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    Abstract  

  Soil health is represented by its continuous capacity to function as a vital 
living system. Since soil health is the major driving factor for sustainable 
agriculture, it has to be preserved. Microorganisms are an essential and 
integral part of living soil infl uencing various biogeochemical cycles on 
major nutrients such as carbon, nitrogen, sulphur, phosphorous and other 
minerals and play superior role in maintaining soil health than other bio-
logical component of soil. They also have the capacity to suppress soil 
borne pathogens and indirectly help in agricultural productivity. Besides 
contribution of specifi c microbes to soil health by participating on nutrient 
cycles, certain other microbes directly/indirectly promote plant growth 
through the production of phytohormones, enzymes and by suppressing 
phytopathogens and insects. The vast functional and genetic diversity of 
microbial groups including bacteria, fungi and actinomycetes supports in 
all the above ways for soil health. This book chapter gives an outline of 
such microbes and their contribution in promoting soil health and its role 
as soil health indicators.  
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1.1       Introduction 

 Soil, a fi nite and non-renewable resource, sup-
ports numerous terrestrial life forms through its 
critical functions. Soil health is defi ned as ‘the 
continued capacity of soil to function as a vital 
living system, within ecosystem and land-use 
boundaries, to sustain biological productivity, 
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promote the quality of air and water environ-
ments and maintain plant, animal and human 
health’ (Doran and Safl ey  1997 ). In the context 
of sustainable agriculture, soil health is meant for 
crop productivity and protection via the functions 
such as N 2  fi xation and phosphorus (P) solubili-
zation, homeostasis of biogeochemical cycles, 
maintenance of soil structure, detoxifi cation of 
pollutants and suppression of plant pathogens. In 
the absence/ineffi ciency of these functions, the 
soil is regarded as an inanimate entity with min-
erals and chemicals. In addition, soil regenera-
tion through chemical and biological process/
weathering of underlying rock requires geologi-
cal time (Huber et al.  2001 ; Buscot and Varma 
 2005 ). So, maintenance of soil health is crucial 
for sustainable productivity. 

 The following 14 nutrients are vital for a 
proper plant growth and development – macro-
nutrients, which are further divided into (1) struc-
tural nutrients: C, H, O; (2) primary nutrients: N, 
P, K and (3) secondary nutrients: S, Ca, Mg; and 
micronutrients: Fe, B, Cu, Cl, Mn, Mo, Zn, Ni. 
Besides the structural nutrients (which are 
obtained from air and water), the remaining 11 
nutrients are obtained through soil and absorb 
only in some specifi c/available forms as follows: 
N – NH 4  +  (ammonium) and NO 3  −  (nitrate); P – 
H 2 PO 4  −  and HPO 4  −2  (orthophosphate); K – K + ; 
S – SO 4  −2  (sulphate); Ca – Ca +2 ; Mg – Mg +2 ; Fe – 
Fe +2  (ferrous) and Fe +3  (ferric); Zn – Zn +2 , Mn – 
Mn +2 ; Mo – MoO 4  −2  (molybdate); Cu – Cu +2 , 
Cl – Cl − ; B – H 3 BO 3  (boric acid) and H 2 BO 3  −  
(borate). Though many of the soil fl ora and fauna 
are responsible for bringing these nutrients, 
microorganisms are the drivers behind various 
biogeochemical cycles and making the organic 
and inorganic nutrients in their available form to 
the plants (Lucas and Davis  1961 ; Mengel and 
Kirkby  2001 ). 

 Microbes are the largest population that exists 
in soil with a high diversity index. However, the 
microbial groups vary in their number  vs.  bio-
mass. The number (number/g soil) and biomass 
(g/m 2 ) of various microbial groups are, bacteria: 
10 8 ─10 9   vs.  40─500; actinomycetes: 10 7 ─10 8   vs.  
40─500; fungi: 10 5 ─10 6   vs.  100─1,500; algae: 
10 4 ─10 5   vs.  1─50; protozoa: 10 3 ─10 4   vs.  varies 

(Hoorman and Islam  2010 ). Typical soil samples 
have about thousands of individual taxa (also 
known as operational taxonomic units, OTUs) of 
bacteria, archaea and fungi. It is understood from 
some estimates that there can be >106 individual 
species-level OTUs in a single soil sample (Fierer 
et al.  2007 ). During the analysis on genome size 
of microbial community among soil samples by 
re-association of community DNA, it is known 
that, the microbial community genome size 
equals the size of 6,000─10,000  Escherichia coli  
genomes in unperturbed organic soils, and 
350─1,500 genomes in arable or heavy metal 
polluted soils. Still, the rare and unrecovered 
microorganisms may not be included in the anal-
ysis. In contrast, the genomic complexity recov-
ered by culturing methods was less than 40 
genomes. This complexity in microbial commu-
nity genome size denotes the diversity in terms of 
genetic information present in the soil and also 
the overall functional variability (Torsvik et al. 
 1998 ; Øvreås  2000 ). 

