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Abstract

Background: Mosquito lifespan can influence the circulation of disease causing pathogens because it affects the time
available for infection and transmission. The life-cycle of mosquitoes is determined by intrinsic and environmental
factors, which can include the availability of hosts and suitable resting environments that shelter mosquitoes from
extreme temperature and desiccating conditions. This study determined the parity rates (an indirect measure of
survival) and plant resting preference of vectors of Rift Valley fever (RVF) in northeastern Kenya.

Methods: Resting mosquitoes were trapped during the rainy and the dry season using a Prokopack aspirator from
vegetation, whereas general adult populations were trapped using CDC light traps. At each site, sampling was
conducted within a 1 km2 area, subdivided into 500 × 500 m quadrants and four 250 × 250 m sub-quadrants from
which two were randomly selected as sampling units. In each sampling unit, plants were randomly selected for
aspiration of mosquitoes. Only Aedes mcintoshi and Ae. ochraceus were dissected to determine parity rates while all
mosquito species were used to assess plant resting preference.

Results: Overall, 1124 (79 %, 95 % CI = 76.8–81.1 %) mosquitoes were parous. There was no significant
difference in the number of parous Ae. mcintoshi and Ae. ochraceus. Parity was higher in the rainy season
than in the dry season. Daily survival rate was estimated to be 0.93 and 0.92 among Ae. ochraceus and Ae.
mcintoshi, respectively. Duosperma kilimandscharicum was the most preferred plant species with the highest
average capture of primary (3.64) and secondary (5.83) vectors per plant, while Gisekia africana was least
preferred.

Conclusion: Survival rate of each of the two primary vectors of RVF reported in this study may provide an indication
that these mosquitoes can potentially play important roles in the circulation of diseases in northern Kenya. Resting
preference of the mosquitoes in vegetation may influence their physiology and enhance longevity. Thus, areas with
such vegetation may be associated with an increased risk of transmission of arboviruses to livestock and humans.
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Background
Mosquito life-cycles are important in determining their
vectorial capacity in transmission of vector-borne dis-
eases such as Rift Valley fever (RVF). Transmission and
circulation of pathogens by mosquitoes is influenced by
a range of biological factors including mosquito distribu-
tion, host preferences, resting behaviour and availability
of suitable environmental conditions [1]. Prevailing en-
vironmental conditions, in particular, are key to the cir-
culation of vector-borne diseases by insects because they
dramatically influence the life history traits of vectors
such as development rate and population growth rate.
The lifespan of mosquito vectors is highly variable, de-

pending on species and environmental conditions [2, 3].
The average lifespan of an adult mosquito species can
vary from 13 to 20 days. In Anopheles species found in
the tropics, this duration can vary between 10–14 days
but may occasionally reach 21 days [4]. Some mosqui-
toes are also known to live longer by entering dormancy
to avoid unsuitable weather periods [5]. Other mosqui-
toes hibernate during the winter as adults, so their life-
span as full-grown mosquitoes lasts for months [6]. It is
also known that temperature and its interaction with age
and sex is an important variable that determines the life-
span of mosquitoes [7].
It is often not practical to directly measure the lifespan

of wild mosquitoes. However, some studies have con-
ducted indirect estimates of daily survivorship for
anopheline mosquitoes as a means of estimating their
longevity [8]. Morphological methods can be performed
using laboratory technology, such as fine dissection tools
and a light microscope. However, the dissection tech-
niques can be labour intensive when handling large
numbers of samples. The age grading techniques cur-
rently used include Detinova ovarian tracheation (par-
ity), Polovodova ovariole dilatation, and daily growth
line methods. Parity can also be used to estimate the
daily survival rate of mosquitoes following the Davidson
method using the proportion of parous mosquitoes [9].
The most commonly applied morphological classifica-
tion technique for mosquitoes has been the ovary
tracheation method of Detinova [10]. This technique
proved successful in grading of mosquitoes as parous
and nulliparous for comparison of parity rates in mos-
quitoes [11].
Outdoor and indoor resting habits are common

