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a  b  s  t  r  a  c  t

The  discovery  and  large-scale  genotyping  of  informative  gene-based  markers  is  essential  for  rapid  delin-
eation  of  genes/QTLs  governing  stress  tolerance  and yield  component  traits  in order  to drive  genetic
enhancement  in  chickpea.  A  genome-wide  119169  and  110491  ISM  (intron-spanning  markers)  from
23129  desi  and  20386  kabuli  protein-coding  genes  and 7454  in  silico  InDel  (insertion-deletion)  (1–45-bp)-
based  ILP (intron-length  polymorphism)  markers  from  3283  genes  were  developed  that  were  structurally
and  functionally  annotated  on eight  chromosomes  and  unanchored  scaffolds  of  chickpea.  A  much  higher
amplification  efficiency  (83%)  and  intra-specific  polymorphic  potential  (86%)  detected  by  these  mark-
ers  than  that  of other  sequence-based  genetic  markers  among  desi  and  kabuli  chickpea  accessions  was
apparent  even  by  a cost-effective  agarose  gel-based  assay.  The  genome-wide  physically  mapped  1718  ILP
markers  assayed  a wider  level  of functional  genetic  diversity  (19–81%)  and  well-defined  phylogenetics
among  domesticated  chickpea  accessions.  The  gene-derived  1424  ILP  markers  were  anchored  on  a high-
density (inter-marker  distance:  0.65  cM)  desi  intra-specific  genetic  linkage  map/functional  transcript
map  (ICC 4958  × ICC 2263)  of  chickpea.  This  reference  genetic  map  identified  six major  genomic  regions
harbouring  six  robust  QTLs  mapped  on  five  chromosomes,  which  explained  11–23%  seed  weight  trait
variation  (7.6–10.5  LOD)  in  chickpea.  The  integration  of high-resolution  QTL  mapping  with differential
expression  profiling  detected  six  including  one  potential  serine  carboxypeptidase  gene  with  ILP  markers
(linked  tightly  to  the  major  seed  weight  QTLs)  exhibiting  seed-specific  expression  as well as  pronounced
up-regulation  especially  in seeds  of  high  (ICC  4958)  as  compared  to low  (ICC  2263)  seed  weight  mapping
parental  accessions.  The  marker  information  generated  in the  present  study  was  made  publicly  accessible
through  a user-friendly  web-resource,  “Chickpea  ISM-ILP  Marker  Database”.  The  designing  of  multiple

ISM  and  ILP markers  (2–5 markers/gene)  from  an  individual  gene  (transcription  factor)  with  numer-
ous  aforementioned  desirable  genetic  attributes  can  widen  the  user-preference  to select  suitable  primer
combination  for  simultaneous  large-scale  assaying  of  functional  allelic  variation,  natural  allelic  diversity,
molecular  mapping  and  expression  profiling  of  genes  among  chickpea  accessions.  This  will  essentially
accelerate  the  identification  of functionally  relevant  molecular  tags  regulating  vital  agronomic  traits  for

pro
genomics-assisted  crop  im
∗ Corresponding author.
E-mail addresses: swarup@nipgr.ac.in, swarupdbt@gmail.com (S.K. Parida).
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168-9452/© 2016 Elsevier Ireland Ltd. All rights reserved.
vement  by  optimal  resource  expenses  in  chickpea.
© 2016 Elsevier  Ireland  Ltd.  All  rights  reserved.
1. Introduction

Development and large-scale genotyping of informative
sequence-based genetic markers in bi-parental mapping popu-
lations and natural core/minicore germplasm lines is essential
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o identify and map  the functionally relevant genes/QTLs (quan-
itative trait loci) governing important agronomic traits for
enomics-assisted crop improvement of chickpea. To accomplish
hese objectives, effective deployment of sequence-based robust
SR (simple sequence repeat), SNP (single nucleotide polymor-
hism) and insertion-deletion (InDel) markers developed at a
enome-wide and/gene level has been made to expedite diverse
igh-throughput genetic analysis including QTL and trait asso-
iation mapping in chickpea [1–27]. Despite these efforts, very
imited number of trait-associated QTLs have been fine-mapped
nd validated in multiple genetic backgrounds (diverse mapping
opulations) of chickpea. This essentially restrains the identifica-
ion and use of informative markers tightly linked to QTLs/genes
egulating traits of agricultural importance that could be exploited
fficiently for marker-assisted genetic improvement in chickpea. In
his context, especially the development of numerous gene-based

arkers revealing wider genomic distribution as well as higher
ntra-specific polymorphic potential among chickpea accessions
sing a simpler affordable marker genotyping assay is prerequisite.
his will essentially accelerate construction of high-density genetic

inkage maps and fine-mapping/map-based cloning as well as
igh-resolution association mapping in order to identify potential
enes/QTLs and natural allelic variants controlling diverse stress
olerance and yield component traits for marker-aided genetic
nhancement of chickpea with a narrow genetic base.

In recent years, intron-spanning markers (ISM) and/or intron-
ength polymorphism (ILP) markers have been developed success-
ully at a genome-wide scale targeting the introns of annotated
enes, which are effectively employed in various large-scale geno-
yping applications of multiple major food crop plants [4,5,28–42].
he ISM and ILP markers are now considered as a preferred ideal
arker system in plant genetic analysis due to their diverse array

f desirable inherent genetic attributes comparable with other
ommonly adopted sequence-based markers and wide genomic
istribution specifically in the gene regions of crop plant genomes.
he added-advantage of these markers has been realized currently

n view of their efficiency to reveal direct reflection of allelic vari-
tion/diversity within the genes. These informative genic markers
hus have significance to rapidly establish marker-trait association
nd targeted mapping of genes/QTLs governing vital agronomic
raits in crop plants.

More recently, ISM and ILP markers with dense genome-wide
overage have been developed successfully involving and compar-
ng all the intronic sequence components of genes annotated from
he completely sequenced genomes of two rice accessions [43]. The
ractical utility of these gene-based markers in various genomics-
ssisted breeding applications including genetic diversity analysis,
onstruction of high-density genetic linkage maps, evolutionary
tudies, mapping of genes/QTLs regulating important agronomic
raits and marker-assisted breeding has been well-demonstrated
n rice. With the availability of draft genome sequences of two cul-
ivated desi (ICC 4958) and kabuli (CDC Frontier) accessions, it is
ow possible to develop ISM primarily at a genome-wide scale in
hickpea by targeting all individual introns present in the genes
nnotated from their genomes. In order to convert ISM into ILP
arkers, each intron of these genes can be scanned for InDels by

omparing the whole genome sequences of two desi and kabuli
hickpea accessions. The ILP markers are especially developed and
mplified targeting multiple InDels within an individual intron at

 time, thereby have pronounced likelihood potential of detecting
ntra-/inter-specific polymorphism as compared to InDel markers

mong chickpea accessions. Subsequently, the correctly annotated
olymorphic introns can be validated/genotyped in diverse acces-
ions by designing and amplifying ISM and ILP primers from the
xonic sequences flanking the target introns. The afore-mentioned
trategy of developing ISM and ILP markers will provide user
ce 252 (2016) 374–387 375

a wider flexibility to select diverse combinations of informative
primers from an individual gene revealing reproducible PCR ampli-
fication by their convenient genotyping in a simpler affordable
gel-based assay in chickpea. Consequently, these markers could
be efficient in detecting higher polymorphic potential for differen-
tiation of closely-related cultivated accessions along with precise
assaying of differential expression profiles across tissues/stages of
accessions more efficiently in chickpea. Essentially, marker geno-
typing and differential gene expression profiling can be assayed
simultaneously with an identical set of ISM and ILP markers, which
will be useful in targeted mapping of differentially expressed genes
directly on the genome and identification of diverse arrays of poten-
tial genes for successful rapid quantitative dissection of complex
traits and genetic enhancement studies in chickpea.

