system consisting of enzymatic and non-enzymatic
components, which are maintained at steady-state levels under
stressful conditions (Tuteja et al. 2012). Enzymatic antioxidants
include superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase, and enzymes of the ascorbate-glutathione cycle
such as ascorbate peroxidase (APX), monodehydroascorbate
reductase, dehydroascorbate reductase and glutathione reductase
(GR) (Noctor and Foyer 1998; Foyer and Noctor 2003). Non-
enzymatic antioxidants include phenolic compounds, ascorbate,
reduced glutathione (GSH), carotenoids and tocopherols
(Apel and Hirt 2004; Gill and Tuteja 2010). Increased activity
of many antioxidant enzymes to combat oxidative stress has
been observed during drought or heat stress in crops including
lentil (Lens culinaris Medik.; Chakraborty and Pradhan 2011),

pearl millet (Pennisetum glaucum L.; Kolupaev et al. 2011),
soybean (Glycine max L.; Akitha Devi and Giridhar 2015), pea
(Pisum sativum L.; Osman 2015), wheat (Du et al. 2012) and rice
(Pandey and Shukla 2015).

Chickpea is a major food legume grown worldwide for its
high nutritional value. It is usually grown under rainfed rather
than irrigated conditions, where terminal drought is often
accompanied by heat stress during seed filling, which can be
detrimental for seed yield (Canci andToker 2009;Krishnamurthy
et al. 2011). Previously, we reported a marked reduction in
sucrose metabolism in the leaves and seeds of chickpea exposed
toheat anddrought stress combined (Awasthi et al. 2014). Several
reports are available on oxidative stress associated with drought
or heat stress, but no study has investigated the combined effects
of drought and heat stress in chickpea. The objectives of this
study were (i) to assess the individual and combined effects
of drought and heat stress on the biochemical processes
related to oxidative metabolism during seed filling, and (ii) to
identify genetic variation in oxidative metabolism in genotypes
contrasting for drought- and heat-tolerance and sensitivity. It
was hypothesised that (i) the response of chickpea genotypes
would vary to drought, heat and their combination in terms of
growth and yield as well as oxidative damage and redox status in
leaf and seed tissues, and (ii) there may be some cross-protection
mechanisms against heat and drought in differentially sensitive
genotypes.

Material and methods
Genotypes

This study used six chickpea genotypes with matching
phenology but contrasting for heat and drought tolerance:
two heat-tolerant (ICC1356, ICC15614), two heat-sensitive
(ICC4567, ICC5912), one drought-tolerant (ICC8950) and one
drought-sensitive (ICC3776). The origin of the genotypes is
presented in Table 1 and phenology in Table 2. Designation as
heat-tolerant and heat-sensitive or drought-tolerant and drought-
sensitive was based on seed yields of the chickpea mini-core
collection under heat and drought stress in thefield (Krishnamurthy
et al. 2010, 2011; Devasirvatham et al. 2012).

Experimental details

The experiments were conducted at Panjab University,
Chandigarh (3084400N, 7684700E), India. The six genotypes
were grown under outdoor conditions with two different times

Table 1. Country of origin, seed colour and type, and 100-seed weight
of the six chickpea genotypes used in this study

Genotypeswere identified as heat-tolerant (HT), heat-sensitive (HS), drought-
tolerant (DT) and drought-sensitive (DS) based on seed yields under heat

and drought conditions in the field (Krishnamurthy et al. 2010, 2011)

Genotype Country
of origin

Seed coat colour
and seed type

100-seed
weight (g)

ICC1356 (HT) India Yellow brown (Desi) 14.9
ICC15614 (HT) Tanzania Yellow brown (Desi) 14.6
ICC4567 (HS) India Dark brown (Desi) 13.7
ICC5912 (HS) India Mosaic (Kabuli) 16.4
ICC8950 (DT) India Yellow brown (Desi) 13.2
ICC3776 (DS) Iran Black (Desi) 10.5
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of sowing. The first was in November (normal sowing time)
so that the average day–night temperatures during seed filling
were <328C�208C, and the second was in February (late-sown)
to ensure that plants were exposed to higher average day–night
temperatures, i.e. >328C�208C, during seed filling. Daily
maximum, minimum and mean air temperature, daily maximum,
minimum and mean relative humidity, and photoperiod were
recorded during both growing seasons (Fig. 1). Ranges of
maximum and minimum (i.e. day and night) temperatures
during seed filling were 27.08C–30.58C and 10.98C–18.68C,
respectively, for the plants sown in November, and 32.18C–
37.08C and 21.08C–22.88C for the plants sown in February.
Day and night relative humidities were 25–45% and 83–85%,
respectively, for the plants sown in November, and 20–25%
and 48–70% for the plants sown in February (Fig. 1). The
mean day–night vapour-pressure deficits during the seed-filling
period were 2.0–0.3 kPa in the November-sown chickpeas and
4.5–1.1 kPa in the February-sown plants. The photoperiod range
was 12.1–12.5 h during the normal-sown growing season and
13.0–13.3 h during the late-sown growing season (Fig. 1).

The field soil (sand 63.4%, silt 24.6%, clay 12%) was mixed
with sand in a 3 : 1 ratio. Farmyard manure was then added
to the soil–sand mixture in a 1 : 3 ratio, along with tricalcium
phosphate fertiliser (at 10mg kg–1). Each earthen pot (300mm
diameter, 236mm depth) was filled with 8 kg of this soil mixture.
Rhizobium ciceri was used to inoculate the seeds before sowing.
Five seeds were sown in each pot and thinned to three per pot

at 20 days after sowing. The plants were grown inside a wire
enclosure that prevented damage by birds and animals and
could be covered with plastic (90% light transmission) to
prevent infrequent rain events from affecting the treatments.
The plants were regularly irrigated to prevent any water
shortage until the water treatments were applied.

There were four treatments: control, normal-sown (November)
and well watered; drought stress, normal-sown and drought-
stressed during seed filling; heat stress, late-sown (February)
and well watered; heat + drought stress, late-sown and drought-
stressed during seed filling. There were 12 pots per genotype,
with three pots in each of the four treatments, in a completely
randomised block design. The pots were moved regularly
within the enclosure to remove any positional effects.

Application of drought stress in normal- and late-sown
conditions

The soil-water content at field capacity of the soil mixture,
determined with a FieldScout TDR 300 soil moisture meter
(Spectrum Technologies, Aurora, IL, USA), was 19.5% and it
was maintained until the onset of seed filling by watering the
plants twice daily at 09 : 00–10 : 00 and 16 : 00–17 : 00 Indian
Standard Time. The drought treatment in both the normal- and
late-sown plants was applied during seed filling (~75% podding)
by withholding water from half of the pots. The relative leaf
water content (RLWC), measured between 11:00–11 : 30, was
taken as an indicator of the plant water deficit; water was
withheld in the drought treatments until the RLWC of leaves
from the top three branches reached 50% (i.e. 43–45%) of that on
fully irrigated plants, with an RLWC of 85–90%. This occurred
after 13 days in the normal-sown drought-stressed plants and
after 7 days in the late-sown heat + drought-stressed plants. The
gravimetric soil-water content (dry-weight basis) was measured
by collecting soil from 70–120mm depth in pots. In the drought-
stressed (normal-sown) plants, the soil-water content decreased
from 19.5% to 9%, and in the heat + drought-stressed (late-sown)
plants, it decreased from 19.5% to 8% before rewatering to
100% field capacity. All plants were then watered twice daily
until seed maturity.