among mosquito vectors. However, it is unclear whether
mosquitoes that rest outdoors prefer certain vegetation
or resting sites. The knowledge of the resting sites of dif-
ferent mosquito species is important for targeted vector
control, and may optimise sampling of fed mosquitoes
for studies on their host preferences [12–14]. Studies
have documented variability in resting preference among
mosquito species with some known disease vectors

showing variable resting tendencies including endophilic
and exophilic resting behaviour [15, 16]. However, most
studies conducted on parity and resting of mosquitoes
have focused on vectors of malaria as opposed to vectors
of other diseases such as RVF. Vectors of RVF such as
Aedes (Neomelanconion) mcintoshi Huang and Aedes
(Aedimorphus) ochraceus (Theobald) are widely distrib-
uted in diverse ecological zones in northern Kenya and
have played an important role in transmission of the
arbovirus in this region [17]. When an infected blood
meal is successfully obtained by these vectors, an incu-
bation period is required before they can successfully
transmit the disease [18, 19]. However, the presence and
abundance of these mosquitoes at any given time may
also be influenced by a number of factors such as cli-
matic variables and parasite burden [20–23].
Northeastern Kenya is primarily dominated by large

grazing areas occupied by nomadic pastoralists. The
landscape supports a wide array of diverse plant species
that could provide ideal resting habitats for mosquitoes.
Identifying preferred resting habitats could guide novel
adult vector control efforts during outbreaks as a means
of breaking transmission cycles. It may identify plants at-
tractive or repellent to mosquitoes [24, 25]. Information
regarding resting preference of RVF vectors in natural
environments remains unknown, frustrating efforts to
break transmission cycles during outbreaks using chem-
ical control of adult populations. Even though sampling
for outdoor resting mosquitoes can be complex [26],
studies on outdoor resting behaviour of RVF vectors re-
main an important component in managing RVF out-
breaks. The results of such studies will assist in
determining potential habitats used by mosquitoes for
resting, which may then be targeted for vector control.
This study examined parity rates among the key primary
vectors of RVF, Ae. mcintoshi and Ae. ochraceus, and the
resting preference of RVF vectors among different plant
species. The survival rate of wild-caught Ae. mcintoshi
and Ae. ochraceus was estimated by determining the par-
ity of females. These data will provide insights into mos-
quito behaviour under field conditions that can be used
for focused and site specific vector control to minimize
the transmission of RVF and other diseases borne by
these mosquito species.

Methods
Study area
Mosquitoes were trapped from five sampling sites:
Degurdei, Arbadobolo, Boni, Mlimani, and Dondori in
Garissa (00°39'S, 40°05'E) and Lamu (02°16'S, 40°12'E)
counties in the north-eastern region of Kenya (Fig. 1).
These sites were located within three distinct ecological
zones: semi-arid, dry humid forest and humid to dry
sub-humid. The region is inhabited by the ethnic Somali
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community whose main source of livelihood is nomadic
pastoralism. Annual livestock migration in the region
occurs due to scarcity of rainfall. This region is known
for the abundance of mosquitoes during the rainy sea-
sons and risk of exposure to mosquito-borne diseases.
Climatic conditions range from extreme dry weather to
extreme flooding conditions during the rainy seasons.
The mean annual rainfall varies between 200 and
500 mm. Rainfall pattern is bimodal, with two rainy sea-
sons from April to May, and between October and
November with occasional variation. Generally, the re-
gion is hot and dry with average daily temperatures ran-
ging from 20 to 38 °C. There is usually rapid growth of

vegetation at most sites during the rainy season, which
may form suitable resting habitats for mosquitoes.

