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Abstract

In the low-rainfall region of south-eastern Australia, distinctive soil types reflect-

ing the typical landscape of higher elevated dunes and swale zones at the bottom

can be found within one field. Different soil characteristics cause consequently

large variability in cropping productivity between soils and across seasons. To

assess the possibilities for zone-specific management, five farmer fields were

zoned into a dune, mid-slope and swale zone. For each site, zone yields were

mapped over 2 years and soil properties were surveyed. This information was

used to parameterize and validate the APSIM model for each zone. Field-mea-

sured PAWC increased from the dune to the swale zone. On-farm results and

simulation analysis showed distinctive yield performance of the three designed

zones. However, yield is not related to PAWC, it is rather a complex relationship

between soil type, fertility and rainfall. While in high-rainfall years, the swale

zones yielded higher due to higher soil organic carbon content and less drainage

losses, the dune zones performed better in the low-rainfall years due to lower

evaporation losses. This study emphasizes that in this specific environment where

soil variation in texture and subsoil constraints strongly influence crop perfor-

mance, mechanistic crop models and long-term field observations are necessary

for better understanding of zone-specific performance, and simple linear rela-

tionships across years or sites are not useful.

Introduction

The Mallee of south-eastern Australia is a major grain-

growing region of Australia. Grain production is, however,

constrained by several challenges which may be exacerbated

under climate change; low and erratic rainfall (annual aver-

age rainfall 250–350 mm) and highly variable and often

constrained soils found within large fields (>100 ha) and

depending on the season, highly variable crop growth. Such

variability in soil reflects the typical dune–swale landscape

with light sandy soils on the higher elevated dunes and

heavier loam or clay soils in the swale resulting in variation

in soil fertility, subsoil constraints and consequently plant

available water capacity (PAWC) (Connor 2004). The

attainable yield, that is the yield achieved using optimum

management, can differ strongly within a field and also

from season to season. In certain years, low water supply

can result in terminal drought, which may be accelerated

by large crop biomass due to high early nitrogen (N) sup-

ply (‘haying off’) (van Herwaarden et al. 1998, Sadras

2002) or in higher rainfall years a lack of N-supply limiting

cereal yield and profit (Monjardino et al. 2013). In risky

environments, farmers most often respond to these limita-

tions by adapting a risk averse strategy with inputs well

below yield maximizing rates (Sadras et al. 2003b, Sadras

and Rodriguez 2010, Monjardino et al. 2013). High N use

efficiency (NUE) is achieved at the expense of low water

use efficiency, as attainable yield levels in good rainfall
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years are not reached (Sadras and Rodriguez 2010). How-

ever, water supply is not only determined by rainfall, but

also by the capacity of the soil to store available water

which is available for plants (i.e. the PAWC), which is

related to texture, subsoil constraints and the organic mat-

ter content. The large heterogeneity in PAWC due to tex-

ture and subsoil constraints across one field causes large

variability in the attainable yield of a certain season. In par-

ticular, dividing the field into different zones according to

PAWC, soil fertility and texture and matching input to the

attainable yield of that zone appears to be a promising

strategy to increase the resource use efficiency and prof-

itability of farming (Rab et al. 2009, Oliver and Robertson

2013). Several methods to define attainable yield have been

developed. In southern Australia, the attainable yield is

often estimated using the French & Schultz (1984) bound-

ary function, where yield is the result of in-season rainfall

minus a fixed evaporation of 110 mm, which is multiplied

by a transpiration efficiency factor of 20 kg mm�1 ha�1.

Sadras and Angus (2006) modified this equation suggesting

an evaporation term of 60 mm and a transpiration effi-

ciency of 22 kg mm�1 ha�1. However, such simple linear

rainfall–yield relationships will ignore yield differences

caused by soil variability. Zoning the field into high-per-

forming and low-performing areas is challenging, as usually

such information is based on limited harvest yield moni-

toring, so that patterns in seasonal variability in yield are

not captured. Closely linked to this point, zoning based on

yield mapping does not explain the complex interaction

between water supply nutrient availability and yield. There-

fore, decisions on fertilizer application based only yield

mapping to zone areas of like performance are difficult to

make (Lawes et al. 2009a,b). Long-term field experiments,

which would help determine spatial and temporal dynam-

ics in yield are rarely conducted due to labour and financial

constraints.

Another method, which has developed into a commer-

cially offered service over the past decade, is electromag-

netic soil mapping (EM38). EM38 measures the apparent

electrical conductivity (ECa), which is correlated to soil

water, texture and salt concentrations. Although found to

be effective in the Mallee landscape (Llewellyn et al. 2008),

such soil properties can be difficult to relate to yield perfor-

mance in many situations (Rab et al. 2009).

Conducting simulation experiments with validated pro-

cess-based crop models can help to address many of the

above limitations by analysing yield variability and its

driving factors over multiple seasons for such zones. Mon-

jardino et al. (2013) combined crop simulation knowledge

of the variation in PAWC and economic analysis for one

site in the Mallee (Karoonda), and suggested that a higher

economic return is possible using higher N-fertilizer rates

for sandy soils than what are typically used by farmers.