In view of above prospects, the present study developed
genome-wide ISM and ILP markers by targeting/comparing indi-
vidual introns of genes annotated from the sequenced draft whole
genomes of desi (ICC 4958) and kabuli (CDC Frontier) chickpea
accessions. The utility of these developed markers in detecting
potential for amplification, polymorphism and molecular diver-
sity among cultivated desi and kabuli accessions as well as realistic
assaying and accurate estimation of differential gene expression
profiles in diverse seed developmental stages of low and high
seed weight chickpea accessions was  accessed. The informative
well-validated ISM and ILP markers were utilized to construct a
high-resolution intra-specific genetic linkage map  for identifica-
tion and molecular mapping of major genes harbouring seed weight
QTLs in chickpea. In order to make all the designed chickpea ISM
and ILP markers publicly accessible at a genome-wide scale, a user-
friendly web  resource, “Chickpea ISM-ILP Marker Database” was
developed.

2. Materials and methods

2.1. Development of ISM and ILP markers

For developing genome-wide ISM and ILP markers, the indi-
vidual intronic sequence components of each protein coding gene
annotated from the sequenced desi (ICC 4958, CGAP v2.0 [44]),
and kabuli (CDC Frontier v1.0 [45]), draft genomes were retrieved.
To develop ISMs, forward and reverse primers from the 100-bp
exonic sequences flanking each intron of genes were designed
individually employing custom-made Primer3 perl scripts as per
Badoni et al. [43]. To convert ISMs into InDels-led ILP mark-
ers at a genome-wide scale, intronic-InDels between kabuli and
desi genomes were detected by comparing the individual intronic
sequences of each gene annotated from kabuli genome with cor-
responding orthologous genomic sequences of sequenced desi
genome. The uniqueness of primers designed both for ISM and ILP
markers in two chickpea genomes was  ascertained following Wang
et al. [29] and Badoni et al. [43]. We  determined the genomic dis-
tribution of ISM and ILP markers in diverse coding and non-coding
sequence component of chickpea genes structurally and function-
ally annotated on eight chromosomes and unanchored scaffolds of
both desi and kabuli genomes.

2.2. Experimental validation, amplification and polymorphic
potential of markers

To determine the amplification and polymorphic poten-

tial of markers, ISM/ILP markers designed from the diverse
protein-coding genes including transcription factors (at least
one marker/gene) exhibiting ≥4 bp InDel-based in silico fragment
length polymorphism between CDC Frontier (kabuli) and ICC 4958
(desi) accessions were screened. These selected markers were phys-
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cally mapped on eight chickpea chromosomes and unanchored
caffolds of both desi and kabuli genomes. The ISM/ILP markers were
CR amplified with the genomic DNA isolated from 32 including 20
esi and 12 kabuli chickpea accessions (Supplemental file 1) fol-

owing Jhanwar et al. [46] and Kujur et al. [7]. The PCR products
f amplified ISM/ILP markers exhibiting ≥10-bp in silico fragment

ength polymorphism were resolved in 2.5% agarose gel and frag-
ent size (bp) of amplicons was determined against 50-bp DNA

adder size standard. The PCR product of amplified ISM/ILP mark-
rs revealing <10-bp in silico fragment length polymorphism was
urified and sequenced using automated 96 capillary ABI 3730 × l
NA Analyzer (Applied Biosystems, USA) as per Kujur et al. [7]
nd Saxena et al. [13]. The genotyping data of experimentally vali-
ated ISM and ILP markers was analysed using PowerMarker v3.51
47] to measure the average polymorphic alleles per marker, per
ent polymorphism and polymorphism information content (PIC)
mong chickpea accessions.

.3. Molecular diversity analysis

To determine the molecular diversity and phylogenetic relation-
hips among 32 desi and kabuli accessions (Supplemental file 1), the
enotyping data of informative polymorphic ISM and ILP markers
hysically mapped across eight chickpea chromosomes and unan-
hored scaffolds were analysed in PowerMarker v3.51. For this, the
arker genotyping data was analysed through Nei and Li similarity

oefficient-based neighbor joining (NJ) method of PowerMarker for
lustering analysis and construction of an unrooted phylogenetic
ree among accessions as per Kujur et al. [7,9].

.4. Genetic map construction and QTL mapping

We  selected the ISM and ILP markers exhibiting polymor-
hism between high (C. arietinum desi accession ICC 4958 with
00-seed weight: 35.4 g) and low (C. arietinum desi accession ICC
263 with 100-seed weight: 13.6 g) seed weight parental acces-
ions of a 190 F7 RIL (recombinant inbred line) mapping population
ICC 4958 × ICC 2263) from our marker polymorphism study. The
enomic DNA isolated from mapping parents and RIL individuals
ere PCR amplified and genotyped using the informative markers

s per aforementioned agarose gel- and amplicon sequencing-led
enotyping strategies. The genotyping data of markers exhibiting
oodness-of-fit to the expected Mendelian 1:1 segregation ratio
ased on �2-test (p < 0.05) was analysed by JoinMap v4.1 (http://
ww.kyazma.nl/index.php/mc.JoinMap) at a higher LOD thresh-

ld (4.0) with Kosambi mapping function to measure the linkage
nalysis among the markers used. A high-density genetic map  was
onstructed by integrating the markers into defined linkage groups
LGs) based on their centi Morgan (cM) genetic distances and cor-
esponding marker physical positions (bp) on the chromosomes,
nd visualized using CIRCOS as per Kujur et al. [9].