Sampling mosquitoes from vegetation
Mosquitoes were captured from vegetation to determine
potentially preferred resting sites. There were no built
structures at any of the sampling sites that could act as
alternative mosquito resting sites. At each of the five
sampling sites, a 1 km2 sampling area was identified and
subdivided into four quadrants (A,B,C,D) each measur-
ing 500 × 500 m. Each of the four quadrants was
subdivided into four sub-quadrants (A1-4, B1-4, C1-4,
D1-4) that were 250 × 250 m each totaling to 16 sub-

Fig. 1 Map of Kenya showing the study sites along a livestock movement route
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quadrants. Two of the sub-quadrants were randomly se-
lected as sampling units for mosquito collection using
two CDC light traps (LTs) and direct aspiration from
vegetation. Mosquitoes were trapped during the rainy
seasons (April-June) and dry seasons (August-October)
in 2013 and 2014. In total, eight light traps and eight
sub-quadrants were sampled at each site, on each sam-
pling event. The LTs were set at 18:00 h and retrieved at
06:00 h the next morning taking into account the activ-
ity of these vectors. A Prokopack aspirator (John W.
Hock Company) [27], was used to separately trap resting
mosquitoes from four randomly selected plants in each
of the 8 randomly selected sub-quadrants in each site.
Only plants that yielded mosquitoes were considered for
analysis of mosquito resting preference. Resting mosqui-
toes were aspirated between 14:00 h and 16:00 h. Aspir-
ation from all selected plant species in each quadrant
was conducted for 20 min. Mosquitoes were identified
morphologically using the keys of Edwards [28] and the
plants from which mosquitoes were captured were col-
lected and labelled for identification with the help of a
botanist.

Determination of parity of the key vectors of RVF
Trapped mosquitoes were used to determine parity rates
among the primary vectors of RVF. Ae. mcintoshi and
Ae. ochraceus were the only vector species dissected to
determine parity rates. A dissected mosquito was classi-
fied as parous when it showed evidence of previous
blood feeding and egg production, or nulliparous for a
mosquito without evidence of previous blood feeding
and egg production. The mosquitoes were individually
dissected with the aid of a stereomicroscope with further
observation of the ovary using a compound microscope
(Leica DMRB). Anaesthetised adult females were gently
placed on a clean microscope slide and dissected into a
drop of phosphate-buffered saline (PBS) [10]. During
dissection, the thorax was gently held by forceps and
placed ventral side up with its abdomen in the phos-
phate buffered saline. A fine tip needle was used to gen-
tly remove the 7th and 8th abdominal segments by
grasping and gently pulling them away. Ovaries appeared
as a pair of white oval objects attached to the removed
segments, which were isolated, transferred to a new slide
and allowed to air-dry. The dry specimen was viewed
under a compound microscope to determine the overall
number of parous and nulliparous individuals among all
dissected Ae. mcintoshi and Ae. ochraceous.

Data analysis
To investigate the plant species preferred as resting sites
by mosquitoes, we used a negative binomial model for
all mosquito species combined and separately for each
mosquito species, with plant species and season as

covariates in the model. Risk ratios (RR) were computed
for each plant species in comparison to Duosperma kili-
mandscharicum Clarke, which was the most preferred
plants species. All analyses were performed using R
v3.2.0 [29]. There was no association between the collec-
tion method and species caught (Chi-square test; χ2 =
1.11, df = 1, P = 0.291), so we analysed data from the two
collection methods (i.e. LT and aspiration) together. Data
on the number of parous and nulliparous mosquitoes
were compared using a quasibinomial model with vector
species (where Ae. mcintoshi = 0, Ae. ochraceus = 1), sea-
son (rainy season = 0, dry season = 1) and collection
method (aspiration = 0, LT = 1) as variables in the model.
Odds ratios (OR) were computed to quantify the effect
of each variable. To compare survival rate between the
mosquitoes, daily survival rate was estimated based on
the proportion of individuals that were parous using the
formula pn =M where (p) is the survival rate per day,
(M) is the proportion of the population which is parous
and (n) is the number of days between emergence of
adult and first oviposition as described by Davidson [9].
This method was adapted based on the following as-
sumptions: (i) It is assumed that the population is static
over the sampling period, i.e. that births equal deaths
and immigration equals emigration; and (ii) It is as-
sumed that the instantaneous mortality rate of the popu-
lation is constant at all ages. For both species our study
also assumed that n value = 3, given that the information
on the species in question have not been documented in
literature and could not be determined experimentally in
the laboratory.