Sample collection

For the measurement of stress injury and biochemical analyses
related to oxidative metabolism and antioxidative defence, and
to obtain homogeneity for comparison of the biochemistry
among the genotypes grown at the two different sowing times,
seeds and subtending leaves were randomly collected at 11 : 00
from three plants per genotype and treatment in three replications
at the end of stress period just before re-watering, when RLWC
was 42.5–45% in the drought-stressed plants and 85–90% in the
well-watered plants. Leaves and seed samples for biochemical
analysis were collected from the second and third branches from
the top. In the late-sown plants, the samples were collected after
the plants had experienced heat stress (day–night temperatures
>328C�208C) for at least 7 days consecutively in the heat stress
and combined heat + drought stress treatments. The sampleswere
stored at �808C in a deep freezer. To measure the aboveground
biomass and yield components at maturity, three plants from one
of the three pots per replicate per genotype per treatment were cut
at soil level, with care taken to include the leaves that had fallen

Table 2. Time to first flower, first pod andmaturity (days after sowing)
in six chickpea genotypes contrasting for heat tolerance (HT) and heat
sensitivity (HT), drought tolerance (DT) and drought sensitivity (DS)
in normal-sown well-watered (control), normal-sown drought-stressed
(drought stress), late-sown well-watered (heat stress), and late-sown

drought-stressed (heat + drought stress) treatments
Values are the means� s.e.m. (n = 3). Within parameters, values followed

by the same letter are not significantly different (P> 0.05)

Genotype Control Drought
stress

Heat stress Heat + drought
stress

Time to first flower (l.s.d. genotype� treatment = 2.9)
1356 (HT) 64 ± 2.5a 62.5 ± 2.1a 46 ± 2.2b 44.2 ± 2.0bc
15614 (HT) 61 ± 2.3a 64.2 ± 2.7a 44 ± 2.4bc 42.6 ± 2.6bc
4567 (HS) 63 ± 2.1a 62.8 ± 2.5a 46 ± 2.3b 48.4 ± 2.5b
5912 (HS) 62 ± 2.4a 64.3 ± 2.9a 42 ± 2.2bc 44.3 ± 2.4bc
8950 (DT) 61 ± 2.3a 63.1 ± 2.4a 41 ± 2.6bc 43.5 ± 2.3bc
3776 (DS) 60 ± 2.6ab 61.8 ± 2.5a 43 ± 2.2bc 42.6 ± 2.1bc

Time to first pod (l.s.d. genotype� treatment = 2.4)
1356 (HT) 114 ± 2.2a 112.4 ± 2.2a 61 ± 2.3bc 59.4 ± 2.4c
15614 (HT) 111 ± 2.5ab 114.4 ± 2.4a 58 ± 2.5c 57.1 ± 2.1c
4567 (HS) 110 ± 2.3ab 108.4 ± 2.1ab 59 ± 2.2c 61.2 ± 2.3bc
5912 (HS) 112 ± 2.5a 115.3 ± 2.4a 60 ± 2.4c 62.5 ± 2.4bc
8950 (HS) 113 ± 2.2a 115.6 ± 2.3a 62 ± 2.4bc 64.3 ± 2.3b
3776 (DS) 110 ± 2.4ab 112.5 ± 2.2a 60 ± 2.6c 59.5 ± 2.1c

Time to maturity (l.s.d. genotype� treatment = 3.9)
1356 (HT) 160 ± 2.3a 128 ± 2.5b 88 ± 2.4c 81 ± 2.5d
15614 (HT) 162 ± 2.5a 126 ± 2.2b 86 ± 2.6c 79 ± 2.3d
4567 (HS) 163 ± 2.6a 128 ± 2.4b 83 ± 2.5cd 74 ± 2.5de
5912 (HS) 160 ± 2.4a 126 ± 2.3b 85 ± 2.3c 75 ± 2.6de
8950 (DT) 164 ± 2.5a 127 ± 2.2b 83 ± 2.3cd 78 ± 2.4d
3776 (DS) 161 ± 2.2a 123 ± 2.4b 84 ± 2.5c 71 ± 2.7f
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Fig. 1. Maximum, minimum and mean temperature (top panel), and maximum, minimum and mean relative humidity (RH, %) and
photoperiod (h) (bottom panel), between 25 October 2012 and 21 May 2013. Arrows show the beginning (first arrow) and end (second
arrow) of the drought treatment imposed on chickpeas sown in November (normal sowing), and the beginning (third arrow) and end
(fourth arrow) of the drought treatment imposed on chickpeas sown in February (late sowing).
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onto the pot and those that were collected near maturity and
before they fell. The number of filled pods was counted, and
seeds were removed from the pods and counted. The seeds and
remaining plant parts (stems, leaves and pod shells, hereafter
simply termed aboveground biomass) were oven-dried
separately for 72 h at 458C. Average values of all the traits
measured on the three plants per pot were expressed on a per-
plant basis.

Relative leaf water content

The RLWC was measured according to the method of Barrs and
Weatherley (1962). Fresh leaveswere excisedandcut into smaller
segments (10mm), weighed (fresh weight, FW) and then floated
on distilled water under low light (150–200mmolm–2 s–1) for 3 h
to obtain the turgid weight (TW). Leaf samples were oven-dried
at 808C for 24 h and weighed (dry weight, DW). RLWC was
calculated as:

RLWC ¼ ðFW� DWÞ=ðTW� DWÞ � 100

Electrolyte leakage

Stress injury to leaves was measured as electrolyte leakage
(Premchandra et al. 1990). Fresh leaf samples (1.0 g) were
washed three times with deionised water to remove electrolytes
adhering to the surface. Samples were placed in closed vials
containing 10mL deionised water and incubated at 258C on
a rotary shaker for 24 h; the electrical conductivity of the
solution was determined with a conductivity meter (CM 180;
ELICO, Hyderabad, TG, India). Electrolyte leakage was
expressed as electrical conductivity in mmhos g–1 DW.

PSII activity

The photochemical efficiency of the leaves was measured as
chlorophyll fluorescence by using the dark-adapted test of the
modulated chlorophyll fluorometer (OS1-FL; Opti-Sciences,
Hudson, NH, USA) at 11 : 00 at the end of the stress period.
With this system, chlorophyll fluorescence is excited by
a 660-nm solid-state light source, with filters blocking
radiation at wavelengths >690 nm. The average intensity of
this modulated light was adjusted from 0 to 1mE. Detection
was in the range 700–750 nm using a PIN (p-type, intrinsic,
n-type) photodiode (a silicone-based gated diode that features
a p-i-n diode to detect incident light) with appropriate filtering
to remove extraneous light. The leaves were dark adapted
for 0.75 h before measurement. The clamped leaves were then
exposed to 695 nmmodulated light, and the variable fluorescence/
maximum fluorescence (Fv/Fm) ratio (the maximum quantum
yield of PSII photochemistry) was recorded. PSII activity was
expressed as the Fv/Fm ratio. The same leaves were used to
measure chlorophyll content.