The 190 individuals and parental accessions of a F7 RIL map-
ing population (ICC 4958 × ICC 2263) were grown in the field
uring the crop growing season for two consecutive years (2013
nd 2014) with at least two replications (as per randomized com-
lete block design) and phenotyped for 100-seed weight (g). The
oefficient of variation (CV), broad-sense heritability (H2) and fre-
uency distribution of seed weight in the RIL mapping population
ere estimated as per Bajaj et al. [16]. For molecular mapping

f major seed weight QTLs, the genotyping data of ISM and ILP
arkers genetically mapped on eight chickpea chromosomes were
ntegrated with multi-location/years replicated 100-seed weight
eld phenotypic data of 190 RIL mapping individuals and parental
ccessions employing the composite interval mapping (CIM) func-
ion (LOD threshold score >4.0 with 1000 permutations and p < 0.05
ignificance) of QTL Cartographer v2.5 [48] and MapQTL 6 [49]. The
ce 252 (2016) 374–387

phenotypic variation explained (PVE) and additive effect specified
by each major grain weight QTL at a significant LOD were estimated
following Bajaj et al. [17].

2.5. Expression profiling

To evaluate the potential of ISM and ILP markers for precise
estimation of differential expression profiles of genes (from which
these markers were developed), we  designed primer-pairs from
100-bp flanking exonic sequences of introns in such a way  that
the markers should amplify 56–196 bp (mean 117 bp) amplicon
product size in the cDNA of chickpea accessions used. The total
RNA was  isolated from diverse vegetative and reproductive tissues
(shoot, root, leaf, flower bud and pod) and two seed develop-
mental stages (early cell division phase during 10–20 days after
podding/DAP and late maturation phase during 21–30 days after
DAP) of low and high seed weight RIL mapping parental accessions
(ICC 4958 and ICC 2263). The isolated RNA was digested with DNase
(QIAGEN, USA) and purified using RNeasy MinElute Cleanup Kit
(QIAGEN, USA), and the purified RNA was  tested for high-quality
using NanoDrop 2000c Spectrophotometer (NanoDrop products,
USA). The cDNA made from this high-quality RNA was amplified
with ISM/ILP primers designed from selected chickpea genes along
with internal control elongation factor 1-alpha (EF1˛) using the
semi-quantitative and quantitative RT-PCR assays as per Kujur et al.
[7] and Bajaj et al. [16]. Three independent biological replicates of
each sample and two technical replicates of each biological repli-
cate with no template and primer as control were included in the
quantitative RT-PCR assay. The expression level of genes estimated
in diverse tissues and seed developmental stages of low and high
seed weight chickpea mapping parental accessions were compared
among each other and along with control (vegetative leaf tissue of
respective accessions) to scan the differentially regulated genes. A
heat map  illustrating the differential expression profiles of ISM/ILP
marker-containing genes was  constructed using the TIGR MultiEx-
periment Viewer (MeV, http://www.tm4.org/mev).

2.6. Construction of ISM and ILP marker database

We  constructed an online user-friendly three-layered
architecture-led web resource “Chickpea ISM-ILP Marker
Database” using MySQL ver. 5.6.12 (www.mysql.com) at back-end
and PHP ver. 5.4.16 (www.php.net) at front-end, following the
detail methods of Badoni et al. [43]. All the ISM and ILP markers
designed from the genes annotated from both desi and kabuli draft
whole genomes were stored in this database for unrestricted public
use. The online database was currently hosted on a Linux operating
system-based HP Server (Intel Xeon quad core processors with
256 GB of random access memory) and compatible with various
commonly used browsers like Firefox and Chrome.

3. Results and discussion

3.1. Genome-wide development and genomic distribution of
chickpea ISM and ILP markers

We  developed a total of 119169 and 110491 genome-wide ISMs
from the introns of 23129 and 20386 protein-coding desi and kab-
uli chickpea genes, respectively (Fig. 1A, C, D, Supplemental file
2). Of these, 105756 and 98807 ISMs designed from the introns
of 18810 desi and 17674 kabuli genes, respectively were physi-

cally mapped on eight chromosomes. The remaining 13413 and
11684 ISMs developed from 4319 and 2712 desi and kabuli genes,
respectively were mapped on the unanchored scaffolds of chick-
pea genome (Fig. 1A, C, D, Supplemental file 2). Highest number of
17909 and 15955 ISMs were designed from the intronic sequences
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Fig. 1. Genome-wide distribution pattern [frequency (A) and relative density (B)] of 119169 (23129 genes) desi and 110491 (20386) kabuli ISM and 7454 (3283) ILP markers
developed from the intronic sequences of genes annotated on eight chromosomes and unanchored scaffolds of chickpea. Numbers in the square brackets and parentheses
indicate the frequency (number of ISMs/ILPs per gene) of markers and ISM/ILP markers-containing desi and kabuli chickpea genes, respectively. (C) Genomic distribution of
119169  desi ISMs physically mapped on eight chromosomes and unanchored scaffolds of chickpea are depicted by a Circos circular ideogram. The circles I and II represent
119169  and 48835 ISMs designed from the total 23129 protein-coding desi genes and 8615 TF-encoding desi genes, respectively. (D) Genomic distribution of 110491 kabuli
ISMs  and 7454 ILP markers physically mapped on eight chromosomes and unanchored scaffolds of chickpea are depicted by a Circos circular ideogram. The circles I and II
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ndicate 110491 and 48146 ISMs developed from the total 20386 protein-coding ka
nd  3427 ILP markers developed from the total 3283 protein-coding kabuli genes a
Mb)  of eight chromosome-pseudomolecules coded with multiple colours. The deta
nd  3.

f 3124 and 2906 genes annotated on the chromosomes 4 and 6 of
esi and kabuli chickpea genomes, respectively. Lowest number of
837 and 7035 ISMs were developed from the intronic sequences
f 1177 and 1212 genes annotated on the desi and kabuli chro-
osome 8, respectively. We  observed almost a similar trend of

requency distribution of ISMs both within the desi and kabuli genes
nnotated on nearly all eight chickpea chromosomes (Fig. 1A, C, D,
upplemental file 2). In desi genome, this ranged from 5.1 ISMs per
ene on chromosome 2–5.9 ISMs per gene on chromosome 1, with

 mean of 5.2 ISMs per gene. In kabuli genome, this varied from 5.2
SMs per gene on chromosome 2–5.8 ISMs per gene on chromo-
omes 5 and 8, with an average of 5.4 ISMs per gene (Fig. 1A). In the
nanchored scaffolds of desi and kabuli genomes, the frequency of

SMs was 3.1 and 4.3 ISMs per gene, respectively. At whole desi and
abuli genome level, maximum density of physically mapped ISMs
as observed on chromosome 8 (desi: 387.1 ISMs/Mb and kabuli:

26.9 ISMs/Mb), while minimum on chromosome 2 (desi: 271.4

SMs/Mb and kabuli:  248.9 ISMs/Mb), with an average of 305.4 and
32.8 ISMs/Mb, respectively (Fig. 1B). In the unanchored scaffolds
f desi and kabuli genomes, the density of ISMs was 238.5 and 91.8

SMs/Mb, respectively.
nes and 8302 TF-encoding genes, respectively. The circles III and IV illustrate 7454
43 TF-encoding genes, respectively. The outermost circles signify the physical size
rmation regarding ISM and ILP markers are mentioned in the Supplemental files 2