However, they assumed that other abiotic and biotic stres-

ses were minimized. Wong and Asseng (2006) also used

crop modelling to analyse the long-term agronomic per-

formance of EM38 soil zones in Western Australia. They

concluded that on non-constrained soils the PAWC is

positively correlated to yield. Rainfall (annual average

327 mm) in their study site at the edge of the wheat crop-

ping belt of West Australia is concentrated (75–86 %) in

the growing period from April to October. While total

rainfall in the Mallee is similar, the share of precipitation

in the April to October period is less pronounced (60–
65 %).

While mechanistic crop models have been shown to use-

fully define site-specific attainable yields, it is necessary to

test these models for such constrained soils in the low-rain-

fall Mallee. In this environment, a high sensitivity of

APSIM to the characterization of the soil water parameter,

namely first- and second-stage evaporation can be expected

(Hunt and Kirkegaard 2011).

A range of simple vs. more complex zoning methods

are used in the Mallee environment that usually result in

zones largely based on dune, mid-slope and swale soils

(Robertson et al. 2012). It is not the intended purpose of

this study to test zoning methods but instead examine the

approach to better understanding differences in zone

behaviour and their management. Against this back-

ground, we used crop simulation modelling to analyse the

seasonal–spatial dynamic nature of the attainable yield at

five farmer fields characterized by the swale–dune system

in the Mallee. We explore whether it is possible to iden-

tify simple linear yield relationship (such as PAWC-yield

or In-season rainfall-Yield) for establishing zones in the

region or whether more sophisticated soil considerations

such as those included in the crop simulation models are

of value. To achieve this, we went through following

steps:

(i) describe the chemical and physical soil properties of

the swale, mid-slope and dunes at five sites and how they

define PAWC; (ii) set up the crop model APSIM for these

zones, (iii) evaluate simulated crop yield against observed;

and (iv) finally using a simulation experiment with histori-

cal weather data to explore the factors determining the

yield variability and potential zoning.

Material and Methods

Sites

Four fields from commercial farming operations, in the

Victorian and South Australian Mallee were selected in

2006: these included Bimbie (34°270S, 142°580E), Carwarp
(34°270S, 142°120E), Pinnaroo (35°200S, 140°540E) and

Loxton (34°290S, 140°340E). In 2007, an additional site at

© 2016 Blackwell Verlag GmbH, 203 (2017) 14–28 15

Zone-Specific Management of Cereals in Low-Rainfall South-Eastern Australia



Cowangie (35°130S, 141°230E) was also surveyed and

included in the study. Annual average rainfall is 311 (Bim-

bie), 290 (Carwarp), 319 (Cowangie), 274 (Loxton) and

337 mm (Pinnaroo). The larger share of the rainfall is

between April and October, which covers most of the

growing season (Bimbie 189; Carwarp 175; Cowangie 206;

Loxton 171; Pinnaroo 219 mm). Average daily temperature

is similar at all sites and highest in January (24.3–22.7 °C)
and lowest in July (9.6–9.9 °C).

Soil sampling and zoning

Based on an EM38 survey, Llewellyn et al. (2008) pre-

sented a zoning of one farmer field at each of the above-

mentioned sites. They showed that these EM38 defined

zones are constant over seasons (measurements 2005–
2007) and reflect the typical dune–swale landscape com-

mon in this region and resulted in differentiating the fields

into three zones: dune, mid-slope and swale. For soil sam-

ples collected prior to sowing (April 2006) at Bimbie, Car-

warp, Loxton and Pinnaroo, soil chemical and textural

analysis was undertaken. Samples (n = 9) were collected

using a stratified transect sampling pattern across each

field to a depth of 110 cm (0–20, 20–40, 40–60, 60–80 and

80–110 cm horizons) and averaged according to the subse-

quent zoning based on the EM38 surveys. In 2007, only

one sample was taken from the site in Cowangie to a depth

of 110 cm for each zone. All samples were analysed as fol-

lows: organic carbon (OC) was analysed using the com-

bustion method after a pre-treatment with dilute acid to

remove inorganic carbon. Soil pH was measured in a 1 : 5

soil/0.01 M CaCl2 suspension, and EC 1 : 5 was measured

in a 1 : 5 soil/water suspension (Rayment and Higginson

1992). Boron (B) was determined using 0.01 M CaCl2
extracting solution and immersion in a 98 °C water bath

(Rayment and Higginson 1992). Chloride (Cl) was mea-

sured in a 1 : 5 soil : water extract. Exchangeable sodium

percentage was calculated following measurement of cation

exchange capacity using 0.1 M ammonium Cl with 0.1 M

barium Cl extractant (method 15E1) outlined in Rayment

and Lyons (2011). Soil samples were further analysed for

Colwell extractable phosphorus (P) and extractable sul-

phur (S) using 0.25 M potassium Cl at 40 °C (Rayment

and Lyons 2011). Soil textural analysis of proportions of

sand, silt and clay were determined using the pipette

method, after sieving to remove gravel as described in

USDA (1982).

