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Seasonal climate forecasts (SCFs) can be used to identify appropriate risk management strategies and to reduce
the sensitivity of rural industries and communities to climate risk. However, these forecasts have low utility
among farmers in agricultural decision making, unless translated into a more understood portfolio of farmman-
agement options. Towards achieving this translation, we developed amathematical programmingmodel that in-
tegrates seasonal climate forecasts to assess ‘what-if?’ crop choice scenarios for famers. We used the Rayapalli
village in southern India as a case study. The model maximises expected profitability at village level subject to
available resource constraints. Themain outputs of themodel are the optimal cropping patterns and correspond-
ing agricultural management decisions such as fertiliser, biocide, labour and machinery use. The model is set up
to run in two steps. In the first step the initial climate forecast is used to calculate the optimal farm plan and cor-
responding agricultural management decisions at a village scale. The second step uses a ‘revised forecast’ that is
given sixweeks later during the growing season. In scenarioswhere the forecast provides no clear expectation for
a dry or wet season the model utilises the total agricultural land available. A significant area is allocated to
redgram (pigeon pea) and the rest to maize and paddy rice. In a forecast where a dry season is more probable,
cotton is the predominant crop selected. In scenarioswhere a ‘normal’ season is expected, themodel chooses pre-
dominantly cotton andmaize in addition to paddy rice and redgram. As part of the stakeholder engagement pro-
cess, we operated themodel in an iterative waywith participating farmers. For ‘deficient’ rainfall season, farmers
were in agreement with the model choice of leaving a large portion of the agriculture land as fallow with only
40 ha (total area 136 ha) of cotton and subsistence paddy rice area. While the model crop choice was redgram
in ‘above normal and wet seasons, only a few farmers in the village favoured redgrammainly because of high la-
bour requirements, and the farmers perceptions about risks related to pests and diseases. This highlighted the
discrepancy between the optimal cropping pattern, calculated with the model and the farmer's actual decisions
which provided useful insights into factors affecting farmer decision making that are not always captured by
models. We found that planning for a ‘normal’ season alone is likely to result in losses and opportunity costs
and an adaptive climate risk management approach is prudent. In an interactive feedback workshop, majority
of participating farmers agreed that their knowledge on the utility and challenges of SCF have highly improved
through the participation in this research and most agreed that exposure to the model improved their under-
standing of the role of SCF in crop choice decisions and that the modelling tool was useful to discuss climate
risk in agriculture.

© 2016 Elsevier Ltd. All rights reserved.
Keywords:
Mathematical programming
Probabilistic seasonal forecasts
Crop choice
Climate risk
Small holder farmers
Profit maximisation
1. Introduction

Managing agricultural production risk is important in the context of
improving food security and sustaining rural economies. Climatic un-
certainty requires decisionmakers to prepare for the full range of possi-
bilities (Hansen, 2002). Seasonal climate forecasts (SCFs), which are
lu).
forecasts for the upcoming season (1–3 months), are increasingly be-
coming part of the portfolio of risk management strategies because
they reduce the sensitivity of rural industries and communities to cli-
mate risk (Hansen et al., 2009). Advances in modelling SCFs has been
an important contribution of climate science for managing climate risk
particularly in agriculture. However, adoption of SCFs in farm decision
making has so far failed to live up to the expectations of the scientific
community (Meinke et al., 2007). Reasons cited for low uptake of SCFs
include the complexity and probabilistic nature of the information
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Fig. 1. Study region.
(Figure source: http://www.freeusandworldmaps.
com/html/Countries/Asia%20Countries/IndiaPrint.
html)
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provided, i.e. they are relatively complex, difficult to trial and only par-
tially compatible with existing practices (Hayman et al., 2007; Power et
al., 2007). This poses a challenge for many farming communities in
interpreting and using the probabilistic SCF to improve agricultural de-
cision making (Marshall et al., 2010). Many critical agricultural deci-
sions (including which crop to sow, fertiliser application and crop
protection management options) that interact with climatic conditions
must be made several months before the impacts of climate occur.

There is a large body of literature citing examples of where SCF have
utility in both developed anddeveloping countries and the challenges in
using SCF (Millner and Washington, 2011; Shankar et al., 2011;
Stephens et al., 2012; Ziervogel and Calder, 2003). Ash et al. (2007)
point to the insufficient integration of forecast information with
farmers' decisionmaking as a key constraint in thewidespread adoption
of SCF by farmers. In particular, the probabilistic nature of the forecasts
needs to be better communicated. Probabilistic here refers to the chance
of occurrence of an event, in this context the amount of rainfall forecast-
ed for the upcoming season. The World Meteorological Organisation
(WMO) has increasingly emphasized the need for end-user engage-
ment in delivering weather and climate information (WMO, 2014). A
number of approaches have been developed to translate the complex
SCF to support decision making for a range of stakeholders from policy
makers to farmers (Stone andMeinke, 2007). SCF incorporation into de-
cision support tools has been undertaken using simulation models
(Clewett and McKeon, 1990; Hammer et al., 1996; Hayman et al.,
2008; Nelson et al., 2002), empirical econometric models (Kokic et al.,
2007), and agent-based models that were focused on simulation of
household interactions (Ziervogel et al., 2005). However, these ap-
proaches have limitations of systems level, as the focus is largely on
crop simulation and not at farm level. In case of econometric models,
large datasets are needed for modelling and they are often focused on
quantifying production technology instead of decision making process-
es. Agent based models are often developed based on assumptions and
decision rules between agents whichmay not be entirely suitable to in-
tegrate seasonal climate forecasts in decision making. Risk and stochas-
tic programming based farm planning models (Hardaker et al., 1991)
have been used to account for risk in farm level managerial decisions.
These models are more likely to be useful in policy level analysis but
pose challenges when trying to communicate with farmers.

Bioeconomic farmmodels have been used to optimise farm produc-
tion planning decisions and enable explorations of “what-if” questions
at farm level (Janssen and van Ittersum, 2007). Very often thesemodels
are deterministic, assuming that all model parameters are known in ad-
vance. However, in practice, many critical agricultural decisions depend
on climatic conditionswhich are highly uncertain and not known at the
time of decisionmaking. The probabilistic results of SCFs can be used in
mathematical programming farm models to account for uncertainty of
climate and its consequences on optimal agriculturalmanagement deci-
sions. Such a framework could be used as discussion-support tool with
key stakeholders and extension officers to design production plans
and agricultural management decisions. The development of scenarios
in this way allows stakeholders to establish risk-based responses to dif-
ferent climate events. Meza et al. (2008), in their review of economic
value of seasonal climate forecasts recommend the use of bioeconomic
optimisation modelling approaches to value SCF “ as these approaches
are rich enough to incorporate the qualitative knowledge from social
science approaches realistically”. Bio-economic modelling approaches
also allow for ‘facilitated social interaction between researchers and
farmers’ and enable stakeholder partnerships to generate relevance of
research and analysis to decision makers (Nelson et al., 2002).