A significant difference observed in the frequency of ISM-
carrying genes annotated between desi (23129 genes) and kabuli
(20386) genomes is possibly due to availability of uneven high-
quality draft sequence assembly of these two chickpea cultivars
with varied genome coverage employing totally different com-
putational genomics tools and annotation pipelines accompanied
with non-uniform criteria. This resulted in sequencing of differ-
ent genomic regions of desi and kabuli genomes and annotation
of smaller number of genes in kabuli (28269) as compared to desi
(30257). In this perspective, development of ISMs from the genes
at a genome-wide scale can be enriched in chickpea by deploying
improved version of both desi (CGAP v2.0 [44]) and kabuli (CDC
Frontier v1.0 [45]) genomes with high-quality large-size chromo-
some pseudomolecules and unanchored scaffolds as reference and
comparison of their individual ISM outputs. This strategy holds
much relevance for discovering more robust and non-erroneous
common as well as unique ISMs representing redundant and

non-redundant fractions of desi and kabuli genomes, aside their
annotated genes (90% genes especially supported with global tran-
scriptome profiling-led gene transcription data), thereby driving
large-scale genome-wide ISMs development in chickpea. Essen-
tially, only 25.2% (5835 of total 23129 ISMs-containing desi genes)
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nd 28.7% (5846 of total 20386 kabuli genes) genes with 29865
25.1% of total 119169 ISMs) and 29845 (27% of total 110491
SMs) ISMs were found to be common between desi and kabuli
enomes, respectively (Supplemental file 2). The ISMs developed
rom the remaining 71.3–74.8% genes were unique covering only
he different non-redundant regions of desi and kabuli genomes.
herefore, use of both desi and kabuli genomes as reference for
eveloping ISMs appears more advantageous for widening their
ractical applicability in genomics-assisted breeding as well as crop

mprovement concerning varied phenotypic and genetic diversity
haracteristics of desi and kabuli chickpea. The two major chick-
ea cultivars- desi and kabuli with different plant characteristics
epresenting diverse gene pools-based geographical distribution
re distinguished primarily by small/large seed size, angular/owl
eed shape, thicker/thinner seed coat, dark yellow/beige seed coat
olour and pink/white flower colour [50,51]. Significant efforts have
een made to understand the molecular diversity and domestica-
ion pattern among desi and kabuli accessions using traditional-
nd NGS-led genome-wide and gene-derived SSR and SNP markers
n chickpea. Based on these, a clear differentiation and cluster-
ng of accessions into distinct desi and kabuli cultivar groups as
er their parentage, geographical origin and adaptive environ-
ent is apparent [7,9,13,18,24,25,45,52]. However, the aforesaid

tudies also highlighted the contribution of complex breeding his-
ory involving inter-crossing/introgression coupled with strong
daptive selection pressure towards existence of admixed domes-
ication pattern-based population genetic structure among desi
nd kabuli chickpea accessions. Considering the uneven pseu-
omolecule/scaffold assembly and non-uniform annotation-led
enome sequencing efforts as well as distinct phenotypic and
enetic diversity characteristics of desi and kabuli,  development
f ISMs from the draft whole genomes including cultivar-specific
enes of both these sequenced accessions will be useful to expedite
arious genomics-assisted breeding applications in chickpea.

With an effort to convert ISMs to ILP markers at a genome-
ide scale, 32618 InDels were identified within the introns of

enes annotated between desi (ICC 4958) and kabuli (CDC Fron-
ier) genomes. This comparison of intronic-InDel polymorphism
etween desi and kabuli genomes, 7454 ISMs were converted into

LP markers targeting introns of 3283 genes, which were well-
istributed and physically mapped on eight chromosomes and
nanchored scaffolds of chickpea genome (Fig. 1A, C, D, Supple-
ental file 3). Highest number of 2343 ILP markers developed from

he introns of 772 genes were physically mapped on chromosome
, whereas it was lowest on chromosome 8 (247 ILP markers in 120
enes). The in silico fragment length polymorphism detected by ILP
arkers between desi and kabuli genomes based on sum of InDels-

ize (bp) variation within introns of genes ranged from 1 to 45 bp,
ith a mean of 4.4 bp. The ILP markers exhibiting 1–4 bp (74.3%,

541 of 7454 markers) InDels-based fragment length polymor-
hism within the introns of genes between desi and kabuli genomes
ere found abundant (Supplemental file 3). About 14.4% (1073) and

1.3% (840) ILP markers revealed 5–10 bp and 11–45 bp intronic
nDels-based fragment length polymorphism, respectively. A var-
ed trend of frequency distribution of ILP markers was observed
n all eight chromosomes and unanchored scaffolds of chickpea
enome (Fig. 1A). However, this ranged from 1.3 to 3.0 ILP markers
er gene, with a mean of 2.3 ILP markers per gene. The genome cov-
rage based on density of physically mapped ILP markers exhibited
heir maximum density on chromosome 4 (47.6 ILP markers/Mb)
nd minimum on chromosome 5 (6.7 ILPs/Mb), with a mean of

8.1 ILP markers/Mb (Fig. 1B). In the unanchored scaffolds of chick-
ea genome, the density of ILP markers was 10.7 ILP markers/Mb.
ummarily, a random uneven genomic distribution of physically
apped ISM and ILP markers pertaining to their abundance and rel-

tive density across eight chickpea chromosomes and unanchored
ce 252 (2016) 374–387

scaffolds was  observed. Notably, 6869 (5.8% of total 119169 ISMs)
and 2397 (2.2% of total 110491 ISMs) ISMs were found to be present
in the 1532 (6.6% of total 23129 desi genes) and 441 (2.2% of total
20386 kabuli genes) duplicated genes annotated individually from
desi and kabuli genomes, respectively. This included two  ILP mark-
ers in the two duplicated kabuli genes (Supplemental files 2, 3).
Interestingly, a higher density and wider genome coverage of gene-
derived desi (305.4 ISMs/Mb) and kabuli (232.8 ISMs/Mb) ISMs, but
a lower density of ILP markers (18.1 ILPs/Mb) as compared to that
of multi-allelic SSR (144–157 SSRs/Mb) and InDel (61.4 InDels/Mb)
markers (physically mapped on eight chickpea chromosomes) was
evident [21,24]. Therefore, ISMs with dense genome-wide cover-
age will be useful for diverse high-throughput genetic analysis
including high-resolution QTL and association analysis in map-
ping population and natural germplasm lines to identify potential
genes/QTLs regulating traits of agronomic importance in chickpea.