PAWC of each zone was characterized by drained upper

limit (DUL), crop lower limit (CLL) and rooting depth.

DUL was determined at a point within each zone using the

techniques described by Dalgliesh and Foale (1998). CLL

was determined for each zone using the lowest soil mois-

ture values measured at the harvest of wheat crops in 2006

(nine cores across the three soil classes) and in 2007 (27

cores across the three soil classes). Soil OC, initial soil min-

eral N content and water content were measured prior to

sowing in 2006 and 2007.

Management and harvest

As these experimental sites were all part of commercial

farming operations, all sowing and management was under-

taken by the farmer. Wheat (cvv. Janz and Yitpi) and barley

(cv. Sloop) were sown in April/May along with the typical

application of starter fertilizer (N 5–20 kg ha�1; P 7–
16 kg ha�1). In 2006, soil mineral N at sowing was lower in

the dune zones followed by the mid-slope in Bimbie

(0–90 cm 15 kg ha�1 dune, 23 kg ha�1 mid-slope, 80 kg

ha�1 swale), Carwarp (0–90 cm 45 kg ha�1 dune, 75 kg

ha�1 mid-slope, 80 kg ha�1 swale), and Loxton (0–90 cm

34 kg ha�1 dune, 45 kg ha�1 mid-slope, 57 kg ha�1 swale)

than in the swale systems. In Pinnaroo, the results were

opposite (0–90 cm 64 kg ha�1 dune, 41 kg ha�1 mid-slope,

39 kg ha�1 swale). In 2007, the same pattern was found

again: Bimbie (0–90 cm 18 kg ha�1 dune, 32 kg ha�1 mid-

slope, 85 kg ha�1 swale), Carwarp (0–90 cm 57 kg ha�1

dune, 98 kg ha�1 mid-slope, 105 kg ha�1 swale) and Loxton

(0–90 cm 35 kg ha�1 dune, 56 kg ha�1 mid-slope, 78 kg

ha�1 swale). Similar results to Loxton were observed for

Cowangie (0–90 cm 25 kg ha�1 dune, 57 kg ha�1 mid-

slope, 55 kg ha�1 swale). In Pinnaroo, again it was different

(0–90 cm 44 kg ha�1 dune, 43 kg ha�1 mid-slope, 38 kg

ha�1 swale). The harvest was done for the entire field using a

commercial combine header fitted with a yield monitor.

Yield data were extracted from a 50- to 100-m sweep for the

locations within the field where soil sampling had been

undertaken. All yield data are represented as dry weight cal-

culated from harvested grain weight and assuming 10 %

moisture content.

APSIM parameterization and validation

APSIM is a widely used farming system model that simu-

lates crop growth and development based on environmen-

tal variables (Holzworth et al. 2014). Management

decisions such as sowing date, fertilizer application, etc.

can be specified in a manager module. APSIM was widely

tested in Australia and evaluation in the Mallee region eval-

uation can be found in Hochman et al. (2009), Hunt et al.

(2013) and Yunusa et al. (2004). APSIM (version 7.5r3008)

was configured with the wheat and barley module, the soil

water module SOILWAT, and the soil N module SOILN,

Surface OM and Manager.

Every site and soil zone was represented by an individ-

ual soil file to represent the soil chemical (Table 1) and

physical characteristics (Fig. 2). Potential rooting depth
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was assumed to be 140 cm across all sites and zones. Sub-

soil constraints were taken into account using the mea-

sured CLL value. Run-off is based on the USDA-Soil

Conservation Service procedure known as the curve num-

ber technique and the values used reflected the effect of

texture (sand and loam = 68; clay = 73). Potential evapo-

transpiration (Priestley and Taylor 1972) is calculated

using an equilibrium evaporation concept: Soil evapora-

tion is assumed to take place in two stages: the constant

(U), or first stage and the falling rate (Cona) or second

stage. Cona and U are considered to be soil specific

(Ritchie et al. 2009), and therefore, the values were

defined according to texture similar to Hunt and Kirke-

gaard (2011). If the top layer was clay, U was set to 6. For

loamy and sandy top layers, this value was set to 4. If clay

occurred in the next layer up to 40 cm, the value was set

to 3.5, otherwise to 2 (Texture data not shown). Flow

between adjacent layers under unsaturated conditions is

defined by two parameters (diffusivity constant, diffusivity

slope), which were parameterized following standard

practice according to soil texture (diffusivity constant:

sand 250; loam 88; clay 40; diffusivity slope: sand 22;

loam: 40; clay 16).

When water content in any layer is below SAT but

above DUL (saturated water flow), the fraction of the

water, which drains to the next deepest layer each day, is

described by the SWCON parameter and is set according

to texture (Sand 0.7; Loam 0.5; Clay 0.3). Measured OC

levels were used to parameterize the model. The amount

of inert OC fraction (Finert) for each layer followed the

convention set by Probert et al. (1998) where soil OC

concentration in the deeper layers is assumed to be inac-

tive and also represents the quantity of Finert in all lay-

ers.