 Among the microbial groups, fungus have 
higher tolerance and surviving capacity against 
fl uctuating soil disturbances, untilled or no-till 
soils than bacteria and actinomycetes; though the 
latter groups also have the tolerance (Hoorman 
and Islam  2010 ; Meliani et al.  2012 ). Besides the 
smaller voluminous nature, soil microbes are the 
key drivers of biogeochemical cycles on major 
nutrients such as C, N, S, P and other mineral 
cycles (Bloem et al.  1997 ). They also suppress 
the soil pathogens via various antibiosis com-
pounds and helps in plant disease protection 
(Haas and Défago  2005 ). This book chapter deals 
with role of microbes in improving soil fertility 
and also the available techniques for indicating 
soil microbial activity.  

1.2     Carbon Cycle 

 Carbon (C) in the atmosphere is transferred to 
soil by photosynthetic plants and photo/chemo 
autotropic microorganisms for the synthesis of 
organic materials. Hence, the largest carbon pool 
on the earth’s surface (2,157─2,293 Pg) is/
becomes soil. The reverse process, i.e., 
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 decomposition of organic material built in plants 
and microbes was carried out by organic C utiliz-
ing heterotropic microorganisms as a substrate 
for their metabolism and energy source. The 
remaining C is liberated as metabolites or CO 2  to 
the atmosphere (Prentice et al.  2001 ). The decom-
position product termed as soil organic carbon 
(SOC) is the largest pool within the terrestrial C 
cycle with an annual turnover of about 60 Gt 
(Schlesinger  1997 ). During the SOC formation, 
the organic materials were either mineralized to 
CO 2  or humifi ed. Since the SOC affects plant 
growth by serving as energy source and by infl u-
encing nutrient availability through mineraliza-
tion, it is one of the most important constituents 
of the soil. 

 It is understood that microbes transfer the C 
primarily for their survival. Under oxic condi-
tions, i.e., in surface of soil and oxic layers of 
wetland systems, aerobic methane-oxidizing bac-
teria play the role (Chistoserdova et al.  2005 ; 
Gupta et al.  2013 ), whereas under waterlogged 
anoxic soils, CO 2  is reduced by hydrogenotropic 
archaea and methoanogenic bacteria (Lu and 
Conrad  2005 ; Trumbore  2006 ). Typically micro-
bial C accounts for a minimum of 100─1,000 μg 
g −1  in arable soils and a maximum of 500─10,000 
μg g −1  in forest soils with the intermittent values 
in other ecosystems such as grasslands and semi- 
arid regions (Kandeler et al.  2005 ). Besides the 
considerable variations, microbial biomass C 
generally accounts for about 0.9─6 % of total 
organic C with an indirect relationship for 
increasing soil depth. 

 Formation of soil organic matter (SOM), a 
major fraction containing SOC is aided by the 
decomposition process through various lytic 
enzymes including, amylase, glucosidase, prote-
ases, cellulase, chitinase and phenol oxidase. 
These enzymes convert the complex macromol-
ecules into low molecular weight compound for 
the ready assimilation of microbial components 
or for their transformation into CO 2  for energy 
(Burns and Dick  2002 ). Though the enzymes 
were released from plants/animals/microorgan-
isms, the latter are major contributors (Tabatabai 
 1994 ). Among the microbial groups, fungi are 
reported to have higher enzyme activity than bac-

teria (Baldrian et al.  2010 ). Role of these lytic 
enzymes in maintaining soil health is previously 
reviewed by Das and Varma ( 2011 ) and hence a 
brief note on some essential enzymes is described 
here.

    Amylase:  Starch hydrolyzing enzyme breaks the 
complex polysaccharides and releases low 
molecular weight simple sugars which acts as 
an energy source for microbes (Rahmansyah 
and Sudiana  2010 ) and it is confi rmed by the 
positive correlation between as enzyme activ-
ity and SOM (Kujur et al.  2012 ).  

   Cellulase:  Cellulose in plant debris is degraded 
by a group of enzymes called cellulases into 
glucose, cellobiose and high molecular weight 
oligosaccharides. Soil fungus is the major 
contributors of this enzyme activity. Report of 
Arinze and Yubedee ( 2000 ) supports this by 
documenting negative correlation between 
increasing fungicide concentration in agricul-
tural soils and cellulase activity. Previous 
studies by Vincent and Sisler ( 1968 ) and Atlas 
et al. ( 1978 ) also documented the same effects.  

   Chitinase:  Chitin is a major component of fungal 
cell wall, exoskeleton of insects and many 
arthropods. As already quoted, the higher fun-
gal biomass present in soils will be degraded 
by the chitinases after the cell death with the 
release of simple organic molecules. Besides 
contributing for nutrient cycling, it serves 
majorly for the control of soil borne fungal 
phytopathogens such as  Sclerotium rolfsii  and 
 Rhizoctonia solani . This indirectly helps in 
increasing plant growth and yield (El-Tarabily 
et al.  2000 ; Sindhu and Dadarwal  2001 ).  

   Oxidase:  In contrast to the hydrolytic enzymes, 
oxidases were produced for a variety of func-
tions including ontogeny, defence and the 
acquisition of C and N by microorganisms 
(Sinsabaugh  2010 ). Representative of these 
enzymes include fungal laccases and prokary-
otic laccase-like enzymes (Baldrian  2006 ; 
Hoegger et al.  2006 ).  

