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Abstract—The overarching goal of this study was to establish
optimal hyperspectral vegetation indices (HVIs) and hyperspec-
tral narrowbands (HNBs) that best characterize, classify, model,
and map the world’s main agricultural crops. The primary objec-
tives were: (1) crop biophysical modeling through HNBs and HVIs,
(2) accuracy assessment of crop type discrimination using Wilks’
Lambda through a discriminant model, and (3) meta-analysis to
select optimal HNBs and HVIs for applications related to agricul-
ture. The study was conducted using two Earth Observing One
(EO-1) Hyperion scenes and other surface hyperspectral data for
the eight leading worldwide crops (wheat, corn, rice, barley, soy-
beans, pulses, cotton, and alfalfa) that occupy 70% of all crop-
land areas globally. This study integrated data collected from mul-
tiple study areas in various agroecosystems of Africa, the Middle
East, Central Asia, and India. Data were collected for the eight crop
types in six distinct growth stages. These included (a) field spec-
troradiometer measurements (350–2500 nm) sampled at 1-nm dis-
crete bandwidths, and (b) field biophysical variables (e.g., biomass,
leaf area index) acquired to correspond with spectroradiometer
measurements. The eight crops were described and classified using

20 HNBs. The accuracy of classifying these 8 crops using HNBs
was around 95%, which was 25% better than the multi-spectral
results possible from Landsat-7’s Enhanced Thematic Mapper+ or
EO-1’s Advanced Land Imager. Further, based on this research
and meta-analysis involving over 100 papers, the study established
33 optimal HNBs and an equal number of specific two-band nor-
malized difference HVIs to best model and study specific biophys-
ical and biochemical quantities of major agricultural crops of the
world. Redundant bands identified in this study will help overcome
the Hughes Phenomenon (or “the curse of high dimensionality”)
in hyperspectral data for a particular application (e.g., biophys-
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ical characterization of crops). The findings of this study will make
a significant contribution to future hyperspectral missions such as
NASA’s HyspIRI.

Index Terms—Hyperion, field reflectance, imaging spectroscopy,
HyspIRI, biophysical parameters, hyperspectral vegetation in-
dices, hyperspectral narrowbands, broadbands.

I. INTRODUCTION AND RATIONALE

N UMEROUS studies (e.g., [1], [2]) have shown that
the Hyperion imaging spectrometer onboard the Earth

Observing One (EO-1) satellite has provided significantly
enhanced data over conventional multi-spectral remote sensing
systems. Hyperspectral narrowbands (HNBs) and hyperspec-
tral vegetation indices (HVIs) derived from EO-1 and field
spectral measurements in the 400–2500 nm spectrum allow
us to study very specific characteristics of agricultural crops.
These include biomass, leaf area index (LAI), pigment content
(e.g., chlorophyll, carotenoid, anthocyanin), stress (e.g., due
to drought or disease), management properties (e.g., nitrogen
application, tillage), and other biochemical properties (e.g.,
lignin, cellulose, plant residue) [23], [24]. The ability of hy-
perspectral data to significantly improve the characterization,
discrimination, modeling, and mapping of crops and vegetation,
when compared with broadband multispectral remote sensing,
is well known [8]. This has led to improved and targeted
modeling and mapping of specific agricultural characteristics,
such as (a) biophysical and biochemical quantities [3]–[8],
[13], (b) crop type/species discrimination [9]–[12], [15], (c)
stress factors [14], [15], and (d) crop and water productivity,
and energy balance [16]–[22]. These benefits will help us better
understand a broad range of agricultural applications involving
droughts [2], [3], food security [8]–[12], biodiversity [9], [11],
and invasive species [9], [24]. Nevertheless, there are still
significant knowledge gaps that require further research.