Finally, for every sampled point simulation runs

(n = 135) were carried out based on measured initial

soil N and water content. Zone-specific soil OC and

hydrological soil characterization was used for each sim-

ulation set-up (3 zones at each site) (Fig. 2). Sowing

date, planting density and cultivar choice were the same

for each simulation run within one site and year (see

section 2.3).

Analysis

Observed yields and predicted yields for every core were

grouped according to the zone (dune, mid-slope and swale)

they were located. Averages of the cores located within

these zones are presented. To assess the goodness of fit of

these simulated – measured comparisons, the root mean

square error (RMSE) between predicted and observed data

was calculated as follows:

RMSE ¼ ½ð
X

ðO� PÞ2=nÞ�0:5

where O and P are the paired observed and predicted data

and n is the total number of observations. Additionally, for

comparison, the traditional r2 regression statistic (least-

squares coefficient of determination) forced through the

origin was calculated.

Simulation experiment

To explore the response of the different zones to N-fertili-

zer, a simulation experiment was conducted: For every site

and soil zone (5 sites 9 3 site-specific soil types), long-

term simulations were devised using historical weather data

(01/01/1959 to 31/12/2012) with different N-rates (0, 15,

30, 60, 120 kg ha�1) applied at sowing. Wheat sowing was

triggered by first rainfall within the time from 20th April to

10th July. The common wheat cultivar Yitpi was sown at a

density of 150 plants m�2. Surface organic matter and ini-

tial mineral N (25 kg ha�1) were reset annually on April

1st. After initialization, soil water was not reset to allow fal-

low rainfall (November–April) to influence winter-grown

crops. The first three simulated years (1959–1962) were dis-
carded to avoid the influence of the initial water content in

the first year of simulation. Historical climate data for the

period were obtained from the Silo Patched Point Data Set

(http://www.bom.gov.au/silo).

Results

Soil profiles

The landscape pattern of the Mallee was reflected in the

physical (soil texture and CLL), and soil chemical proper-

ties (OC, S, ESP, electric conductivity, B, Cl) (Table 1,

Figs 1 and 2) of the swale, mid-slope and dune soil types.

There was a dominant trend that the dunes zones had a rel-

atively high proportion of sand, while the swale zones had

a higher clay proportion (Fig. 2). However, across zones

and sites, available P concentration ranged from 22 to

41 mg kg�1, indicating adequate to high P availability as a

result of many years’ fertilizer application, and high

exchangeable K (208–409 mg kg�1). For available S, differ-

ences between zones were observed; for the dunes, S was

below 6 mg kg�1, the critical concentration, at all sites and

almost all soil horizons. At Bimbie and Pinnaroo, higher

values of 10–12 mg kg�1 could be found in the soil layer

below 60 cm. For the mid-slope zones, only Cowangie and

Loxton had values below the critical threshold. The swale

zones had a low S content of 4–6 mg kg�1 in the top soil,

but in the layers below values of 96–233 mg kg�1 were

measured. Only in Cowangie did the swale zone have low S
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values of 4–12 mg kg�1 across soil layers. The lowest values

for OC were found in the dunes (range 0.71 to 0.86 %,

Fig. 2) while the mid-slope zones ranged from 0.82 to

1.15 % and the swale zones had the highest OC content

from 1.08 to 1.3 %. Soil pH CaCl2 was 7.5 to 8.6 across

sites and zones. Soil pH measured in water was about 10–
12 % higher than the pH measured in CaCl2, but showed

the same pattern. Cation exchange capacity (CEC) followed

the trend of OC and S, being lowest in the dune (across

sites and soil horizons: 13 meq/100 g), medium in the

mid-slope (17 meq/100 g) and highest in the swale zone

(24 meq/100 g). Sodicity of the soil, expressed here as

exchangeable sodium percentage (ESP), showed again the

trend that ESP was low in the dune zones, and highest in

the swale zone. However, large differences between sites

existed. The dune zone in Loxton, Cowangie and Carwarp

could be classified as non-sodic soils, even in the subsoil. In

Bimbie and Loxton, this zone was already moderately sodic

in the upper layers, while very strongly sodic in the subsoil

(Table 1). The mid-slope zone only in Bimbie (2–43 %),

Carwarp (1–36 %) and Pinnaroo (13–37 %) could be clas-

sified as very strongly sodic, while the swale zone, at least in

the subsoil, was very strongly sodic, across sites. EC 1 : 5,

Cl and B were higher in the swale, fine textured soils. The

highest B (3.2–29.7 mg kg�1) and Cl (33–499 mg kg�1)

accumulations were found in the swale zone in Pinnaroo,

while the highest EC (0.7–1.4 dS m�1) was in Bimbie.

Cowangie was affected to a lesser extent by these con-

straints in comparison with the other sites. For EC1 : 5 val-

ues above 0.4 dS m�1, for B 10–14 mg kg�1 and for Cl

1000 mg kg�1, constraints in terms of crop water uptake

could be expected. A good relationship between these

parameters and the crop lower limit had been found

(Fig. 1a–d) indicating higher CLL with increasing subsoil

constraints.