   Dehydrogenase:  It is related during microbial 
respiration, where it oxidizes soil organic mat-
ter by transferring protons and electrons from 
substrates to acceptors and the activity 
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depends on soil type and soil air–water condi-
tions (Wolińska and Stępniewska  2012 ; 
Kumar et al.  2013 ).    

 Sequential changes in climatic conditions and 
related ecosystem factors in the current situation 
affect all of the nutrient cycles. Hence, the 
research trend has been directed towards (1) 
effect on climate change including seasonal vari-
ations, elevated CO 2  and long-term climate 
change disturbances (Durán et al.  2014 ; Haugwitz 
et al.  2014 ); (2) effect of fertilizers (Strauss et al. 
 2014 ), soil amendments (Anderson et al.  2011 ) 
on long-term (Tyree et al.  2006 ) and short-term 
scales (Tyree et al.  2009 ) and (3) effect of SOM 
(Schmidt et al.  2011 ) etc. It is understood that, 
though the importance of soil microorganisms 
for global C cycling is well known; only few 
research attempts have been made to evaluate the 
chemical and microbiological views of C cycling 
(Kandeler et al.  2005 ).  

1.3     Nitrogen Cycle 

 Nitrogen (N), an essential element for the synthe-
sis of amino acids and nucleotides is required by 
all forms of life in large quantities. It is also 
involved in several respiratory energy metabo-
lisms in which N compounds may serve as either 
oxidant or reductant. Atmosphere is the largest 
reservoir of N (78 %) in the form of triple bonded 
N 2  gas, though it is not freely available to most 
living organisms. It is accessible only by N 2  fi x-
ing bacteria and archaea which pave the way for 
other organisms to use the fi xed N for its incorpo-
ration into their biomass. This fi xed N constitutes 
less than 0.1 % of the N 2  pool and is able to limit 
the primary production in both terrestrial and 
marine ecosystems. Within the organisms, N 
exist in most reduced forms and during the cell 
lysis it is nitrifi ed to nitrate which in turn denitri-
fi ed to N 2  gas. So, a balanced N cycle requires the 
dual action of assimilatory (N fi xation and incor-
poration into biomass) and dissimilatory (recy-
cling of fi xed nitrogen to N 2 ) transformations 
(Vitousek and Howarth  1991 ; Canfi eld et al. 
 2010 ). 

 The fi rst step in N cycle, assimilation, i.e., N 
fi xation (also known as biological nitrogen fi xa-
tion, BNF) is aided by a group of bacteria called 
diazotrophs including cyanobacteria, green sul-
phur bacteria, Azotobacteraceae, rhizobia and 
 Frankia  at various ecosystems in which the for-
mer three occurs by/through non-symbiotic pro-
cess and the latter two through symbiotic process. 
BNF occurs through a cascade of reactions 
involving complex enzymes systems and 
accounts for about 65 % of N currently used in 
agriculture (Thamdrup  2012 ; Peoples et al. 
 1995 ). Major quantity of N fi xed under the con-
trol of legume–rhizobia is harvested as grains. 
The left out N in the soil, roots and shoot residues 
supports the succeeding crops for N supply. 
Hence legume–rhizobial symbiosis substantially 
reduces the N requirement from external sources 
(Bhattacharyya and Jha  2012 ). Crops like wheat, 
rice, sugarcane and woody species also have the 
capacity to fi x atmospheric N using free living or 
associative diazotrophs. However, the contribu-
tion of legume–rhizobia symbiosis (13–360 kg N 
ha −1 ) is far greater than the non-symbiotic sys-
tems (10–160 kg N ha −1 ) (Bohlool et al.  1992 ). 
Review of Herridge et al. ( 2008 ) on global N 2  
fi xation estimated from FAO databases and other 
experimental reports also indicates the higher 
contribution of legume–rhizobia than other sys-
tems in N fi xation (Table  1.1 ). However, N fi xa-
tion effi ciency of legumes depends on the host 
genotype, rhizobial effi ciency, soil conditions, 
and climatic factors (Belnap  2003 ). Difference in 
N fi xation effi ciency of various legumes is shown 
in Table  1.2 .

    BNF is an energy demanding process through 
which atmospheric N is converted to plant usable 
organic N and plays an important role in the N 
cycle. This can be understood by the complexity 
of the enzyme nitrogenase, a major enzyme 
involved in the nitrogen fi xation, which has two 
components – dinitrogenase reductase, the iron 
protein and dinitrogenase (metal cofactor). The 
iron protein provides the electrons with a high 
reducing power to dinitrogenase which in turn 
reduces N 2  to NH 3 . Based on the availability of 
metal cofactor, three types of N fi xing systems 
viz. Mo-nitrogenase, V-nitrogenase and 
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Fe-nitrogenase were documented. Complexity of 
nitrogen fi xation can be further understood by 
participation of multiple gene clusters as follows: 
(1) nodulation (including nodA - acyltransferase, 

