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Abstract
Barnyard millet (Echinochloa spp.) is an important crop for many 
smallholder farmers in southern and eastern Asia. It is valued for 
its drought tolerance, rapid maturation, and superior nutritional 
qualities. Despite these characteristics there are almost no genetic 
or genomic resources for this crop in either cultivated species [E. 
colona (L.) Link and E. crus-galli (L.) P. Beauv.]. Recently, a core 
collection of 89 barnyard millet accessions was developed at 
the genebank at the International Crops Research Institute for the 
Semi-Arid Tropics (ICRISAT). To enhance the use of this germplasm 
and genomic research in barnyard millet improvement, we report 
the genetic characterization of this core collection using whole-ge-
nome genotyping-by-sequencing. We identified several thousand 
single-nucleotide polymorphisms segregating in the core collection, 
and we use them to show patterns of population structure and 
phylogenetic relationships among the accessions. We determine 
that there are probably four population clusters within the E. colona 
accessions and three such clusters within E. crus-galli. These clusters 
match phylogenetic relationships but by and large do not cor-
respond to classification into individual races or clusters based on 
morphology. Geospatial data available for a subset of samples 
indicates that the clusters probably originate from geographic 
divisions. In all, these data will be useful to breeders working to 
improve this crop for smallholder farmers. This work also serves as 
a case study of how modern genomics can rapidly characterize 
crops, including ones with little to no prior genetic data.

The genus Echinochloa includes 20 species that are 
distributed widely in the warmer parts of the world. 

Barnyard millet is the common name for several Echi-
nochloa species, all of them native to southern or eastern 
Asia. Several of these are aggressive weeds, while two 
are cultivated as cereals: E. crus-galli (L.) P. Beauv. (Japa-
nese barnyard millet) is a temperate grass with awned 
spikelets, is native to Eurasia, and was domesticated in 
Japan some 4000 yr ago; and E. colona (L.) Link (Indian 
barnyard millet) occurs widely in tropical and subtropi-
cal areas with awnless spikelets and was domesticated 
in India (de Wet, 1983). Both cultivated species have two 
subspecies each—colona and frumentacea in E. colona 
and crus-galli and utilis in E. crus-galli—and each sub-
species is further divided into zero to four different races 
(Upadhyaya et al., 2014). Weedy relatives of barnyard 
millets are known to infest farmers’ fields in Japan, India, 
the United States, and other locations (Wanous, 1990). 
More distant relatives include several other cultivated 
plants, including switchgrass (Panicum virgatum L.), fox-
tail millet (Setaria italica subsp. italica), and pearl millet 
[Pennisetum glaucum (L.) R. Br.].

Barnyard millet is mainly grown in India, China, 
Japan, and Korea for human consumption as well as fodder 
(Upadhyaya et al., 2014). The crop is valued for its drought 
tolerance (Dwivedi et al., 2012), short growth period 
(sometimes in as little as 6 wk; Wanous 1990), and superior 
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nutrition value (Saleh et al., 2013). These characteristics 
make it an important supplemental crop for small-scale 
farmers because they can plant and harvest it between 
major crop growing seasons. It can also be used as a substi-
tute crop in emergencies when the major crop fails.

Barnyard millet is also highly nutritious, consisting of 
55% carbohydrate, 11% protein, 3.9% fat, and 13.6% crude 
fiber, with significant amounts of both calcium and iron 
(Saleh et al., 2013). Its fiber and iron contents are higher 
than those of rice, wheat, and other millets, and its low 
glycemic index makes it an ideal food for management of 
diabetes mellitus (Ugare, 2008; Saleh et al., 2013; Sharma 
et al., 2013).These characteristics also make it a good can-
didate for manufactured food products such as baby foods, 
snacks, and dietary foods (Ugare, 2008; Surekha et al., 
2013; Anju and Sarita, 2010; Vijayakumar et al., 2010).

As with most minor crops, there has been very little 
attention and few resources devoted to the study of barn-
yard millet. Nonetheless, it is increasingly recognized that 
these minor crops are an important component of food 
security for smallholder farmers (Nelson et al., 2004; Nay-
lor et al., 2004; Godfray et al., 2010; Varshney et al., 2010). 
The application of modern genomic methods to these 
crops holds the potential to increase food security and 
independence among many of the world’s poorest (Naylor 
et al., 2004; Nelson et al., 2004).