The overall and the top layer PAWC was largest at the

five sites in the swale, followed by mid-slope and smallest

in the dune zones (Fig. 2). Although CLL is higher in the

swale zones in comparison with the mid-slope and the

dune zones, the DUL of this zone type was also substan-

tially higher, which led to the overall high PAWC. Despite

this general pattern, the absolute PAWC for each zone type

differs from site to site. For instance, the low constrained

zone in Loxton had a PAWC of 72 mm, while the low con-

strained zone of Cowangie had a PAWC of 134 mm. To

sum up, across sites soil sampling showed a pattern of

increasing OC, PAWC and subsoil constraints from the

dune zones to the swale.

Observed yield performance of the zones and APSIM

validation

In-crop rainfall in 2006 ranged between 78 and 107 mm

representing a season in the lowest deciles of historical

seasonal rainfall and consequently resulting in grain yields

of almost zero in the swale zone at Carwarp and

849 kg ha�1 in the dune zone at Pinnaroo (Fig. 3). In-

crop rainfall in 2007 was relatively better ranging between

117–180 mm with yields ranging from 410 kg ha�1 (low

constrained zone Loxton) to 1986 kg ha�1 (severely con-

strained zone Cowangie) (Fig. 3). Extractible soil water at

sowing (esw-sowing) was lower in 2006 (range 15–
61 mm) than in 2007 (range 42–160 mm). In 2006, the

yield decreased at all sites from the dunes to swales. In

2007 for Bimbie and Carwarp, this trend was again

observed; however, in Loxton and Pinnaroo the mid-slope

Fig. 1 Relationship between measured crop

lower limit and soil chemical properties.
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zones and in Cowangie the swale zone were the highest

yielding. A good relationship was found for observed

yields and the corresponding water supply (which includes

in-crop rainfall plus soil water at sowing) for the mid-

slope and swale zone (r2: 0.68 and 0.67) across sites

(Fig. 4). As shown in Fig. 4 yields were higher for the

dune zone under low water supply.

The relationship between simulated and observed grain

yields (n = 26) is considered good with a RSME of

320 kg ha�1 against an observed mean of 820 kg ha�1

(Fig. 5). Observed yields ranged from 38 to 1986 kg ha�1,

which is reflected in the simulation results (Fig. 5;

r2 = 0.71). As expected with a model that does not account

for other biological constraints such as weeds and disease,

the model predicted slightly higher yield levels than those

observed.

Simulation experiments

In the simulation experiment across all sites, mean yields

when no N-fertilizers were applied were highest in the

mid-slope zones, followed by the swale zone and lowest in

the dune zone (Table 2). However, the swale zones had

greater amplitude of possible yields indicating a higher pro-

duction risk, followed by the mid-slope zones. In the dune

zones, yields were relatively stable across seasons for low

fertilizer application rates.

Overall, no relationship between PAWC and yield could

be detected. In Loxton, for instance the dune zone had a

low PAWC of 72 mm but still had a high average yield of

1916 kg ha�1 at 120 kg N ha�1. In contrast, the swale zone

in Pinnaroo with a PAWC of 160 mm yielded only

1612 kg ha�1 at the same N-rate (Table 2).

Generally, all dune zones showed the strongest mean

response to the 30 kg ha�1 and higher N-application rates

taking all years of simulation into account. The response to

N was progressively lower at higher N-application rates.

The coefficient of variance with higher N-rates increased as

well, indicating a stronger variability in grain yield from

season to season even for the dune zones. Yield at

120 kg ha�1 N-rate was generally the highest in the dune

zones followed by the mid-slope and then by the swale zone

(a) (d) (g) (j) (m)

(b) (e) (h) (k) (n)

(c) (f) (i) (l) (o)

Fig. 2 Plant available water capacity as determined by crop lower limit and drained upper limit for the three designated soil zones at each location.

In addition, soil texture and organic carbon in the top layer are shown.
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(Table 2), while the mid-slope and the swale zones were

less responsive to increasing N-supply.

Comparing the simulated yields at 30 kg N ha�1 vs.

water supply (the sum of extractible soil water at sowing

(esw-sowing) plus in-crop rainfall) showed a good relation-

ship for the swale zone across sites (Fig. 6). Yields were

lower than at the dune zone with water supply being

<200 mm. For such a low water supply, the dune zone was

generally superior in terms of yield performance than the

other zone types. However, with higher water supply when

N becomes more limiting, yield at the dune zone remained

at around 1500 kg ha�1. Only in Cowangie, yield reached

2000 kg ha�1 on the dune. Yields for the mid-slope and

swale, where soil N-supply was higher, reached levels of

3000 kg ha�1 with a water supply above 300 mm.

Esw-sowing for the 30 kg N ha�1 rate increased with

higher summer rainfall (Fig. 7b). It was highest in the dune

zone followed by the mid-slope zone and lowest at the

swale zone for in-fallow rainfall to 200 mm. In case of high

summer rainfall (>200 mm), the mid-slope and the swale

Fig. 3 Observed dry grain yield in relation to

the PAWC. Rain is growing season rainfall.
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zones contain more water at sowing. In-fallow soil evapora-

tion was by far the most important source of water loss

from the system in low-rainfall seasons (<200 mm)

(Fig. 7a). For instance, for 100 mm of rainfall there was a

mean evaporation of 60–90 mm across sites and soil zones.