Contiguous bands of spectrometer data allow for accurate
retrieval of plant biophysical and biochemical quantities using
methods like continuum removal, first discussed by Clark and
Roush in 1984 [25]–[28]. However, since information about
agriculture is time sensitive, approximate analyses, quickly
obtained using one or more HVIs may be more useful than
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Fig. 1. Study areas from where hyperspectral data from spectroradiometer and Hyperion were gathered. The irrigated and rainfed cropland study areas of eight
major world crops (Table I) in distinct agroecosystems for which hyperspectral data from spectroradiometer and Hyperion were collected from four study areas
(see details in Table II).

slow detailed retrievals based on continuum removal or similar
approaches. Thus, there is an important need to develop hyper-
spectral narrowband indices. Recent research has demonstrated
that the optimal information required to quantify, discriminate,
and classify crop characteristics may be captured with a rel-
atively small number of specific narrowbands [8], [23], [29].
However, these studies were limited to small areas, lacking
regional or global perspective, and they contain significant
uncertainties.

Large data volumes can be reduced through several data
mining methods such as [8], [23], [30], [31], [34], [35]: (1)
feature selection (e.g., principal component analysis, deriva-
tive analysis); (2) versus R - plots between the different
wavelength bands; (3) partial least squares (PLS), (4) stepwise
linear regressions; and (5) hyperspectral vegetation indices
(HVIs). These data mining methods led to: (a) reduction in data
dimensionality, (b) reduction in data redundancy, and (c) extrac-
tion of unique information. There are several other methods of
analyzing hyperspectral data such as Hierarchical Multiple End-
member Spectral Mixture Analysis (MESMA) [7], continuum
removal [37], derivative vegetation indices [31], unmixing
approaches [10], neural networks [30], and others [8].

In this current research, we made use of hyperspectral data
from two Hyperion images and in-situ spectroradiometer data
(1153 samples) of eight major worldwide crops (wheat, corn,

TABLE I
AREA OF THE EIGHT LEADING WORLD CROPS

Derived from Monfreda et al. [41] who aggregated the major crops of the

world by combining national, state, and county level census statistics with

their global croplands database ( 10 km by 10 km) latitude-longitude grid.

These datasets depict circa the year 2000 the area (harvested) [41].

rice, barley, soybeans, pulses, cotton, alfalfa; Table I). These
crops occupy % of all cropland areas of the world (Table I).
These data were collected from distinct agroecosystems in
Africa, the Middle East, Central Asia, and India (Fig. 1) and
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represent eight distinct plant growth stages, each with suffi-
ciently large sample size. These data were then used in the
development of robust models of crop productivity (CP; kg/m )
using HNBs and HVIs.

As the number of bands in an image increases, the number
of observations required to train a classifier increases exponen-
tially to maintain classification accuracy [1], [2], [30]. When the
spectral dimensionality of the data increases, this causes a loss
of classifiability for an image with the same fixed number of
training samples [1], [2], [30]. This is called the Hughes Phe-
nomenon (or “the curse of high dimensionality”) [38]. We ex-
amined the high dimensionality problem for crop classification
issues for biophysical retrievals. We used unique data mining
techniques involving several thousand HVIs for each investi-
gated crop variable, with the goal of identifying and eliminating
redundant spectral bands.

Our main objectives were to: (1) select the best Hyperion
narrowbands to compose two-band HVIs (i.e., normalized
differences) for biophysical characterization of biomass, LAI,
plant height, plant density, and grain yield; (2) identify the best
HNBs and indices (HVIs) from field reflectance spectra for
discriminating crop types and for comparing their performance
with the corresponding broadband indices; and (3) perform
meta-analysis to select optimal HNBs and HVIs for agriculture
monitoring.

II. METHODOLOGY

A. Study Areas

Four distinct study areas (Fig. 1) were selected based on
the available hyperspectral and corresponding biological data
(Table II) for the eight major world crops in various agroe-
cological zones. These data were collected during different
years (2000 through 2010) [8], [23], [32]–[35]. The study areas
(Fig. 1) were: (A) Syria, semi-arid with supplemental irrigation
(barley, pulses, soybeans); (B) Uzbekistan, heavily irrigated
croplands (wheat, cotton, rice, alfalfa); (C) Africa, agricultural
crops from different agroecological and climate zones (e.g., sa-
vanna in Sudan, Northern Guinea, Southern Guinea, with crops
of corn, soybeans, and rice); and (D) India, rainfed croplands
in semi-arid environments (barley, pulses, soybeans). Detailed
characteristics of these data gathering efforts are described
in various places [8], [23], [32]–[35] and will not be restated
here. Data analysis of pooled, cross-site hyperspectral data for
leading global crops from distinct agroecosystems of the world
is quite rare, making this study unique.