An important part of these resources are well-defined 
core collections of source germplasm. To this end, ICRI-
SAT recently developed a core collection of barnyard 
millet (Upadhyaya et al., 2014) containing 89 accessions 
of the two cultivated species of barnyard millet: E. colona 
and E. crus-galli. These accessions represent 12% of ICRI-
SAT’s entire barnyard millet collection and capture a large 
amount of its phenotypic diversity, but there is no public 
data on their genetic composition. To address this gap, we 
genotyped 95 barnyard millet accessions, including the 
entire core collection, using genotyping-by-sequencing 
(GBS) (Elshire et al., 2011). This resulted in a genomewide 
set of >21,000 single-nucleotide polymorphisms (SNPs) 
segregating across the entire collection and several thou-
sand SNPs segregating within each species.

One challenge of barnyard millet genetics is that all 
members are polyploid. Both E. colona and E. crus-galli are 
usually reported as hexaploids, with 2n = 6x = 54 (Prasada 
Rao et al., 1993; Upadhyaya et al., 2008). However, other 
numbers have been reported (Wanous, 1990 and references 
therein), possibly indicating heterogeneity in the species. 
Total genome size has been estimated by flow cytometry to 
be roughly 1.4 gigabases (Bennett et al., 1998, 2000).

Despite these challenges, we successfully used our SNP 
dataset to perform a comprehensive analysis of the genet-
ics, population structure, and phylogenies of the complete 
barnyard millet core collection. These analyses were done 
both on the collection as a whole and also for E. crus-galli 
and E. colona separately. The specific results should be use-
ful to almost any researcher working on barnyard millet.

Materials and Methods

Plant Materials
All plant materials were taken from the barnyard mil-
let collection available at ICRISAT in Patancheru, India. 
These consisted of the 89 accessions of the barnyard mil-
let core collection (Upadhyaya et al., 2014), along with six 
additional accessions chosen from the ICRISAT gene bank 
(additional samples plus one blank were used to fill out a 
96-well plate). Thus there were a total of 95 accessions: 65 
from E. colona and 30 from E. crus-galli. Passport data for 
all samples is included in Supplemental File S1 and was 
gathered from both Genesys (https://www.genesys-pgr.
org/) and ICRISAT. Seedlings were grown in the green-
house and leaf tissue harvested 10 d after emergence.

DNA Extraction and Genotyping-by-Sequencing
DNA was extracted using modified cetyltrimethylam-
monium bromide (CTAB) methodology (Mace et al., 
2003). Lyophilized DNA was then sent to the Institute 
for Genomic Diversity (Cornell University, Ithaca, New 
York, USA) for genotyping with GBS. Library prepara-
tion and sequencing followed the protocol described 
in Elshire et al. (2011), with ApeKI restriction enzyme 
for genomic digestion. The barcoded samples were then 
pooled in 96-plex and sequenced in three lanes of an 
Illumina HiSeq 2500 (Illumina, Inc.).

Single-Nucleotide Polymorphism Calling
Single-nucleotide polymorphisms were identified using the 
TASSEL-GBS pipeline (Glaubitz et al., 2014) in TASSEL 
v4.3.11, with the TASSEL-UNEAK variant pipeline (Lu et 
al., 2013) in TASSEL v5.0.9 used to align sequencing tags 
for SNP calling. Complete scripts and key files used to call 
SNPs are available in Supplemental File S1. Raw FASTQ 
data is available from the Sequence Read Archive (SRA, 
http://www.ncbi.nlm.nih.gov/sra), accession SRX734221.

Quality filtering was performed primarily using built-
in functions in VCFtools (Danecek et al., 2011), with the 
exceptions of filtering by coverage and heterozygosity. To 
filter by coverage, we first used the “--missing-indv” option 
in VCFtools to generate a report of missingness across 
samples, which was then trimmed in R (R Core Team, 2014) 
to generate a list of individuals that failed the cutoff. These 
individuals were then removed with the “--remove” option 
in VCFtools. Filtering by heterozygosity was similar, except 
that we used TASSEL (Bradbury et al., 2007) to generate the 
report (“–genoSummary site”) and keep only the sites that 
passed the R filter (“–includeSiteNamesInFile”).

