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Abstract 

We investigated the effect of Silver nanoparticles (AgNPs) on the gut protease activity of 

insecticide resistant gram caterpillar, Helicoverpa armigera. The leaf extracts of Peepal tree, 

Ficus religiosa (FR) and banyan tree, Ficus benghalensis (FB) mediated biogenic AgNPs 

were synthesized to modulate the function of gut protease activity in H. armigera (Ha). 

Bioassay with FR and FB AgNPs significantly reduced both larval weight and survival rate of 

H.armigera. The FR and FB AgNPs inhibited the Ha-Gut protease activity by 50 and 70% at 

100 µg concentration respectively. The FR and FB silver nanoparticles were interacted and 

binds with high affinity with protease. The inhibition studies on Ha-gut protease activity may 

contribute towards developing new IRM (Insecticide Resistant Management) strategies 

against H. armigera to overcome insecticidal resistance issues. 

Key words; Helicoverpa armigera, Biosynthesis, Silver nanoparticles, Gut protease, 

Tryptophan Fluorescence, Absorbance 
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Introduction 

Nanoparticles are showing various applications in different fields of agriculture 

including pest management, herbicide delivery, vector-pest management and nanosensors for 

pest detection (Rahman et al., 2009; Scrinis and Lyons, 2007). The Silver nanoparticles 

accumulate in the gut and interact with gut membrane and disrupt the membrane structures in 

insects (Sharma  et al., 2014; Javier et al., 2011). Nanoparticles induced oxidative stress, 

interference with DNA replication, and protein synthesis (Sharma  et al., 2014; Javier et al., 

2011).  

Plants are used for synthesizing nanoparticles which is a rapid, cost-effective, eco- 

and, environmentally friendly technique (Huang et al., 2007b; Kumar and Yadav, 2009). It 

has been reported that medicinally valuable angiosperms have the greatest potential for 

synthesizing metallic nanoparticles with respect to quality and quantity         (Song and Kim, 

2009). AgNPs synthesized from leaf extract of Eclipta prostrata, is useful to control 4
th

 instar 

larvae of Culex quinquefasciatus and Anopheles subpictus have been reported earlier by 

researchers (Rajakumar and Rahuman, 2011). The larvicidal efficacy of AgNPs synthesized 

from aqueous leaf extract of Hibiscus rosa sinensis against the larvae of Aedes albopictus 

(Sareen et al., 2012). 

The gram caterpillar, Helicoverpa armigera Hubner (Lepidoptera: Noctuidae), is an 

extremely destructive pest of many crops in Europe, Asia, and Australia.  H. armigera is able 

to adapt to various cropping systems and to develop resistance to insecticides (Kranthi et al, 

2001). This pest has been recorded feeding on 182 plant species across 47 families in the 

Indian subcontinent, of which 56 are heavily damaged (Gunning et al., 1999). The annual 

losses due to H. armigera in cotton and pulses alone have been estimated at US $ 300–500 

million in India (Sharma, 2005). This pest has developed resistance to virtually all the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

insecticide classes that have been applied to control (Kranthi et al., 2001; Gunning et al., 

1999; Sharma, 2005; Srinivas et al., 2004; Ravindra et al., 2010). 

The emergence of insecticide resistance due to excessive application of chemical 

insecticides and also their harmful effects on non-target organisms necessitated an urgent 

search for new and improvised pest control methods that are economical and effective as 

well. Insect gut proteases  plays a major role in digestion of proteinacious food for their 

energy and development. Inhibiting gut proteases is one of the major methods for controlling 

the insect pest.  Several researchers have reported the characterization of gut protease 

inhibitors against H. armigera from plants (Ambekar et al., 1996; Raju et al., 2009). Ficus 

religiosa Linn (Peepal tree) and Ficus benghalensis Linn (Banyan tree) are more revered 

trees in Asia having remarkable medicinal properties in curing various life threating diseases 

(Singh et al. 2015; Gopukumar and Praseetha, 2015). Therefore, in the present study AgNPs 

were synthesized employing leaf extracts of F. benghalensis and F. religiosa and its role was 

investigated in inhibiting the gut protease of H. armigera. This is the first time we reported 

the insecticidal effect of biosynthesized AgNPs on H.armigera by inhibiting Ha-gut protease 

activity. 