The functional annotation of ISMs-containing chickpea genes
revealed the occurrence of 817 (0.7% of total 119169 ISMs) and
29 (0.3% of total 110491 ISMs) ISMs in the 250 (1.1% of total
23129 ISMs-carrying desi genes) and 7 (0.03% of total 20386 kab-
uli genes) transposable elements (TE)-related genes annotated
from desi and kabuli genomes, respectively (Supplemental file 2).
Notably, 81053 and 71956 ISMs developed from the introns of
12504 and 10915 desi and kabuli genes, respectively as well as
4737 ILP markers (Intronic InDel-based in silico fragment length
polymorphism ranged from 1 to 45-bp) designed from the 1977
genes were primarily involved in multiple cellular, biological and
molecular processes of crop plants (Supplemental files 2 and
3). The KOG-based functional annotation of these ISM and ILP
markers-carrying desi and kabuli genes revealed their enrichment
for post-translational modification, protein turnover and chaper-
ones (O, 7.9–9.1%), signal transduction mechanisms (T, 7.5–7.6%)
and unknown expressed proteins (S, 5.9–6.2%), beside the gen-
eral function prediction (R, 15.6–20.1%) (Fig. 2A, Supplemental files
2 and 3). Moreover, 48835 desi and 48146 kabuli ISM and 3427
ILP markers-containing 8615, 8302 and 1443 genes (representing
58 TF gene family), respectively belonging to bHLH (9.5–10.8%),
Trihelix (8.5%), NAC (6.7–7.0%), Myb (6.2%) and B3 (5.9–6.1%) TF
families were found predominant in chickpea (Fig. 2B–D, Supple-
mental files 2 and 3). In order to access the functional significance of
identified genome-wide ISM and ILP markers for subsequent fine-
mapping/map-based cloning of major QTLs/genes, these markers
were annotated in the genes underlying the known QTLs docu-
mented previously for double podding, vernalisation, nodulation,
drought tolerance, and Ascochyta blight and Fusarium wilt resis-
tance traits in chickpea [15,53–60]. Based on these analyses, 52879
ISMs and 9322 ILP markers in the 9625 and 3021 kabuli genes reg-
ulating aforementioned diverse a/biotic stress tolerance and yield
component traits were identified (Supplemental file 4).

The designing of multiple desi and kabuli ISM (5.2–5.4 ISM/gene)
and ILP (2.3 ILP/gene) markers in individual genes can impart
greater flexibility to molecular geneticists/breeders for screening
appropriate primer combination exhibiting robust marker amplifi-
cation (with a mean amplicon product size of 528 bp) and detecting
higher potential of functional allelic polymorphism especially
among cultivated (desi and kabuli)  chickpea accessions. This will
essentially expedite identification of functionally relevant genes by
high-resolution QTL mapping and association analysis to efficiently
dissect the complex quantitative traits for genomics-assisted crop
improvement in chickpea. The genome-wide ISM and ILP mark-
ers developed from diverse trait-associated functionally annotated

known and candidate genes/QTLs can be utilized as an instant
genomic resource for rapidly establishing marker-trait linkages and
identification/fine-mapping of molecular tags governing vital agro-
nomic traits to drive marker-assisted foreground and background
selection-led genetic enhancement in chickpea.
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epresenting diverse KOG-based functional classes. Frequency (%) distribution of 48

arkers developed from the different TF-encoding genes of chickpea.

.2. High marker polymorphic and molecular diversity potential

To evaluate the amplification, polymorphism and genetic diver-
ity potential of ISM and ILP markers, a set of 2405 ILP markers
representing 2019 ISMs with at least one marker in 1604 genes)
xhibiting ≥4 bp InDel-based in silico fragment length polymor-
hism between kabuli (CDC Frontier) and desi (ICC 4958) accessions
ere selected. These markers were physically mapped on genes

nnotated across eight chromosomes and unanchored scaffolds
f kabuli genome. All the 2405 ISM/ILP markers were validated
xperimentally using the genomic DNA of one chickpea acces-
ion (ICC 4958), the genome sequence from which ISM and ILP
arkers were designed originally. Of these, 1993 ISM/ILP mark-

rs amplified single reproducible PCR amplicons in 2.5% agarose
el with a mean amplification success rate of 82.9% (Fig. 3). The
alidated ISM/ILP markers were further genotyped in 32 culti-
ated desi and kabuli chickpea accessions using the agarose gel-
nd amplicon sequencing-based assays to assess their polymorphic
otential among these accessions. The amplified markers along

ith 1718 (86.2%) polymorphic markers genotyped in 24 chick-

ea accessions overall detected 4981 alleles with an average PIC
f 0.70. The number of alleles detected by the ILP markers among
hickpea accessions varied from 1 to 3 alleles with a mean 2.5
lleles per marker (Fig. 3). A higher polymorphic potential of mark-
abuli ISMs as well as 4737 (1977) ILP markers designed from the chickpea genes
615 genes) desi (B) and 48146 (8302) kabuli ISMs (C) including 3427 (1443) ILP (D)

ers was observed among 20 accessions belonging to desi (1538
markers, 77.2% polymorphism and mean PIC: 0.67) than that of
12 accessions representing kabuli (1365, 68.5% and 0.61) chickpea.
The potential of markers to detect polymorphism between desi and
kabuli cultivars (1617, 81.1% and 0.68) was  much higher as com-
pared to that within cultivated desi and kabuli chickpea (Fig. 3). The
amplified 1679 (84.2%) ILP markers revealing in silico InDel-based
fragment length polymorphism between desi and kabuli accessions
were validated experimentally using agarose gel- and PCR ampli-
con sequencing-based assays in chickpea.

Higher average amplification success rate (82.9%) as well as
intra–specific polymorphic potential (86.2%) detected by the ISM
and ILP markers among desi and kabuli cultivated chickpea acces-
sions are much higher than that documented especially with
random genome-wide SSR markers (∼35%) and in silico polymor-
phic SSR markers (50–60%) [2,4,7,13,18,24,61,62], but comparable
to genome-wide InDel markers (∼83%) [21]. These informative
gene-based ISM and ILP markers with a higher potential of detect-
ing intra-specific polymorphic potential among domesticated

accessions at a genome-wide scale even by a simpler cost-effective
agarose gel-based assay could serve as an ideal resource for their
immense use in various genomics-assisted breeding applications of
chickpea. Essentially, the validation and genotyping of ILP markers
overall ascertained the correspondence of expected in silico frag-
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Fig. 3. Graphic representation illustrating the major steps followed for efficient designing (A, B), large-scale experimental validation (C) and genotyping (D) of desi
(CaISM128921) and kabuli (CaISM076084) ISM and ILP (CaILP1632) markers derived from the intronic sequence component of a serine carboxypeptidase (SCP) gene to
a tive 24
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ccess its potential for amplification (C) and polymorphism (D) among a representa
R)  primers designed from the exonic sequence of a SCP gene flanking the intron wi
espectively (A, B). URR: upstream regulatory region. The identities of ISM and ILP
nd  3.

ent length polymorphism based on sum of InDels-size occurred
n each intron of genes with their actual amplicon fragment
ize variation detected experimentally using the gel- and ampli-
on sequencing-based assays between kabuli and desi chickpea
ccessions. This infers practical applicability of these markers for
arge-scale genotyping applications, which can be complemented
urther with user-preference marker selection (screening mark-
rs based on their predetermined intronic-InDel size) by optimal
se of resources in chickpea. Therefore, the ISM and ILP markers
ith diverse desirable genetic attributes like simplicity of their

n silico discovery, robustness in high-throughput genetic analy-
is and efficiency in detecting functional allelic variation within
he gene sequence components of multiple cultivated accessions
an serve as a preferred marker resource for genomics-assisted
reeding applications of chickpea in laboratories with minimal

nfrastructural facilities. The ISM and ILP markers developed from
he coding, but non-coding gene sequence components of desi and
abuli genomes essentially have greater efficacy to recover the
ecurrent parent genome than that of random markers (represent-
ng mostly the non-coding regions of genome) in marker-assisted
ackground selection, which is of much preferred as far as pheno-
ype is concerned. Henceforth, these genic ISM and ILP markers will
xpedite the process of marker-assisted genetic improvement at a
enome-wide scale by targeting multiple stress tolerance and yield
omponent traits in chickpea.