 nodB- chitooligosaccharide deacetylase, 
 nodC-  N- acetylglucosaminyltransferase,  nodD- 
 transcriptional regulator of common nod genes, 
 nodPQ ,  nodX ,  nofEF ,  nodIJ- Nod factors trans-
port,  NOE- synthesis of Nod factors substituents, 
 nol  genes - several functions in synthesis of Nod 
factors substituents and secretion); (2) nitrogen 
fi xation (including  nifA, nifHDK- nitrogenase, 
 fi xLJ, nifBEN- biosynthesis of the Fe-Mo cofac-
tor,  fi xK- transcriptional regulator,  fi xABCX- 
 electron transport chain to nitrogenase, 
 fi xGHIS- copper uptake and metabolism, fdxN - 
 ferredoxin and  fi x - NOPQ- cytochrome oxidase) 
and (3) other essential elements (including  hup- 
 hydrogen uptake,  exo- exopolyssacharide produc-
tion,  gln- glutamine synthase,  nfe- nodulation 
effi ciency and competitiveness,  dct-  dicarboxylate 
transport,  ndv-β -1,2 glucan synthesis,  pls- 
 lipopolysaccharide production) (Laranjo et al. 
 2014 ). 

 It is a well-known fact that rhizobia belong to 
the families Rhizobiaceae (excluding the  Frankia  
sp.), Bradirhizobiaceae and Phyllobacteriaceae. 
Rhizobia have a unique association with root nod-
ules of leguminous plants and induce plant growth 
in many ways. They also have capacity to induce 
plant growth of non-leguminous plants (Mehboob 
et al.  2012 ). The number of species reported in 
Rhizobiaceae family increased considerably from 
8 in 1980 to 53 in 2006. This drastic increase was 
mainly due to dispersion of leguminous plants to 
new geographical locations. The other possible 
reasons could be: (1) only 57 % of 650 genera of 
leguminous plants have been studied for nodula-
tion and nitrogen fi xation, and (2) recent advance-
ments in the taxonomic research with the aid of 
specifi c molecular tools (Willems  2006 ). Besides 
its role in effi cient N fi xation, they have multiple 
plant growth promoting traits such as mineral 
enhancing capacity, phytohormone production and 
alleviating biotic and abiotic stress (Gopalakrishnan 
et al.  2014a ). All these help in developing formula-
tion of rhizobial inoculants to achieve substantial 
increases in legume nodulation, grain and biomass 
yield, nitrogen fi xation and post-crop soil nitrate 
levels for succeeding crops (GRDC  2013 ). It is 
already reported that, inoculation of soybean with 
rhizobial inoculants showed substantial increases 

   Table 1.1    Comparison of symbiotic and non-symbiotic 
N fi xation in agricultural systems   

 Agent 
 Agricultural 
system 

 Area 
(Mha) 

 Crop N 
fi xed (Tg/
year) 

 Legume–rhizobia  Crop (pulse 
and oilseed) 
legumes 

 186  21 

 Pasture and 
fodder 
legumes 

 110  12–25 

 Azolla- 
cyanobacteria 

 Rice  150  5 

 Endophytic, 
associative & 
free-living 
bacteria 

 Sugar cane  20  0.5 

 Crop lands 
other than 
used for 
legumes and 
rice 

 800  <4 

 Extensive, 
tropical 
savannas 
primarily 
used for 
grazing 

 1390  <14 

  Source: Herridge et al. ( 2008 )  

   Table 1.2    Comparison data for N fi xation effi ciency of 
various legumes   

 Legume 
 Shoot N 
(Tg)a 

 Crop N 
(Tg)b  %Ndfa 

 Crop N 
fi xed 
(Tg)c 

 Common 
bean 

 1.03  1.45  40  0.58 

 Cowpea  0.27  0.37  63  0.23 

 Chickpea  0.48  0.96  63  0.60 

 Pea  0.65  0.90  63  0.57 

 Lentil  0.24  0.33  63  0.21 

 Faba bean  0.27  0.38  75  0.29 

 Groundnut  2.16  3.03  68  2.06 

 Soybean  16.11  24.17  68  16.44 

  Source: Herridge et al. ( 2008 ). %Ndfa – Percentage of 
plant N derived from N 2  fi xation 
  a Using %N shoots of 3.0 % for soybean, 2.3 % for ground-
nut, 2.2 % for fababean and 2.0 % for the remainder 
  b Multiplying shoot N by 2.0 (chickpea), 1.5 (soybean) and 
1.4 (remainder) to account for below-ground N 
  c Crop N × %Ndfa  
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in nodulation, grain and biomass yield and N fi xa-
tion (Thuita et al.  2012 ). 