Materials and methods 

Chemicals 

AgNO3, permethrin, tris-HCl, DDT, sephadex G-200, glycine, NaOH, SDS, 

Acrylamide, trichloroacetic acid from Himedia, Bengaluru,India, azocasein, DEAE-cellulose 

were purchaged from sigma Aldrich Bengaluru, India. All other chemicals were of analytical 

grade.  

Synthesis of Silver nanoparticles  

AgNPs were synthesized as per our earlier report (Saware and Venkataraman, 2014a; Saware 

et al., 2014b). In brief, leaf extracts from F. benghalensis (FB) and F. religiosa (FR) were 
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used for synthesis of AgNPs. Fresh and healthy leaves of FR and FB plants were collected 

and homogenized in pestle and mortar in distilled water. 5 mL of leaf extract was added to 95 

mL of a 10
-3

 M aqueous AgNO3 solution in a conical flask and exposed for 3 min in 

microwave oven. Periodically aliquots of the reaction solution were removed and subjected to 

UV-Vis spectroscopy measurements for surface plasmon resonance study of AgNPs 

synthesis. Positive (leaf extract) and negative controls (pure AgNO3 solution without leaf 

extract) were also run simultaneously.  

Insects 

Permethrin-resistant (60-fold) populations of H. armigera were used for the study. 

The H. armigera culture was obtained from insect rearing laboratory, ICRISAT, Patancheru, 

Telangana, India. Insects were reared on chickpea based artificial diet under laboratory 

conditions at 26 
o
C, 65±5% RH, and 12 h photoperiod (Armes et al., 1992). 

Bioassays of H. armigera using AgNPs 

 The third instar larvae were divided into eight groups of ten insects each. Bioassays 

on AgNPs were conducted by rearing the third instar larvae on artificial diet containing FR 

and FB AgNPs (6.6, 13.3, 26.6, 40, 53.3, and 66.6 µl/gm diet) respectively, FR (6.66 µl/gm 

diet) + permethrin (100µM/gm diet) and FB (6.66 µl/gm diet) + permethrin (100µM/gm diet), 

separately. One set of larvae were reared on diet containing permethrin (100 µM/gm diet) 

alone and another set was left untreated as control. The initial weights of the larvae were 

recorded before releasing in the artificial diets. There were three replications for each 

treatment and 10 larvae in each replication in completely randomized design. The larval 

weights were recorded 5 days after initiating the experiment.  

Isolation and purification of Ha-Gut protease 

Fourth instar H. armigera larvae (n = 50) were washed in cold 50 mM Tris–HCl 

buffer, pH 7.4 and dissected to remove the gut. The gut was then homogenized in pestle and 
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mortar in 50 mM Tris–HCl buffer, pH 7.4 at 4°C. The homogenate was centrifuged at 

10,000g for 10 min at 4°C. The supernatant was then subjected to ammonium sulfate 

precipitation to attain 70% saturation and allowed to stand for 4 h at 4°C. The precipitate was 

collected by centrifugation at 8000 g for 10 min and dissolved in 50 mM Tris–HCl buffer, pH 

7.4. The above fraction was loaded on to a DEAE-cellulose column (2.5×5 cm) equilibrated 

with 50 mM Tris–HCl buffer, at pH 7.4, 1 mM dithiothreitol (DTT) and the column was 

washed with the same buffer. The column was further washed with       20 mL of buffer until 

no absorbance at 280 nm was detected in the eluate. The adsorbed proteins were then eluted 

with 50 ml of Tris-HCl buffer containing gradient NaCl (0.1M to 2M) and 1.5 ml fractions 

were collected. The fractions containing maximum protease activity were pooled, 

concentrated, dialyzed against 50 mM Tris–HCl buffer, pH 7.4. The dialyzed sample were 

loaded on to the gel filtration  using a sephadex G-200 (1×60 cm) column equilibrated with 

50 mM Tris–HCl buffer, 7.4. The active fractions were pooled concentrated and stored at -20 

o
C for further use. 

