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Abstract
Expressed sequence tags (ESTs) are the most important resources for 
transcriptome exploration. Next-generation sequencing technologies 
have been generating! gigabytes of genetic codes representing genes, 
partial and whole genomes most of which are EST datasets. Niche of 
EST in plants for breeding, regulation of gene expression through miRNA 
studies, and their application for adapting to climatic changes are 
discussed. Some of the recent tools for analysis of EST exclusive to plants 
are listed out. Systems biology though in its infancy in plants has 
influenced EST mapping for unraveling gene regulatory circuits, which 
is illustrated with a few significant examples. This review throws a glance 
at the evolving role of ESTs in plants.
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Bioinformatics has provided us an impetus to learn 
systems biology. The bioinformatics tools have not 
only allowed us to understand what systems biol­
ogy could make use of but also on how it dissects 
the behavior of complex biological organization

1 Introduction and processes in terms of molecular constituents. 
It involves the study of all genes expressed as 
messenger RNAs and characterization of the 
proteins and metabolites under different conditions 
(Kirschner 2005). Significant advancement in 
high-throughput (HT) technologies such as micro- 
arrays, automated sequencing, and mass spectrom­
etry has generated huge amount of data which can 
be optimized by various computational tools for 
accelerated process of discovery. Access to a num­
ber of next-generation sequencing (NGS) techno­
logies such as Roche/454, Ulumina, and ABI 
SOLiD has drastically reduced the cost arid time 
of sequencing and increased the length of sequence 
reads. These NGS technologies are being utilized
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for de novo sequencing, genome re-sequencing, 
whole genome, and transcriptome analysis 
(Morozova and Marra 2008). Despite these 
advantages and availability of whole genome 
sequences of more than 180 organisms (http:// 
www.genomenewsnetwork.org/;http://www.ebi. 
ac.uk/genomes/), the plethora of datasets consti­
tuting umpteen genomes is not fully understood. 
Therefore, it is believed that expressed sequences 
tags (EST) especially from unsequenced genomes 
will continue to play an important role in post 
genome sequencing and will apply NGS techno­
logies in transcriptome sequencing. “Poor man’s 
genome” as they are known, ESTs are short 
(200-800 nucleotide bases in length), unedited, 
randomly selected, single-pass sequence reads 
derived from cDNA libraries (Adams et al. 1991; 
Nagaraj et al. 2006). Since the use of ESTs as the 
primary source of human gene discovery in 1991, 
there has been manifold growth in the generation 
and accumulation of EST data for a range of 
organisms from bacteria to vertebrates (Lee and 
Shin 2009). In combination with NGS, ESTs have 
proven to be an extremely valuable resource for 
high-throughput gene discovery, identification of 
novel genes, splice variants, gene location, and 
intron-exon boundaries within genomic sequence 
assemblies. They are a cost-effective alternative to 
whole genome sequencing (WGS), for annotation 
of genes and development of molecular markers 
in organisms with large genome size and in 
species which lack draft genome sequences 
(Dias et al. 2000).

2 Identifying Niche of ESTs for 
Desired Traits in Plants

Plant breeders constantly strive to develop 
improved varieties of crops for desirable traits 
through conventional breeding techniques which 
are laborious and time-consuming as careful phe­
notypic and genotypic selection is needed. Most 
of the traits of interest in plant breeding such as 
high yield, height, drought resistance, disease 
resistance in many species, etc., are quantitative, 
also called polygenic, continuous, multifactorial, 
or complex traits, which further complicate the 
breeding program (Semagn et al. 2010).