B. Field Spectroradiometer Data

All field spectral measurements were made using Analytical
Spectral Devices Fieldspec instruments (ASD, Boulder, CO,
USA), which gather data between 350–2500 nm [8]. For the
eight crops (Figs. 1, 2), there were a total of 1553 data points
(Table II) for which hyperspectral data were available from
various ASD Fieldspec instruments. These data were available
for 6 distinct plant growth stages: early vegetative, mid veg-
etative, flowering, tillering, critical, and senescing. “Critical”
growth stages vary for each crop. For rice crops, “critical”
growth stages are tiller initiation, flowering, and milky stage.

For wheat crops, “critical” growth stages are crown initiation,
flowering, joining, milky, and tillering. Gathering these spectra
involved optimizing the integration time (typically set at 17
ms), providing fore-optic information, recording dark current,
and collecting white reference reflectance. At each site, 10
reflectance measurements were consistently taken along a
transect, using a ladder to obtain a 3 m high nadir view. Crop
variables collected during field visits included: (1) crop type
(Table I); (2) crop growth stages (Fig. 2); (3) biophysical
quantities such as wet and dry biomass (kg/m ), leaf area index
(m /m ), plant height (mm), and canopy cover (%); and (4)
biochemical variables such as leaf nitrogen and plant pigments.
Details of the methods and approaches of collecting data are
discussed elsewhere [31], [33]–[35].

C. EO-1 Hyperion Data

Two Hyperion images were available for the Uzbekistan
study area, taken within 2 days of the corresponding field
data (Fig. 3). Hyperion Level 1 products are radiance values
stored as 16-bit signed integers. These were converted from
radiances (W m sr m ) to at-sensor reflectance. Several
different atmospheric corrections were tried, but all had prob-
lems providing good correction values. Thus, using the original
at-sensor reflectance data was considered the best option.

The first atmospheric correction tried was the MOD-
TRAN-based FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) routine, which retrieves
aerosol and water vapor information from the image to provide
well-adjusted input for the atmospheric correction [28]. How-
ever, using FLAASH on the two Hyperion images resulted in
over-correction and/or uncertainties. These poor results may
have been obtained because of the linearity assumption, which
presumes uniform atmospheric transmission, scattering, and
adjacency effects throughout the scene [36]. Also, very accu-
rate water vapor and aerosol retrievals are only possible when
the image contains bands in exact wavelength positions. In
addition, FLAASH does not accept any kind of ancillary data,
such as ozone, surface pressure, or water vapor for cases when
this cannot be retrieved from the image data itself. In our study,
a few pixels in the Hyperion images with specular reflectance
seemed to influence the surface reflectance correction and there
was uncertainty in the aerosol and water vapor retrievals due
to the small area coverage of the Hyperion images. Essentially,
FLAASH was unable to adjust for variations in several atmo-
spheric parameters (e.g., ozone, surface pressure, and water
vapor) [28], limiting the usability of FLAASH-derived surface
reflectance for our study.

We also attempted to provide a simple alternative at-
mospheric correction [34] using the improved dark object
subtraction technique [39], [40] to derive surface reflectance
from apparent or at-sensor reflectance. This alternative correc-
tion appeared to retain features involving either oxygen, water
vapor, or carbon dioxide, and thus produced poor results as
well.