Protein estimation 

Protein concentration was determined by the method of (Lowry et al., 1951) using 

bovine serum albumin as a standard. 

Protease assay 

The protease assays were carried as described earlier (Giri et al 1998).  Briefly, the 

assay medium containing  60 µl of midgut extract and 200 µl of 1% azocasein (in 50 mM 

Glycine–NaOH buffer, pH 8.0) and incubated at 37 °C for 30 min. The enzyme reaction was 

terminated by the addition of 300 µl of 5 % trichloroacetic acid. The assay mixture was 

centrifuged at 10,000 rpm for 10 min, and 560 µl of 1 M NaOH was added to the supernatant 

and absorbance was measured at 450 nm. One unit enzyme activity was defined as the 

amount of enzyme that increases absorbance by 1 OD under the given assay conditions. 
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Protease activity in the gel was detected as described earlier (Michaud et al, 1993). 10 

% SDS-polyacrylamide gels was prepared according to (Laemmli, 1970). 0.5 % w/v 

azocasein was dissolved in the gelmix prior to polymerization. 200 µg of gut extract was 

loaded on to gel, after electrophoresis, gel was washed in 1% triton X-100 to remove SDS 

and incubated in 50 mM Tris–HCl buffer, pH 8.0, for 2 h at 37 °C. The gel was then stained 

with coomassie blue. 

Measurement of binding affinity of AgNPs with midgut protease 

The binding of FR and FB AgNPs with purified Ha-gut protease was determined by 

Trp fluorescence quenching titrations using spectrofluorometer (Liu et al, 2000). Purified 

midgut protease (50 μg/ 2 mL) was titrated in 50 mM Tris-HCl buffer, pH 8 with increasing 

concentrations of FR and FB AgNPs (5, 10, 20, 30, 40, 50 µl) respectively, while quenching 

of Trp fluorescence was monitored at 340 nm following excitation at 280 nm (slit width for 

both, 5 nm). 

Absorbance spectra of midgut protease  

Absorbance spectra was measured between 200 and 600 nm in 1cm quartz cuvette 

containing midgut protease (50µg /ml) in 50 mM Tris-HCl buffer, pH 8 at room temperature 

using U-3010 spectrophotometer (Tokyo. Japan) with addition of increasing concentration of 

AgNPs.  

Statistical analysis 

Data were subjected to one-way analysis of variance (ANOVA) to judge the 

significance of differences between the treatments by using F-test, while the significance of 

differences between the treatment means was judged by least significant difference (LSD) at 

p < 0.05. Statistical analysis was performed in MS Excel 2010v. 

Results 

Effect of AgNPs on growth and survival of H. armigera 
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Diet supplemented with lower concentration of AgNPs (6.6 µl/gm of diet) had no 

effect on larval weight. But diet containing AgNPs (6.6 µl/gm diet) and permethrin (100 

µM/g diet) inhibited larval growth and survival rate (Fig. 1 and 2) compared with control 

larvae. Comparatively, the rate of weight gain and survival rate were significantly reduced in 

a dose-dependent manner with increasing concentrations of AgNPs (Fig 1 and 2)  

Protease activity in gel 

H. armigera gut extract shows two isozymes of proteases and we purified protease-I 

and the purity of proteins were checked with SDS and native page. The presence of 

proteolytic activity in gut extracts of H. armigera was shown by an in-gel assay based on 

digestion of casein (Fig. 3).  

Midgut protease activity 

Ha-Gut protease activity increases slightly (10-20%) at lower concentration and decreased 

with increasing concentrations of FB and FR AgNPs (Fig. 4). FB and FR at 100 µl inhibited 

Ha-gut protease activity by 60% and 70% respectively, Silver nitrate and leaf extract alone 

does not have any inhibitory effect on gut protease activity. While, with combination of FR 

and FB AgNPs inhibited 80 % of protease activity (Fig. 5). 

Effect of Silver nanoparticles on the tryptophan fluorescence spectra 

Fluorescence intensity of Trp residues in midgut protease-I was decreased with 

increasing concentration of FR and FB nanoparticles (0–50 µl). However, there was no 

significant emission shift with the addition of these nanoparticles but with a slight shift on the 

Trp residues fluorescence emission (Fig. 6A-B). 