This paper describes the development of a generic bio-economic
farm model that uses information on SCFs to account for uncertainty
of expected climatic conditions so as to optimise crop choice decisions
at farm level. Using a smallholder farming system, we demonstrate
that this model can be used to engage farmers by simplifying the inclu-
sion of seasonal climate forecasts into a discussion support process. The
seasonal forecast in this work refers to the amount of rainfall during the
growing season from June to October. It does not, however, indicate the
distribution of the rain throughout the season. The model chooses the
crop type and the area to be planted and produces data on various agri-
culturalmanagement variables such as fertiliser, pesticide, fungicide, la-
bour, machinery use, costs and profit. In the model, objective functions
for multiple climate forecasts are combined into a single objective func-
tion. Themodel has been used as a discussion support tool to communi-
cate SCFwith the case study farming community and the researchers on
managing climate risk. An important contribution of the participatory
model development process has been the building of ‘social capital’
(Coleman, 1988) and ‘social learning’ (van der Wal et al., 2014) around
managing climate risk among the farming community in the case study
village.We adopted a reflective learning process based on the Plan–Do–
Observe–Reflect of the Kolb learning cycle (Hayman et al., 2013; Kolb,
2004) highlighting that themodelling is not an end in itself but support-
ed a co-learning process among researchers and the farming
community.

2. Materials and methods

2.1. Case study

Rayapalli village in Telengana State (Fig. 1) in south India has been
chosen as a case study location for this work. The case study village
was selected from the range of project locations on the basis that here
farming is predominantly rainfed (Nidumolu et al., 2015) and thus the
value of seasonal climate forecasts is likely to be higher compared to ir-
rigated agriculture. The village is located about 100 km south-west of
Hyderabad city. The south-west monsoon during June–October, with a
growing season rainfall of 800 mm, is the main source of water for
crops (using groundwater for irrigating paddy rice is an exception).
Three dominant soils types have been identified by the farmers in the
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Fig. 2. LP model framework.
(Adapted from Nidumolu et al. (2011))
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case study village and included in the model i.e. black, sandy and red
soils. Black soils (40 ha) (vertisols) are deep, fertile soils with high
water holding capacity, while sandy soils (80 ha) and red soils (16 ha)
are upland soils which are mainly poorer red granitic Alfisols and
Ultisols. Themain crops cultivated in the study village are paddy rice (ir-
rigated), cotton, redgram, castor, maize and sorghum. Paddy rice nurs-
ery is raised during early June and cultivated with irrigation from
groundwater. Paddy rice transplanting area is influenced by how the
season develops i.e., in a ‘normal’ or ‘above normal’/‘excess’ season the
full extent of the planned transplanted area is covered and the
transplanting area is reduced if the season turns out to be ‘below-aver-
age’ or ‘deficient’.

2.2. Modelling framework

Themodelling framework consists of (i)model Inputs (SCFprobabil-
ities/scenarios, labour and crop input costs, selling prices of crop prod-
ucts); (ii) linear programming with the main components consisting
of objective function, constraints and activities (iii) model outputs (sce-
narios) generated in consultation with the stakeholders. The seasonal
climate forecasts (rainfall for the upcoming season) from a number of
sources including the India Meteorological Department's ‘Long Range
Forecast (LRF)’ can be integrated with the model. The linear program-
ming (LP) model uses the forecasts as weights when optimising for
crop choice. The modelling components are represented in Fig. 3. The
model is centred on the seasonal climate forecasts (5 classes of season
type) which influence the crop type (6 crop types) linked to soil types
(3). This combination of season types x crop types x soil types drives
the crop choice model. Various inputs such as labour, fertiliser, fungi-
cides, pesticides, machinery use contribute to costs while sale of crops
(yield × prices) result in revenue. The model optimises for profit
based on a set of resource constraints. The model in its current form is
at a village scale i.e. the profit of the whole village is optimised subject
to available resources at village scale. This implies that the individual
objectives of different farmers and farm specific constraints are not
taken into account explicitly. The model was developed at a village
scale with an aim to engage with a larger farming community which
is the focus of thiswork. Sincewedo not allow for exchange of resources
i.e., there is no land and labour exchange between farmers, optimising
at the village level approximates optimisation of an average farm. In
case of large variation of available resources between farms, optimisa-
tion at farm level (or a group of farms based on a typology) would be
more appropriate to model explicitly farm specific constraints.

2.3. Seasonal climate forecasts

Seasonal climate forecasts used here refer to forecasts of the upcom-
ing season's total rainfall from the start of the growing season to the end
of the growing season. The forecasts are based on either statistical or
ocean atmosphere coupled physical models (Anderson, 2005). While
the LP model used here can integrate any seasonal climate forecast
available, in this case we use the India Meteorological Long Range Fore-
cast (LRF) frameworkwhichusesfive categories of growing season rain-
fall viz., ‘deficient’ (b90% Long Period Average (LPA), ‘below normal’
(90–96% LPA), ‘normal’ (96–104% LPA), ‘above normal’ 104–110%
LPA) and ‘excess’ (N110% LPA) with respect to long period average
(LPA) rainfall data for the kharif (monsoon season) (IMD, 2014). Sea-
sonal climate forecast (LRF) by India Meteorological Department
(IMD) is released in April and revised approximately six weeks later in
early June. The forecast for the five growing season types (‘deficient’,
‘below normal’, ‘normal’, ‘above normal’, ‘excess’) is given with proba-
bilities (or weights) attached to them. For example, the June 9, 2014
long range forecast using the ‘Monsoon Mission Experimental Coupled
Dynamical Model’ update by IMD suggested the probabilities for the
comingmonsoon season in Telangana as 29% ‘deficient’, 13% ‘belownor-
mal’, 35% ‘normal’, 19% ‘above normal’ and 4% ‘excess’ (IMD, 2014). We
acknowledge that the term ‘normal’ could be challenging as it infers that
the relatively infrequent case of the seasonal rainfall being in thenarrow
range of 96% to 104% is normal. In the semi-arid regions variability is
‘normal’ and seasons wetter or drier than this narrow range are also
‘normal’. However, we aimed to use language that was consistent with
the Indian Meteorological Department and currently used widely by
agronomists and farmers.