Chlorophyll content

For the estimation of chlorophyll content, chlorophyll was
extracted by grinding fresh leaves (1.0 g) in 80% acetone,
followed by centrifugation at 5700g for 600 s. The absorbance
of the supernatant was read at 645 nm and 663 nm, and total
chlorophyll was calculated (Arnon 1949) against 80% acetone
as a blank. The chlorophyll content was measured as:

Chl a ¼ 12:9 ðAbs663Þ � 2:69 ðAbs645Þ � V=1000�W ð1Þ

Chl b ¼ 22:9 ðAbs645Þ � 4:68 ðAbs663Þ � V=1000�W ð2Þ

Total Chl ¼ Chl aþ Chl b ð3Þ
where V is volume, W is tissue weight, Abs663 is absorbance at
663 nm and Abs645 is absorbance at 645 nm. The total chlorophyll
content was expressed as mmol g–1 DW.

Oxidative molecules

Malondialdehyde

Lipid peroxidation of membranes was estimated from MDA
content, a product of lipid peroxidation, using the method
described by Heath and Packer (1968). Fresh leaf and seed
tissue (500mg) was homogenised in 0.1% trichloroacetic acid
(TCA). The homogenate was centrifuged at 11 320g for 300 s,
and a 1-mL aliquot of the supernatant was treated with 4mL
0.5% thiobarbituric acid in 20% TCA; the mixture was heated
at 958C for 0.5 h and then quickly cooled in an ice bath.
After centrifugation at 5700g for 600 s, the absorbance of
the supernatant was read at 532 nm. The MDA content was
calculated by its extinction coefficient of 155mM

–1 cm–1 and
expressed as nmol g–1 DW.

Hydrogen peroxide

The content of H2O2 was estimated by the method of
Mukherjee and Chaudhari (1983). Fresh leaf and seed tissue
(500mg) was homogenised in 5mL chilled acetone (80%) and
filtered throughWhatman filter paper, and 4mL titanium reagent
was added followed by 5mL ammonia solution. The mixture
was centrifuged at 5030g, and the supernatant discarded.
The residue was dissolved with 1 M H2SO4 and the absorbance
recorded at 410 nm. The extinction coefficient of H2O2 is
0.28mmol–1 cm–1. The content of H2O2 in samples was obtained
from a standard curve using pure H2O2 and expressed as
mmol g–1 DW.

Enzymatic and non-enzymatic antioxidants

Superoxide dismutase

Activity of SOD (E.C. 1.15.1.1) was measured following the
method of Dhindsa et al. (1981). Fresh leaf and seed samples
(500mg) were homogenised in 50mM chilled phosphate buffer
(pH 7.0) and centrifuged at 5030g for 600 s at 48C; the
supernatant was treated as the enzyme extract. The reaction
mixture (3mL) contained 13mM methionine, 25mM nitro blue
tetrazolium chloride (NBT), 0.1mM EDTA, 50mM sodium
bicarbonate, 50mM phosphate buffer (pH 7.8) and 0.1mL
enzyme extract. The reaction was started by adding 2mM

riboflavin to the mixture followed by exposure to a 15-W
fluorescent light for 600 s. The absorbance was recorded at
560 nm and the total SOD activity of the samples assayed by
measuring its ability to inhibit the photochemical reduction of
NBT. One unit of SOD activity was defined as the amount
of enzyme that causes 50% inhibition of the photochemical
reduction of NBT. It was expressed in units of SOD activity
mg–1 protein.
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Catalase

Activity of CAT (E.C. 1.11.1.6) was estimated by the method
of Teranishi et al. (1974) with somemodifications. Fresh leaf and
seed samples (500mg) were homogenised in 50mM chilled
phosphate buffer (pH 7.0) and centrifuged at 5030g for 600 s
at 48C; the supernatantwas treated as the enzyme extract. Enzyme
extract (0.1mL) was added to 3mL phosphate buffer (50mM, pH
7.0), and a reaction was initiated by adding 200mM H2O2. The
decrease in absorbance was recorded at 410 nm for 180 s. CAT
activity was measured by using the extinction coefficient 40mM

–1

cm–1 and expressed as mmol H2O2 decomposed mg–1 protein.

Ascorbate peroxidase

Activity of APX (E.C. 1.11.1.11) activity was determined
by following the oxidation of ascorbate as a decrease in
absorbance at 290 nm (Nakano and Asada 1981). Fresh leaf
and seed samples (500mg) were homogenised in ice-cold
50mM phosphate buffer and centrifuged at 5030g at 48C; the
supernatant (i.e. enzyme extract) was kept for assay. The
reaction was carried out at 208C in 3mL reaction mixture
containing 50mM phosphate buffer (pH 7.0), 0.1mM EDTA,
0.5mM ascorbic acid (ASC), and 0.1mL enzyme extract. The
change in absorbance at A290 was recorded at 30-s intervals
after adding H2O2. The rate constant was calculated using the
extinction coefficient of 2.8mM

–1 cm–1 and was expressed as
mmol oxidised donor min–1mg–1 protein.

Glutathione reductase

Activity of GR (E.C. 1.6.4.2) was measured using the
method of Mavis and Stellwagen (1968). GR enzyme solution
containing 0.30–0.60 units mL–1 of glutathione reagent in cold
reagent, i.e. 1% bovine serum albumin (BSA), was prepared
immediately before use. The reaction mixture contained
0.65mL deionised water, 1.5mL phosphate buffer (100mM,
pH 7.6), 0.1mL glutathione oxidised (GSSG), 0.35mL
b-NADP, 0.20mL BSA and 0.2mL enzyme solution. The
contents of the reaction mixture were immediately mixed by
inversion and the decrease in absorbance was read at 340 nm for
~180 s. The enzyme activity was expressed as mmol oxidised
donor min–1mg–1 protein.

Ascorbic acid

Estimation of ASC was done according to the method of
Mukherjee and Chaudhari (1983). Fresh leaf and seed tissue
(500mg) was homogenised in 6% TCA, and the homogenate
was centrifuged at 3650g. A 2-mL volume of 2% DNPH
(2,4,dinitrophenyl hydrazine) was added to 4mL supernatant
followed by one drop of 10% thiourea. The mixture was
boiled for 15min in a water bath and cooled to room
temperature; 5mL pre-cooled H2SO4 at 08C was added and
the absorbance read at 530 nm. The ASC content was
calculated from a standard curve plotted with known content
of ASC and expressed as nmol g–1 DW.