Interaction of AgNPs with Ha-gut protease 
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The Kd values for binding were estimated by fitting fluorescence quenching data to an 

equation that describes a single binding site (Fig. 7). The Kd values for binding of FR and FB 

AgNPs with midgut protease-I was 7µg and 10µg, respectively. 

UV-visible absorbance spectra of Ha-gut protease 

Absorbance spectra showed increase of absorbance with increasing concentrations of AgNPs 

with a blue shift (3-10 nm) (Fig.8).  

Discussion 

We studied the effect of different concentrations of FR and FB AgNPs on larval 

growth and survival, and Ha-gut protease activity.  AgNPs at lower concentrations had no 

effect on larval weight and survival. Permethrin alone had little effect on larval weight or 

development of the pest as they had developed resistance to various insecticides (Gunning 

and Moores, 1999). However combination of AgNPs with permethrin significantly reduced 

the body weight and survival rate. The higher concentration of FR and FB AgNPs alone had 

effectively reduced the larval body weight and increased mortality rates compared to control 

larvae.  

Similar reports were reported earlier that larval and pupal body weights decreased when fed 

on increasing concentrations of AgNPs in Spodoptera litura F. and Achaea janata L., and the 

nanoparticles were found to be accumulated in the larval guts (Jyothsna and  Usha Rani, 

2014). 

Larvicidal activity of AgNPs using Nelumbo nucifera leaf extract against Culex 

quinquefasciatus and Anopheles subpictus was reported earliesr reserchers (Santhoshkumar 

et al., 2011). Further, larvicidal potentiality of synthesized AgNPs using leaf aqueous extract 

of Tinospora cordifolia Miers against An. Subpictus and Cx. Quinquefasciatus was revealed 

(Jayaseelan et al., 2011). The larvicidal potential of AgNPs synthesized using fungus 
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Cochliobolus lunatus against two species of mosquitoes Aedes aegypti and An. stephensi 

Liston have been reported by (Salunkhe et al., 2011). 

 The insect digestive proteases catalyze the dietary protein to release the free amino 

acids and supply essential nutrients for growth and development. Earlier we have reported 

that the biosynthesized Silver nanoparticles modulates amylase activity in H. armigera 

(Kantrao et al., 2014). In the present study, it is observed that AgNPs stimulated Ha-gut 

protease activity at lower concentrations and inhibited at higher concentrations.  Gole et al, 

reported increase of trypsin activity with immobilized protease with nanoparticles (Gole et 

al., 2001). The increased protease activity was due to the accumulation of protease on the 

nanoparticle surface bringing more substrate available to the active site of enzyme, whereas 

the decrease in protease activity was due to more AgNPs binding to the substrate binding site 

or the protease buried inside the nanoparticles and making no substrate available for binding 

of protease. Similar results were reported earlier, where, gold nanoparticles, enhanced trypsin 

activity at lower concentration, while, at higher concentration inhibited trypsin activity (Min 

et al., 2009; Deka et al., 2002). Studies on interaction of AgNPs with α-amylase were carried 

out to study the effect of rapid degradation of starch hydrolysis (Ernest et al., 2012). 

 FB AgNPs had no apparent shift in λem on the fluorescence spectra of Ha-gut 

protease. However, in presence of FR AgNPs 4-5 nm λem red shift was observed for the 

midgut protease-I (Fig. 6A). These results suggest there is an association between the protein 

and the nanoparticles with a change of Trp environment. The tryptophan fluorescence 

measurement data indicate that FR and FB AgNPs bind to Ha-Gut protease with high affinity 

quenching by almost 40–60%. The low Kd values for the both the AgNPs suggests high 

affinity towards midgut protease.  
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Absorbance of the midgut protease was increased in presence of FR and FB AgNPs 

indicates that conformational changes of protein occur due to exposure of more Trp residue 

into the medium on binding of AgNPs.  

CONCLUSIONS 

The synthesized FR and FB AgNPs showed effect on growth, development and 

insecticidalcidal activity towards H. armigera larvae by inhibiting midgut proteases. 