2.4. The bio-economic farm model

2.4.1. Overall design
The linear programingmodel (Fig. 2) was used to maximise expect-

ed gross margins and optimally allocate available farm resources to cur-
rent and alternative agricultural activities accounting for resource
availability and constraints. A number of scenarios were developed
through this process to examine changes in resource constraints or
cropping activities. The model helps to assess ‘what if?’ scenarios,
which are based on quantified input–output relations for current crop
production activities with the formulation of constraints as mathemati-
cal functions (Nidumolu et al., 2011; ten Berge et al., 2000). The general
mathematical formulation of the linear programming model is:

max Z ¼ ∑
i;k

wk∙gmik∙xi

( )
ð1Þ

Subject to:

∑
i;k

wk∙ai; j;k∙xi≤ ∑
k

wk∙bjk ∀ j ð2Þ

xi≥0 ∀i ð3Þ

where Z is the total expected gross margin, xi is the optimal level (ha) of
activity i (defined as the area of a crop grown on specific soil type),wk is
theweight (probability of state of climate based on SCF classes) of k (i.e.
‘deficient’, ‘below normal’, ‘normal’…), ai , j ,k is the input-output coeffi-
cient of constraint j corresponding to activity i in state of climate k, bjk
is the right hand side of constraint j in state of climate k and gmik is
the gross margin per ha of activity i in state of climate k. The gross mar-
gin is defined as expected revenues from sales of agricultural crop prod-
ucts minus variable costs including hired labour, seeds, machinery,
fertilisers, pesticides and fungicides.

To include the probabilities of a forecast for the five different seasons
in themodel, aweightingmethodwas used. In thismethod, all objective
functions for each season type are combined into a single objective
function. A weighing factor, representing the probability of a specific
season type, is given to each objective before all objectives are added.
Subsequently, an efficient set is generated through parametric variation
of weights, as first introduced by Zadeh (1963).

The model was set up to run in two steps. In the first step (‘Initial
Forecast Run’) the initial climate forecast is used to calculate the optimal



Fig. 3. Model components. Seasonal climate forecasts (SCFs) (‘deficient’, ‘below normal’, ‘normal’, ‘above normal’ and ‘excess’) and all objective functions for each climate type are
combined into a single objective function. A weighting factor, representing the probability of a specific climate type, is given to each objective before all objectives are added.
Subsequently, the efficient set is generated through parametric variation of weights, as first introduced by Zadeh (1963).
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farm plan (at a village scale) and corresponding agricultural manage-
ment decisions. Making decisions based on this initial forecast involves
‘committed costs’ such as land preparation, selection of crop variety and
seeding rate, fertiliser application and labour costs associatedwith these
operations.

The second step uses a ‘revised forecast’ that is given six weeks later
during the growing season. In the ‘Revised Forecast Run’, the initial fore-
cast is replaced with the ‘revised forecast’. In discussions with re-
searchers at the local agricultural university, the timing of ‘Initial
Forecast Run’ of themodelwasfixed for June 1 and the ‘Revised Forecast
Run’was fixed at July 15 (ca. 6 weeks after the first forecast). However,
these periods can bemodified as per the forecasts available with appro-
priate re-parametrisation of the model.

In the ‘Revised Forecast Run’, the output data file generated in the
initial forecast run is used as the input file (with technical coefficients
of crop choice, area planted in different soil types and all the inputs,
i.e. labour, machinery, fertiliser, pesticides and fungicides) for the ‘Re-
vised Forecast Run’. The activity levels in this run remain the same as
those in ‘Initial Forecast Run’ except the forecast (revised), the yields
of crop (due to a short season if the start of the season is delayed) and
labour use (labour requirements for a short season are assumed to be
lower). In the ‘Revised Forecast Run’ there is some flexibility to adjust
the decisions in ‘mid-course’ that were based on the initial forecast.
These are in the category of ‘uncommitted costs’ which include top-up
fertiliser, pesticide and fungicide use and labour use. These can be ad-
justed as per the revised forecasts while the ‘committed costs’ are part
of the risk that farmers have taken.

An illustration of the possible effect of the revised forecast is the fol-
lowing. If the initial rainfall forecast is ‘below normal’ and the revised
forecast suggests a ‘normal’ or ‘above normal’ season then the model
chooses additional cropping area (as all the available land may not be
used if the initial forecast is for a ‘below normal’ season) and crop
choice. This is achieved by increasing inputs to cater to wetter than
the initial forecast. Input and output coefficients for all combinations
of crop × soil for initial and revised forecast and different states of cli-
mate have been specified in the model. If the revised forecast results
in additional cropping area being recommended, inputs such as labour
and fertiliser would be reduced to account for the necessary shorter du-
ration of the revised crop as it is sown six weeks after the potential start
of the growing season. Yields of crops will also be adjusted to a shorter
cropping duration as a result of changed decisions later into the season.
In the revised forecast, the yields are reduced by 15% due to a shortened
season. These values can be adjusted specific to other geographies as
required.

2.4.2. Objective function, resources and constraints
The key objective of the case study farming community is

maximising gross margin using the resources available and with a set
of cropping activities. Subsistence for food is considered by allocating
a percentage of total land area available to paddy rice (30%), however
the extent of transplant of this area is constrained by the seasonal fore-
cast and soil type.

The area for cultivation available in the case study village is 136 ha.
Constraints imposed in the model are based on the resources available.
These include land and paddy rice transplant: (a) Land allocated to var-
ious crops cannot exceed total land available (b) paddy rice area has
been constrained to 30% of total land available (black and red soils ex-
cluding sandy soils). Although rice is a staple food for the local popula-
tion, it is a water-demanding crop and farmers have been advised by
extension service to limit the area of paddy rice to conserve water par-
ticularly in the water constrained environment such as during ‘below
normal’ or ‘deficient’ season. Water saved from reduced paddy rice
area has been recommended to be diverted to other lesswater demand-
ing crops as well as a way of conserving groundwater that has been de-
pleting significantly. Another constraint imposed on paddy rice is the
percent area that can be transplanted based on the season i.e., if the sea-
son is projected to be ‘deficient’ then only 10% of the maximum area
that can be transplanted will be used, if the season is forecasted to be
‘below normal’ only 40% of themaximum area that can be transplanted
will be used. If the forecast is ‘normal’, ‘above normal’ or ‘excess’ then
the maximum area to be transplanted (30% of Black and Red soil) will
be used by the model. The model uses a ‘transplanting function’ for
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paddy rice and the percentage of transplanted area as defined by the
farmers. Not all land needs to be sown in the model; a partial fallow is
acceptable if food security constraints are met. These constraints have
been included based on the practices of farmers. Labour requirements
per crop per season are included as labour person days for the growing
season per hectare. Labour is differentiated between family labour and
hired labour, while cost of family labour is not included in themodel cal-
culations, hired labour is costed per person per day.