Results
Mosquito diversity and abundance
Seven mosquito species belonging to two main genera
(Aedes and Culex) were trapped during this study. Over-
all 1653 mosquitoes were aspirated from 192 plants that
yielded mosquitoes (mean = 8.61, SD = 5.51 per plant).
These plants comprised 12 plant species classified under
11 plant families. As noted earlier, the primary vectors of
RVF, were also caught in large numbers from plants. In
total, 1422 primary vectors of RVF, Ae. mcintoshi (46 %)
and Ae. ochraceus (54 %) were captured by LT (n = 937)
and aspiration (n = 485) methods. In addition, the sec-
ondary vectors Ae. (Mucidus) sudanensis (Theobald)
(n = 149), Cx. (Culex) pipiens L (n = 149), Cx. (Oculeo-
myia) poicilipes (Theobald) (n = 131) and Cx. (Culex)
univittatus (Theobald) (n = 202), Cx. ethiopicus (n = 51)
and Ae. (Aedimorphus) tricholabis Edwards (n = 250)
were also caught.

Resting preference among RVF vectors
The mosquitoes aspirated from plants comprised both
primary and secondary vectors of RVF. The different
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plant species that were sampled were resting sites to dif-
ferent proportions of the total number of mosquitoes
that were caught: Duosperma kilimandscharicum Clarke
(Acanthaceae) 39.1 %, Commelina forskali Vahl (Comeli-
nacea) 13.0 %, Salsola kali L. (Amaranthaceae) 10.9 %,
Salvadora persica Kharija (Salvadoraceae) 10.9 %,
Cadaba ruspolii Gilg (Capparaceae) 8.9 %, Mollugo nodi-
caulis Lam (Molluginaceae) 4.7 %, Cyperus giolii Clarke
(Cyperaceae) 4.7 %, Grewia tenax Vahl (Malvaceae)
4.2 %, Gisekia africana Lour (Gisekiacea) 2.1 %, Polygola
erioptera (Polygalaceae) 0.5 %, Mollugo cerviana (L.)
(Molluginaceae) 0.5 %, and Momordica rostrata (Zimm)
(Cucurbitacea) 0.5 %.
We used the mean mosquito catches per individual

plant species to determine the general plant resting pref-
erence for each mosquito species. Mosquitoes were most
often captured from D. kilimandscharicum (n = 972),
while the lowest number was captured from G. africana
(n = 27). Although the average mosquito captured per
plant was higher for D. kilimandscharicum than any
other plant species, the difference was minimal (Fig. 2).
The average catches of primary and secondary RVF vec-
tors also showed differences in plant resting preference
between the two key RVF vector groups. Overall, D. kili-
mandscharicum was the most preferred by both vector
groups, while the lowest average catches were from G.
africana (Fig. 3). Secondary vectors were more abundant
than primary vectors for most plant species, except for
M. cerviana and M. rostrata from which none of the
secondary vectors were captured.
For all mosquito species combined, the first column of

Tables 1 and 2 shows that, compared to D. kili-
mandscharicum and after controlling for season, S. kali,
S. persica, C. ruspolii and G. africana were significantly
less preferred whereas C. forskali, M. nodicaulis and G.
tenax were equally preferred to D. kilimandscharicum.