The estimation of genetic diversity level among 32 desi and
abuli chickpea accessions using 1718 polymorphic ISM/ILP mark-
rs (mapped on eight chromosomes and unanchored scaffolds)

xhibited a broader range of distance coefficient from 0.19 to 0.81
ith an average of 0.60. The level of functional molecular diver-

ity detected by genic ISM and ILP markers among domesticated
hickpea accessions is higher/comparable to that documented ear-
ier using genome-wide SSR and InDel markers [21,24]. In this
 cultivated desi (D) and kabuli (K) chickpea accessions. The forward (F) and reverse
any InDel and with a 19-bp intronic-InDel were developed as ISM and ILP markers,
ers along with their detailed information are provided in the Supplemental files 2

context, a wider level of functional genetic diversity uncovered
by gene-derived ISM and ILP markers assumes great significance
for expediting various genomics-assisted breeding applications in
chickpea at a genome-wide scale. The phylogenetic relationship
among 32 desi and kabuli cultivated chickpea accessions was deter-
mined and illustrated by an unrooted phylogenetic tree (Fig. 4). The
ISM and ILP markers clearly differentiated all these accessions from
each other and clustered into two major groups, namely desi and
kabuli. This collectively infers the correspondence of clustering pat-
terns observed among these cultivated chickpea accessions with
the known cultivar-specific origination, pedigree relationships and
parentage [2,4,7,9,24,52].

3.3. Construction of a high-resolution ISM/ILP marker-based
genetic linkage map

To construct a high-density genetic linkage map, 1424 ILP
markers (physically mapped on eight chromosomes) revealing
polymorphism between two parental accessions (ICC 4958 and ICC
2263) were genotyped among 190 RIL individuals of a F7 chick-
pea mapping population (ICC 4958 × ICC 2263). The marker linkage
analysis mapped 1424 markers across eight chromosomes of a con-
structed chickpea genetic map  (Table 1, Fig. 5). The genetic map
covered a total map  length of 807.48 cM with a mean map-density
(inter-marker distance) of 0.65 cM.  Highest and lowest number of
markers were mapped on chromosomes 4 (458 markers) and 8
(55), respectively (Table 1). Longest and shortest map-length span-
ning 194.85 and 57.03 cM were obtained in chromosomes 4 and

8, respectively. The most and least saturated genetic maps were
observed in chromosomes 4 (mean inter-marker distance 0.43 cM)
and 8 (1.04 cM), respectively (Table 1).

The genic ISM and ILP markers have significance in differenti-
ating the homozygous and heterozygous RIL mapping individuals,
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Fig. 4. An unrooted phylogenetic tree illustrating the genetic relationship among cultivated 32 desi and kabuli chickpea accessions based on Nei and Li’s similarity coefficient
using  1718 polymorphic ISM/ILP markers.

Table 1
ISM/ILP markers mapped on eight chromosomes of an intra-specific chickpea genetic linkage map  (ICC 4958 × ICC 2263).

Linkage groups (LGs)/chromosomes (Chr) ISM/ILP markers mapped Map-length covered (cM) Mean inter-marker distance (cM)

CaLG(Chr)1 197 112.09 0.57
CaLG(Chr)2 120 87.10 0.73
CaLG(Chr)3 156 90.50 0.58
CaLG(Chr)4 458 194.85 0.43
CaLG(Chr)5 95 73.51 0.77
CaLG(Chr)6 152 84.39 0.56

t
t
o
t
g
m
p
t
s
(
p

CaLG(Chr)7 191 

CaLG(Chr)8 55 

Total  1424 

hereby exhibited co-dominant genetic inheritance pattern similar
o other commonly utilized SSR and InDel markers for construction
f genetic linkage map  and QTL mapping in chickpea. This infers
he broader practical applicability of these developed genome-wide
enic markers for construction of high-resolution genetic linkage
aps (functional transcript maps) and efficient molecular map-

ing of QTLs/genes governing stress tolerance and yield component

raits in chickpea. A 1424 ISM/ILP markers-led high-density intra-
pecific genetic linkage map  (inter-marker distance of 0.65 cM)
ICC 4958 × ICC 2263) constructed in the present study is com-
arable/highly saturated than that documented yet in multiple
108.01 0.57
57.03 1.04

807.48 0.65

intra- and inter-specific mapping population-derived genetic maps
(0.21–8.01 cM)  of chickpea [2–7,12,14,16,17,21,25–27]. Therefore,
a high-density intra-specific genetic linkage map constructed by us
has significance to be utilized as a reference for quick molecular
mapping of high-resolution QTLs/genes regulating diverse agro-
nomic traits in chickpea.
3.4. Molecular mapping of major seed weight QTLs

A significant phenotypic variation for seed weight (100-seed
weight: 10.6–38.9 g with an 18.3 g mean ± 5.4 S.D., CV: 29.5%



382 R. Srivastava et al. / Plant Science 252 (2016) 374–387

Fig. 5. (A) Molecular mapping of six major seed weight QTLs on a high-density intra-specific genetic linkage map/transcript map (ICC 4958 x ICC 2263) constructed by
integrating 1424 gene-derived ILP markers on eight chickpea chromosomes, which is depicted by a Circos circular ideogram. The outer circles represent the diverse genetic
map  length (cM) (spanning 5 cM uniform genetic distance intervals between bins) of eight chromosomes coded with multiple colours. The constructed high-resolution
g omic 
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enetic  map  identified six ILP markers-containing candidate genes at six major gen
,  4 and 6. The ILP markers flanking and tightly linked to the major seed weight QT

LP  markers and seed weight QTLs are mentioned in Table 2 and Supplemental files
eferred  to the web  version of this article.)