2.4.3. Data, and input and output coefficients
Data on the technical coefficients (Table 1) used in the model were

gathered from the local farming community and expert knowledge
from extension service and researchers from PJSTS Agricultural Univer-
sity (PJSTSAU) and International Crops Research Institute for Semi-Arid
Tropics (ICRISAT). These include crop types, soil types, yields, input
prices, costs and use of inputs such as fertiliser, pesticide, fungicide
and labour. The crop market prices have been obtained from the
website of the marketing department of the state.

The inputs used in themodel include the following: forecast data in-
cludes theprobabilities forfive season classes viz. ‘deficient’, ‘belownor-
mal’, ‘normal’, ‘above normal’ and ‘excess’. Available land at village level
was determined per soil type i.e. black soils (40 ha), red soils (16 ha)
and sandy soils (80 ha). The total agricultural area of the village
(136 ha) is considered as this model is at a village scale. In terms of la-
bour availability, kharif season is assumed to be of 150 working days.
To calculate available agricultural land at village level we assumed
that each household has access to 2.4 ha on average. Similarly, to calcu-
late available family labour at village levelwe assumed1.5 full time fam-
ily members per family. Labour requirements per crop per ha and per
season type have been gathered from a survey conducted in the case
study village. The labour requirements in case of shortened season in
the ‘revised forecast’ is reduced by 20% in comparison to the labour re-
quirements for the full season. Price of hired labour was set at INR 150/
person/day (US$ 2.30/person/day). Market prices for different crops
were gathered from the online market prices published by the state
government marketing department (i.e. average market prices - Table
1). Costs of pesticide, fungicide, implements and seed per crop type
were gathered from the survey and various published reports. Fertilisers
included urea, diammonium phosphate (DAP), and cattle manure. Urea
and DAP application is calculated in kilograms per hectare while cattle
manure application is calculated in cartloads per ha. Pesticides and fun-
gicides are costed in per application per ha. The usages of different
fertilisers, pesticides and fungicides are determined for each crop type,
soil type and season type. Seeding rate is calculated as kg/ha and costed
in INR/kg. Crop yield has been gathered from farmer survey, expert
knowledge and published reports. Yield (kg/ha) is specified per crop
by soil type and season type. The model results include:

• Crop areas by soil type
• Variable costs, revenue and profit at village scale
• Input (labour, machinery, fertilisers, pesticides and fungicides use)
• Expected gross margin for the village (the objective function value).
Table 1
Crop prices; average yields by rainfall category and soil type (kg/ha).

Crop Price INR/kg Average yields: black soil Average

D BN N AN E D

Maize 15.00 1250 3500 5500 5000 3750 1000
Castor 36.50 500
Cotton 48.00 1000 1500 2500 2375 1625 500
Redgram 41.25 375
Paddy rice 18.75 1875 3750 4375 4375 5000 3750
Sorghum 17.85 500 500 750 750 500 375

D - deficient; BN – below normal; N - normal; AN - above normal; E - excess.
Prices of crops used in the model (source: http://market.ap.nic.in/indexnew.jsp. April 2014). Av
redgram are not grown on the black soil; paddy rice is not grown on the sandy soil.
2.4.4. Scenarios and setup of the model runs
In this research, a scenario-based approach was used to analyse the

impact of integrating seasonal forecast in crop choice decision. The sce-
nario analysis aims to characterise the response of model endogenous
variables (i.e. the outcomes of the process of optimising an objective
function such as gross margin) to changes in exogenous conditions,
such as prices, policy instruments and technologies. The modelling sys-
tem allows the user to formulate the scenarios interactively,
characterised by different indicator values and reformulates these sce-
narios by ‘playing’ with the model (Pitel, 1989; Romero and Rehman,
1989). Indicator values in this model refer to the technical coefficients
or parameters such as yields and costs of inputs. A set of five scenarios
were developed to demonstrate the model as a discussion support
tool within the case study village. Scenario 1 (S1) is a crop choice deci-
sion made using equal chance (20%) of any of the five seasons being
realised (no forecast is applied in this case). Scenario 2 (S2) is skewed
towards a dry seasonwith a 30% chance each of ‘below normal’ and ‘de-
ficient’ seasons occurring, a 20% chance of ‘normal’ and 10% chance each
of ‘above normal’ and ‘excess’ seasons occurring. S3 is skewed towards a
‘normal’ season with 40% chance of ‘normal’ and 20% and 10% each for
‘above normal’ and ‘excess’. S4 is also skewed towards ‘normal’ with a
60% chance of ‘normal’ and 20%and 10%each for ‘above normal’ and ‘ex-
cess’ seasons occurring. S5 is skewed towards a wet season with a 50%
chance of ‘above normal’ and 20% ‘excess’ seasons occurring. Scenarios
2–5 cover a range of forecasts from predominantly ‘deficient’ and
‘below normal’ to predominantly ‘above normal’ and ‘excess’ during
the past 10 years and represent a wide range of seasons. While these
scenarios cover representative seasons, the 2014 IMD Long Range Fore-
cast is included in one of themodel scenarios (Scenario 6) as a concrete
example of a forecast.

Since the modelling uses a probabilistic forecast for crop choice, we
used an ex-post analysis to compare how the results of the forecast
compare with a season that was experienced by the farmers in the re-
cent time. In the model used 100% chance of a season occurring, i.e., in
a hindcast mode the season would have a 100% chance given that it is
already occurred. This provided a way to demonstrate the validity of
the model. As the key objective of the farmers is maximising profit,
we analysed the sensitivity of the model to cost and price variations.
We present the example of cotton to investigate the impact of price
changes on profits as it is a key commercial crop in the region.

2.5. Participatory engagement workshops

As part of this project, we engagedwith a number of stakeholders in-
cluding farmers, extension service, agricultural input providers and de-
cision makers at district and state levels to better understand the
process of translating probabilistic seasonal forecasts into agricultural
decision making. Four participatory engagement workshops were con-
ducted with farmers over the period 2011–2014. Methods to engage
with these stakeholders included focused group discussions, work-
shops, real-time exposure to the bio-economic modelling (operated
real-time by researchers responding to queries from participating
yields: red soil Average yields: sandy soil

BN N AN E D BN N AN E

2500 3750 3000 2500 875 1500 2500 3125 2500
750 1125 1250 1500 375 500 1125 1250 1500
1000 1500 2000 2000 500 750 2000 1750 1000
500 1125 1250 1000 375 375 875 1000 1000
4375 4375 5000 5015
625 750 750 500 250 500 1000 1000 1000

erage price has been used here to illustrate the model); Crop- soil constraints: Castor and



Table 2
Crop choice in Scenarios S1–S5 based on forecast for deficient (D), below normal (BN),
normal (N), above normal (AN) and excess (E) seasons for each soil type.