However, advances in genomics and DNA 
marker technology have helped to develop 
molecular markers, which are now widely used 
to track loci and genome regions in several crop- 
breeding programs. With this molecular markers 
tightly linked with a large number of agronomic 
and disease resistance, traits have become avail­
able in major crop species (Jain et al. 2002; 
Gupta and Varshney 2004). Some sequence 
tagged sites (STS) are also enriched and have 
potentially been,used as markers for PCR (poly­
merase chain reaction). Most of these markers 
developed in the1, past were related to genomic 
DNA (gDNA) and therefore could belong to 
either the transcribed region or the non­
transcribed region of the genome. These markers 
were termed as random DNA markers (RDMs) 
(Andersen and Liibberstedt 2003). As a result, a 
large number of genes have been identified in the 
recent past through “wet lab” as well as in silico 
studies, and a wealth of sequence data have been 
accumulated in public databases (e.g., http:// 
w w w .ncbi.nlm .nih.gov;http://www.ebi.ac.uk) 
in the form of BAC (bacterial artificial chromo­
some) clones, ESTs, full-length cDNA clones, 
and genes. The availability of enormous amount 
of sequence data from complete or partial genes 
has made it possible to develop - molecular 
markers directly from the parts of genes 
(Varshney et al. 2007). Genic molecular markers 
(GMMs) that developed from coding sequences 
like ESTs or fully characterized genes frequently 
have been assigned known functions. EST-based 
markers such as SSRs (simple sequence repeats), 
RFLPs (restriction fragment length polymor­
phisms), AFLPs (amplified fragment length 
polymorphisms), and SNPs (single nucleotide 
polymorphisms) and novel markers such as 
expressed sequence tag polymorphisms 
(ESTPs), conserved orthologous set (COS) 
markers, etc., have been developed for many 
crop species (Gupta and Rustgi 2004). Orphan 
crops like peanut, sorghum and millets, ground­
nut, cowpea, common bean, chickpea, pigeon 
pea, cassava, yam, and sweet potato (Varshney 
et al. 2012) and many other important horticul­
tural and forest species with large and complex 
genomes whose whole genome sequences are not 
yet available greatly benefit from the EST data.

http://www.ebi
http://www.ebi.ac.uk
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For example, genes encoding key enzymes for 
fatty acid and seed storage protein biosynthesis, 
bacterial wilt disease, and novel genes discov­
ered in peanut were derived from ESTs belong­
ing to different tissues, different growth stages, 
and under different abiotic and biotic stresses 
(Feng et al. 2012).

More recently, microRNAs (miRNA) have 
received a lot of attention due to their role in 
regulation of gene expression which finds 
applications in functional genomics and study 
of various pathways in organisms. In plants, 
miRNAs are involved in diverse aspects of 
growth and development such as leaf morphol^ 
ogy and polarity, root formation, transition from1 
embryogenic to vegetative phase, flowering time, 
floral organ identity, and reproduction (Mallory 
and Vaucheret 2006; Sun 2012). They are also j  
found to be involved in defense mechanisms, 
hormone signaling, and abiotic and biotic stress 
responses (Lu et al. 2008). 21,264 entries 
representing hairpin precursor miRNAs, 
expressing 25,141 mature miRNA products, in 
193 (>170 plants) species are available (www. 
mirbase.org/). It is generally accepted that plant 
miRNAs have extensive complementarity to 
their targets, and their prediction usually relies 
on the use of empirical parameters deduced from 
known miRNA-target interactions. The biogene­
sis of miRNAs suggests that it is possible to find 
new miRNAs by homology searching of known 
miRNAs in ESTs, especially in plants whose 
whole genome sequence data is unavailable 
(Sunkar and Jagadeeswaran 2008). Since ESTs 
represent transcribed sequences, their analyses 
provide direct evidence for miRNA expression 
through simple tools for comparative genomics 
which in turn helps in identification of conserved 
miRNAs (Zhang et al. 2005). Both experimental 
methods and computational approaches have 
been adopted to identify miRNAs in plants, and 
the latter has been identified as the simplest and 
most effective method (Sun 2012). Several 
groups have attempted to identify novel miRNAs 
and decode their interaction with protein coding 
transcripts by examining ESTs (Nasaruddin et al. 
2007; Das and Mondal 2010; Boopathi and 
Pathmanaban 2012; Muvva et al. 2012). Despite 
the tremendous applications of miRNA in plant

biotechnology and the growing interest, our 
knowledge about the regulatory mechanisms 
and functions of miRNAs remains very limited 
(Liu et al. 2012). The limited number of experi­
mentally validated miRNA targets, the spatio- 
temporal specific regulation of miRNA, and the 
lack of graphical-user interface models without 
the -need for programming skills are major 
constraints. However, user-friendly software 
packages, which enable computational identifi­
cation of miRNA and its target (C-mii), func­
tional annotation of miRNAs (miRFANS), 
transcription factor-miRNA regulation 
(TransmiR), PMRD, etc., are now publicly avail­
able which .axe exclusive to plants (Liu et al. 
2012; Numnark et al. 2012).