Glutathione

Reduced glutathione (GSH) was estimated according to the
method of Griffith (1980). The GSH content was measured by
using fresh leaf and seed tissue (500mg) homogenised in 2.0mL

metaphosphoric acid and centrifuged at 14 540g for 600 s.
Aliquots (0.9mL) of the supernatant were neutralised by
adding 0.6mL 10% sodium citrate. A total volume of
1.0mL solution, containing 700mL NADPH (0.3mM), 100mL
5,50-dithio-bis-(2-nitrobenzoic acid) DTNB (6mM), 100mL
distilled water and 100mL enzyme extract, was prepared and
stabilised at 258C for 180–240 s. Later, 10mL GR was added,
and the absorbance was recorded at 412 nm. GSH content was
calculated from a standard graph as described by Griffith (1980)
and expressed as nmol g–1 DW.

Assay for dry weight and protein content

The assays are expressed on a DW or protein content basis. The
DW of the fresh leaf and seed samples was obtained by weighing
out a similar quantity (500mg) of fresh leaf and seed tissue from
the same position on the plant as for the enzyme assays, oven-
drying the leaf and seed samples at 458C for 48 h, and weighing
the dry samples.

The soluble protein content of the leaves and seeds at the
time of sampling was estimated by the method of Lowry et al.
(1951). The fresh leaf and seed samples (100mg) were
macerated in 0.1 M phosphate buffer (pH 7.0) and centrifuged
at 510g for 600 s to obtain the supernatant. TCA (5mL, 15%)
was added to the supernatant and kept at 48C for 24 h. The
mixture was then centrifuged at 510g for 600 s to separate the
precipitates. The supernatant was discarded and the precipitate
dissolved with 0.1 N NaOH (1mL) and then kept for 18 h
for complete dissolution. Copper sulfate reagent containing
2% Na2CO3 (in 0.1 N NaOH) and 0.5% CuSO4.5H2O (in 1%
sodium potassium tartarate) was added to 1mL dissolved
precipitate and allowed to stand for 600 s, and then 0.5mL
Folin-phenol Ciocalteu’s reagent (1 N, 1 : 1 ratio) was added.
This mixture was kept for 0.5 h for colour development and
the absorbance was read at 570 nm. The total protein content
(mg g–1 DW) was obtained by using a standard curve with BSA.

Statistical analyses

Data for the six genotypes by four treatments and three replicates
were analysed by a2-way analysis of variance, usingAGRISTAT
statistical software (developed by the Indian Council of
Agricultural Research, New Delhi). Tukey’s post-hoc test was
determined using Statistical Analysis System software (SAS
Institute, Cary, NC, USA). Correlations were fitted with
‘Analyse it’ software of Microsoft Excel, using average values
per genotype. Mean values along with the standard error of the
mean (s.e.m.) for genotypes and treatments and the least
significant differences (l.s.d.) for the interactions are presented.

Results

Results ofANOVA, indicating the level of statistical significance,
are presented for all measured traits in Table 3. For all traits, the
effects of treatment, genotype and treatment� genotype were
significant,with the exceptions of genotype for days tofirstflower
and SOD in seeds.

Phenology, growth and seed yield

In the control treatment, time to first flower varied from 60 to
64 days after sowing (DAS), time to first podding varied from
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110 to114DAS, suggesting thatmanyof theearlyflowers aborted
and did not produce a pod, and time to maturity varied from 160
to 164 DAS (Table 2). In all genotypes, late sowing in February
reduced the number of days to flowering, podding and maturity
compared with the normal-sown plants (Table 2), and reduced
flowering and podding duration. Drought stress (normal-sown)
imposed during podding reduced days to maturity, and combined
heat + drought stress reduced the days to maturity further,
particularly in the sensitive genotypes (Table 2).

Aboveground biomass (stems, leaves and pod shells)
produced by the six genotypes varied from 6 to 8 g plant–1 in
the control treatment (Fig. 2a). The shortened growth period
due to the high temperatures in the heat stress treatment reduced
aboveground biomass more than the drought stress (normal-
sown) treatment (24–62% cf. 14–52%). Compared with the
control, this drought stress treatment reduced aboveground
biomass by 25% in the heat-tolerant genotypes, 37% in the
heat-sensitive genotypes, 14.3% in the drought-tolerant genotype
and 51% in the drought-sensitive genotype (Fig. 2a). When
drought was imposed on the late-sown plants (combined
heat + drought stress treatment), the biomass was reduced by
53–60% in heat- and drought-tolerant genotypes and by
70–83% in heat and drought-sensitive genotypes, compared
with the control treatment (Fig. 2a).

Seed weight in the control treatment was 5.3–6.0 g plant–1

and did not differ among genotypes (Fig. 2b). Seed weight per
plant decreased significantlymore in the drought stress (1.8–3.9 g
plant–1) than the heat stress (2.5–4.8 g plant–1) treatment, and

the combined heat + drought stress treatment was the most
inhibitory (1.1–3.9 g plant–1), especially for the sensitive
genotypes (Fig. 2b). The drought stress treatment reduced
yields by 45–51% in heat-tolerant genotypes, 57–64% in heat-
sensitive genotypes, 30% in the drought-tolerant genotype and
66% in the drought-sensitive genotype. Delaying planting to
expose plants to heat + drought stress reduced seed yields of
heat-tolerant genotypes by 48–50%, heat-sensitive genotypes
by 74–78%, the drought-tolerant genotype by 28% and the
drought-sensitive genotype by 79% compared with the control,
and by 30%, 51%, 19% and 56%, respectively, compared with
the heat treatment (Fig. 2b).

Photosynthetic efficiency and chlorophyll content
of leaves

The photosynthetic efficiency (Fv/Fm) of the leaves was not
significantly different among the genotypes in the control plants
(mean = 0.75), and consistent with the effects on seed yield,
it decreased more in plants subjected to drought stress
(54–74%) than to heat stress alone (9–46%) (Fig. 3a). The
combined heat + drought stress treatment showed the greatest
reduction in photosynthetic efficiency (68–83%), with the
smallest reduction occurring in the drought-tolerant genotype
(ICC8950) (Fig. 3a).

The chlorophyll content of the leaves was 13.3–15.2mmol g–1

DW in the control plants and did not vary significantly with
genotype (Fig. 3b). Plants in the drought stress treatment lost
more chlorophyll (20–52%) than those in the heat stress
treatment (10–41%), and plants under combined heat + drought
stress lost the most chlorophyll (25.3–60.5%) (Fig. 3b).
Nevertheless, the decreases in chlorophyll were less than the
decreases in photosynthetic efficiency (Fig. 3a). Drought-
and heat-tolerant genotypes maintained significantly higher
chlorophyll (9.41–10.3mmol g–1DW) than sensitive genotypes
(5.37–6.43mmol g–1 DW) in the combined heat + drought stress
treatment (Fig. 3b).