Scenario Crop Soil
type

Area
planted
(ha)

Revenue
(INR
'000)

Costs
(INR
'000)

Profit
(INR
'000)

S1: equal weight to each
rainfall category

(D – 20; BN - 20; N - 20;
AN - 20; E - 20)

Maize Black 40 2280 1476 803
Paddy
rice

Red 12 992 799 193

Redgram Red 4 2377 2229 148
Redgram Sandy 80 2541 2383 157

Total 136 8190 6887 1144
S2: dry season scenario
(D – 30; BN - 30; N - 20;
AN - 10; E - 10)

Cotton Black 40 3168 2134 1033
Paddy
rice

Red 9 747 578 168

Redgram Red 7 198 191 7
Total 56 4113 2903 1208
S3: rainfall centred around
normal season

(D – 10; BN - 20; N - 40;
AN - 20; E - 10)

Cotton Black 62 4133 3549 584
Maize Sandy 40 2640 1541 1099
Paddy
rice

Red 13 1120 917 202

Redgram Sandy 3 105 77 27
Total 118 7998 6084 1912
S4: rainfall skewed
towards normal and
above

(D – 0; BN - 10; N - 60; AN
- 20; E - 10)

Cotton Sandy 80 6624 4880 1744
Maize Black 40 3015 1650 1364
Paddy
rice

Red 15.5 1351 1145 206

Redgram Red 0.5 9 6 3
Total 136 10,999 7681 3317
S5: rainfall skewed
towards a wet season

(D – 0; BN - 10; N - 20; AN
- 50; E - 20)

Cotton Sandy 5 331 283 47
Maize Black 40 2820 1727 1092
Paddy
rice

Red 15.5 1425 1207 218

Redgram Red 0.5 2845 2136 709
Redgram Sandy 75

Total 136 7421 5353 2066

Table 3
Crop choice with IMD's June 2014 experimental forecast for each soil type.

Scenario Crop Soil
type

Area
planted
(ha)

Revenue
(INR
'000)

Costs
(INR
'000)

Profit
(INR
'000)

S6
(D – 29; BN - 13; N - 35;
AN - 19; E - 4)

Cotton Black 40 6718 5390 1327
Cotton Sandy 54
Paddy
rice

Red 11 903 726 176

Redgram Red 5 170 139 31
Total 110 7791 6255 1534
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farmers) and semi-structured individual interviews with participating
farmers. The PJ Telangana State Agricultural University (PJTSAU), a pro-
ject partner, set up a rainfall recordingmeteorological station in the vil-
lage and trained some farmers in recording the observations with the
participation of a local non-governmental organisation. PJSTSAU has
also been providing the farmers in the villages in the region with
short-term (3–5 days)weather forecast advisories to helpwith farmop-
erations. Participating farmers were aware, through project activities,
about short-term deterministic weather forecasts, 1–3 monthly proba-
bilistic seasonal climate forecasts and the challenge of using the season-
al forecasts in their cropping decisions. For this study fifteen
participating farmers provided technical coefficients for the model
such as input quantities and costs, market prices for different crops
and labour requirements for different season types (‘deficient’, ‘below
normal’, ‘normal’, ‘above normal’ and ‘excess’). Once themodel was de-
veloped using technical coefficients from the survey data, we operated
the model with the farmers and researchers to check if the crop selec-
tion per season and revenue were consistent with their knowledge
from the region. This validation process resulted in a few technical coef-
ficients being fine-tuned, particularly the yields in different seasons.
Fertiliser and pesticide inputs were also adjusted based on expert opin-
ion from the agricultural university and agricultural department.

The final engagement workshop with ten experienced farmers was
in November 2015 at the case study village to demonstrate the fully de-
veloped model and to seek feedback. In this workshop, participating
farmers clarified on the paddy rice area constraint (total paddy rice
area to be cultivated and the percentage of transplanting area based
on the season) that was imposed on the model and agreed that it was
generally the practice in their region. Also, keeping the season constant
we varied the costs of inputs and prices of crops in the market one at a
time to explore the impact on profits. At the final workshop, we also
gathered formal feedback from the participating farmers on the crop
choice bio-economicmodel as a tool for engaging on SCFs. Thequestions
in the pre-workshop survey were (i) how do you rate your knowledge
of SCF, on a scale 1–10 (where 1 is low and 10 is high), (ii) my under-
standing on how to use SCF in making crop choice decisions (no under-
standing to very high on afive step scale), (iii)What valuewill you place
on SCF in your crop choice decision making, on a scale 1–10 (where 1 is
low and 10 is high).

Post-workshop questions were (iv) how do you rate your knowl-
edge of SCF, on a scale 1–10 (where 1 is low and 10 is high) (v) after
this workshop my understanding of SCF is now (no understanding to
very high on a five step scale), (vi) exposure to the crop choice model
has improved my understanding of the role of SCF in crop choice deci-
sions (strongly agree to strongly disagree on five step scale), (vii) the
crop choice model is a useful way to discuss or engage on climate risk
in agriculture (strongly agree to strongly disagree on a five step scale).

3. Results

3.1. Model outcomes

The crops and crop areas selected by the model, costs, revenue and
profit under each of the five scenarios are presented in Table 2. In the
crop choice decision made using only climatology, (Scenario S1 with
equal chance (20%) of each of the five seasons being realised (no fore-
cast is applied in this case), the model utilises the total agricultural
land available and a significant area of land is allocated to redgram
and the rest tomaize and paddy rice. Scenario 2 (S2) is skewed towards
a dry season where cotton is the predominant crop selected while the
minimum area of paddy rice and small area of redgram are chosen. Sce-
nario S3 is skewed towards a ‘normal’ season and the model chooses
predominantly cotton and maize in addition to paddy rice and redgram
as being themost profitable options. Scenario S4 is also skewed towards
a ‘normal’ seasonwhere the crop choice remains the same as in S3, how-
ever, area with cotton is significantly increased while area of redgram is
reduced to 0.5 ha. Scenario 5 (S5) is skewed towards a wet season
‘above normal’ (50%) and ‘excess’ (20%). Here, the model chooses
redgram and maize as the key crops with paddy rice and cotton in
smaller areas.