All bioinformatics and subsequent analyses were 
performed on an 8-core Intel i7 desktop workstation 
with 32 GB of RAM running Linux Mint 16. All bioin-
formatic scripts used in this study are available in Sup-
plemental File S1. The VCF-formatted files of all SNP sets 
(including a master file of less stringently filtered ones) 
are available in Supplemental File S2.
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Population Structure Analysis
Population structure was determined with fastSTRUC-
TURE (Raj et al., 2014) [github commit f94d4e53ca, 
https://github.com/rajanil/fastStructure]. After choosing a 
clustering level, individual samples were assigned to clus-
ters if they had at least 60% membership in that cluster.

Phylogenetics
Phylogeny for each dataset was determined with PHYLIP 
3.695 (Felsenstein 1989) by maximum parsimony using 
100 bootstrap iterations of all genotypes. The resulting 
phylogenetic trees were merged with SplitsTree4 (Huson 
and Bryant, 2006) into a consensus network using the 
mean edge weight with a threshold of 0.2.

Multidimensional Scaling
To perform multidimensional scaling, SNP datasets were 
converted to distance matrices in TASSEL (Bradbury et 
al., 2007) before applying singular value decomposition 
in Python using “linalg.svd()” in the numpy package 
(van der Walt et al., 2011).

Results

Rapid Genotyping of the Barnyard  
Millet Core Collection
Genotyping-by-sequencing was performed on the 
89-member ICRISAT core collection (Upadhyaya et al., 
2014) plus six additional samples, for a total of 95 unique 
accessions (see Methods for details). Libraries were 
prepped using ApeKI restriction enzyme, both because it 
cuts frequently and because it has a history of perform-
ing well for GBS in many different grass species (Sharon 
Miller, personal communication, 2013). Read depth 
was relatively constant across samples (Fig. 1a), with a 
median depth of 6.84 million reads from each accession.

After assigning reads, SNPs were called using the 
TASSEL-GBS pipeline (Glaubitz et al., 2014). The TASSEL-
UNEAK filter (Lu et al., 2013) was used to align reads in 
the absence of a reference genome. Raw SNP calls were 
filtered to include only sites with 80% coverage across 
samples and minor allele frequencies 0.05, and only 
samples with 25% coverage across the remaining sites.

Limited funding is the defining feature of orphan 
crops, so we investigated the effect of reducing the num-
ber of sequencing runs on the number of final SNPs. The 
results of rerunning our SNP-calling pipeline using only 
one or two flowcells at a time is shown in Fig. 1b. While 
there is a significant increase in SNPs when going from 
one to two flowcells, including all three flowcells has only 
a minor effect on the total SNPs recovered. Most of the 
SNPs that are recovered at higher depth are probably not 
truly new; instead, the increased sequencing depth pushes 
their coverage high enough that they pass filtering instead 
of being removed. Regardless of the exact reason, these 
data suggest that running the barnyard millet samples 
in 96-plex on two flowcells—functionally the equivalent 
of 48-plex in one flowcell—is probably sufficient, at least 

for the filtering level given here. Plots for both higher and 
lower missing data amounts are shown in Supplemental 
Fig. S1; these largely follow the same pattern, and they 
may be useful when considering applications that have 
higher or lower tolerance for missing data. Sequencing 
these samples to greater depth will probably keep giving 
diminishing returns. This also implies that our dataset 
recovers a majority of the SNPs in these samples that are 
accessible via GBS with ApeKI. (See the Discussion for 
suggestions on finding additional SNPs.)

The final SNP counts for our dataset are shown in 
Table 1. After filtering, the complete dataset contains 
21,186 sites across 92 accessions. We also split these 
accessions into the two species based on their population 
structure assignments (see below) and applied the same 
SNP filters. This resulted in 10,816 SNPs across 65 acces-
sions for E. colona and 8217 SNPs across 22 accessions 
for E. crus-galli. The scripts and support files for geno-
typing and analysis are in Supplemental File S1, and all 
SNP datasets are available in Supplemental File S2.

Figure 1. Genotyping statistics. (a) Read depth per individual. 
The number of good 64-base pair tags (sequencing reads) for 
each individual is shown in order of increasing depth. One sam-
ple is not shown because it had <5000 reads. (b) The number 
of single-nucleotide polymorphisms (SNPs) recovered at the end 
of our pipeline as a function of sequencing depth. Even with just 
three flowcells, the number of SNPs recovered has begun to pla-
teau, especially in the individual species’ datasets. Further depth 
would be unlikely to recover more SNPs. (See Supplemental Fig. 
S1 for a similar graph at different filtering stringencies).

Table 1. Single-nucleotide polymorphism (SNP) statistics.