 Besides the rhizobia, the associative and free- 
living nitrogen fi xing bacteria were also formu-
lated and commercialized as biofertilizers. The 
genus  Azospirillum , an associative N fi xing bac-
teria comprises nearly 15 species:  A. lipoferum, 
A. brasilense, A. amazonense, A. halopraeferans, 
A. irakense, A. largimobile, A. dobereinerae, A. 
oryzae, A. melinis, A. canadense, A. zeae, A. 
rugosum, A. palatum, A. picis  and  A. thiophilum . 
Reis et al. ( 2011 ) also reported for its multiple 
plant growth promoting traits. The next impor-
tant genus is  Azotobacter , a free-living nitrogen 
fi xer which comprises of seven species:  A. 
chroococcum, A. vinelandii, A. beijerinckii, A. 
paspali, A. armeniacus, A. nigricans  and  A. 
salinestri  (Jiménez et al.  2011 ). Besides the N 
fi xing capacity, this genus has the history of more 
than 35 years in promoting plant growth through 
multiple phytohormone production, enzymes, 
enhanced membrane activity, proliferation of the 
root system, enhanced water and mineral uptake, 
mobilization of minerals, mitigation of environ-
mental stress factors, and direct and indirect bio- 
control against numerous phytopathogens 
(Bashan and de-Bashan  2010 ). 

 The N fi xed in the form of ammonium during 
assimilation process, is further dissimilated by 
two-step microbial process, i.e., nitrifi cation (the 
aerobic oxidation of ammonium to nitrite and 
then to nitrate) and denitrifi cation (the respiratory 
anaerobic reduction of nitrate via nitrite, nitric 
oxide, and nitrous oxide to N 2 , coupled with the 
oxidation of organic matter, hydrogen, or reduced 
iron or sulphur species) (Simon  2002 ). 
Nitrifi cation is further carried out by two sets of 
microbial groups: (1) ammonia oxidizers (nitrosi-
fyers) which convert ammonia to nitrite by the 
activity of ammonia monooxygenase, e.g. 
 Nitrosomonas, Nitrosospira  and  Nitrosococcus ; 
and (2) nitrite oxidizers (the true nitrying bacte-
ria) which convert nitrite to nitrate by the activity 
of nitrite oxidoreductase, e.g.  Nitrobacter  and 
 Nitrococcus  (Vaccari et al.  2006 ). 

 Though the physiology of nitrogen fi xation 
process is reasonably well characterized, still 
research studies on the phylogenetic diversity of 

rhizobial species in the context of common core 
symbiotic genes (Masson-Boivinemail et al. 
 2009 ) and invasive mechanisms behind the sym-
biotic process (Kiers et al.  2003 ) are going on. 
However, the understanding of ecological con-
trols on N fi xation is sparse (Vitousek et al.  2002 ) 
and it is essential for developing a commercial 
microbial inoculants. Current research trend is 
looking over the effect of various environmental 
factors that limit N fi xation, such as soil moisture 
defi ciency, osmotic stress, extremes of tempera-
ture, soil salinity, soil acidity, alkalinity, nutrient 
defi ciency, overdoses of fertilizers, pesticides and 
contaminants (Vance  2001 ; Galloway et al.  2004 ; 
Mohammadi et al.  2012 ; Peoples et al.  2012 ).  

1.4     Sulphur Cycle 

 The sulphur (S) present in soil (>95 % of total S) 
is in the bound form with organic molecules, and 
it is not directly available to the plants, i.e., inor-
ganic S which constitutes about only 5 %. This 
minimal part of available S in agricultural soils 
leads to S defi ciency symptoms in plants (Schnug 
and Haneklaus  1998 ). Besides the contribution of 
plant and animal-derived organic S,  in situ  syn-
thesis is also observed, which is mainly mediated 
by microbial process via immobilization of inor-
ganic S to organic S, interconversion of various 
organic S forms, mineralization of inorganic sul-
phur in order to support plant growth. Rhizospheric 
microbes are the major players in allowing plants 
to access soil organosulphur (Kertesz  1999 ). 
Besides the mineralization and immobilization, 
oxidation and reduction reactions also infl uence S 
cycling. Oxidation of elemental S and inorganic S 
compounds to sulphate is carried out by chemoau-
totrophic ( Thiobacillus  sp.,  T. ferrooxidans  and  T. 
thiooxidans ) and photosynthetic (Green and pur-
ple bacteria,  Chlorobium  and  Chromatium .) bac-
teria. Besides this, heterotrophic bacteria such as 
 Bacillus, Pseudomonas , and  Arthrobacter , fungi 
such as  Aspergillus  and  Penicillium  and some 
actinomycetes are also reported to oxidize sul-
phur compounds. The process of sulphate/sulph-
uric acid formation has the following advantages: 
(i) it is the anion of strong mineral acid (H 2 SO 4 ) 
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which can render alkali soils fi t for cultivation by 
correcting soil pH; and (ii) solubilize inorganic 
salts containing plant nutrients and thereby 
increase the level of soluble P, K, Ca, Mg, etc. for 
plant nutrition. Dissimilatory sulphate reduction 
also occurs in order to balance the contents, where 
sulphate-reducing bacteria such as  Desulfovibrio, 
Desulfatomaculum  and  Desulfomonas  play the 
key roles through the enzyme activity of desulfu-
rases/bisulphate reductase. Among them, 
 Desulfovibrio desulfuricans  can reduce sulphates 
at rapid rate in waterlogged/fl ooded soils, while 
 Desulfatomaculum  – a thermophilic obligate 
anaerobes – can reduce sulphates in dry land soils 
(Tang et al.  2009 ). Though many studies have 
been conducted to evaluate the role of microbes in 
S cycle, now the research focus has been moved 
in to deal with enzymes, organisms, pathways, 
comparative approaches, symbiosis, and environ-
ments factors related to the S nutrition (Klotz 
et al.  2011 ).  