Generally, in the dune zone, the evaporation was lower

than in the other zone types. However, at high rainfall the

importance of soil evaporation was reduced in relation to

the remaining esw-sowing and drainage and run-off

become more important (Fig. 8). In particular, in the dune

zone the amount of rainfall could exceed the relatively low

PAWC.

Mean evaporation during crop growth (in-crop-es)

across soil zones was highest in Pinnaroo (140 mm), Bim-

bie (121 mm) and Cowangie (120 mm) followed by Car-

warp (113 mm) and Loxton (109 mm) (Table 3). When

in-crop-es was grouped according to in-season rainfall, the

comparison of the means showed strong differences

between seasons (Fig. 7c). Evaporation terms increased

from roughly 60 mm across zones and sites when there was

<100-mm in-season rain to more than 150 mm when there

was more than 250-mm rain. However, the ratio between

in-crop-es and in-crop rainfall declined with increasing

rainfall (Fig. 7c). The zone-specific in-crop-es differs from

site to site; while in Loxton and Carwarp, in-season-es was

on average lowest in the dune zone, it was lowest in Bimbie,

Cowangie and Pinnaroo for the mid-slope zone (Table 3).

However, highest in-crop-es was simulated for the swale

zone, which was also reflected in the relationship between

in-crop rainfall and in-crop evaporation (Fig. 7c).

Water losses from the system other than evaporation,

namely run-off and drainage were important only at higher

rainfall levels (>300 mm) for the swale zone (Fig. 8). For

the dune zones, run-off was of less importance, but drai-

nage was a major pathway of water loss at high rainfall. For

rainfall >300 mm, the mean drainage loss across sites was

substantial (>50 mm).

Discussion

Soil properties

The three soil zones reflected the different soil properties in

a typical Mallee dune–swale landscape. The swale zone was
constrained by subsoil constraints (Table 1) across sites

with high concentrations of ESP, B, Cl and EC reducing

extraction of soil water by crop roots. A good relationship

existed between these soil properties and the CLL (Fig. 1),

which is supported by other studies (Rodriguez et al. 2006,

Hochman and Dang 2007). Despite this limitation, the

swale zones had the highest OC content related to clay con-

tent and the formation of stable clay-organic matter aggre-

gates as reported by Tisdall and Oades (1982) for similar

soils. Due to the finer soil texture, the swale zones had the

highest overall PAWC across sites despite the high CLL.

This was reflected in the evaporation sensitive topsoil layer,

where the PAWC was again highest (with the exception of

Carwarp) in the swale zones (Fig. 2). Contrary to this, the

dune zones had sandy soils with very low OC content (all

below 1 %) and low PAWC. In Pinnaroo, PAWC in the

dune zone was around half that of the swale zone (Fig. 2).

The K and P status in all soils was high due to regular fertil-

ization and was assumed to be non-limiting. S is a highly

mobile nutrient, and due to the low clay content of the

course-textured soils, that is dunes, they are prone to S

Fig. 4 Water supply (extractible soil water at sowing plus in-crop rain-

fall) vs. observed yield (years 2006/2007) for the zones across sites.

Fig. 5 Comparison between predicted and observed grain yield (years

2006/2007).The dotted line represents the 1 : 1 line. The RMSE is

320 kg ha�1 against an observed mean grain yield of 820 kg ha�1.

Regression analysis gave following result: Y = 0.7269x + 142.76 and

R2 =0.71.
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leaching. Therefore in the dunes, S deficiency

(<6 mg kg�1) could occur for higher growth rates

although such symptoms were not observed in the gener-

ally low-rainfall years of the field measurements (Peverill

et al. 1999).

Use of APSIM on constrained soils in a low-rainfall

environment

Setting APSIM up for the constraint soil zones with high

salt and B concentrations is a challenge as it is difficult to

quantify the effect of such constraints on water uptake by

the plant. However, it is acknowledged that subsoil con-

straints affect the ability of the crop to take up water at low

levels of soil moisture (Hochman and Dang 2007). Hoch-

man and Dang (2007) tested an approach modifying the

water-extraction coefficient (kl) in APSIM based on subsoil

constraint indices for Vertisols. Rodriguez et al. (2006) dis-

cussed possible changes to the rooting depth in the simula-

tion set-up due to soil constraints as sodium and Cl.