nd 87% H2) trait in 190 individuals and two  parental acces-
ions of a RIL mapping population (ICC 4958 × ICC 2263) was
btained. We  observed a normal frequency distribution, includ-

ng a bi-directional transgressive segregation of seed weight in an
forementioned RIL mapping population (Supplemental file 5). The
wo years multi-location replicated field phenotyping data of seed
eight and genotyping information of 1424 ILP markers genet-
cally mapped on eight chickpea chromosomes were integrated
or molecular mapping of major seed weight QTLs. This analysis
etected six major genomic regions harbouring six robust QTLs
ssociated with seed weight that were mapped on five chickpea
hromosomes (1, 2, 3, 4 and 6) (Table 2, Fig. 5). Highest number of
regions harbouring seed weight QTLs mapped on five chickpea chromosomes 1, 2,
hlighted with red and blue colour, respectively. The detail information on ISM and

 3. (For interpretation of the references to color in this figure legend, the reader is

two major seed weight QTLs were mapped on chromosome 1. The
individual major QTL explained 11–23% phenotypic variation (R2)
for seed weight trait at 7.6–10.5 LOD (Table 2). The PVE (phenotypic
variation explained) measured for all six major QTLs in combina-
tion was  32.8%. Six major genomic regions underlying these seed
weight QTLs spanned (0.25 cM on chromosome 1–1.86 cM on chro-
mosome 4) with 23 ILP markers, were mapped on six different

genomic regions of five chromosomes. All six major seed weight
QTLs revealed positive additive gene effect (2.0–3.8) for seed weight
with major allelic contribution from a high seed weight parental
chickpea accession ICC 4958. The integration of genetic and phys-
ical maps of kabuli genome detected six genes with ILP markers
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(revealing 4–32 bp InDels-based fragment length polymorphism
among desi and kabuli chickpea accessions) tightly linked to six
major QTLs governing seed weight (single marker analysis-based
high-resolution QTL mapping) in chickpea (Table 2, Fig. 5).

To assure the robustness and novelty of our identified QTLs,
the genomic regions underlying six major seed weight QTLs were
compared with that documented in previous QTL mapping stud-
ies utilizing multiple inter- and intra-specific chickpea mapping
populations [7,8,10,11,14–17,22,23]. We  could not find any cor-
respondence of these identified seed weight QTLs with known
QTLs reported earlier based on their congruent genetic or physical
positions on chickpea chromosomes. This infers that major seed
weight QTLs identified in our study are novel and possibly exhibit
population-specific genomic distribution. It is possibly due to var-
ied effect of population-specific genetic inheritance pattern, which
especially rely upon the genetic constitution of parental accessions
selected to develop mapping populations with contrasting agro-
nomic traits between the past and present studies.

3.5. Differential expression profiling of genes with ISM/ILP
markers

To assess the potential of developed genic ISM and ILP mark-
ers for accurate assaying of differential expression pattern of genes
(from which these markers are derived), semi-quantitative and
quantitative RT-PCR assays were performed using the RNA isolated
from vegetative and reproductive tissues (shoot, root, leaf, flower
bud and pod) and two  seed developmental stages (early cell divi-
sion and late maturation phase occurring at 10–20 and 21–30 DAP,
respectively) of low and high seed weight mapping parental acces-
sions (ICC 4958 and ICC 2263). In the perspective of identifying
genes associated with seed weight in chickpea, the ISM and ILP
markers designed from each of six genes underlying six major seed
weight QTLs (delineated by high-resolution QTL mapping) were
selected for their differential expression profiling in above-said five
vegetative and reproductive tissues and two seed developmental
stages of ICC 4958 and ICC 2263 using semi-quantitative and quan-
titative RT-PCR assays. The use of ISM/ILP markers derived from six
chickpea genes in semi-quantitative RT-PCR assay amplified single
reproducible PCR amplicons of expected product size (bp) across
all samples resolved in agarose gel.

For quantitative RT-PCR assay, the selected six genes-derived
ISM/ILP markers were amplified using the cDNA of shoot, root,
leaf, flower bud, pod and two seed developmental stages of RIL
mapping parental accessions-ICC 4958 and ICC 2263 (at least three
biological replicates) with no template and primer as control. This
amplified single gene-specific PCR product of desired fragment size,
which was  further ascertained through single peak-led melting-
curve analysis of individual gene. Accordingly, we  measured and
compared the amplification curves and cycle threshold (CT) of
all gene-based markers across all three biological replicates of
aforesaid vegetative and reproductive tissues and two  seed devel-
opmental stages of ICC 4958 and ICC 2263. All six genes with ISM/ILP
markers exhibited high seed-specific expression in both ICC 4958
and ICC 2263 (Fig. 6). These genes with markers exhibited pro-
nounced up-regulated expression (>8-fold) pattern in two seed
developmental stages as compared to control vegetative and repro-
ductive tissues (shoot, root, leaf, flower bud and pod) of ICC 4958
and ICC 2263 (Fig. 6). Interestingly, six ILP markers-derived from
genes underlying seed weight major QTLs revealing InDel-based in
silico fragment length polymorphism (4–32 bp) between desi and

kabuli chickpea accessions exhibited higher differential expression
(>two-fold up-regulation) especially in seed developmental stages
of high seed weight mapping parental accession (ICC 4958) as com-
pared to low seed weight parent (ICC 2263) (Fig. 6). Interestingly,
serine carboxypeptidase protein-coding gene of these revealing
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Fig. 6. The differential expression profiles of six genes with ILP markers underly-
ing major seed weight QTLs (delineated by high-resolution QTL mapping) in the
vegetative and reproductive tissues (shoot, root, leaf, flower bud and pod) and two
seed developmental stages (seed1 and seed2: early cell division and late matura-
tion phase occurring at 10–20 and 21–30 DAP, respectively) of low and high seed
weight mapping parental accessions (ICC 4958 and ICC 2263). The green, black and
red  colour scale (mentioned at the top) represent the low, medium and high level of
average log signal expression values of genes in various tissues/stages, respectively.
The marker-carrying genes and tissues/stages utilized for expression profiling are
s
s
i
c

p
w
f

h
e
m
a

F
s

pecified on the top and right side of an expression map, respectively. The detail
tructural and functional annotation of ILP markers-containing genes are provided
n  Table 2 and Supplemental files 2 and 3. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web  version of this article.)

ronounced up-regulation (>4-fold) in high than that of low seed
eight mapping parental accessions during seed development, was

ound to be most promising for seed weight regulation in chickpea.

Collectively, the ISM and ILP markers developed from the genes

ave added-advantages for assaying precise and robust differential
xpression profiles of corresponding genes in diverse develop-
ental stages/tissues of desi and kabuli chickpea accessions at

 genome-wide scale. Moreover, the designing of multiple ISM

ig. 7. Snapshots depicting the characteristic features and advantages of diverse interfa
napshots were selected from the database webpages developed.
ce 252 (2016) 374–387

and ILP markers from individual genes also provides flexibility
to users to select desirable primer combination for reproducible
amplification and realistic measurement of differential expres-
sion pattern of target genes especially in RT-PCR assay. Therefore,
the efficacy of these gene-based markers for simultaneous assay-
ing of DNA-based high-throughput genotyping, functional allelic
diversity and expression profiling accurately in a diverse array
of domesticated desi and kabuli chickpea accessions was  evident.
These useful genetic characteristics of markers will further acceler-
ate the molecular mapping of major QTLs/eQTLs (expression QTLs)
and differentially expressed genes regulating diverse vital agro-
nomic traits in chickpea. It could essentially assist us in rapid
delineation of trait-associated functionally relevant molecular tags
at a genome-wide scale for marker-assisted genetic enhancement
of chickpea.