There were, on average, significantly more mosquitoes
caught from vegetation during the dry season than in
the rainy season (RR = 1.27, 95 % CI = 1.05–1.53, P =
0.012). However, the difference in captures per plant be-
tween the seasons was not significant among individual
vector species captured except for Ae. sudanensis in
which significantly higher numbers were caught from
vegetation during the dry season (RR = 2.17, 95 % CI =
0.67–1.64, P < 0.001) (Tables 1 and 2).
Mosquitoes collected from vegetation were mainly

from the genera Aedes and Culex. Among the Aedes
mosquitoes, Ae. mcintoshi was the most abundant spe-
cies captured from all vegetation types followed by Ae.
ochraceus. The two species were also the most abundant
in D. kilimandscharicum with average catches of 2.17
and 1.47 per plant for Ae. mcintoshi and Ae. ochraceus,
respectively. This study also assessed the preference for
plant species by different mosquito species relative to D.
kilimandscharicum (Tables 1 and 2). There was a signifi-
cant difference in captures of Ae. mcintoshi from S.kali,
and C. giolii relative to D. kilimandscharicum showing
high preference of the latter plant species by Ae. mcin-
toshi. Similarly, captures of both Ae. tricholabis and Ae.
sudanensis from S. kali and C. giolii relative to D. kili-
mandscharicum were significantly different; whereas Cx.
pipiens preferred D. kilimandscharicum to S. persica.

Parity of vectors of RVF
Our results showed that 1124 (79 %, 95 % CI = 76.8–
81.1 %) of mosquitoes were parous. The proportion of
parous Ae. ochraceus was 80.60 % while the proportion
of parous Ae. mcintoshi was 77.95 %. Quasibinomial
model results indicated that this difference in the num-
bers of parous mosquitoes between Ae. ochraceus and
Ae. mcintoshi was not significant (OR = 1.04, 95 % CI =
0.71–1.51, P = 0.847). The number of parous mosquitoes

Fig. 2 Mean number of mosquitoes captured per single plant species
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was significantly greater among those caught during the
rainy season than those caught in the dry season (OR =
0.08, 95 % CI = 0.04–0.14, P < 0.001). However, the sur-
vival rate of the two species did not show any significant
difference (OR = 1.05, 95 % CI = 0.71–1.61, P = 0.886).
There was no impact of collection method on the num-
ber of parous mosquitoes (OR = 1.16, 95 % CI = 0.72–
1.82, P = 0.752). Based on the proportion of parous mos-
quitoes for each species, we estimated the daily survival
rate for each mosquito separately. Daily survival rate p
was estimated to be 0.93 for Ae. ochraceus while the
daily survival rate for Ae. mcintoshi, was estimated to be
0.92. Our results also showed that difference in survival
rate was not significant between the two mosquito spe-
cies F(1,31) = 0.240, P = 0.627.

Discussion
The ability of mosquitoes to withstand environmental
stresses and find suitable refuges are adaptations that
may contribute to the disease transmission efficiency of
these vectors. This study shows that mosquitoes trapped
were resting among plants sampled. In addition survival
rate was also high among the primary vectors Ae. mcin-
toshi and Ae. ochraceus. Plant resting preference and
survival of these mosquitoes may potentially influence
disease transmission.
Mosquitoes were collected from different plant spe-

cies, showing that these mosquitoes utilise plants for
outdoor resting in the study area. This is supported by
the observation in other studies that mosquitoes usually
seek shelter in different types of habitats including vege-
tation [30, 31]. Our study focused on individual plant
species with the view of determining their specific roles
in mosquito resting behaviour. Generally, the plant