Original Hyperion images have 242 bands each of 10 nm
bandwidth between 400 and 2500 nm, but only 157 narrow-
bands were used. These useful bands were visible and near-
infrared (VNIR) bands 8–57 (427.55–925.85 nm), and SWIR
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TABLE II
STUDY AREAS, CROPS STUDIED, AND HYPERSPECTRAL DATA POINTS. A TOTAL OF 1553 HYPERSPECTRAL DATA POINTS WERE COLLECTED FOR EIGHT MAJOR

WORLD CROPS (FIGS. 1, 2; TABLE I) USING GROUND BASED SPECTRORADIOMETER

bands 79–224 (932.72–2395.53 nm). The uncalibrated bands
(357–417 nm, 936–1068 nm, and 852–923 nm) were dropped

as were wavebands in atmospheric windows (1306–1437 nm,
1790–1992 nm, and 2365–2396 nm) which had high noise. The
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Fig. 2. Cross-site hyperspectral spectroradiometer data. Cross-site mean (regardless of which study site (1–4, Table II)) spectral plots of eight leading world crops
in various growth stages. (A) Four crops at different growth stages; (B) same four crops as in A but in different growth stages; (C) four more crops at early growth
stages; and (D) same four crops as C, but at different growth stages. Note: numbers in bracket are sample sizes.

Fig. 3. Hyperion data of crops illustrated for typical growth stages in the Uzbekistan study area. The Hyperion data cube shown here is from a small portion of
one of the two Hyperion images. The Hyperion spectra of crops are gathered from different farm fields in the two images and their average spectra illustrated here
along with the sample sizes indicated within the bracket. The field data was collected within two days of the image acquisition.
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Fig. 4. Original narrowband versus simulated broadband reflectance field spectra of leading world crops. The hyperspectral reflectance field spectra of eight
leading crops, each at two distinct growth stages, are shown for narrowbands (left) and simulated for Landsat broadbands (right). Note: sample size within
brackets.

at-sensor reflectances were then obtained for the wheat (56 sam-
ples), corn (64), rice (38), cotton (52), and alfalfa (32) crops
from the two Uzbekistan images. These images were acquired
during the crop stages shown in Fig. 3. The study addressed
the early growth stage for wheat, and late growth stages for
the other four crops (corn, rice, cotton, and alfalfa). The crops
in other growth stages within these images were ignored since
the sample sizes were inadequate ( pixels). The average
at-sensor reflectance spectra of the 5 crops at either early or late
growth stages are shown in Fig. 3.

D. Methods for Objective 1: Selection of Hyperion
Narrowbands to Compose Two-Band Indices for Biophysical
Characterization

Contour plots of R-square values for wavelength bands and
HVIs with rigorous search criterion are considered the best
choice for the comprehensive assessment of hundreds of wave-
bands and thousands of indices [31], [34], [35], [42]. Two-band
normalized difference Hyperion indices (HVIs) were examined
for biophysical characterization. These indices were computed
from every possible 2-band combination of Hyperion bands
from the two images of Uzbekistan. The HVIs were computed
using the standard equation [31]:

(1)

where, i,j are the two waveband centers for reflectance (R, %)
for 157 narrow-wavebands. For each variable (e.g., biomass)
per crop, there are 12 246 unique indices possible. These were
calculated as ; divided by 2 because the

values above and below the diagonal are the transpose of one
another, and minus 157 because these are diagonal values. Each
of these HVIs were then correlated with crop variables, such as
wet and dry biomass (kg/m ), leaf area index (m /m ), and plant
height (mm).

E. Methods for Objective 2: Selection of FieldSpec and
Two-Band Narrowband Indices for Discriminating Crop Types

We adopted a discriminant model [35], [43] to determine how
well the eight crops were distinguished based on hyperspectral
narrowband data (Fig. 4(a)) and simulated corresponding broad-
band data (e.g., for Landsat , Fig. 4(b)). Crop discrimi-
nation was performed using Wilks’ Lambda, a stepwise discrim-
inant analysis (SDA) [43], because it provided the most lucid,
rapid, and straightforward results to determine the seperability
among multiple classes [35]. In addition to the Wilks’ Lambda,
there are a number of other SDA methods for crop class separa-
bility, such as [31], [34], [35]: (a) Jefferies-Matusita (JM) index;
(b) Pillai trace; and (c) canonical correlation. Wilks’ Lambda is
the most commonly used and reported, however Pillai’s crite-
rion is useful for small or unequal sample sizes.