Leaf injury and oxidative damage of leaves and seeds

Leaf damage was assessed on the basis of membrane integrity
(electrolyte leakage). Some electrolyte leakage (0.8–1.3mmhos g–1

DW) was observed in the control plants, but leaf damage
increased in all genotypes in the drought stress treatment
(1.3–2.0-fold), heat stress treatment (1.2–1.8-fold) and the
combined heat + drought stress treatment (1.5–2.5-fold)
(Fig. 3c). Under the individual stress treatments, tolerant
genotypes had significantly less tissue damage than sensitive
genotypes (Fig. 3c). In the combined heat + drought stress
treatment, the most leaf damage occurred in the drought-
sensitive genotype (ICC3776, 2.5-fold), whereas the least
damage was observed in a heat-tolerant genotype (ICC1356,
1.5-fold).

Consistent with leaf damage, the MDA content, an indicator
of membrane damage due to lipid peroxidation, markedly
increased in the leaves in all stress treatments, especially the
combined heat + drought stress treatment (Fig. 4a). Drought
stress (normal-sown) significantly increased leaf MDA content
in all genotypes (3.7–8.3-fold), especially in thedrought-sensitive
genotype (ICC3776, 8.3-fold).Heat stress also increased theMDA

Table 3. Analysis of variance showing the level of statistical significance
of the traits measured in six chickpea genotypes given four treatments
(normal-sown well-watered, normal-sown drought-stressed, late-sown
well-watered, late-sown drought-stressed) and the significance of the

interaction of genotype� treatment
*P� 0.05; **P� 0.01; ***P� 0.001; n.s., not significant (P> 0.05)

Genotype Treatment Interaction

Days to first flower n.s. *** *
Days to first pod *** *** *
Days to maturity *** *** **
Aboveground biomass *** *** ***
Seed weight *** *** ***
Chlorophyll *** *** ***
PSII function *** *** ***
Tissue damage * *** ***
Malondialdehyde, leaves *** *** ***
Malondialdehyde, seeds *** *** ***
Hydrogen peroxide, leaves *** *** ***
Hydrogen peroxide, seeds *** *** ***
Superoxide dismutase, leaves * *** ***
Superoxide dismutase, seeds n.s. *** *
Catalase, leaves ** *** ***
Catalase, seeds *** *** ***
Ascorbate peroxidase, leaves *** *** ***
Ascorbate peroxidase, seeds *** *** ***
Glutathione reductase, leaves *** *** ***
Glutathione reductase, seeds *** *** ***
Ascorbic acid, leaves *** *** ***
Ascorbic acid, seeds *** *** ***
Glutathione, leaves ** *** ***
Glutathione, seeds ** *** ***
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content of the leaves in all genotypes, but to a lesser extent
than drought stress (2.9–6.2-fold). Heat + drought stress
increased leaf MDA content 4.8–8.4-fold compared with
control plants, more than either alone except in the drought-
sensitive genotype, ICC3776 (Fig. 4a). Irrespective of the
stress treatment, the MDA content in the leaves was higher in
the heat- and drought-sensitive genotypes than the heat- and
drought-tolerant genotypes (Fig. 4a).

TheMDA content of the seeds in the control plants was about
half that in the leaves (Fig. 4b), but increased under the drought
and heat stress treatments, more so under drought stress (1.5–2.0-
fold) than heat stress (1.2–1.9-fold), and more so in the sensitive
genotypes (Fig. 4b). The combined heat + drought stress
treatment markedly increased seed MDA content (1.9–3.3-
fold) relative to the control, with the greatest increase in the
drought-sensitive genotype (ICC3776, 3.3-fold) (Fig. 4b) and
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the two heat-sensitive genotypes (ICC5912 and ICC4567, 2.9-
fold), and the smallest increase in a drought-tolerant genotype
(ICC8950, 2.1-fold) and two heat-tolerant genotypes (ICC1356
and ICC15614, 1.9-fold).

Like MDA, the H2O2 content in the leaves increased
significantly under all stress treatments: control, 1–2mmol g–1

DW; heat stress, 2.2–4.5mmol g–1 DW; drought stress,
4.5–9.2mmol g–1 DW; heat + drought stress, 7.2–13.5mmol g–1

DW (Fig. 4c). In this combined heat + drought stress treatment,
the rise in leaf H2O2 content relative to the control treatment

was greater in sensitive genotypes (6.5-fold) than in tolerant
genotypes (5.7-fold); the greatest increase occurred in the
drought-sensitive genotype (ICC3776, 7.1-fold) with the
smallest increase in a drought-tolerant genotype (ICC8950,
5.4-fold).

The H2O2 content in the seeds of control plants, at
0.73mmol g–1 DW in all genotypes, was about half that in the
leaves (1.6mmol g–1 DW). As in the leaves, H2O2 content
increased in the heat stress treatment by 1.8–2.8-fold and in
the drought stress treatment by 2.5–4.3-fold across genotypes,
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with significantly higher increases in the heat- and drought-
sensitive genotypes than heat- and drought-tolerant genotypes
(Fig. 4d). Compared with the control, seed H2O2 content in
the combined heat + drought stress treatment increased further
(3.8–7.9-fold) across genotypes, with the largest increase in
the drought-sensitive genotype (ICC3776, 7.9-fold) followed
by the two heat-sensitive genotypes (ICC5912 and ICC4567
(5.6-fold) (Fig. 4d).

Activity of antioxidants in leaves and seeds

In the leaves of the control plants, the activity of SOD varied
with genotype from 11 to 17 units mg–1 protein (Fig. 5a), CAT

from 1.8 to 2.4mmol H2O2 decomposed mg–1 protein (Fig. 5c),
APX from 4.2 to 5.6mmol oxidised donor min–1mg–1 protein
(Fig. 6a), GR from 4.3 to 5.2mmol oxidised donor min–1mg–1

protein (Fig. 6c) and GSH from 32 to 40 nmol g–1 DW (Fig. 7c).
ASC content in the control treatment was 112–121 nmol g–1 DW
in all genotypes (Fig. 7a). SOD, APX, GR, ASC and GSH were
higher under drought stress than heat stress in most genotypes,
whereas CAT had higher expression under heat stress than
drought stress. The activity of most of the antioxidants under
combined heat + drought stress was unexpectedly decreased
compared with the heat stress treatment, except for CAT in the
drought-tolerant genotype. For APX, GR and GSH, the activity
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of the heat- and drought-sensitive genotypes in the heat + drought
stress treatment was lower than in the control (Figs 6a, c, 7c).
Overall for enzymatic antioxidants, the combined heat + drought
stress treatment increased leaf SOD by 18–50%, CAT by
22–152%, depending on genotype, compared with the control.

Content of ASC was found to increase under drought by
127–142% in the heat-tolerant genotypes and 133% in the
drought-tolerant genotypes, whereas under heat stress, the
increase was 70–106% in the heat-tolerant and 81% in
the drought-tolerant genotype. In the combined heat + drought
stress treatment, the tolerant genotypes (for heat and drought)

showed a 54–64% increase relative to the control, and the
sensitive genotypes showed ASC values similar to, or in
the case of the drought-sensitive genotype significantly less
than, the control and significantly less than individual stress
treatments (Fig. 7a). The pattern in GSH was similar to ASC;
thus, genotypes tolerant to drought and heat contained more
GSH in the individual and combined stress treatments (Fig. 7c).