No. 
samples†

Total read 
depth

Median read 
depth

No. filtered 
SNPs

No. 
discriminating 

SNPs

All samples 92 643 M 6.84 M 21186 2579‡

E. colona 65 465 M 6.92 M 10816 1299
E. crus-galli 22 150 M 7.00 M 8217 1444
† The number of samples remaining after applying initial filters.
‡ The discriminating SNPs dataset across all samples was made by combining the discriminating SNPs 
from the two individual species instead of filtering the complete (nondiscriminating) SNP set.
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Dealing with Homeologs
One of the challenges of working with polyploid spe-
cies is that homeologous sequences often align together, 
resulting in many heterozygous calls that are actually 
due to separate (and potentially non-recombining) 
homeologs. This is evident in the site frequency spectrum 
of our filtered SNPs, where the spectra for the individual 
species shows a large excess of allele frequencies near 0.5 
(Fig. 2a). The spectrum across the entire collection does 
not show this pattern, but is instead dominated by SNPs 
that are differentially polymorphic in the two species 
(Fig. 2b); that is, at least one species shows no variation 
among its homeologs, while the other species either has 
variation among them (right and left peaks) or is fixed 
for a different allele (central peak).

We considered assigning copy number values to gen-
otypes based on their read depth, but the values show too 
much spread for us to be confident in the results (Supple-
mental Fig. S2). Since we could not confidently call copy 
number, we took advantage of the fact that barnyard 
millet is mostly self-fertilizing (Potvin, 1991; Dwivedi et 
al., 2012), meaning that very few sites will be genuinely 
heterozygous. This allows us to filter out the sites that 
appear highly heterozygous to enrich for single-copy 
regions of the genome and for sites that have become 
fixed across homeologs. We call the resulting SNP sets 
discriminating SNPs because they should have more 
power to discriminate among the different accessions.

The number of discriminating SNPs that result from 
removing sites with >20% heterozygosity from each dataset 
is shown in Table 1. Note that applying this filter across the 
entire collection would bias the data toward SNPs that are 
monomorphic in E. colona due to its larger representation. 
To avoid this, we first made discriminating SNP sets for 
each species separately, then filtered the combined dataset 

to contain only the sites in either species’ individual sets. 
This will tend to make the two species look more similar to 
each other than the raw data, but since the discriminating 
SNPs still strongly separate the species (compare Fig. 3 and 
Supplemental Fig. S3), the issue is not severe.

Population Structure and Phylogenetic Analysis
After finding quality SNPs by the methods above, we 
analyzed the population structure and phylogenetic rela-
tionships among the samples (Fig. 3). Those interested in 
seeing the effect of removing the homeologous SNPs can 
compare these results with those in Supplemental Fig. S3, 
where the same analyses were run with the entire (non-
discriminating) SNP set.

For population structure, we used the program fast-
STRUCTURE (Raj et al., 2014), an updated version of the 
program STRUCTURE (Pritchard et al., 2000) designed 
to handle large SNP datasets rapidly. While fastSTRUC-
TURE includes a script to identify a range for the opti-
mum number of clusters (K), we found that it always 
selected a K value of exactly 2. This occurred even when 
visual inspection of the results showed apparently better 
splits of the data at different K values (see Supplemental 
Fig. S4). Because of this, we decided to choose the opti-
mal level of K based on how cleanly it separated different 
populations within the data. The choice of clustering 
level in Fig. 3 is thus somewhat arbitrary but nonetheless 
shows good correlation to the phylogenetic analyses. For 
comparison, population divisions at all levels of K from 2 
to 10 are shown in Supplemental Fig. S4.

For the phylogenetic analysis, we used PHYLIP 
(Felsenstein 1989) to calculate maximum parsimony 
trees over 100 bootstrap iterations of each dataset. The 
bootstrap trees were merged with SplitsTree4 (Huson 
and Bryant, 2006) to form a consensus network, which 

Figure 2. Site frequency spectra of the filtered single-nucleotide polymorphisms (SNPs). (a) The site frequency spectrum of the full SNP 
dataset for all samples (black), Echinochloa colona (red), and E. crus-galli (blue). The excess of sites near 0.5 in the two individual spe-
cies is due to homeologous alleles lining up against each other and being called as heterozygous. The jaggedness of the spectra is 
due to the small number of samples. (b) Zoom-in of the combined site frequency spectrum from (a). The three largest peaks correspond 
to SNPs that are segregating differently in the different species; theoretical genotypes are marked below each peak and colored 
according to the lines in (a). (c) Site frequency spectrum for the discriminating SNP dataset. All the high-heterozygosity SNPs have been 
removed, leading to a distribution that is much closer to expectation. Note the slight peak in the combined dataset at ~0.25, indicating 
SNPs that are almost or completely fixed in both species, but for different alleles.
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is similar to a consensus tree but with ambiguous splits 
shown as webbing among the branches. The resulting 
phylogenetic webs are shown in Fig. 3b and are colored 
to match the corresponding fastSTRUCTURE results.