The Wilks’ Lambda SDA (PROC STEPDISC [43]) begins
with no waveband information in the model. At each step, the
variable (e.g., specific narrowband) that contributes most to
the discriminatory power of the model is entered. The stepwise
process continues, with the inclusion of variables that meet
the criterion to stay, and stops when no additional variables
add to model success [43]. The class separability of the 1553
hyperspectral measurements representing various growth stages
of the eight leading world crops was determined using Wilks’
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Lambda [34]. The discriminant model is akin to an error matrix
[444], providing overall accuracies and errors of omissions and
commissions. The original high-resolution field spectra were
aggregated to 10 nm bandwidths (akin to Hyperion and HyspIRI
bands) in the ranges of 390–1350 nm, 1440–1790 nm, and
1990–2360 nm. This resulted in 160 aggregated HNBs, which
were then aggregated again to simulate the Landsat six
non-thermal bands and EO-1 ALI’s nine bands (e.g., Fig. 4).

F. Methods for Objective 3: Meta-Analysis to Select Optimal
HNBs and HVIs

To overcome the parochial results from small local studies,
this research adopted a regional perspective by integrating
data from numerous agricultural crops grown in distinct agroe-
cosystems with robust models developed using numerous
biophysical characteristics. Meta-analysis used data gleaned
from over 100 research papers [8] to derive optimal HNBs
and HVIs based on spectroradiometers with a consistent set
of measurements. These HNBs and HVIs help explain more
of the variability of vegetation biophysical and biochemical
characteristics [7], [8] and they are targeted indices to study
specific biophysical and biochemical quantities [10]. These
include chlorophyll indices based on correlation success, such
as leaf chlorophyll index (LCI), red-edge vegetation stress
index (RVSI), and derivative chlorophyll index (DCI) (see
Table IV for description of indices). In addition, several HVI
formulations are based on physiological criteria, such as photo-
chemical reflectance index (PRI), normalized difference water
index (NDWI), and anthocyanin reflectance index (ARI) (see
Table IV for description of indices).

III. RESULTS AND DISCUSSION

A. Selection of Hyperion Narrowbands to Compose Two-Band
Indices for Biophysical Characterization

We used the Uzbekistan Hyperion images (Section II.C,
Fig. 3) to examine the HVI relationships to crop biomass for
wheat and corn crops. These two crops were chosen because
they had the largest sample sizes and are the two leading crops
of the world (Table I). Fig. 5 shows contour plots of coeffi-
cients of determination (R-square) for all pairs of wavelength
bands in two band normalized difference HVI with: (a) wheat
wet biomass (Fig. 5, above the diagonal), and (b) corn crop
wet biomass (Fig. 5, below the diagonal). The “bull’s eye”
regions (Fig. 5, colored areas) are areas of highest - values
and are used to determine the most important HNBs. The
large number of wavebands in the gray areas have the lowest

-values and hence are considered to be redundant.
These wavelength plots are a powerful means of determining
the most useful Hyperion narrowbands. Based on these plots
and meta-analysis (Section III.C), we selected those HNBs
having high -values (Table IV), in agreement with several
studies (e.g., [8], [23], [31], [34], [35]).

The waveband combinations that provide the best -values
between HVIs and biophysical quantities are different for wheat
and corn crops (Fig. 5). This is due to different growing condi-
tions (e.g., soils, climate, management practices) and different

Fig. 5. Contour plot of versus - values for wavelength bands between
two-band hyperspectral vegetation indices (HVIs) and wet biomass of wheat
crop (above diagonal) and corn crop (below diagonal). The 242 Hyperion bands
were reduced to 157 bands after eliminating uncalibrated bands and the bands
in atmospheric window. HVIs were then computed using the 157 bands leading
to 12 246 unique two-band normalized difference HVIs each of which were
then related to biomass to obtain R-square values. These -values were then
plotted in a versus -contour plot as shown above.

agroecosystems. This is why major crops from distinct agroe-
cosystems have been pooled and studied together.