In the seeds of the control chickpea plants, the activities of
the antioxidants SOD, CAT, APX and GR varied with genotype,
but were ~50% of the values in the leaves (Figs 5b, d, 6b, d),
whereas ASC activity was ~60% (Fig. 7b) and GSH ~80%
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(Fig. 7d) of the values in the leaves. Individual treatments of
drought stress and heat stress each increased antioxidant levels
above the controls, with drought stress generally the antioxidant
level to a greater extent than heat stress, which is similar in
the observations in leaves (except for CAT, where heat stress
tended to induce higher activity in the leaves; Fig. 5c, d).
Combined heat + drought stress reduced the activity of all
antioxidants in the seeds of the heat- and drought-sensitive
genotypes compared with the heat stress treatment (except
APX for heat-sensitive genotypes; Fig. 6b). However, the
heat- and drought-tolerant genotypes had similar levels of

antioxidant activity in the heat stress and heat + drought stress
treatments (Figs 5b, d, 6b, d, 7b, d).

SeedcontentofASCincreasedby24–49%indrought-stressed
plants and by 7–24% in heat-stressed plants, with a significantly
greater increase in genotypes tolerant to drought and heat than
in the sensitive genotypes. In the combined heat + drought
stress treatment, the genotypes tolerant of drought and heat
showed a 14–21% increase, whereas the sensitive genotypes
showed a 15.6–25% decrease relative to the control.

Seed GSH showed an increase of 32–102% in drought-
stressed plants and 30–82% in heat-stressed plants. The increase
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was significantlymore in the tolerant than the sensitive genotypes.
Under heat + drought stress, GSH levels were lower than under
individual stress treatments. GSH in genotypes tolerant to drought
and heat showed a 22–69% increase, whereas GSH decreased by
13–38% in sensitive genotypes relative to the control.

Correlations

In the combined stress treatment, seed yield was positively
correlated (r= 0.82) with aboveground biomass (stems, leaves

and pod shells), and leaf chlorophyll content and photosynthetic
efficiency (leaf PSII) were strongly and positively associated
with biomass (r= 0.87, r= 0.71, respectively) and with seed
yield (r= 0.96, r= 0.94, respectively) (Table 4). By contrast,
leaf membrane damage was associated with a reduction in
biomass (r= –0.70) and seed yield (r= –0.76), which suggests
that membrane damage plays a vital role in inhibiting growth
and seed yield. The correlations of biomass and seed weight
were highly negative with contents of oxidative molecules
MDA and H2O2 in leaves (r= –0.62, r= –0.85, respectively)

0

50

100

150

200

250

300

350

A
S

C
 (

nm
ol

 g
–1

 D
W

)

(a) (b)

(c) (d )

f

e

a

g

f

c

b

g gg

ee

g

a

g
g

e

b

c

g

e

d

h

f

dc

a

b

a

b
a

b

cb
b

b

c
b

a

b

cd

f

a

bb

a

b
d

b

c
b

c
d

0

10

20

30

40

50

60

70

1356
(HT)

15614
(HT)

4567
(HS)

5912
(HS)

8950
(DT)

3776
(DS)

G
S

H
 (

nm
ol

 g
–1

 D
W

)

e

f

c

d

a

b

f

d

e

f

a

c

d

d

e

d

e
d

e

f

g

a

f
f

g

e

f

b

c

c

a

b

c

d

c

d

g

e

c

d

c

d

b

c

1356
(HT)

15614
(HT)

4567
(HS)

5912
(HS)

8950
(DT)

3776
(DS)

Control Drought Heat Heat+Drought

b

b

b

cc

d
c

d

a

b b

c

d

b

c
b

c

d

e

d

b

a

b b

c

d

e

d

e

b

c

e

c

d

b

c

f

Fig. 7. (a, b) Ascorbic acid (ASC) and (c, d) reduced glutathione (GSH) contents in the leaves (a, c) and seeds
(b, d) of six chickpea genotypes that were heat tolerant (HT) and heat sensitive (HS), drought tolerant (DT)
or drought sensitive (DS), in the normal-sown well-watered (Control), normal-sown drought-stressed (Drought),
late-sown well-watered (Heat) and late-sown drought-stressed (Heat +Drought) treatments. Values of l.s.d.
(genotype� treatment): leaf ASC content 12.4, seed ASC content 8.9, leaf GSH content 5.6, seed GSH
content 6.5. Values are means + s.e.m. (n = 3); within a parameter, means with the same letter are not
significantly different.

Responses of chickpea to heat and drought Crop & Pasture Science M



and seeds (r= –0.87, r= –0.89, respectively). The enzymatic
antioxidants CAT, APX and GR and non-enzymatic antioxidants
ASC and GSH had strong positive correlations with biomass
and seed yield in the combined stress treatment.

Discussion

Drought stress and heat stress and their combination during
seed filling all had major impacts on the growth and yield of
chickpea. Withholding water in normal-sown plants for 13 days
so that the RLWC decreased to 50% of that in well-watered
controls reduced seed yields by 30% in the drought-tolerant
and 66% in the drought-sensitive genotype, but also reduced
yields by 45–51% in the heat-tolerant and 57–64% in heat-
sensitive genotypes. Delaying planting to expose the plants to
heat stress (day–night air temperatures >328C�208C) for at least
7 days during seed filling reduced the seed yields of the heat-
tolerant genotypes by 25–28%, the heat-sensitive genotypes by
45–58%, the drought-tolerant genotype by 28% and the drought-
sensitive genotype by 53% compared with the controls. Thus,
the effect of delayed planting to induce heat stress during seed
filling was smaller than of the drought stress imposed during
seed filling in chickpea sown at the normal time.

The genotypic variation for heat tolerance and sensitivity
and drought tolerance and sensitivity identified in field studies
in India was confirmed in this pot study. The genotypes selected
for drought tolerance (high yields) and drought sensitivity (low
yields) under drought conditions in the field (Krishnamurthy
et al. 2010) were also drought-tolerant and drought-sensitive
in this pot study. Likewise, the genotypes selected for heat
tolerance (high yields) and heat sensitivity (low yields) when

late-planted in the field (Krishnamurthy et al. 2011) were also
heat tolerant and heat sensitive when late-planted in this study.
The study has also shown that there is considerable crossover
between heat and drought tolerance among chickpea genotypes,
with drought-tolerant genotypes showing greater tolerance to
heat than drought-sensitive lines, and heat tolerant genotypes
showing greater tolerance to drought than the heat-sensitive
genotypes. Compared with the well-watered plants, imposing
drought stress, whether on normal-sown or late-sown chickpeas,
reduced the seed yields of the heat-tolerant, heat-sensitive,
drought-tolerant and drought-sensitive genotypes by a similar
percentage (30%,51%, 19%and56%, respectively).We recognise
that delaying planting to expose the plants to heat stress sped up
the phenology, and that the reduced aboveground biomass may
have been a consequence of this. However, seed yield was less
affected than aboveground biomass by the delay in planting, so
that the harvest index averaged across all genotypes was 34% in
the drought stress treatment, but was 48%with delayed planting.
This was higher than in the controls (44%) and similar to the
combined heat + drought stress (47%), supporting the argument
that the effects of delayed planting were not simply due to heat
stress during seed filling, but also due to the faster phenological
development. Nevertheless, the main purpose of this study was
to determine the effects of drought and heat on growth and seed
filling, and to determine whether the changes in aboveground
biomass and seed yield can be explained by changes in the
biochemistry induced by heat and drought treatments.