species from which the highest numbers of mosquitoes
were trapped were D. kilimandscharicum, C. forskali and
M. nodicaulis when compared with other plant species
in this study. This suggests the potential for preference
for these plant species over others due to the resources
that they provide. Mosquitoes could utilise these vegeta-
tion to seek protection from extreme temperatures, des-
iccation and predation in order to enhance their survival
[31]. For example, D. kilimandscharicum grows in clus-
ters, potentially creating a suitable microclimate beneath
the plant that may be preferred by mosquitoes for rest-
ing in an otherwise semi-arid environment. These plants
may also produce attractants that mosquitoes use to
choose resting sites, as has been demonstrated for mal-
aria vectors [32, 33]. Some researchers have also found
that mosquitoes often use plants as sources of sugar
[34–36], which may also account for observed differ-
ences in resting preference.
It is not currently clear why mosquitoes were found in

low numbers in some plants, such as Gisekia africana.
However, some plants are known to produce chemicals
that repel insects [37, 38]. The attractive and repellant
properties of plants with regard to primary and second-
ary RVF vectors could provide information useful for a
targeted environmental management approach such as
the “push-pull” system that has been used successfully
for the control of agricultural pests in Africa [39]. Fur-
ther research to determine the basis for resting site pref-
erence is required before such a control tactic could
become a reality.
The overall high capture of mosquitoes from vegeta-

tion during the dry season may also have been due to re-
duced vegetation cover in the dry season, consequently
making the average capture per plant higher in the dry

Fig. 3 Mean number of primary and secondary RVF vectors captured per plant
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Table 1 Plant resting preference by Aedes spp.: negative binomial regression model results including a summary for Aedes spp. and Culex spp. combined

Variables Mosquito species

All species combined Ae. mcintoshi Ae. ochraceus Ae. tricholabis Ae. sudanensis

RR (95 % CI) P RR (95 % CI) P RR (95 % CI) P RR (95 % CI) P RR (95 % CI) P

Plant species

D. kilimandscharicum 1 1 1 1 1

Commelina forskali 0.93 (0.71–1.22) 0.605 0.88 (0.59-1.29) 0.521 1.15 (0.76–1.72) 0.496 0.83 (0.44–1.6) 0.577 0.82 (0.44–1.60) 0.551

Salsola kali 0.69 (0.51–0.93) 0.014 0.56 (0.34–0.88) 0.015 1.29 (0.84–1.95) 0.238 0.48 (0.22–1.02) 0.054 0.35 (0.22–1.02) 0.021

Salvadora persica 0.66 (0.48–0.90) 0.008 0.71 (0.45–1.11) 0.140 0.80 (0.48–1.30) 0.379 0.60 (0.29–1.26) 0.173 0.95 (0.29–1.26) 0.886

Cadaba ruspolii 0.71 (0.51–0.99) 0.040 0.66 (0.40–1.06) 0.095 0.67 (0.37–1.15) 0.165 0.70 (0.33–1.53) 0.366 1.12 (0.33–1.53) 0.752

Mollugo nodicaulis 0.79 (0.53–1.19) 0.252 0.68 (0.36–1.24) 0.224 0.61 (0.27–1.21) 0.186 0.38 (0.12–1.14) 0.084 1.22 (0.12–1.14) 0.641

Cyperus giolii 0.64 (0.41–1.00) 0.046 0.52 (0.24–1.03) 0.077 1.00 (0.50–1.86) 0.990 0.85 (0.32–2.38) 0.742 0.37 (0.32–2.38) 0.150

Grewia tenax 0.69 (0.44–1.11) 0.119 0.67 (0.32–1.31) 0.262 1.13 (0.56–2.13) 0.719 1.11 (0.43–3.21) 0.832 0.53 (0.43–3.21) 0.333

Gisekia africana 0.37 (0.18–0.78) 0.008 0.25 (0.04–0.88) 0.065 0.18 (0.01–0.86) 0.092 1.44 (0.42–6.44) 0.590 0.00 (0.42–6.44) 1.000

Other 0.89 (0.44–1.86) 0.736 1.16 (0.43–2.88) 0.753 0.70 (0.16–2.17) 0.584 0.64 (0.11–4.26) 0.615 1.02 (0.11–4.26) 0.978