B. Selection of FieldSpec Narrowbands for Crop
Discrimination

The Wilks’ Lambda [34], [35] was used to see how well the
eight crops were separated using various number of HNBs vs.
Landsat bands and EO-1 ALI bands (Fig. 6). It was
found that the smaller the value of the Wilks’ Lambda statistic,
the greater the separability. So, for perfect separation of the
eight crops, we would need a Wilks’ Lambda of zero. Since
hyperspectral sensors have hundreds of wavebands, the likeli-
hood of finding ones that can separate vegetation/crop types or
biochemical quantities increases drastically. At about 20 bands,
Wilks’ Lambda becomes near zero (Fig. 6) indicating near per-
fect separability of the eight crops. In comparison, the Wilks’
Lambda of the eight crops simulated for the Landsat and
the ALI bands were only about 0.49 and 0.32 respectively, indi-
cating poor differentiation of crop types using these broadbands.

The discriminant model (Section II.E, 1) was used to deter-
mine overall accuracies in classifying the eight crops using the
HNBs and BBs (Fig. 7). About 20 HNBs provided a classifica-
tion accuracy of 95% (Fig. 7). Additional bands increased that
by an insignificant amount, leading to near asymptotic accu-
racy beyond 20 bands. In comparison the maximum accuracies
attained were 67% for the six non-thermal simulated Landsat

bands, and 71% for the nine simulated ALI bands. The
best band combinations of HNBs for separating or discrimi-
nating crop types or classifying them are shown in Table III.

If the number of bands remains high, the number of obser-
vations required to train a classifier increases exponentially to
maintain classification accuracies [30], due to the Hughes Phe-
nomenon. For example, three narrowbands centered at 540 nm,
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Fig. 6. Separating eight major crops of the world based on Wilks’ Lambda step-
wise discriminant analysis (SDA) method using: (a) broadband data of Landsat

and EO-1 ALI, and (b) hyperspectral narrowband (HNB) data of EO-1
Hyperion using some of the data of three study areas. Note: the smaller the
Wilks’ Lambda the greater the separability. A Wilks’ Lambda of 1 means per-
fect separability. It took about 25 HNBs to achieve near perfect separability
between eight crops.

Fig. 7. Crop classification performance of hyperspectral narrowbands (HNBs)
versus multispectral broadbands (MBBs). Overall accuracies in classifying five
agricultural crops using simulated reflectance field spectra of Landsat
and EO-1 ALI broadband Landsat broadbands vs. Hyperion hyperspectral nar-
rowbands. Overall accuracies attained using six non-thermal Landsat bands was
about 60% whereas about 20 hyperspectral narrow bands provided about 90%
overall accuracy. Beyond 20 bands, any increase in accuracy with increase in
additional bands is very minor.

550 nm, and 560 nm are almost perfectly correlated to one an-
other when studying agricultural crop biophysical characteris-
tics. Therefore, wavebands that provide the best information
should be selected and the others dropped when studying crops.
Nevertheless, the bands deemed redundant for one application
may be valuable in other applications, such as in the study of
geology, water/ice, and marine resources.

TABLE III
THE BEST 4, 6, 10, 15, AND 20 BAND COMBINATIONS OF HYPERSPECTRAL

NARROWBANDS (HNBS) FOR SEPARATING OR DISCRIMINATING CROP TYPES

OR CLASSIFYING THEM

C. Selection of Optimal HNBs and HVIs for Crop Biochemical
Characteristics

Selection of HNBs and HVIs (Table IV) for crop biochemical
characteristics required rigorous meta-analysis (Section II.F).
The relevance of these HNBs and their use in calculating HVIs
has been established by numerous researchers (Table IV) and is
discussed in various chapters of Thenkabail et al. [8]. For ex-
ample, Thenkabail et al. [8] shows that a waveband centered at
550 nm provides excellent sensitivity to plant nitrogen, one cen-
tered at 515 nm is best for pigments (carotenoids, anthocyanins),
and one at 970 or 1245 nm is preferred to study plant moisture
fluctuations. Lignin, cellulose, protein, and nitrogen have rel-
atively low reflectance and strong absorption in SWIR bands
due to water absorption that masks other absorption features
[4], [5]. Thus, there is sufficient scope to expand this research
further to find additional hyperspectral two-band vegetation in-
dices (HTBVIs) (Table IV) and hyperspectral multiband vegeta-
tion indices (HMBVIs) [31], [33]–[35]. This could lead to iden-
tifying specific biophysical indices such as biomass, LAI, plant
height, canopy cover, fraction of absorbed photosynthetically
active radiation (fAPAR), net primary productivity (NPP), and
grain yield. Discrimination of subtle biochemical constituents
such as the starches, proteins, lignin, and cellulose requires fine
(3 to 5 nm) spectral bandwidths (Fig. 8) [8]. Biochemical fac-
tors such as chlorophylls a and b, total chlorophyll, carotenoids,
anthocyanins, nitrogen, water, and those involved in plant struc-
ture (e.g., lignin, cellulose) (Fig. 8) require similar bandwidths.