As an illustration of using an actual forecast, we applied the IMD June
2014 experimental forecast discussed earlier. In this case, the model
chooses cotton (94 ha), paddy rice (11 ha), maize (40 ha) and redgram
(5 ha) as an optimal choice to maximise profit (Table 3).

As part of the ex-post analysis, if there is a perfect forecast (100%) of
a ‘deficient’ season, cotton is allocated to about a third of total agricul-
tural area with a minimum paddy rice area while the 2/3rd of the area
is left fallow (Table 4). For a perfect forecast of a ‘below normal’ season
cotton area chosen is the same as in the ‘deficient’ season with a small
increase in paddy rice area and an additional choice of maize. In a per-
fect ‘normal’ season forecast the model chooses a significant cotton
area of 80 ha followed by maize and paddy rice. In the case of an
above ‘normal’ season redgram replaces cotton (with the same area as
in ‘normal’ season) while maize and paddy rice areas remain the same
as in a ‘normal’ season. In an ‘excess’ rainy season redgram is the dom-
inant crop selected followed by maize, cotton and paddy rice (Table 4).



Table 4
Crop choice with five possible season realisations.

Realised
season

Crop Soil
type

Area
planted
(ha)

Revenue
(INR
'000)

Costs
(INR
'000)

Profit
(INR
'000)

Deficient Cotton Black 40 1840 1411 428
Paddy
rice

Red 2 118 84 33

Total 42 1958 1495 461
Below
normal

Cotton Black 40 2880 1426 1435
Maize Red 9 348 292 55
Paddy
rice

Red 7 551 387 163

Total 56 3779 2105 1653
Normal Cotton Sandy 80 7360 5008 2352

Maize Black 39 3234 1602 1631
Paddy
rice

Black 1 1378 1190 188

Paddy
rice

Red 16

Total 136 11,972 7800 4171
Above
normal

Maize Black 39 2940 1827 1112
Paddy
rice

Black 1 1565 1358 207

Paddy
rice

Red 16

Redgram Red 78 3234 2180 1053
Total 134 7739 5365 2372
Excess Cotton Red 15 1404 1120 284

Maize Black 23 1305 991 313
Paddy
rice

Black 17 1575 1320 254

Redgram Red 1 3330 2277 1053
Redgram Red 80

Total 136 7614 5708 1904
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Comparison of the scenarios presented in Tables 2 and 4 reveals the
difference betweenmodel results calculated using the seasonal forecast
and the actual realisation of the season i.e. if the season had a probability
of 100% or in other words analysing the season ex-post. For example, if
the forecast was skewed to ‘below normal’ season as in S2, the optimal
choice as per themodel is cotton (40 ha), paddy rice (9 ha) and redgram
(7 ha) with a total profit of INR 1.2 M. When this is compared with the
actual realisation of the ‘below normal’ season (100%), the model
chooses cotton (40 ha), maize (9 ha) and paddy rice (7 ha) with an
overall profit of 1.65M INR. Thus, because of using an imperfect forecast
0.45M INR is lost. Fig. 4 presents the results of the opportunity costs and
losses for different cropping decisions based on the seasonal forecast.
These occur when a crop choice decision is made based on a particular
forecast and the experienced season is different to the forecast. For ex-
ample, if the cropping decision is made on a forecast of a ‘deficient’
Fig. 4. Opportunity costs and losses for crop choice decisions based on seasonal forecasts.
Y-axis represents the opportunity costs (positive values) or loss (negative values); X-axis
categories represent the forecast season and the bars represent the realised season.
season and the season turns out to be ‘normal’ then there is an opportu-
nity cost of not taking advantage of a ‘normal’ season. On the other hand
if the seasonal forecast is for a ‘normal’ season and it turns out to be a
‘below normal’ season then there is a loss as result of the cropping
decision.

The model is very sensitive to a shift in cotton price and critical
changes in crop choice can be observed as a result. An increase in the
price of cotton from INR 46/kg to INR 48/kg shifts the crop choice
from no cotton area being chosen to choosing 40 ha cotton, substituting
maize. Paddy rice remains the same at 12 ha and redgram is reduced by
5 ha (Table 5). While cotton pricing is provided for illustrative purpose
the model in general is sensitive to costs and prices.

In the case of initial and revised forecast analysis, results of using an
initial forecast of a ‘deficient’ season are presented as an example (Table
6). Themodel chooses cotton (40 ha) and paddy rice (2 ha) while keep-
ing the remaining 94 ha (out of a total 136 ha) available as fallow. The
profit maximisation results in a total profit of INR 461,000. When the
forecast is revised to ‘below normal’, the model maintains the cotton
area as in previous forecast and adds 13 ha of maize and an additional
3 ha of paddy rice. In this case the crop choice results in a profit of INR
1.57 M. In the case of the revised forecast of a ‘normal’ season, the
crops chosen are cotton (120 ha), paddy rice (5 ha) and redgram
(3ha)with a resultingprofit of INR 3.8M.When compared to theprofits
made in a ‘normal’ season of INR 4.17 M (Table 4), the lower profits in
the revised forecast crop choice is due to the lower yields (hence
lower profits) due to the shorter duration of the season.
3.2. Model outcome evaluation

In the case of 2014 cropping season, the farmers' crop choice and
modelled crop choices are presented in Fig. 5. Farmers' crop choice
data is from the survey at theworkshop. Farmers have chosen the entire
crop area available in the village while the model chose 24 ha less than
the total land available. The modelled crop choice is consistent to the
type and area of cropping. The seasonal rainfall for 2014 recorded in
the village was 510 mm (district normal is 530 mm). We consider this
value as a ‘normal’ year and used the ‘normal’ forecast to run the
model in an ex-post mode. This result provides suitable confidence in
the model that it is able to represent the recent farmer experience.

During the workshop in November 2015 in the study village, in re-
sponse to the survey question on their crop choice without a forecast,
farmers' consensus was that they would plant cotton (68 ha), maize
(48 ha) and paddy rice (20 ha). To mimic and compare with farmers'
crop choice, this model scenario was run with only three crops that
were being grown for the season, i.e. cotton, maize and paddy rice.
The model output for an equal chance of occurrence of each of the sea-
sons (climatology) was maize (40 ha) and paddy rice (16 ha) and no
cotton. The crop choice for maize and paddy rice is consistent to actual
farmers' decisions. However, the model does not select cotton (while
the farmers seem to take a chance given that cotton is a high risk high
return crop), since the model does not deem cotton profitable with an
equal chance of each of the season occurring.
Table 5
Crop choice in Scenario 1 (S1) using climatology and equal chances (20%) of deficient, be-
low normal, normal, above normal and excess seasons – cotton price increase by INR 2/kg
(compared to S1 in Table 2).