Captures from vegetation by season

Rainy season 1 1 1 1 1

Dry season 1.27 (1.05–1.53) 0.012 1.25 (0.95–1.63) 0.106 1.10 (0.82–1.47) 0.506 1.05 (0.67–1.64) 0.844 2.17 (0.67–1.64) < 0.0001

RR Risk ratio
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season than in the rainy season. This observation may
also apply to Ae. sudanensis, which was caught in signifi-
cantly higher numbers from plants during the dry sea-
son. Other than high plant density, alternative resting
sites may have been present in the rainy season resulting
in a more even distribution of adults and low average
captures per plant in comparison to the dry season.
Overall, most of the mosquitoes trapped were parous,

which suggests that the majority of these mosquitoes
were able to obtain a blood meal and complete at least
one or more egg laying cycles. Parity among mosquitoes
may have a bearing on disease circulation. This is be-
cause mosquitoes that have already obtained one or
more blood meals may have already acquired pathogens
from these feeding events, which increases the likelihood
that they will transmit these arboviruses when they seek
a fresh blood meal. This is consistent with other studies,
which reported that mosquito feeding behaviour under
different ecological conditions may contribute to its lon-
gevity, and consequently influence the transmission of
mosquito-borne diseases [40]. Based on our results, Ae.
mcintoshi and Ae. ochraceus are equally capable of iden-
tifying suitable hosts, and surviving long enough to de-
velop and lay eggs, then potentially seek another blood
meal. This may determine their competence for trans-
mission of arboviruses circulating in north-eastern
Kenya. This corroborates the findings of studies con-
ducted elsewhere which documented that vector survival
increases their disease transmission potential [40]. This
may be further compounded by the fact that a high
abundance of these flood water Aedes has been reported

in north-eastern region of Kenya [41, 42]. The difference
in the abundance of the vectors across ecological zones
also increases the risk of exposure to infectious bite by
these mosquitoes in the region. Aedes ochraceus was re-
cently incriminated in the 2006-2007 RVF outbreak in
Kenya [17]. Our study suggests that both Ae. ochraceus
and Ae. mcintoshi may have the potential to efficiently
acquire several blood meals and potentially initiate cir-
culation of arboviruses including RVFv. Increased geo-
graphic expansion of Ae. ochraceus despite recent
introduction as reported in recent studies [43], may en-
hance the potential of this vector in circulating arbovi-
ruses into diverse ecological zones in East Africa.
More mosquitoes were parous during the rainy season

than dry season. This may have been due to suitable cli-
matic conditions such as rainfall and temperature [20,
44–46], as well as higher relative humidity [47, 48],
which largely influence mosquito biology. This is con-
sistent with other studies conducted on the ecology of
the primary vectors of RVF in this region [17, 41, 42].
Presence of flooded environment and breeding habitats
in the study area may have also contributed to the ob-
served high parity in the rainy season than dry season
due to the fact that flooded habitats are key larval habi-
tats for these Aedes mosquitoes [49]. Low parity rate
was observed in the dry season, which may have been
due to the extreme dry weather conditions resulting into
resorption of follicles by mosquitoes. This may have led
to mosquitoes diapausing and retaining eggs or entering
dormancy as a way of avoiding dry conditions [50]. In
view of our findings, it may be important to incorporate

Table 2 Plant resting preference by Culex spp.: negative binomial regression model results

Variables Mosquito species

Cx. pipiens Cx. univittatus Cx. poicilipes Cx. ethiopicus

RR (95 % CI) P RR (95 % CI) P RR (95 % CI) P RR (95 % CI) P

Plant species

D. kilimandscharicum 1 1 1 1

Commelina forskali 1.02 (0.51–2.11) 0.947 1.09 (0.51–2.11) 0.738 0.65 (0.29–1.47) 0.292 1.03 (0.29–1.47) 0.935