“Climate change,” “sustainable agriculture,” 
and “Ecogenomics” are some of the paradigms 
that have influenced researches of late. Genomics 
and bioinformatics have great potential in 
addressing various topics in these areas through 
approaches such as association mapping, genome 
scans, transcript profiling, and gene regulatory 
networks, thus leading to an understanding of the 
genetic architecture of climate change adaptation 
(Franks and Hoffman 2012). Gene transcription 
profiling, in particular, is one important step 
toward identifying those genes and metabolic 
pathways that underlie ecologically important 
traits, and ESTs can bridge genomics and molecu­
lar ecology because they can provide a means of 
accessing the gene space of almost any organism 
(Bouck and Vision 2007). EST libraries are a cost- 
effective tool to characterize genes important 
under particular conditions, as well as the starting 
point for the development of molecular genetic 
markers, such as gene-linked microsatellites and 
single nucleotide polymorphisms (SNP). In 
marine species, gene-linked microsatellites (EST- 
SSR =  simple sequence repeats) were success­
fully identified, for example, in the ecologically 
important sea grass Zostera marina (eelgrass) to 
elucidate the molecular genetic basis of adaptation 
to environmental extremes. Approximately one- 
third of the eelgrass genes were characteristic for 
the stress response of the terrestrial plant' model 
Arabidopsis thaliana (Reusch et al. 2008). Simi­
larly, EST-based SSR markers for breeding of 
drought-resistant durum wheat in Mediterranean
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dry lands (Habash et al. 2009), over 400 markers 
for various traits in important tropical fruits 
like mango and banana (Arias et al. 2012), and 
linkage mapping studies and identification of 
markers for beech bark disease resistance in 
American beech (Mason et al. 2013) axe some 
recent examples of the potential application of 
ESTs in varied species for adaptation to climate 
change.

3 ESTs in Plants: Various
Pipelines for EST Analysis

The number of EST entries in GenBank dbEST is 
74,186,692 as on January 1, 2013 (http://www. 
ncbi.nlm.nih.gov/dbEST/dbEST_summary.html). 
Handling' the huge and ever accumulating data 
efficiently is an important and daunting task 
(Pertea et al. 2003). Since ESTs are single-pass 
reads and represent only a small portion of the 
mRNA, they are prone to errors and inherent 
deficiencies. Problems such as low~quality regions 
within the sequence, redundancy, differentially 
expressed genes in the host, contaminants like 
vectors, linkers, chimeric sequences, and natural 
sequence variations need to be dealt with, before 
further analysis. Several tools have been devel­
oped for each of the steps involved in EST analy­
sis in the past few years (Hotz-Wagenblatt et al. 
2003; Mao et al. 2003; Kumar et al, 2004; Conesa 
et al. 2005). A generic protocol of the different 
steps in the analysis of EST datasets and a list of 
various tools has been dealt with in considerable 
detail by Nagaraj et al. (2006). Some of the steps 
require the use of intensive computing power and 
an in-depth knowledge of bioinformatics which is 
not available to small research groups without 
access to bioinfoimatics personnel and advanced 
computer systems. As rightly pointed out by many 
researches, an ideal EST analysis tool should pos­
sess a few characteristics such as (1) to be fully 
automated in a pipeline covering all the steps from 
the input chromatogram files to a clean, annotated 
web-searchable EST database; (2) to be highly 
modular and adaptable; (3) to be able to run in 
parallel in a personal computer (PC) cluster, thus 
benefiting from the multiprocessing capabilities 
of these systems; (4) to use third-party freely

available programs, in order to ease the 
incorporation of the improvements made by 
others programmers; (5) to include a highly 
configurable and extensible user-friendly interface 
to perform data mining by combining any search 
criteria, fitting the final usenneeds; and (6) to be 
based on an open-source license to allow a contin­
uous development by a community of users and 
programmers, as well as its customization for the 
needs of different projects (Foraient et al. 2008). 
As new tools are being constantly developed and 
the existing ones being updated to meet the 
requirements, a few of the most recent tools are 
listed here (Table 1).

4 Systems Biology and Impact 
on EST Mining

Structural genomics and, more recently, functional 
genomics have become the base of sustainable 
agriculture, forestry, industry, and environment 
(Campbell et al. 2003; Diouf 2003; Mazur et al. 
1999; Somerville and Somerville 1999; Walbot 
1999). Much of the efforts were directed toward 
the identification of markers for agronomic traits 
and physical and nutritional traits, genes encoding 
biosynthetic enzymes and production of secondary 
and intermediary metabolites, and understanding 
of the biochemical pathways in crop and some 
forage plants (Girke et al. 2003; Sweetlove et al. 
2003; Varshney et al. 2007)/Systems biology has 
created sweeping changes in our approach to geno­
mics and plant biology. The focus now is on the 
molecular, cellular, and organismic changes in 
plants such as totipotency (dedifferentiation and 
regeneration ability), apomixis (vegetative seed 
production), embryogenesis (somatic, zygotic, 
and microspore), induction of haploids, heterosis 
or hybrid vigor, flower development, symbiotic 
nitrogen fixation, etc. For example, transcriptomic, 
proteomic, and metabolomic studies have led to a 
deeper understanding of microspore embryogene­
sis in barley (Hordeum vulgare L.), rapeseed 
(Brassica napus L.), tobacco (Nicotiana spp.), 
wheat (Triticum aestivum L.), and maize (Zea 
mays), which are now considered model species 
to study the mechanisms of stress-induced andro- 
genesis (Maraschin et al. 2005). Analysis of

http://www
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Table 1 EST analysis tools developed after the year 2006