1.5     Phosphorous Cycle 

 Phosphorous (P) is a key component of nucleic 
acids, energy molecule ATP and membrane com-
ponent phospholipids. P accounts for about 
0.2─0.8 % of the plant dry weight, but only 0.1 % 
of this P is available for plants from soil (Zhou 
et al.  1992 ). The P content of agricultural soil 
solutions are typically in the range of 0.01─3.0 mg 
P L −1  representing a small portion of plant require-
ments. The remaining must be obtained through 
intervention of biotic and abiotic processes where 
the phosphate solubilizing activity of the microbes 
has a role to play (Sharma et al.  2013 ). Soil 
microbes help in P release to the plants that absorb 
only the soluble P like monobasic (H 2 PO 4  − ) and 
dibasic (H 2 PO 4  2− ) forms (Bhattacharyya and Jha 
 2012 ). Many bacteria ( Pseudomonas  and 
 Bacillus ) (Rodriguez and Fraga  1999 ), fungi 
( Aspergillus, Penicillium  and  Trichoderma ) 
(Mittal et al.  2008 ) and actinomycetes 
( Streptomyces  and  Nocardia)  (Tallapragada and 
Seshachala  2012 ) are noticed for P solubilizing 
capacity and enhancement of plant growth. This is 
aided by the synthesis of protons and organic 

acids, the signifi cant contributors for solubiliza-
tion of metal compounds though the excretion of 
other metabolites, siderophore also contribute to 
the solubilization process (Sayer et al.  1995 ). Low 
molecular organic acid – 2-ketogluconic acid – 
with a P-solubilizing ability has been identifi ed in 
 R. leguminosarum  (Halder et al.  1990 ) and  R. 
meliloti  (Halder and Chakrabarty  1993 ). 
Mineralization of organic P takes place by several 
enzymes of microbial origin, such as acid phos-
phatases (Abd-Alla  1994 ), phosphohydrolases 
(Gügi et al.  1991 ), phytase (Glick  2012 ), phos-
phonoacetate hydrolase (McGrath et al.  1998 ), 
D-α-glycerophosphatase (Skrary and Cameron 
 1998 ) and C-P lyase (Ohtake et al.  1996 ). Other 
mineral elements also turn into their available 
form by any of the above mechanism.  

1.6     Suppression of Soil Borne 
and Other Phytopathogens 

 Soil health is not only based on abundance and 
diversity of total soil microbes but also on high 
population of benefi cial organisms. Incidence 
and severity of root diseases is an indirect assess-
ment of soil health (Abawi and Widmer  2000 ). 
Certain rhizospheric microorganisms are known 
to have antagonistic activities against soil borne 
and other phytopathogens. This may be achieved 
by lytic enzymes cellulase, chitinase, protease 
and β-1, 3-glucanase which either induces direct 
suppression of plant pathogens or indirectly by 
enhancing the host plant resistance. Some oligo-
saccharides derived from fungal cell wall break-
down contribute to indirect mechanism (Pliego 
et al.  2011 ; Kilic-Ekici and Yuen  2003 ). Role of 
the genus  Pseudomonas  in disease suppression is 
reviewed by Haas and Défago ( 2005 ) in the con-
text of antifungal antibiotic production, induction 
of systemic resistance in the host plant or inter-
ference on fungal pathogenicity factors. 
Mycorrhizal associations are one among them 
which are found in all ecological situations 
including normal cropping systems and in natural 
ecosystems. Among them arbuscular mycorrhi-
zas (AM) are the most common (Harley and 
Smith  1983 ; Gianinazzi and Schüepp  1994 ), but 
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the excellency depends on its pre-establishment 
and extensive development on plant roots before 
the pathogen attack. Still, AM’s broad-spectrum 
inhibition was noticed against pathogens such as 
 Aphanomyces, Chalara, Fusarium, 
Gaeumannomyces, Phytophthora, Pythium, 
Rhizoctonia, Sclerotium  and  Verticillium  (Azcón- 
Aguilar and Barea  1996 ). Another soil fungus 
 Trichoderma , a well-known avirulent plant sym-
biont, characterized as biocontrol agent against 
broad range of phytopathogens works via compe-
tition, mycoparasitism, induced resistance, anti-
biotic and enzyme production. Beside this, it acts 
as plant growth promoting agents (Howell  2003 ; 
Harman et al.  2004 ). Others such as  Bacillus, 
Paenibacillus  and  Streptomyces  were also found 
to have inhibitory activity against soil borne and 
other phytopathogens (Cao et al.  2011 ; Köberl 
et al.  2013 ). A list of available commercial for-
mulations of these microbes has been summa-
rized by Junaid et al. ( 2013 ).  