NASA’s planned hyperspectral satellite, HyspIRI (Hyper-
spectral Infrared Imager), is expected to cover the entire globe
once every 19 days. This new source of HNB data will provide
continuous spectra leading to spectral signatures of every
target (Fig. 8). However, for any given application (such as
agricultural cropland studies), this HNB data will also yield a
significant number of redundant bands, which once identified
can be ignored.

D. Optimal HNBs and HVIs versus Whole Spectral Analysis:
A Discussion

As shown in this research, the entire spectrum is not required
for many applications, due to redundant HNBs. This study
achieved three key goals in characterizing eight major world
agricultural crop biophysical and biochemical characteristics
by:

A. Overcoming the Hughes Phenomenon (or the curse of
high dimensionality of hyperspectral data) by utilizing
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Fig. 8. Optimal hyperspectral narrowbands (HNBs). Current state of knowledge on hyperspectral narrowbands (HNBs) for agricultural and vegetation studies
(inferred from [8]). The whole spectral analysis (WSA) using contiguous bands allow for accurate retrieval of plant biophysical and biochemical quantities using
methods like continuum removal. In contrast, studies on wide array of biophysical and biochemical variables, species types, crop types have established: (a) optimal
HNBs band centers and band widths for vegetation/crop characterization, (b) targeted HVIs for specific modeling, mapping, and classifying vegetation/crop types
or species and parameters such as biomass, LAI, plant water, plant stress, nitrogen, lignin, and pigments, and (c) redundant bands, leading to overcoming the
Hughes Phenomenon. These studies support hyperspectral data characterization and applications from missions such as Hyperspectral Infrared Imager (HyspIRI)
and Advanced Responsive Tactically Effective Military Imaging Spectrometer (ARTEMIS). Note: sample sizes shown within brackets of the figure legend refer
to data used in this study.

optimal HNBs and ignoring redundant HNBs (e.g.,
Fig. 5);

B. Targeting specific vegetation biophysical and biochemical
variables (e.g., plant moisture, cellulose, lignin, biomass,
yield) using the most sensitive HVIs. Each of these
HVIs are targeted towards a specific study (e.g., plant
moisture) as shown in Table IV and Fig. 8; and

C. Improving accuracies in vegetation type or species clas-
sification through optimal HNBs as illustrated in
Figs. 6 and 7.

Nevertheless, the HNBs deemed optimal for biophysical and
biochemical characterization of agricultural crops may not be
optimal for the study of other applications such as minerals,
water, and forests. Therefore, there will always be the need for
full spectrum data. Having continuous spectra will be invalu-
able for: (a) establishing derivative greenness vegetation indices
through continual removal that integrates spectra over a range of

electromagnetic spectrum, (b) building spectral libraries of ideal
or target spectra for spectral matching techniques, and (c) ap-
plying spectra for multitude of applications where certain wave-
bands that are redundant for one application (e.g., biophysical
quantification) but invaluable for some other applications (e.g.,
minerals, water).