Crop Soil type
Area planted
(ha)

Revenue
(INR '000)

Costs
(INR '000)

Profit
(INR '000)

Cotton Black 40 3456 2513 943
Paddy rice Red 12 992 799 193
Redgram Red 4 2377 2293 148
Redgram Sandy 75
Total 131 6825 5605 1284



Table 6
Crop choice with revised forecasts.

Initial and revised
forecasts

Crop Soil
type

Area
planted
(ha)

Revenue
(INR
'000)

Costs
(INR
'000)

Profit
(INR
'000)

Initial forecast -
deficient

Cotton Black 40 1840 1411 428
Paddy
rice

Red 2 118 84 33

Total 42 1958 1495 461
Revised to below
normal

Cotton Black 40 2880 1420 1459
Maize Red 13 424 419 49
Paddy
rice

Red 3 208 149 58

Total 56 3512 1988 1566
Revised to normal Cotton Black 40 11,328 7595 3733

Cotton Sandy 80
Paddy
rice

Red 5 348 319 29

Redgram Red 3 104 74 29
Total 128 11,780 7988 3791
Revised to above
normal

Cotton Black 40 8942 6583 2358
Cotton Sandy 61
Paddy
rice

Red 5 398 361 36

Redgram Red 11 495 336 159
Total 117 9835 7280 2553
Revised to excess Cotton Black 40 4041 3502 539

Cotton Red 11
Paddy
rice

Red 5 399 358 41

Redgram Sandy 80 2805 2255 550
Total 136 7245 6115 1130

Initial and revised
forecasts

Crop Soil
type

Area
planted
(ha)

Revenue
(INR
'000)

Costs
(INR
'000)

Profit
(INR
'000)

Initial forecast -
deficient

Cotton Black 40 1840 1411 428
Paddy
rice

Red 2 118 84 33

Revised to below
normal

Cotton Black 40 2880 1420 1459
Maize Red 13 424 419 49
Paddy
rice

Red 3 208 149 58

Revised to normal Cotton Black 40 11,328 7595 3733
Cotton Sandy 80
Paddy
rice

Red 5 348 319 29

Redgram Red 3 104 74 29
Revised to above
normal

Cotton Black 40 8942 6583 2358
Cotton Sandy 61
Paddy
rice

Red 5 398 361 36

Redgram Red 11 495 336 159
Revised to excess Cotton Black 40 4041 3502 539

Cotton Red 11
Paddy
rice

Red 5 399 358 41

Redgram Sandy 80 2805 2255 550

Fig. 5.Model validation for the season 2014. Farmers' crop choice and the modelled crop
choice.
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3.2.1. Stakeholder engagement process
During the engagement with farmers we used the model in an iter-

ative way. Participating farmers agreed with the model output of leav-
ing a large portion of the agricultural land fallow in the rainfall
‘deficient’ season with only 40 ha of cotton and a small area of paddy
rice planted. This was consistent with their experience as they optimise
on the irrigation water available. Researchers at the agricultural univer-
sity also agreed that this would be consistent with their recommenda-
tions to the farmers. Farmers also agreed with the model component
that chose paddy rice transplanted area based on the season, which is
consistent with their practice. Although for some of the farmers who
have access to groundwater irrigation, seasonal forecast did not have
the same value compared to farmers who relied only on rain. In the
case of crop choice for a ‘normal’ season, cotton is the most profitable
crop and as such a significant area was allocated to cotton by the
model which was also consistent with farmers' practice. A wetter than
‘normal’ year would have an adverse impact on the yields as well as
the quality of cotton, particularly if the season is wet during the harvest
time. In the case of ‘above normal’ and ‘excess’ seasons, while themodel
crop choice was redgram as a predominant crop, only a few farmers in
the village favoured redgram as opposed to the model allocations.
Farmers reported that while they agree that redgram is a profitable
crop, high labour requirements (and limited labour availability) and
their perception that the crop is pest prone prevented them from choos-
ing this crop. This discrepancy between model crop choice and farmer
crop choice in the case study village provided a good discussion oppor-
tunity of (‘rational’) modelling results versus farmers' decisions based
on local conditions and experience. Farmers suggested they would
need researchers and extension to support them with agronomic and
pest management advice to cultivate redgram. Participating farmers
and researchers also engaged with the revised forecast component of
the model and were in agreement with the assumptions made in the
model on yields and inputs use about the shorter duration varieties.
Themajor challenge they face, if the start of season is delayed and awet-
ter than forecasted season evolves, is access to seeds for the short dura-
tion varieties of crops and fertilisers. Increasing labour costs and non-
availability of farm labour at critical times of farm operations were
also highlighted as major constraints. The PJTSAU researchers acknowl-
edge the potential of using this tool to discuss seasonal climate forecasts
with a large network of extension service staff who are part of their uni-
versity. This was reinforced from the interactions during the workshop.

3.3. Response to feedback questionnaire

The responses to the survey questionnaire are summarised in Table
7. To the pre-workshop question (i) how do you rate your knowledge of
SCF, on a scale 1–10 (where 1 is low and 10 is high): five out of ten
farmers rated themselves 1 to 2, the rest ranked themselves between
6—8. For the same question post workshop (iv) how do you rate your
knowledge of SCF (on a scale where 1 is low and 10 is high), the same
set of farmers who rated themselves 1–2 in question (i) rated them-
selves 4–5 out a score of 10. The remaining five farmers said their un-
derstanding of the utility and limitations of SCF application had
improved.

To the pre-workshop question (iii) what value will you place on SCF
in your crop choice decision making, on a scale 1–10 (where 1 is low
and 10 is high)?, five out of ten farmers selected a value greater or
equal to 6. To the question (v) on improved knowledge on SCF after
the workshop 7 out of 10 farmers agreed that their knowledge on the
utility and challenges of SCF had highly improved. To the question (vi)
if exposure to the crop choicemodel had improved their understanding
of the role of SCF in crop choice decisions, 6 out of 10 farmers strongly



Table 7
Summary of responses from survey of farmers.

Questions Pre-workshop Post-workshop

How do you rate your knowledge of SCF, on a
scale where 1 is low and 10 is high

5 farmers: 1
to 2
5 farmers: 6
to 8

4 to 5
Improved
previous
understanding

What value will you place on SCF in your crop
choice decision making, on a scale (where 1
is low and 10 is high)

5 farmers: 6 and
above

Exposure to the crop choice model has
improved my understanding of the role of
SCF in crop choice decisions (strongly agree
to strongly disagree in five step scale)

6 out of 10
farmers ‘agreed’

Crop choice model is a useful way to
discuss/engage on climate risk in
agriculture (strongly agree to strongly
disagree on a five step scale).