Emulating nature’s strategy by empowering AgNPs as insecticidal molecules may be an 

effective strategy to control insect pests that carries a lower toxicological burden on the 

environment. Further this information will provide a rational basis for the design of new 

nanoparticles to control insecticide resistance.  
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Figure Legends 

Fig. 1. Effect of AgNPs on growth of H. armigera larvae. (A) Effect of Silver nanoparticles 

on pupae formation and adult emrgence, (Demorphism of pupae). (B) Effect of Silver 

naoparticles on larval weight, a) control; b) FR treated and c) FB treated larvae. (C) H. 

armigera larvae were fed on diet containing FB and FR Silver nanoparticles (6.6, 13.3, 26.6, 

40, 53.3, 66.6 µl/gm diet), permethrin (100 µM/gm diet) and AgNPs (6.6 µl/gm diet) + 

permethrin (100 µM). The experiment was performed in three replicates (* significantly 

different from control at p < 0.05).  

Fig. 2. Effect of AgNPs on survival of H. armigera larvae. Larvae were fed on diet 

containing FB and FR AgNPs (6.6, 13.3, 26.6, 40, 53.3, 66.6 µl/per gram diet), permethrin 

(100 µM/gm diet) and AgNPs (6.6 µl/gm diet) + permethrin (100 µM/gm). The experiment 

was performed in three replicates (* significantly different from control at p < 0.05).  

Fig. 3. Detection and purity of H. armigera gut protease isozymes. A) Native PAGE analysis 

of Ha-gut protease activity. Lane - 1, crude extract, lane - 2, DEAE-cellulose column Purified 

protein. B) SDS PAGE analysis of purified protease-I, lane 1-crude extract, lane 2, purified 

protein.  

Fig. 4. Modulatory effects of AgNPs on Ha-Gut Protease–I activity.  (A) Gut protease 

activity was determined in presence of increasing concentration of (A) FR (▲) and FB (∆) 

AgNPs. Both FR and FB AgNPs stimulated protease activity at lower concentrations  and 

inhibited in a dose-dependent manner with increasing concentrations. (B) Predicted 

schematic diagram of immobilization of protease. (C) Schematic diagram of protease buried 

in the nanoparticles.  Data represent mean ± SE of three independent assays (* significantly 

different from control at p < 0.05). 

Fig. 5. Determination of Ha-gut protease activity with different treatments. Protease activity 

was determined as detailed in text, control larvae, Silver nitrate (2 mM), ficus leaf extract 

(200 µL),   FR AgNPs (100 µl), FB AgNPs (100 µl); and  combination of both nanoparticles 

(FR+FB AgNPs). Data represent mean ± SE of three independent assays (* significantly 

different from control at p < 0.05). 

Fig. 6. Tryptophan fluorescence quenching spectra of Ha-GP. 80µg/ml of purified Ha-GP-I 

was titrated with (A) FR and (B) FB AgNPs in 50mM Tris–HCl buffer, pH 7.4 (25
°
C), 

quenching of Trp fluorescence emission was monitored at 355 nm (slit width, 10 nm) 
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following excitation at 280 nm (slit width 5 nm). Spectrum 1, corresponds to protein alone 

and spectra 2–8 and 2-7 corresponds to the protein in presence of increasing concentrations of 

AgNPs. Each titration was carried with addition of 10µl of corresponding FR and FB AgNPs. 

Fig. 7. Binding of AgNPs to midgut protease-I as assessed by tryptophan fluorescence 

quenching. The Kd values for binding were estimated by fitting fluorescence quenching data 

to an equation that describes a single binding site. Both FR and FB AgNPs interacted with 

gut protease with relatively high affinity, and the Kd values for binding was 7µg and 10 µg 

respectively. 