As expected, both structure and phylogenetic analy-
sis clearly separates the two species of barnyard millet 
from each other. Five samples show almost exactly 50% 
membership in each species cluster; these are probably 
hybrids between accessions. Such hybrids are known 
to be sterile (Prasada Rao et al., 1993; Upadhyaya et al., 
2008), so these samples may be the result of seed con-
tamination and were excluded from further analysis.

Based on the population structure results, we split 
the accessions into groups of E. colona and E. crus-galli 
and performed structure and phylogenetic analysis on 
each species separately. We identify four major clusters 
in E. colona and three in E. crus-galli that match the cor-
responding phylogenetic results well.

Multidimensional Scaling to Confirm  
Population Structure
As further confirmation of the population structure in 
each species, we also performed multidimensional scaling 
(MDS) on each dataset (Fig. 4). Multidimensional scaling 
is a dimensionality-reduction technique that tries to reduce 
high-dimensional data to a smaller number of significant 
dimensions. It is extremely similar to principal compo-
nents analysis (PCA), with the main difference being that 
for MDS the raw SNP scores are first converted into a 
matrix of distances between all the samples. This conver-
sion is necessary because PCA does not function on data-
sets where some elements are missing, and the stochastic 
nature of GBS ensures that essentially every dataset will 
have at least some missing data, and frequently quite a bit.

Plotting the first two MDS dimensions of each 
dataset (Fig. 4) shows a clear separation by subpopula-
tion, confirming the cluster divisions mentioned above. 
Interestingly, three E. crus-galli samples cluster far from 

Figure 3. Population structure and phylogeny. (a) Population structure analysis with fastSTRUCTURE (Raj et al., 2014) strongly separates 
the two species of barnyard millet, along with four primary clusters in Echinochloa colona and three primary clusters in E. crus-galli. 
See Supplemental Fig. S4 for the results of clustering at different levels. (b) Phylogenetic analysis closely corresponds with the structure 
analysis, with inferred clusters generally matching major branch points in the phylogeny. Webbing among branches indicates ambigu-
ity where at least 20% of trees shown an alternate arrangement, and scale bars show phylogenetic distance as calculated by PHYLIP 
(Felsenstein, 1989). Phylogenetic webs with full sample names are in Supplemental Fig. S5. For comparison, these same analyses were 
also performed on the full (nondiscriminating) single-nucleotide polymorphism dataset (Supplemental Fig. S3).

Figure 4. Multidimensional scaling of the population datasets. Multidimensional scaling was performed on each of the single-nucleotide 
polymorphism datasets. Points are plotted along the first two dimensions (x and y axes, respectively) and have been colored to match 
their cluster assignment from Fig. 3. The clusters in each set are largely consistent with the population structure from Fig. 3.
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both E. colona and the remaining E. crus-galli samples 
(Fig. 4, left). These three samples correspond to the pale 
blue group from Fig. 3, a monophyletic group with long 
branch lengths. These data imply that this group has a 
relatively high proportion of unique alleles, an important 
consideration when selecting germplasm for breeding.

Origins of Population Structure
We compared the population structure assignments with 
each accession’s passport data (included in Supplemen-
tal File S1) to see how well our analyses match up with 
expected classifications. The division into E. colona and 
E. crus-galli largely matches the existing classification 
(Supplemental Fig. S6a); the small number of exceptions 
may be misclassified or may simply be due to mislabeling 
(at seed storage, DNA preparation, or some other step). 
These classifications also closely mirror the country of 
origin, since E. colona is primarily an Indian crop while 
E. crus-galli is largely from Japan (Supplemental Fig. 
S6b). Additionally, each species has four races repre-
sented among our samples: Intermedia, Laxa, Robusta, 
and Stolonifera for E. colona; and Crus-galli, Intermedia, 
Macrocarpa, and Utilis for E. crus-galli. With the excep-
tion of E. crus-galli race Crus-galli, though, none of them 
appear to cluster phylogenetically (Supplemental Fig. 
S7a). This matches previous observations that the races 
of E. colona do not correspond to geographic, ecological, 
or ethnological divisions, but are instead based on mor-
phology (Prasada Rao et al., 1993). In a similar vein, the 
morphological clusters used to create the core collection 
(Upadhyaya et al., 2014) are also only weakly correlated 
with phylogeny (Supplemental Fig. S7b). Given the very 
low relationship between these races and the population 
genetics, it may be useful to create a new classification 
scheme within each species, either in parallel to or as a 
replacement for the existing race designations.