3.6. Significance of ISM and ILP markers in delineation of
candidate genes regulating seed weight in chickpea

The mapping of high-resolution major seed weight QTLs on a
ISM and ILP markers-anchored high-density intra-specific genetic
linkage map  (ICC 4958 × ICC 2263) and their effective integra-
tion with differential expression profiling delineated six potential
candidate genes [cytochrome P450, no apical meristem (NAM),
homeobox, serine carboxypeptidase (SCP), basic leucine zipper
(bZIP) and cytochrome P450] underlying six major QTLs govern-
ing seed weight in chickpea (Fig. 5, Table 2). Of these, one strong
seed weight-associated serine carboxypeptidase (SCP) gene with
ILP markers exhibiting 19-bp InDel-based fragment length poly-
morphism among desi and kabuli accessions was significantly
expressed and highly up-regulated especially in later seed devel-
opmental stages of high seed weight mapping parental accessions.
This is coherent with previous map-based cloning and functional
genomic studies, which demonstrates the efficacy of this gene

in regulation of seed size/weight by modulating brassinosteroid
(BR) signalling pathways in rice and Arabidopsis [63–66]. The seed
weight-associated three TF genes (Homeobox, bZIP and NAM) with
ILP markers identified in chickpea are reportedly involved in con-
trolling seed growth and development as well as determination of

ces included in a public web-resource “Chickpea ISM-ILP Marker Database”. The
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eed size/weight in multiple crop plants [67–77]. The integration of
rait association analysis with QTL mapping, differential expression
rofiling and LD (linkage disequilibrium)-based marker haplotyp-

ng have ascertained the trait association potential of bZIP and NAC
F gene-derived SNPs mapped on the chromosomes 1 and 2 gov-
rning seed weight in chickpea [7,8]. The potential involvement of
ytochrome P450 protein-coding gene in regulation of seed devel-
pment including seed size has been well-documented in many
onocot and dicot plant species [78–81]. In these context, the gene-

ased ISM/ILP markers identified by us thus have significance to
e utilized in marker-aided genetic improvement for developing
arieties with higher seed size/weight and yield in chickpea.

.7. Characteristics and efficacy of chickpea ISM and ILP marker
atabase

We  developed an online marker database portal named as
Chickpea ISM-ILP Marker Database” for querying and visual-
zation of ISM and ILP markers developed from the draft desi
nd kabuli genomes in order to expedite their unrestricted pub-
ic access for various genomics-assisted breeding applications in
hickpea. The database majorly contained diverse web-based inter-
aces with prime search options including Search by cultivars,
earch by marker IDs, Search by gene locus IDs and Search by
ene function. Currently, the database contains the information
n genome-wide 119169 desi and 110491 kabuli ISMs as well as
454 ILP markers along with their cultivar-specific origination,
ene structural and functional annotation, forward/reverse primer
equences, expected PCR/Q-PCR product size (bp), annealing tem-
erature (T◦C) and InDel characteristics in the ISM/ILP marker
egions. In addition, the database contained several user-friendly
ey options like displaying the search results in a tabular format to
isualize and batch-download the ISM and ILP markers designed
rom gene sequence components of desi and kabuli genomes. In
ddition, the search outputs of ISM and ILP markers can be dis-
layed by their hyperlinks to the genome browsers with genes
nnotated on the desi (CGAP v2.0, [44]) and kabuli (CDC Frontier
1.0, [45]) genomes. The database is publicly accessible via the
nternet using web-links: http://webapp.cabgrid.res.in/chickpea/
and http://bioinformatics.iasri.res.in/chickpea/. The snapshots of
he “Chickpea ISM-ILP Marker Database” are depicted in Fig. 7.

Our study primarily demonstrated the efficacy of designing
ultiple ISM and ILP markers from the intronic sequence com-

onents of genes with dense genome-wide coverage and their
roader applicability in expediting the multiple genomics-assisted
reeding applications of chickpea. Therefore, this provides a wider
exibility to molecular geneticists/breeders for screening diverse
esirable combination of informative ISM and ILP markers from
n individual gene producing reproducible amplification (83%
fficiency) including a higher polymorphic potential (86%) for
ifferentiation of domesticated desi and kabuli accessions more
fficiently to drive large-scale genetic analysis in chickpea. The
dded-advantage of gene-derived ISM and ILP markers as com-
ared to other sequence-based markers with regard to their
implicity in discovery and greater potential of detecting functional
llelic polymorphism among cultivated desi and kabuli accessions
n the gene regions of genome even by a cost-effective agarose
el-based assay was evident. Consequently, these markers also
ave utility for assaying a wider functional genetic diversity and
ealistic measurement of phylogenetic relationships among culti-
ated accessions during chickpea domestication. The proficiency of

hese gene-based markers in construction of high-density genetic
inkage map/functional transcript map  and molecular mapping of
igh-resolution major seed weight QTLs was apparent in chickpea.

n these perspectives, unrestricted public access of these infor-
ative gene-based markers developed at a genome-wide scale

[
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(mapped on eight chromosomes and unanchored scaffolds) has
been made available to the chickpea scientific community by a
user-friendly web-resource, “Chickpea ISM-ILP Marker Database”,
with a primary objective to expedite genomics-assisted breeding
applications including marker-aided foreground and background
analysis and genetic enhancement in chickpea.
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Diez, R. Schneider, M.  Mazourek, J. McClead, M.  Causse, E. van der Knaap, A
cytochrome P450 regulates a domestication trait in cultivated tomato, Proc.
Natl. Acad. Sci. U. S. A. 110 (2013) 17125–17130.

79] W.  Yang, M.  Gao, X. Yin, J. Liu, Y. Xu, L. Zeng, Q. Li, S. Zhang, J. Wang, X. Zhang,
H.  He, Control of rice embryo development shoot apical meristem
maintenance, and grain yield by a novel cytochrome P450, Mol. Plant 6 (2013)
1945–1960.
N.  Marsch-Martínez, S. de Folter, Cytochrome P450 CYP78A9 is involved in
Arabidopsis reproductive development, Plant Physiol. 162 (2013) 779–799.

81] M.  Ma, Q. Wang, Z. Li, H. Cheng, Z. Li, X. Liu, W.  Song, R. Appels, H. Zhao,
Expression of TaCYP78A3 a gene encoding cytochrome P450 CYP78A3 protein
in  wheat (Triticum aestivum L.), affects seed size, Plant J. 83 (2015) 312–325.

erences underlined in blue are linked to publications on ResearchGate.erences underlined in blue are linked to publications on ResearchGate.