1.7     Indicators of Soil Health 

 It is understood from the literature that soil health 
is the result of continuous conservation and deg-
radation processes in an ecosystem with the 
unique balance of chemical, physical and bio-
logical (including microbial) components. So, 
evaluation of soil health requires indicators of all 
these components. Since microbes quickly 
respond to changes in the soil ecosystem and vice 
versa, they are the excellent indicators of soil 
health. Changes in microbial populations or 
activity can precede detectable changes in soil 
physical and chemical properties, thereby pro-
viding an early sign of either soil improvement or 
an early warning of soil degradation (NERI 
 2002 ). The techniques were improved on the 
basis of the continuous identifi cation and docu-
mentation of microbial processes. Some of the 
analytical and molecular techniques available are 
summarized in Table  1.3 .

   Table 1.3    Biological, physical and chemical indicators used for determining soil health   

 Indicator  Analytical techniques  Molecular techniques 

 Microbial biomass  Direct microscopic counts  Fluorescence microscopy 

 Chloroform fumigation  Computerized image analysis 

 SIR  Soil DNA estimation 

 CO 2  production  FISH 

 Microbial quotient 

 Fungal estimation 

 PLFA 

 Microbial activity  Bacterial DNA synthesis  RNA measurements using 
RT-PCR  Bacterial protein synthesis 

 CO 2  production  FISH 

 Carbon cycling  Soil respiration  SIP 

 Metabolic quotient (qCO 2 )  FISH 

 Decomposition of organic matter 

 Soil enzyme activity 

 Nitrogen cycling  N-mineralization  SIP 

 Nitrifi cation  FISH 

 Denitrifi cation 

 N-fi xation 

 Biodiversity and microbial 
resilience 

 Direct counts  – 

 Selective isolation plating 

 Carbon and nitrogen utilization patterns 

 Extracellular enzyme patterns 

 PLFA 

(continued)
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1.8        Work at ICRISAT 

 Microbes play positive roles in plant growth pro-
motion in addition to its direct or indirect partici-
pation in the nutrient cycles. These are called 
plant growth promoting (PGP) microbes which 
reside in rhizosphere/rhizoplane and promotes 
plant growth: (1) by using their own metabolism 
(solubilizing phosphates, producing hormones or 
fi xing nitrogen) or directly affecting the plant 
metabolism (increasing the uptake of water and 
minerals), enhancing root development, increas-
ing the enzymatic activity of the plant or helping 
other benefi cial microorganisms to enhance their 
action on the plants; and (2) by suppressing plant 
pathogens (Pérez-Montano et al.  2014 ). 
Representative genera are  Bacillus, Pseudomonas, 
Trichoderma, Rhizobium, Bradyrhizobium, 
Sinorhizobium, Mesorhizobium  and  Streptomyces  

(Vessey  2003 ). Many reviews were periodically 
available on these PGP microbes (Loon  2007 ; 
Bloemberg and Lugtenberg  2001 ; Saharan and 
Nehra  2011 ; Bhattacharyya and Jha  2012 ). So 
this book chapter just gives a glimpse on those 
and the related studies conducted by our research 
group. 

 ICRISAT has identifi ed over 1,500 microbes 
including bacteria and actinomycetes, isolated 
from various composts and rhizospheric soil, in 
which at least, one out of six has documented 
either single or multiple agriculturally favourable 
traits. Our research group has a collection of 59 
PGP bacteria and actinomycetes isolated from 
various herbal vermi-composts and organically 
cultivated fi elds with documented PGP traits  in 
vitro  and also at fi eld conditions (Gopalakrishnan 
et al.  2014b ). PGP bacteria such as  Pseudomonas 
plecoglossicida, P. monteilii, Brevibacterium 

 Indicator  Analytical techniques  Molecular techniques 

 Genetic and functional 
biodiversity 

 –  DGGE 

 TGGE 

 T-RFLP 

 mRNA diversity using RT-PCR 

 BIOLOGTM assay 

 Microbial resilience  –  Equitability (J) index 

 Bioavailability of contaminants  Plasmid-containing bacteria  RNA measurements 

 Antibiotic-resistant bacteria  Geochemical indicators 

 Physical and chemical properties  Bulk density  – 

 Soil physical observations and estimations 

 pH 

 EC 

 CEC 

 Aggregate stability and soil slaking 

 Water holding capacity 

 Water infi ltration rate 

 Macro/micronutrient analysis 

 SOM lipid analysis  –  PLFA(GC-MS) 

 SOM humic substances analysis  –  Non-destructive techniques: 

 15 N-NMR, 13C NMR 

 UV/Vis and IR spectroscopy 

 Destructive techniques: 

 Pyrolysis-GC-MS 

 Chemolysis-GC-MS 

  Source: Arias et al. ( 2005 )  

Table 1.3 (continued)
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antiquum, B. altitudinis, Enterobacter ludwigii  
and  Acinetobacter tandoii  isolated from rhizo-
spheric soil of system of rice intensifi cation (SRI) 
fi elds has documented  in vitro  PGP traits and also 
under fi eld conditions on rice. Enhanced growth 
performance was observed via increased tiller 
numbers, panicle numbers, fi lled grain numbers 
and weight, stover yield, grain yield, total dry 
matter, root length, root volume and root dry 
weight (Gopalakrishnan et al.  2012 ). Similar type 
of enhanced growth performance on rice by acti-
nomycetes such as  Streptomyces  sp ., S. cavisca-
bies, S. globisporus subsp. caucasicus, S. 
griseorubens  is also recorded. In addition, up- 
regulation of PGP genes such as indole acetic 
acid and siderophore producing genes were doc-
umented (Gopalakrishnan et al.  2014c ). A PGP 
bacterium  Pseudomonas geniculata  IC-76 
showed its capacity on chickpea under fi eld con-
ditions by enhanced plant growth performance 
and also agronomic performance via increased 
nodule number, nodule weight, pod number, pod 
weight, seed number and seed weight 
(Gopalakrishnan et al.  2014d ). 