However, they did not come to a final conclusion about the

best representation of these processes in modelling frame-

works. Whitbread et al. (2015) and Whitbread (unpub-

lished data) showed that for two sites in the Mallee,

determining the lower limit of PAWC by suction plate

(usually then called permanent wilting point) overesti-

mated actual CLL. They found the best match between

observed and predicted yield and soil moisture using the

CLL measured as described by Dalgleish and Foale (1998)

using a rain-out shelter approach. Here, the subsoil con-

straints were assumed to directly influence CLL. This study

supported such an approach as B, Cl, ESP and EC are well

correlated with CLL at the research sites (Fig. 1). In line

with this result, this study used the field-measured CLL as

described in section 2.2 (Fig. 2). Based on the PAWC field

characterization and the simple rule for the setting of Cona

and U, the soil water balance model within APSIM was

parameterized and produced reasonable predictions of

yield (RMSE 311 kg ha�1; Fig. 5). This level of error was

comparable to other studies in this low yielding farming

system (Hochman et al. 2009; 500 kg ha�1). The slight

overprediction by the model under higher rainfall condi-

tions as in 2007 might be due nutrient limitations other

than N or other biological constraints, as the model does

not capture such limitations to growth. However, the vali-

dation exercise showed that the production for the differ-

ent zones can be successfully simulated.

Long-term performance of the different zones based on

crop modelling

In the simulation experiment, across all sites the yield was

lower in the dune zones than in the mid-slope and swale

zones when no N fertilizers were applied (Table 2). Yields

were limited in many seasons by the availability of N, con-

sequently yield variability was less in the dune zone than in

other zones. This finding reflects the limited native N-sup-

ply associated with the low soil OC content (Fig. 2). Con-

sequently, these dune zones showed the strongest response

to fertilizer applications indicating the strong N-limitation

of the sandy dune zones (Table 2). Despite the lower

PAWC of the dune zones, maximum achievable yield at

120 kg ha�1 N-rate was higher than for the other two zone

types. Nevertheless, production risk (indicated by the vari-

ance of the mean; Table 2) increased with N-rates of

120 kg ha�1 also for the dunes to high levels. Therefore,

Table 2 Simulated mean grain yield (kg ha�1) and coefficient of variance (Standard deviation/mean) for different soil zones (D = dune; M = mid-

slope; S = swale) in response to different N-rates based on APSIM (years 1963–2012)

Site Zone

Fertilizer rates (kg N ha�1)

0 15 30 60 120

Bimbie D 456 (0.19) 723 (0.27) 991 (0.37) 1349 (0.50) 1717 (0.66)

M 938 (0.43) 1102 (0.49) 1238 (0.56) 1434 (0.64) 1655 (0.75)

S 723 (0.64) 871 (0.71) 977 (0.75) 1082 (0.85) 1189 (0.96)

Carwarp D 582 (0.11) 900 (0.19) 1182 (0.27) 1602 (0.40) 1979 (0.56)

M 1417 (1.01) 1433 (1.01) 1441 (1.02) 1448 (1.01) 1443 (1.01)

S 1041 (1.08) 1054 (1.08) 1064 (1.09) 1071 (1.09) 1071 (1.10)

Cowangie D 997 (0.11) 1315 (0.13) 1621 (0.18) 2103 (0.29) 2652 (0.43)

M 1839 (0.24) 2063 (0.30) 2163 (0.36) 2365 (0.42) 2664 (0.52)

S 1332 (0.45) 1492 (0.52) 1551 (0.60) 1666 (0.69) 1949 (0.77)

Loxton D 462 (0.19) 784 (0.22) 1097 (0.25) 1524 (0.35) 1916 (0.46)

M 1052 (0.45) 1204 (0.51) 1301 (0.54) 1422 (0.60) 1528 (0.69)

S 684 (0.59) 814 (0.66) 920 (0.72) 1032 (0.80) 1096 (0.92)

Pinaroo D 516 (0.21) 791 (0.27) 1073 (0.34) 1471 (0.49) 1831 (0.62)

M 1206 (0.47) 1420 (0.52) 1548 (0.57) 1719 (0.64) 1956 (0.72)

S 958 (0.51) 1181 (0.56) 1288 (0.65) 1434 (0.76) 1612 (0.86)
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such maximum yield is rather a theoretical construct and

not relevant as an economic yield target for a farmer (Mon-

jardino et al. 2013).

In the region, farmers typically apply 30 kg N ha�1 or

less. Simulated N response was high with a positive linear

relationship found between water supply and yield for

mid-slope and swale zones (Fig. 6). On the dune soils,

the relationship between water supply and yield were

weaker. In high-rainfall years, the mid-slope and swale

zones perform well due to higher nutrient supply capac-

ity of the soils, while in low-rainfall years the dune zones

perform better. This finding is associated with the lower

N-supply, which limits the crop growth rate on the

dunes. In good rainfall years, this led to lower yields than

for the other zones, but in the low-rainfall years, it pre-

vented the crop from being affected by the haying off

phenomena (van Herwaarden et al. 1998). A second rea-

son was that in low-rainfall years evaporation is by far

the major loss of water (Fig. 7). In-crop evaporation was

lower on a sandy soil (dune zone) as it stored less water

in the evaporation sensitive top layer than the fine tex-

tured soils of the mid-slope and the swale zones (Fig. 2

and Fig. 7c, Table 3). In years with low in-fallow rainfall,

the sandy soils of the dunes had the advantage of lower

evaporation as the rainfall drained to deeper layers where

evaporation losses could not occur and thus, the esw-

sowing is usually higher (Fig. 7a and 7b). However, with

higher rainfall drainage becomes more important for the

sandy soils as the PAWC is too low to store the water

(Fig. 8) (Sadras et al. 2003a). Therefore, under these con-

Fig. 6 Water supply (extractible soil water at

sowing plus in-crop rainfall) vs. simulated

mean grain yield (years 1963–2012). The crop

was annually fertilized with 30 kg N ha�1.
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ditions esw-sowing was lower than in the other zones

(Fig. 7b). The simulation analysis showed a complex

interaction between soil type, evaporation, rainfall, overall

PAWC, top layer PAWC and N-supply and its effect on

growth and yield.