Name Description Category Reference
EST2uni Processing, clustering, annotation F/D Forment et al. 

(2008)
ESTPiper Sequencing, assembly, annotation, 

probe design
F/W/D Tang et al. (2009)

ESTPass Processing, annotation Lee et al. (2007)
ESMP EST-SSRs pipeline F/W Sarmah et al. 

(2012)
ParPEST Parallel computing RA D’Agostino et al. 

(2005)
PESTAS Processing, assembly, annotation RA/W Nam et al. (2009)
SCRAF Sort and assemble 454-EST 

sequences
F/W Barker et al. 

(2009)
OREST Analysis, annotation F/W Waegele et al. 

(2008)
ConiferEST Conifer EST mining, processing, 

annotation
■F/W

KAIKObase Silkworm database F/W Shimomura et al. 
(2009)

OrchidBase Processing, clustering, annotation F/W/D Tsai et al. (2013)
GarlicEST Mining, annotation, expression 

profiling
F/W Kim et al. (2009)

TomatoEST Tomato functional genomics data F/W Agostino et al. 
(2007)

MELOGEN Melon EST database RA Gonzalez-Ibeas 
et al. (2007)

bEST-DRRD Barley ESTs involved in DNA 
repair and replication

F/W Gruszka et al. 
(2012)

MoccaDB Orthologous markers in Rubiaceae F/W Plechakova et al. 
(2009)

F free, W web based, D downloadable, RA restricted access

20,000 ESTs from fresh and cultured microspores 
of barley revealed clusters of differentially 
expressed genes and identification of 16 genes 
which could serve as markers for induction of 
androgenesis and progression of microspore 
embryogenesis (Malik et al. 2007). Strategies 
with fluorescent-labeled probes for in situ 
hybridization and immunofluorescence have 
provided unique images of the spatial and tempo­
ral pattern of the expression of genes and proteins 
and of the subcellular rearrangements that accom­
pany microspore embryogenesis (Testillano and 
Risueno 2009). Another key trait that has defied 
scientific unraveling is the phenomenon of hetero- 
sis (Bircher et al. 2003). A systems biological 
approach to define how plant genomes interact to 
create phenotype is needed to arrive at a final 
resolution of this phenomenon.

Metabolic engineering and synthetic biology 
are an integral part of systems biology. From an. 
engineering perspective, synthetic biology insists 
on standardized parts (e.g., genes, proteins, 
circuits) that can be assembled using bioinformat­
ics and simulation tools to build functionality 
(Osbourn et al. 2012). Though they are still at 
infancy in plant research, the impact of systems 
biology on plants is ever increasing and well 
documented (Femie 2012). Traditionally for gene 
detection, the two main approaches are EST 
mapping and computational gene prediction com­
bined with homology-based search methods 
(Wortman et al. 2003). Cometh systems biology, 
the combination of two or more approaches, has 
helped in improved annotation of the genome and 
identification of novel genes and proteins (Allmer 
et al. 2006). These technologies provide validation
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Fig. 1 Steps involved in 
analysis of Cicer ESTs

of the in silico gene models and enable fast and 
comprehensive analysis of the molecular plant 
phenotype (Naumann et al. 2007; Weckwerth 
2008) as well as providing complementary means 
for probing the completeness of genome 
annotations. A case in example is integrated anal­
ysis of the molecular repertoire of Chlamy- 
domonas reinhardtii, wherein bioinformatics 
annotation methods combined with GCxGC/MS- 
based metabolomics and LC/MS-based shotgun 
proteomics profiling technologies have been 
applied to characterize abundant proteins and 
metabolites, resulting in the detection of 1,069 
proteins and 159 metabolites. By integrating geno­
mic annotation information with experimentally 
identified metabolites and proteins, a draft meta­
bolic network for Chlamydomonas was 
constructed which also provides entry points for 
further targeted gene discovery or biochemical 
pathway research (May et al. 2008). Metabolomics 
integrated with transcriptomic and proteomic stud­
ies have led to the identification of key steps 
involved in response to nitrogen deficiency in 
maize (Amiour et al. 2012). Yet another example 
of the application of EST analysis for discerning