 Besides increasing plant growth, they signifi -
cantly enhanced rhizospheric total nitrogen 
(8─82 %), available phosphorous (13─44 %) and 
organic carbon (17─39 %). Production of lytic 
enzymes such as cellulase, chitinase, lipase and 
protease by these microbes (Table  1.4 ) is an addi-
tional evidence for the enhanced soil organic car-
bon and nitrogen contents (Gopalakrishnan et al. 
 2014b ,  2014c ). Analysis of soil health microbial 
indicators recorded enhanced microbial biomass 
carbon (23─48 %), microbial biomass nitrogen 
(7─321 %) and dehydrogenase activity 
(14─278 %) on experimental plots over the un-
inoculated control during our fi eld studies on crops 
such as rice (Gopalakrishnan et al.  2012 ;  2013 ; 
 2014c ), chickpea (Gopalakrishnan et al.  2014d ) 
and sorghum (unpublished results). Figures  1.1 , 
 1.2 , and  1.3  illustrate the combined results of our 
published reports on rhizospheric PGP microbes 
on increasing soil health during the fi eld trials.

      Apart from the PGP traits, they also have the 
capacity to act as biocontrol agents by  suppressing 
soil pathogens, one of the keystone logic for healthy 
soil. Our PGP bacteria such as  P. plecoglossicida, 

B. antiquum, B. altitudinis, E. ludwigii, A. tandoii  
and  P. monteilii , and actinomycetes  Streptomyces  
sp ., S. tsusimaensis, S. caviscabies, S. setonii  and  S. 
africanus  were found to have inhibitory activity 
against soil borne pathogens such as  Fusarium oxy-
sporum  f. sp.  ciceri , and  Macrophomina phaseo-
lina  under greenhouse conditions. Antagonistic 
activity of these PGP actinomycetes on  Fusarium  
wilt-sick fi elds has also been demonstrated 
(Gopalakrishnan et al.  2011a ,  b ). These strains are 
already reported for lytic enzymes in the context of 
biocontrol such as chitinase and β-1,3 glucanse 
(Gopalakrishnan et al.  2014b ).  

1.9     Future Outlook 

 Microbes have multiple functions and features in 
infl uencing soil health and also in promoting plant 
growth and controlling diseases. Hence mainte-
nance of benefi cial microbial load will help in 
replacing inorganic fertilizer, pesticides and artifi -
cial plant growth regulators which have numerous 
side effects to sustainable agriculture. Beside this, 

   Table 1.4    Extracellular enzyme profi le identifi ed for 
PGP bacteria and actinomycetes   

 Isolates  Cellulase  Chitinase  Lipase  Protease 

  PGP bacteria  

 SRI-156  +  +  +  + 

 SRI-158  +  +  +  + 

 SRI-178  +  +  +  + 

 SRI-211  +  +  +  + 

 SRI-229  +  +  +  + 

 SRI-305  +  +  +  + 

 SRI-360  +  +  +  + 

 SBI-23  +  -  -  + 

 SBI-27  +  -  -  + 

  PGP actinomycetes  

 KAI-26  +  +  +  + 

 KAI-27  +  +  +  + 

 KAI-32  +  +  +  + 

 KAI-90  +  +  +  + 

 KAI-180  +  +  +  + 

 SAI-13  +  +  -  + 

 SAI-25  +  +  +  + 

 SAI-29  +  +  -  + 

  Source: Gopalakrishnan et al. ( 2014b )  
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  Fig. 1.1    Effect of PGP bacteria and actinomycetes on 
soil total N under fi eld conditions of chickpea and rice 
cultivation 

(Note: Control indicates the treatment groups without any 
PGP bacterial inoculation, Gopalakrishnan et al.  2012 , 
 2013 ,  2014c ,  d )       
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  Fig. 1.2    Effect of PGP bacteria and actinomycetes on 
soil organic carbon and available phosphorous under fi eld 
conditions of chickpea and rice cultivation 
Solid bars (    ) are the % organic carbon on the left axis and 
solid triangles (    ) are the available phosphorous (ppm) on 

right axis. Control indicates the treatment groups without 
any PGP bacterial inoculation (Gopalakrishnan et al. 
 2012 ,  2013 ,  2014c ,  d )       
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understanding the responses of terrestrial ecosys-
tems to global climatic changes and modern agri-
cultural practices remains a major challenge, 
since soil has a mixed interaction with physical, 
chemical and biological component along with 
the infl uence of water, air/atmosphere, soil 
amendments etc. So research in each of this con-
text individually and also in combination at vari-
ous ecosystem levels is necessary.     
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