E. Relevance of HNBs and HVIs in Crop Classification,
Discrimination, and Modeling

Overall, this research established that 33 HNBs and an equal
number of HVIs are the most valuable for studying major world
crops (Table IV). Eight of these HNBs are in the far short wave
infrared (1945–2230 nm), six in the near short-wave infrared
(1440–1770 nm), three in the near-infrared (1095–1250 nm),
four in the near-infrared (750–1050 nm), three in the red-edge
(700–745 nm), two in the red (645–700 nm), four in the green
(510–575 nm), and three in the blue (400–495 nm).
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TABLE IV
OPTIMAL HYPERSPECTRAL NARROWBANDS (HNBS) AND VEGETATION INDICES (HVIS) TO STUDY MAJOR WORLD CROPS BASED ON THE VERSUS -PLOTS

INVOLVING HNBS OR HVIS WITH BIOPHYSICAL PARAMETER BASED ON THIS STUDY AND META-ANALYSIS. (ADOPTED FROM [8])

We also found that HNBs used to classify or discriminate
agricultural crops (Figs. 6 and 7) became asymptotic between

to 25 HNBs. Beyond this point, adding additional bands in
classification or discrimination of crop types did not statistically
provide improvements. The physically meaningful HVIs, com-
puted using the HNBs, are classified into 6 distinct types: (1)
biophysical HVIs; (2) biochemical HVIs; (3) plant stress HVIs;
(4) plant water and moisture HVIs; (5) light use efficiency HVIs;
and (6) lignin, cellulose, and residue HVIs. The physical rele-
vance of these HVIs has also been found by other researchers,
as summarized in Table IV.

IV. CONCLUSION

Several key advances were discussed in this paper. First,
optimal hyperspectral narrowbands (HNBs) and hyperspectral
vegetation indices (HVIs) were identified for the study of eight

major agricultural worldwide crops (wheat, corn, rice, barley,
soybeans, pulses, cotton, and alfalfa) that occupy % of the
global cropland areas. There were 33 HNBs (Table IV, Fig. 8)
found to be optimal for characterizing, classifying, monitoring,
modeling, and mapping these crops.

Second, 33 HVIs were constituted to address six specific crop
and vegetation characteristics (Table IV, Fig. 8) based on
versus - plots. Physiological indices such as PRI, NDWI,
and ARI established in other studies have their formulations
based on criteria other than versus - plots. The closest
physical/biological rationale for each of the 33 HVIs can be un-
derstood from the references provided in Table IV.

Third, approximately 20 HNBs were best able to classify
and separate the eight leading world crops. These crops were
classified with an overall accuracy of 95% using HNBs,
whereas the six non-thermal Landsat broadbands
provided overall accuracy of 67%, and the nine EO-1 ALI
broadbands provided an overall accuracy of 71%. Therefore,
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the HNBs provide about 25% greater accuracies when com-
pared with broadbands such as Landsat and EO-1 ALI,
which should be similar to results forthcoming from Landsat-8.

Fourth, this research further solidified earlier findings [8],
[23], [30], [31] that about 90% of the HNBs are redundant in
characterizing, classifying, modeling, and mapping agricultural
crops. Identification of these redundant bands will help in over-
coming the Hughes Phenomenon. The (350–2500 nm) versus

(350–2500 nm) contour plots of -values were used to
model crop biophysical and biochemical characteristics and de-
termine optimal versus redundant bands. This process, along
with the meta-analysis, also helped identify waveband centers

and waveband widths that provide the best relation-
ships, the highest -values (Table IV).

Furthermore, the question of whether to use contiguous
bands or optimal bands needs careful evaluation. Continuous
spectra will be invaluable for: (a) establishing derivative
greenness vegetation indices through continual removal that
integrates spectra over a range of electromagnetic spectrum, (b)
building spectral libraries of ideal or target spectra for spectral
matching techniques, and (c) applying spectra for multitude of
applications where certain wavebands that are redundant for
one application (e.g., biophysical quantification) but invaluable
for some other applications (e.g., minerals, water). However,
a large number of HNBs will be redundant in characterizing
major agricultural crops. Thereby, use of optimal bands will
suffice for many purposes.

The results of this study will aid in better understanding of
hyperspectral data in agricultural crop characterization, classi-
fication, monitoring, modeling, and mapping. This research will
also make significant contribution to future hyperspectral mis-
sions such as NASA’s HyspIRI.
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