Seed filling is a critical growth stage in grain crops
and involves various biochemical processes related to leaf
assimilation and the synthesis of carbohydrates, proteins and
lipids in the seeds. Seed yield and biomass were closely and
positively associated with rates of photosynthetic efficiency
and chlorophyll content of the leaves, suggesting that both
aboveground biomass and seed yield were determined by the
influence of the drought and heat treatments on photosynthetic
capacity and assimilate transfer to the grain during the stress
treatments.

Oxidative damage severely affects seed filling by hampering
all metabolic processes, thereby damagingmembrane properties,
degrading proteins and deactivating enzymes, which further
reduces yield (Farooq et al. 2009, 2016). In the present study,
the chickpea plants grown under heat, drought and combined
heat + drought stress showed a significant increase in oxidative
stress, measured as an increase in MDA and H2O2 contents in
the leaves and seeds. Both of thesemolecules increasedmarkedly
when plants were treated with heat or drought individually,
more so under drought, and the combined heat + drought stress
treatment increased these molecules further, suggesting an
intensification of the damage. Oxidative molecules are formed
by the leakage of electrons from electron-transport activities in
chloroplasts, mitochondria and plasma membranes or as a by-
product of various metabolic pathways localised in different
cellular compartments during stress conditions, resulting in
oxidative damage (Sharma et al. 2012; Suzuki et al. 2012).
Cellular membranes are particularly susceptible to oxidative
damage due to increased electrolyte leakage associated with
lipid peroxidation, whichwas observed in the leaves in our study.

The oxidative damage was much higher in the leaves and
seeds of sensitive than tolerant genotypes, which was correlated

Table 4. Correlation coefficients (r) for leaf and seed traits with shoot
biomass (leaves, stems and pod shells) and seed yield

EL, Electrolyte leakage; PSII, photosynthetic efficiency; Chl, chlorophyll;
MDA, malondialdehyde; H2O2, hydrogen peroxide; SOD, superoxide
dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione

reductase; ASC, ascorbic acid; GSH, glutathione reduced

Trait Biomass Seed yield

Leaf EL –0.696 –0.764
Leaf PSII 0.712 0.943
Leaf Chl 0.867 0.963
Biomass – 0.825
Seed yield 0.825 –

Leaf MDA –0.616 –0.953
Leaf H2O2 –0.849 –0.892
Leaf SOD 0.119 0.335
Leaf CAT 0.541 0.859
Leaf APX 0.858 0.992
Leaf GR 0.781 0.970
Leaf ASC 0.893 0.946
Leaf GSH 0.880 0.993
Seed MDA –0.870 –0.788
Seed H2O2 –0.945 –0.893
Seed SOD 0.755 0.803
Seed CAT 0.893 0.964
Seed APX 0.912 0.951
Seed GR 0.747 0.951
Seed ASC 0.772 0.957
Seed GSH 0.955 0.920
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with increased damage to the chlorophyll, photosynthetic
efficiency and membranes, and a reduction in aboveground
biomass and seed yield in all stress treatments. The increase in
MDA content in our studies matches findings in drought-stressed
plants (e.g. chickpea, Patel and Hemantaranjan 2012; soybean,
Akitha Devi and Giridhar 2015; hyacinth bean, Rai et al. 2015),
in heat-stressed plants (e.g. chickpea, Kumar et al. 2013b;
mungbean (Vigna radiata L.), Mansoor and Naqvi 2013), and
in combined heat + drought-stressed plants (e.g. birdsfoot trefoil
(Lotus japonicus), Sainz et al. 2010; cotton, Sekmen et al. 2014).
Likewise, the increasedH2O2 levels observed in the present study
are similar to observations in drought-stressedmaize (Voothuluru
and Sharp 2013), sugarcane (Boaretto et al. 2014) and field pea
(Karataş et al. 2014), and heat-stressed wheat (Kumar et al.
2013a) and mungbean (Saleh et al. 2007; Mansoor and Naqvi
2013). The oxidative damage was much higher in the presence
of both stresses in our studies, which is similar to observations
recorded in birdsfoot trefoil (Sainz et al. 2010), cotton (Sekmen
et al. 2014) and purslane (Portulaca oleracea L., Jin et al. 2015).
In the present study, the content of MDA and H2O2 increased
more in leaves than seeds under all stress treatments, suggesting
higher oxidative damage in leaves than seeds.

Plants activate different enzymatic and non-enzymatic
antioxidants to cope with oxidative damage (Hasanuzzaman
et al. 2012; Suzuki et al. 2014). In our study, the chickpeas
had increased activity of SOD (catalyses dismutation of
superoxides), and CAT (dissociates hydrogen peroxide under
individual heat or drought stress), which was in accordance
with the rise in MDA and H2O2 in leaves and seeds. These
findings concur with studies on drought-stressed plants of
wheat (Devi et al. 2012), soybean (Akitha Devi and Giridhar
2015) and hyacinth bean (Rai et al. 2015), and heat-stressed
plants of chickpea (Kaushal et al. 2011), wheat (Kumar et al.
2013a; Wang et al. 2015) and cucurbit species (Ara et al. 2013).
In the combined heat + drought stress treatment, tolerant
genotypes had higher CAT activity in leaves and seeds than
sensitive genotypes. The combined heat + drought stress treatment
severely inhibited CAT activity in seeds in the sensitive
genotypes, which possibly increased H2O2 contents.

The enzymes APX (detoxifies H2O2 using ascorbate as
a substrate) and GR (converts GSSG to GSH) are involved
in the removal of H2O2 through the ascorbate–glutathione
pathway (Mittler 2002; Suzuki and Mittler 2006). In the
present study, increased activities of these enzymes, implied
efficient detoxification of H2O2 in leaves and seeds in the
individual stress treatments. These results are similar to
findings in other plant species under drought stress, including
chickpea (Patel and Hemantaranjan 2012), wheat (Devi et al.
2012) and barley (Hordeum vulgare L., Harb et al. 2015), and
under heat stress, including wheat (Sairam et al. 2000; Wang
et al. 2015, 2016) and mungbean (Kumar et al. 2011). In the
combined heat + drought stress treatment, APX andGR activities
in leaves and seeds were significantly suppressed compared
with other treatments, less so in the tolerant genotypes than the
sensitive genotypes. Thus, a combined heat + drought stress
tolerance was associated with the ability to maintain higher
activities of APX and GR in tolerant genotypes compared with
the sensitive genotypes, as also reported in studies on cotton
(Sekmen et al. 2014).