organization of cells besides predicting biological 
functions and providing insight into a variety of 
biochemical processes is the construction of pro­
tein interaction networks (PEN) (Guan and Kiss 
2008). Despite the availability of advanced 
methods connecting orthology mapping and com­
parative approaches for predicting PIN, annotation 
of those proteins like “predicted” or “similar to” or 
“hypothetical” poses many .-challenges. To tackle 
this, a six-point classification system to validate 
protein interactions based on diverse features was 
proposed by Suravajhala and Sundararajan (2012). 
Using the six-point classification system, the genes 
related to embryogenesis and apomixis in chick­
pea were predicted based on the model apomictic 
plants Poa, Pennisetum, and apomeiotic mutant 
Arabidopsis thaliana (Panchangam et al. 2012). 
Here, EST analysis pipeline employed for annota­
tion of proteins related to embiyogenesis in chick­
pea is represented as a flowchart (Fig. 1).

Systems biology approach is not limited to crop 
plants and breeding but is also finding its way into 
unraveling different metabolic pathways in fruits, 
vegetables, and aromatic plants. A combined meta- 
bolomic, proteomic, and transcriptomic approach
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was employed to investigate fruit development in 
tomato which led to identification of a novel gene 
regulatory mechanism for ethylene biosynthesis 
during the post climacteric ripening of the fruit 
(Van de Poel et al. 2012). A similar study was 
carried out in apple to obtain proteome information 
on fruit ripening in response ethylene treatment / 
(Zheng et al. 2013). A database of molecular 
networks occurring in grapevine was built based 
on EST datasets, leading to 39,423 unique potential 
genes and proteins. Among them, 7,265 genes have 
been assigned to 107 pathways, including 86 meta­
bolic pathways, 3 transporter pathways, 9 genetic 
information processing pathways, and 9 signal; 
pathways focused mainly on phytohormone signal­
ing (Grimplet et al. 2008). Metabolic pathways 
occurring in many medicinal and aromatic plants 
have been reviewed by Khanuja et al. (2012).

5 Conclusion and Future 
Directions

EST analysis holds an important spot in plant 
breeding by not only aiding the development of 
molecular markers for traits and annotation of 
genes but also providing insights into key devel­
opmental processes, regulation of gene expres­
sion, and to reveal the complete proteomic 
repertoire of an organism (Nagaraj et al. 2007). 
Although EST databases axe no substitute for 
whole genome scaffolds, they certainly played a 
key role in pre-genome sequencing era and will 
continue to be promising resources for various 
in vitro and in silico experiments (Feng et al. 
2012). The ability to generate large amount of 
data has become quick and cheap due to NGS 
technologies and has txansformed various areas- 
of biology which were previously unattainable, 
particularly for non-model systems that lack 
extensive genomic resources. Next-generation 
sequencing has great potential for accurate trans- 
criptome characterization because of the large 
amount of data obtained at considerably lower 
costs compared to traditional methods, and with 
the decreasing costs transcriptome sequencing 
will be dramatically improved in the near future. 
EST sequencing along with NGS technologies is

revolutionizing applications that revolve around 
gene expression. With deeper sequencing (e.g., 
6-20 plates), researchers attain a level of 
transcriptome that has never been possible before 
due to the higher cost of earlier technologies. Not 
only will these studies sequence more than 90 % of 
the transcriptome, the coverage per gene will 
approach traditional sequencing. This should 
allow researchers to use these genes to identify 
pathways and determine tissue-specific expression 
for lowly expressed genes and will be critical 
for genome annotation (Kerr Wall et al. 2009). 
In retrospection, ESTs thus do not lose to 
whole genome sequencing, but coupled with 
NGS technologies and simulation/computational 
tools, they have revolutionary applications for 
both sequenced and unsequenced genomes. The 
large-scale development of tools for analysis 
of genes, transcripts, and proteins has generated 
vast data which holds great promise for revealing 
novel plant biology. The focus now is a systems 
perspective with the cumulative “omics” approach 
(e.g., genomics, epigenomics, txanscriptomics, pro- 
teomics, metabolomics, interactomics, ionomics, 
phenomics, etc.) (Liberman et al. 2012). The 
way to sustainable agriculture in the very near 
future is to move from genetic manipulation of 
parts of genomes to more engineering-based, 
approach, combining traditional plant breeding 
techniques with systems biology and predictive 
science.
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