Salsola kali 0.71 (0.31–1.60) 0.400 0.70 (0.31–1.60) 0.233 0.52 (0.21–1.28) 0.149 1.11 (0.21–1.28) 0.795

Salvadora persica 0.18 (0.05–0.54) 0.004 0.79 (0.05–0.54) 0.428 0.18 (0.05–0.57) 0.006 1.05 (0.05–0.57) 0.899

Cadaba ruspolii 0.43 (0.15–1.13) 0.088 1.13 (0.15–1.13) 0.680 0.31 (0.10–0.93) 0.039 0.62 (0.10–0.93) 0.331

Mollugo nodicaulis 0.63 (0.20–1.99) 0.423 1.18 (0.20–1.99) 0.645 0.63 (0.19–2.14) 0.448 1.59 (0.19–2.14) 0.339

Cyperus giolii 0.59 (0.16–2.06) 0.398 0.72 (0.16–2.06) 0.449 0.45 (0.11–1.75) 0.245 0.18 (0.11–1.75) 0.112

Grewia tenax 0.37 (0.07–1.53) 0.190 0.73 (0.07–1.53) 0.490 0.26 (0.04–1.33) 0.123 0.00 (0.04–1.33) 1.000

Gisekia africana 0.28 (0.01–2.40) 0.281 0.00 (0.01–2.40) 0.999 0.27 (0.01–2.61) 0.283 0.00 (0.01–2.61) 1.000

Other 1.11 (0.18–8.62) 0.910 0.51 (0.18–8.62) 0.418 1.08 (0.16–9.94) 0.935 1.16 (0.16–9.94) 0.874

Captures from vegetation by season

Rainy season 1 1 1 1

Dry season 1.46 (0.87–2.49) 0.152 1.24 (0.87–2.49) 0.229 1.37 (0.77–2.49) 0.268 1.30 (0.77–2.49) 0.310

RR Risk ratio
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other means of assessing mosquito survival in future
studies other than parity in order to make conclusive
comparisons of survival between dry and wet seasons.
This may form a basis for informed and appropriate
mosquito control approach across seasons.
This study reports high survival rate among the two

mosquito species Ae. mcintoshi and Ae. ochraceus. Al-
though the daily survival rate did not significantly differ
between the two species, the estimated survival rate
could lead to increased opportunity for the incubation of
pathogens with long extrinsic incubation periods (EIPs)
relative to mosquito lifespan as reported in other studies
[51, 52]. High survival rate of these mosquitoes could
also increase their vectorial capacity given that they may
encounter a number of susceptible hosts in their lifespan
when they seek a blood meal. The estimated survival
rate (or predicted lifespan) of these primary vectors of
RVF in this study could also be sufficiently high to allow
incubation arboviruses such as RVF which have been re-
ported to have an extrinsic incubation of up to 14 days
[53]. This may enhance their chances of increasing
transmission and circulation of arboviruses.

Conclusion
Survival rate of each of the two primary vectors of RVF re-
ported in this study may provide an indication that these
mosquitoes can potentially play important roles in the cir-
culation of diseases in northern Kenya. Differences in the
parity of primary vectors of RVF observed in this study be-
tween the seasons suggest that these mosquitoes can po-
tentially play important roles in the circulation of diseases
in the rainy season. Both primary and secondary vectors
of RVF showed resting preferences for certain plant spe-
cies. Thus, areas dominated with such vegetation may be-
come high-risk zones during epidemics given that the
vegetation may provide resources required by the vectors
and enhance their survival. The finding that RVF vectors
utilise certain plant species for refuges, will in the future
help to guide control operations targeting adult mosqui-
toes during outbreaks to interrupt transmission and min-
imise virus activity in northern Kenya.

Abbreviations
CDC, center for disease control; EIP, extrinsic incubation period; LTs, light
traps; PBS, phosphate buffered saline; RR, risk ratios; RVF, Rift Valley Fever;
RVFv, Rift Valley fever virus.
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