Non-enzymatic antioxidants such as ASC and GSH increased
significantly in leaves and seeds of plants under the individual
stress treatments. These twomolecules are used in the ascorbate–
glutathione cycle, which involves APX and GR enzymes
(Kopczewski and Kuzniak 2013; Saed-Moucheshi et al. 2014),
and their levels need to be maintained under stress to protect
the cells from oxidative damage. Increased ASC and GSH
contents in our studies are in accordance with previous studies
in drought-stressed maize and rice (Nayyar and Gupta 2006;
Chugh et al. 2011), wheat (Khanna-Chopra and Selote 2007;
Du et al. 2013) and chickpea (Patel et al. 2011). GSH and ASC
contents increased under heat stress, whichmatches observations
in heat-stressed maize and rice (Kumar et al. 2012), mungbean
(Kumar et al. 2011) and chickpea (Kumar et al. 2013b), indicating
their significance in defence against heat stress. The combined
heat + drought stress treatment decreasedASC andGSHcontents
in leaves and seeds, to a lesser extent in the tolerant than
the sensitive genotypes, which may be a result of inhibited
restoration due to a reduction in APX and GR activities. The
endogenous contents of ASC and GSH correlated positively
with the activities of APX and GR in the tolerant and sensitive
genotypes, which further validates the fundamental role of the
ascorbate–glutathione pathway in governing stress tolerance.

Stresses

Drought stress resulted in more oxidative damage (as indicated
by MDA and H2O2 levels) than heat stress, possibly due to more
dehydration of the tissues. Moreover, under drought stress,
stomatal conductance (Awasthi et al. 2014) decreased, which
likely resulted in an increase in leaf temperature and increased
oxidative damage. This was apparent from the greater damage to
membranes in drought-stressed than heat-stressed plants. At the
same time, in most of the genotypes, various antioxidants such as
CAT, APX, GR, ASC and GSH were significantly higher in the
drought stress than the heat stress treatment. When both stresses
were combined (heat + drought), oxidative damage (asMDA and
H2O2 levels), along withmembrane damage, increasedmarkedly
compared with the heat or drought stress treatments alone. This
may be associated with a rapid dehydration of the leaf and seed
tissues at high temperatures, as well as an increase in leaf
temperature in the combined heat + drought treatment, which
combined to induce a higher production of lipid peroxides and
H2O2.All of the antioxidants decreasedmarkedly in thecombined
heat + drought stress treatment compared with the single-stress
treatments, as shown in a previous study with cotton (Sekmen
et al. 2014), perhaps due to an overall reduction in cellular protein
synthesis, which likely impaired the availability of various
substrates such as ASC and GSH. It has been reported that
ROS cause lipid peroxidation, and consequently membrane
injury, protein degradation and enzyme inactivation (Sairam
et al. 2005). Oxidative stress may also cause protein oxidation,
with a loss of enzyme activity and the formation of protease-
resistant cross-linked aggregates (Berlett and Stadtman 1997).

Organs

There were variations between the leaves and seeds with respect
to oxidative damage, with leaves showing more damage than
seeds, as shownbyhigher levels ofMDAandH2O2.Accordingly,
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the expression of various antioxidantswas also found to be higher
in leaves than in seeds. The greater oxidative damage in leaves
might be related to the direct impact of the stress and more
surface area exposed to high temperature and drought than in
the seeds. Consequently, water relations are more affected in
leaves than in seeds, possibly due to reduced vasculature in the
latter. There were small differences in the expression pattern of
the antioxidants in the leaves and seeds, depending on the stress
environment and genotype. For example, CAT was expressed
more in response to drought stress in seeds than in leaves,whereas
in other antioxidants, no clear differences were discernible.
The expression pattern of antioxidants was higher in tolerant
genotypes than in sensitive genotypes in both leaves and seeds,
suggesting a common defensive strategy in these two organs.

Genotypes

Chickpea genotypes responded differently to drought stress,
heat stress and the combination of heat + drought stress at seed
filling, the different responses being associated with variations
in physiological and biochemical mechanisms. In the combined
heat + drought stress treatment, tolerant genotypes, particularly
the drought-tolerant genotype, produced significantly higher
yields than the other genotypes, which correlated positively
with pod and seed numbers (data not shown). Tolerant genotypes
had larger seeds, whichwere linked to higher carbon assimilation
and sucrose transport, than sensitive genotypes (Awasthi et al.
2014). Leaves of tolerant genotypes also had higher contents
of chlorophyll, higher photosynthetic efficiency and generally
less membrane damage, which corresponds with observations
in other crops under similar situations of heat or drought
stress applied individually (Kumar et al. 2012; Almeselmani
et al. 2012; Mishra et al. 2012; Wang et al. 2016). Oxidative
damage was less in the heat- and drought-tolerant genotypes, as
reported for heat-tolerant genotypes of wheat (Almeselmani
et al. 2006) and drought-tolerant genotypes of maize (Chugh
et al. 2013), which correlated with less damage to membranes
and chlorophyll. It was further observed that tolerant genotypes
had significantly higher antioxidants, particularly APX and GR,
as well as ascorbate and glutathione, in both leaves and seeds,
which was associated with less oxidative damage. One drought-
tolerant genotype in our study (ICC8950) had a higher degree
of tolerance to the combined effects of heat and drought than
the heat-tolerant genotypes, suggesting cross-tolerance of these
two stresses, as indicated previously in chickpea (Canci and
Toker 2009), and the likely presence of some common defence
mechanisms. This can be attributed to the observed higher
antioxidative ability, particularly of CAT, APX and GR in
the leaves of this genotype, compared with others, under the
combined heat + drought stress treatment. Future studies should
explore the testing of more heat- and drought-tolerant chickpea
genotypes against combined heat and drought stress to
determine the adaptive mechanisms concerning antioxidants
at the molecular level, which should be helpful for breeding
for combined stress tolerance.

Conclusion

Our findings indicate that the intensity of oxidative stress varies
in response to drought, heat and their combination. Drought

alone and in combination with heat stress in late-sown plants
resulted in more oxidative damage than in fully irrigated heat-
stressed plants. With the combined heat and drought stress,
we suggest that there was severe dehydration and a rise in leaf
temperature due to reduced stomatal conductance, which
exacerbated the oxidative damage. The expression of various
antioxidants also varied according to the stress. Even though
aboveground biomass and seed yield were reduced, the
plants were able to defend themselves to some extent from
the individual stresses, but these defences failed under the
combination of heat + drought stress. We suggest that this was
likely due to severe enzymatic inactivation arising from
dehydration and the simultaneous elevation of the temperature,
which caused a marked reduction in seed yield in all of the
genotypes. A partial cross-tolerance existed for heat- and
drought-tolerant genotypes, particularly for the drought-
tolerant genotype, which was able to perform better under the
combination of heat + drought stress. Studies are required
to explore the underlying mechanisms associated with the
combined heat + drought tolerance.
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