7 out of 10
farmers ‘agreed’
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agreedwith the statement. To the question (vii) if the crop choicewas a
useful approach to discuss/engage on climate risk in agriculture, 7 out of
10 farmers agreed with the statement. In a discussion on the current
mode of delivery of SCF information, all farmers suggested that if the
forecast is delivered with advice on crop choice that would increase
the utility of the forecast.

4. Discussion

4.1. Methodology to improve the use of SCF

The work presented here is part of a larger project that explored if
use of seasonal climate forecasts in agricultural decisionmaking can en-
hance food security in the Indian Ocean rim region. The present study is
an attempt to ‘demystify’ the probabilistic nature of seasonal climate
forecasts for both researchers and farming community. The modelling
exercise eventuated from the challenge of how to engage researchers,
extension and farmers on SCF as a part of portfolio of climate risk man-
agement tools in rainfed agriculture. While a number of approaches
have been developed to communicate SCF as climate risk management
information, there is limited literature on integrating the SCF informa-
tion into a scenario analysis such as a bio-economic tool.

Significant financial and intellectual resources across the globe are
being invested in developing and improving the skill of seasonal climate
forecasts. However, their uptake among farm advisors and farmers is
low due to limitations in understanding forecasts and timeliness of
their availability and difficulties in translating the climate results into
operational decisions such as when and what crop to sow. If the results
from using SCF are improved over those assuming climatology, there is
potential value for forecasts in the context of climate risk management.
Modelling approaches such as the onepresented in this study could pro-
vide ways in which researchers and extension advisors can discuss sea-
sonal climate forecasts with the farming community. It should however
be noted that this modelling tool is meant to be a discussion support
tool used to describe consequences of different pathways and not pre-
scriptive on what options (crop choice) to take. The development of
themodel provided an opportunity to build ‘social capital’ onmanaging
climate risk among farming community in the village. This was possible
due to participation of the farmers from the inception of the project,
providing technical coefficients, participating in feedback sessions,
interacting with the model (operated by researchers) and the final val-
idation workshop.

4.2. Results for the case study village

In a scenariowhere there is an equal chance of any of the seasons oc-
curring, redgram andmaize seem the most profitable crops while some
paddy rice area is included. When the forecast is skewed towards a
slightly dry season compared to equal chance scenario, the model opti-
mises by reducing the paddy area and choosing cotton over maize and
significant area is left fallow. In a scenario where the forecast is centred
around a ‘normal’ and ‘above normal’ season the model choses cotton
and maize as major crops with an increase in paddy area compared to
the ‘dry’ season. In a scenario skewed towards an ‘excess’ season the
cotton area is significantly reduced while redgram and maize dominate
the crop choice. Feedback from farmers on crop choice based on season
by the model was consistent with their current operations. This pro-
vides confidence on the validity of the model as well credibility that
the tool can be used to engage farming communities on climate risk.
However, there were also discrepancies between the modelled crop
choice and farmers' practice, particularly regarding redgram. While
the redgram is selected as profitable by the model, farmers have con-
straints in growing this crop and suggested that they need agronomic
advice to pursue this crop. This also applies to sorghum. These crops
were included in the model as they are more prevalent in the region
than in the selected study village. This discrepancy also points at the
risk averse farming in the semi-arid regionswhere farmers are reluctant
to take up ‘new’ crops and prefer to continue with crops that they have
expertise or traditional knowledge about.

The model is sensitive to small price changes and caution is needed
in selecting the prices and should involve consultation with the farmers
and extension services so themodel results are relevant to the region of
interest. While the model responds to small changes to prices, farmers
are more likely to consider the solutions cautiously and in line with
their responsive, ‘lean not jump’ and adaptive risk management. The
modelling tool also helps in exploring different price options in a sce-
nario-building exercise and links season and prices to arrive at an opti-
mal solution thatwould provide additional complexity to the discussion
on risk. Although the aspect of inter-relationships between seasonality
and prices is not explored in this model, it is acknowledged that this re-
lationship is important and needs further investigation in subsequent
model development. From the model results on opportunity costs and
losses (Fig. 4), it is evident that if the crop choice is based on an expec-
tation of a ‘normal’ season then there is a loss if any of the other seasons
manifest. This result cautions on planning cropping choice based on the
assumption of a ‘normal’ season alone and therefore the importance of a
risk management approach to minimise losses from an unfavourable
season or taking advantage of a favourable season. In terms of the ‘Re-
vised Forecast Run’, farmers often tend to be responsive to the unfolding
of the season and the revised forecastmodelmimics their decisionmak-
ing behaviour. Although in the revisedmodel forecast only onewindow
of opportunity to carry out a mid-course correction is included in the
present model, theoretically several time steps could be included
where alteration of decisions and adjusting of inputs can take place.

4.3. The usefulness and use of the farm model by farmers

From the several interactions during the development of the model
and subsequent feedback the bio-economicmodel presented here it ap-
pears to be of value to a majority of farmers. The value they placed on
the modelling tool was that it facilitated the exploration of conse-
quences (‘what if?’ scenarios) of implementing SCF in farming systems
through identifying different cropping allocation decisions under differ-
ent season types. The opportunity costs and losses as a result of crop
choice based on a seasonal forecast provide useful insights into discus-
sions on climate risk and challenge in applying SCF in crop choice deci-
sion making. It is however, important to recognise that smallholder
farmers are responsive in their decision making and hence they may
not make irreversible choices but are likely to take mid-course correc-
tions if the season they planned for does not manifest. For example, if
they planned their cropping choice based on a ‘normal’ season and it
turns out to be a ‘deficient’ or ‘belownormal’ season they aremore likely
to reduce their inputs such as top-up fertiliser and thus reduce losses
from a poor season. On the other hand, if the initial forecast is for a
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‘below normal’ season and turns out to be a ‘normal’ or ‘above normal’
season, then larger areas would be brought under cultivation with in-
creased inputs to take advantage of the ‘good’ season. By combining
the results of the ‘Initial Forecast Run’ with those of the ‘Revised Fore-
cast Run’ model, farmers can reconsider decisions that were made ini-
tially, in order to minimise part of the risk they have taken or to
maximise returns in the event of a better than forecasted season. The
questionnaire among participating farmers revealed an improved un-
derstanding of the utility and challenges of seasonal climate forecasts.
They pointed out that mere delivery of seasonal climate forecasts does
not help them with their decision making but advice on translating
this information into cropping decisions would be helpful. It was clear
in the interactions with the farmers that tools that allow discussion on
the crop choice and the implications of various decisions helped them
with improved understanding of SCFs.
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