 Fig. 8. Absorbance spectra of Ha-gut protease with AgNPs (A) Absorbance spectra of 

protease-I with increasing concentration of FB nanoparticles and (B) FR nanoparticles. Line 

1, corresponds to protein alone and line 2–4 in presence of AgNPs. Ha-gut protease (50 µg in 

Tris-HCl buffer, pH 7.4) was titrated with increasing concentration of FB (10, 20, 30 µl) and 

FR AgNPs (10, 20, 30 µl). 
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Fig. 1. Effect of AgNPs on growth of H. armigera larvae. (A) Effect of Silver nanoparticles 

on pupae formation and adult emrgence, (Demorphism of pupae). (B) Effect of Silver 

naoparticles on larval weight, a) control; b) FR treated and c) FB treated larvae. (C) H. 

armigera larvae were fed on diet containing FB and FR Silver nanoparticles (6.6, 13.3, 26.6, 

40, 53.3, 66.6 µl/gm diet), permethrin (100 µM/gm diet) and AgNPs (6.6 µl/gm diet) + 

permethrin (100 µM). The experiment was performed in three replicates (* significantly 

different from control at p < 0.05).  
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Fig. 2. Effect of AgNPs on survival of H. armigera larvae. Larvae were fed on diet 

containing FB and FR AgNPs (6.6, 13.3, 26.6, 40, 53.3, 66.6 µl/per gram diet), permethrin 

(100 µM/gm diet) and AgNPs (6.6 µl/gm diet) + permethrin (100 µM/gm). The experiment 

was performed in three replicates (* significantly different from control at p < 0.05).  
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Fig. 3. Detection and purity of H. armigera gut protease isozymes. A) Native PAGE analysis 

of Ha-gut protease activity. Lane - 1, crude extract, lane - 2, DEAE-cellulose column Purified 

protein. B) SDS PAGE analysis of purified protease-I, lane 1-crude extract, lane 2, purified 

protein.  
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Fig. 4. Modulatory effects of AgNPs on Ha-Gut Protease–I activity.  (A) Gut protease 

activity was determined in presence of increasing concentration of (A) FR (▲) and FB (∆) 

AgNPs. Both FR and FB AgNPs stimulated protease activity at lower concentrations  and 

inhibited in a dose-dependent manner with increasing concentrations. (B) Predicted 

schematic diagram of immobilization of protease. (C) Schematic diagram of protease buried 

in the nanoparticles.  Data represent mean ± SE of three independent assays (* significantly 

different from control at p < 0.05). 
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Fig. 5. Determination of Ha-gut protease activity with different treatments. Protease activity 

was determined as detailed in text, control larvae, Silver nitrate (2 mM), ficus leaf extract 

(200 µL),   FR AgNPs (100 µl), FB AgNPs (100 µl); and  combination of both nanoparticles 

(FR+FB AgNPs). Data represent mean ± SE of three independent assays (* significantly 

different from control at p < 0.05). 
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Fig. 6. Tryptophan fluorescence quenching spectra of Ha-GP. 80µg/ml of purified Ha-GP-I 

was titrated with (A) FR and (B) FB AgNPs in 50mM Tris–HCl buffer, pH 7.4 (25
°
C), 

quenching of Trp fluorescence emission was monitored at 355 nm (slit width, 10 nm) 

following excitation at 280 nm (slit width 5 nm). Spectrum 1, corresponds to protein alone 

and spectra 2–8 and 2-7 corresponds to the protein in presence of increasing concentrations of 

AgNPs. Each titration was carried with addition of 10µl of corresponding FR and FB AgNPs. 
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Fig. 7. Binding of AgNPs to midgut protease-I as assessed by tryptophan fluorescence 

quenching. The Kd values for binding were estimated by fitting fluorescence quenching data 

to an equation that describes a single binding site. Both FR and FB AgNPs interacted with 

gut protease with relatively high affinity, and the Kd values for binding was 7µg and 10 µg 

respectively. 
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Fig. 8. Absorbance spectra of Ha-gut protease with AgNPs (A) Absorbance spectra of 

protease-I with increasing concentration of FB nanoparticles and (B) FR nanoparticles. Line 

1, corresponds to protein alone and line 2–4 in presence of AgNPs. Ha-gut protease (50 µg in 

Tris-HCl buffer, pH 7.4) was titrated with increasing concentration of FB (10, 20, 30 µl) and 

FR AgNPs (10, 20, 30 µl). 
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Figure. Effect of green synthesized FR and FB silver nanoparticles on body weight and gut 

protease activity of insecticide resistance pest Helicoverpa armigera  
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