To sum up, crop production differs significantly spatially

(site and zone) and seasonally (from year to year) in

response to N-application. This finding suggests that defin-

ing linear relationships between rainfall and attainable yield

is of little use. None of the three zones described in this

study can be generally classified as low performing, rather

the specific seasonal weather conditions define the suitabil-

ity of the zone for cropping. Such results are contrary to

the Western Australian situation reported by Wong and

Asseng (2006), where simulated response to fertilizer was

low on course-textured soils with low PAWC and therefore

recommended such zones for land use change. In their

study, the PAWC was positively related to yield. One rea-

son for this is the very different rainfall patterns between

the two regions of study. In the Western Australian crop-

ping district of their study 75–86 % of rainfall typically falls

between April and October compared to 60–65 % for the

same period in a Mallee district. The peak in rainfall

distribution in West Australia increases the importance of

the storage capacity of a soil to prevent drainage, and

reduces the risk of evaporation losses. Contrary, the more

even distribution of rainfall in the Mallee cause higher

evaporation rates, especially for those soils with high stor-

age capacity (swale zones) in the evaporation sensitive top

layers. This different rainfall pattern makes the extrapola-

tion of findings from Western Australia (Lawes and

Robertson 2011) for zone-specific management of limited

use in the Mallee region of south-eastern Australia.

Another method used in zone-specific management, yield

maps, can be misleading in certain conditions. For exam-

ple, the highest observed yield in this study was found in a

wetter year in the zone at Cowangie with severe subsoil

constraints. A further important point is as widely dis-

cussed in the literature and also here that N-availability

influences attainable yield (van Heerwarden et al., 1998).

Fig. 7 Relationship between (a) in-fallow rainfall and simulated in-fal-

low evaporation, (b) in-fallow rainfall and simulated extractible soil

water at sowing, and (c) in-crop rainfall and simulated in-crop evapora-

tion for each zone averaged across sites. Simulation based on the years

1963–2012 and an annual fertilizer application of 30 kg N ha�1. Simu-

lated data is presented as mean average for in-fallow rainfall, respec-

tively in-crop rainfall <100, <150, <200, >200 mm.

Fig. 8 Mean simulated in-crop drainage and runoff losses for different

rainfall quantities averaged across sites for the three soil zones. Simula-

tion based on the years 1963–2012 and an annual fertilizer application

of 30 kg N ha�1.
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The fact that a higher N-supply can lead to lower yields in

low-rainfall years makes clear that the concept of attainable

yield has to take N-availability into account. Simple yield

models as discussed above define attainable yield indepen-

dently of N-supply. Therefore, we argue to further improve

zone-specific management in this low-rainfall region,

simulation modelling and long-term field trials/on-farm

observation are important to help understand the soil–
weather–management interactions. Finding ways to apply

such information, for example to define trigger points for

management decisions, (Hochman et al. 2009, Mudge and

Whitbread 2010) are therefore future research topics. Based

on the soil survey and the simulation analysis following

recommendations can be given: (i) The dune zones are

normally nutrient limited rather than water limited, espe-

cially by N (section 4.1 and Table 2). Here, additional fertil-

ization (30–60 kg N ha�1) would result in gains in almost

all seasons. Similar results were found by Monjardino et al.

(2013). (ii) The mid-slope zones are the most variable, and

in some years, in-season fertilization will result in high yield

response. Short-term and seasonal climate forecasts are of

specific relevance for managing this zone (Asseng et al.

2012). (iii) The swale zones were poor yielding in dry years,

but may perform well in wet years as they are rarely nutrient

limited. Additional N-fertilization is often not required;

however, in-season decisions can be made on end use, for

example grain or, in very dry years, graze or hay.

Conclusions

The study showed the attainable yield in the low-rainfall

region of south-eastern Australia is highly variable spatially

(soil type) and temporally. Fine textured soils (swale) per-

form well in wet years, supported by the higher soil N-sup-

ply, but yield badly in dry years due to the high

evaporation losses. Thus, PAWC alone is not a good pre-

dictor of crop performance across these soils. Sandy soils

(dune) are generally more nutrient limited than water lim-

ited. Crop-soil models and long-term field observations are

helpful to understand crop–soil–weather interactions and

identify patterns for zone-specific management. Conse-

quently, simpler methods, which ignore soil variability, dif-

ferences in evaporation characteristics, and N- supply are

consequently not recommended for zone-specific manage-

ment support in this region.
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