In contrast, we see a distinct correlation between the 
phylogeny and collection locations (Fig. 5). While only 18 
accessions—all E. colona—have geospatial coordinates 
recording where they were collected, putting these on a 
map of India clearly shows geographic segregation. We do 
not have geospatial data for E. crus-galli, so the origin of 
its population substructure is unknown. Given that it is 
native to Japan, however, it would not be surprising to find 
that its population structure is also geographic in origin 
and probably stems from the different Japanese islands.

Discussion
We have generated a dataset of several thousand SNPs 
for barnyard millet, a neglected, polyploid crop impor-
tant to smallholder farmers in southern and eastern 
Asia. As expected, these SNPs clearly separate the two 
primary species of barnyard millet and reveal different 
levels of population structure and phylogenic relation-
ships within each species.

These data provide a jumping-off point for future 
breeding work in barnyard millet. Probably the 
most important point is simply establishing working 

parameters for GBS in these species, since this opens 
the door to many other analyses that rely on extensive 
genotyping (genomewide association, marker-assisted 
backcrossing, genomic selection, further diversity analy-
sis, etc.). Our population structure and phylogenetic 
analyses can help guide breeders when selecting germ-
plasm, especially since the existing racial designations 
have a poor correlation to the underlying genetics. The 
existence of several potential hybrids (Fig. 3) also is worth 
investigating. Such hybrids are supposed to be sterile 
(Prasada Rao et al., 1993, Upadhyaya et al., 2008), so 
while seed contamination is still the most likely explana-
tion in this case, the possibility that these are actual viable 
hybrids (and thus could be used to bridge germplasm) is 
worth investigating.

While our dataset represents a very useful collection 
of SNPs, there are obviously many more SNPs in these 
samples that we did not identify. Since further sequenc-
ing depth would probably not yield many more SNPs 
(Fig. 1b), anyone seeking more would need to use a dif-
ferent methodology. The most straightforward way would 
be to use a different restriction enzyme when preparing 
the genotyping libraries. A complementary approach 
would be to do whole-genome shotgun sequencing on 
one line to assemble several thousand short contigs. This 
pseudo-reference genome could then be used to align the 
sequence reads, and in our experience even a very rough 
reference can dramatically increase the number of SNPs 
recovered. As yet another option, one could expand the 

Figure 5. Geographic origin of population clusters. Plotting the 
collection location for the Echinochloa colona samples with 
known latitude and longitude coordinates reveals that the clusters 
probably originate from geographic separations. One accession 
is not shown because it was collected in Africa; it clusters with 
the southernmost (yellow) group. No E. crus-galli accessions have 
geospatial coordinates, so any correlation between their popula-
tion structure and geography remains speculative.
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number of samples to include more diverse genotypes. 
Adding more samples would be especially useful because 
it could boost the number of accessions up to the point 
where one could perform a meaningful genomewide 
association for traits. (The current core collection is too 
small to do a useful association analysis, especially if 
done within a single species.)

An important point in our analysis is the relative ease 
and low cost of generating these markers. The total costs 
for DNA extraction, library preparation, and sequencing 
came to less than US$10,000. (All SNP calling was done 
in-house, but had it also been outsourced the price would 
still have been roughly within this range.) This is a frac-
tion of what similar data would have cost 5 yr ago, and it 
brings it into the range where it is now feasible to perform 
genomewide association, genomic selection, and other 
techniques that previously would have been too expensive 
for a neglected crop like barnyard millet. We expect that 
these methods will soon be applied across many other 
orphan crops, and that this will lead to faster and better 
breeding practices to enhance food security, especially 
among smallholder famers.

Supplemental Material
Supplemental Figures S1-S7, Supplemental File S1 (bio-
informatics scripts and support files), and Supplemental 
File S2 (genotype data) are available online.
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