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Mapping Asian Cropping Intensity With MODIS
Josh Gray, Mark Friedl, Steve Frolking, Navin Ramankutty, Andrew Nelson, and Murali Krishna Gumma

Abstract—Agricultural systems are geographically extensive,
have profound significance to society, and affect regional energy,
climate, and water cycles. Since most suitable lands worldwide
have been cultivated, there is a growing pressure to increase yields
on existing agricultural lands. In tropical and subtropical regions,
multicropping is widely used to increase food production, but
regional-to-global information related to multicropping practices
is poor. The high temporal resolution and moderate spatial res-
olution of the MODIS sensors provide an ideal source of infor-
mation for characterizing cropping practices over large areas.
Relative to studies that document agricultural extensification,
however, systematic assessment of agricultural intensification via
multicropping has received relatively little attention. The goal of
this work was to help close this information gap by developing
methods that use multitemporal remote sensing to map multi-
cropping systems in Asia. Image time-series analysis is especially
challenging in this part of the world because atmospheric con-
ditions including clouds and aerosols lead to high frequencies of
missing or low-quality observations, especially during the Asian
Monsoon. The methodology that we developed builds upon the
algorithm used to produce the MODIS Land Cover Dynamics
product (MCD12Q2), but uses an improved methodology opti-
mized for crops. We assessed our results at the aggregate scale
using state, district, and provincial level inventory statistics report-
ing total cropped and harvested areas, and at the field scale
using survey results for 191 field sites in Bangladesh. While the
algorithm highlighted the dominant continental-scale patterns in
agricultural practices throughout Asia, and produced reasonable
estimates of state and provincial level total harvested areas, field-
scale assessment revealed significant challenges in mapping high
cropping intensity due to abundant missing data.

Index Terms—Agriculture, remote sensing, time series.

I. INTRODUCTION

A SIA IS HOME to the most intensively farmed croplands
on Earth. One-third of global croplands are in Asia, and

they account for over half of the world’s cereal production,
over 45% of total agricultural water withdrawals, and over 70%
of the total area equipped for irrigation [1]. Growing demand
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is increasing pressure on Asian croplands to produce more
food, but there is a little room for expansion. Nearly 95% of
South Asian land suitable for rain-fed agriculture was under
cultivation in 1992 [2], and future production increases will
overwhelmingly come from agricultural intensification. Agri-
cultural intensification, in a general sense, is the increased use
of fertilizer, irrigation, and multicropping practices to increase
yields without extending agricultural areas [3], [4]. Intensifica-
tion is imminent throughout Asia because there is a growing
demand for agricultural products and a little room for expan-
sion, but there are serious concerns about the environmental
impacts. For instance, significant increases in irrigation are nec-
essary to close existing yield gaps [5], but in areas already
suffering from groundwater depletion due to increased with-
drawals [6], [7]. Thus, ensuring that intensification does not
threaten future water and food security depends on understand-
ing the spatiotemporal dynamics of changing Asian agricultural
practices.

There is a long history of remote sensing-based efforts to
characterize cropland extent and agricultural practices. Indeed,
operational monitoring of agriculture motivated much of the
earliest work in remote sensing (e.g., the LACIE and AgRIS-
TARS programs funded by NASA in the 1970s and 1980s
[8]–[10]). At the global scale, the MODIS Land Cover Prod-
uct (MCD12Q1; [11], [12]) provides maps of agriculture and
agricultural mosaics at an annual time step and 500-m spatial
resolution from 2001 to present. Mapping specific crop rota-
tions, cropping intensity, and irrigation, however, has proven
much more challenging using remotely sensed imagery alone.
While abundant examples of local- to regional-scale efforts for
particular crops and discrete time periods exist (e.g., [13]–[15]),
there are a few large-scale results that could be used to iden-
tify change over time. For instance, the monthly irrigated and
rain-fed crop areas (MIRCA2000; [16]) and the global map
of irrigated areas and rain-fed crop areas (GMIA/GMRCA;
[17], [18]) provide global maps of irrigation status, cropping
intensity, and crop rotations. While extremely valuable, these
datasets only provide a “snapshot” in time, and therefore can-
not identify change. Further, crop types and cropping cycles
are difficult to characterize based on remote sensing alone and
ancillary data are often used. For instance, MIRCA2000 used
inventory statistics for 402 global administrative areas [19]
in combination with various remote sensing-based products
[20]–[22]. These census and inventory data have coarse spa-
tial resolution as they are aggregated to political boundaries,
report different variables collected with diverse methodologies,
and are often unreliable. Thus, while datasets of this type are
essential for ensuring sustainable agricultural practices, there is
a clear need for improvements that reduce spatial uncertainty,
and are capable of identifying changing agricultural practices.
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We sought to address these shortcomings and generate
Asia-wide maps of multicropping intensity (defined here as
the annual cropping frequency) from time series of MODIS
spectral vegetation indices (SVIs). Though moderate in spatial
resolution, the MODIS sensors provide the temporal sampling
frequency required for this type of work. While multicropping
represents only one facet of agricultural intensification, it is
of critical importance for modeling efforts and is relatively
understudied compared to mapping cropland and irrigation
extent. Accurate mapping of multicropping practices would
complement existing indicators of intensification, providing
a fuller understanding necessary to respond to challenges of
sustainability and increased production demands. Improved
remote sensing methods were developed to address existing
methodological limitations, and used to map cropping intensity
across most of Asia for the period 2009–2012. Results were
assessed at the field- and aggregated provincial-, district-, and
state-scales.

II. DATA AND METHODS

Our approach to mapping multicropping intensity through-
out Asia refines and extends established remote sensing-based
methods for extracting land surface phenology from time series
of SVI. Specifically, we refine the time-series segmentation
procedure used to generate the MODIS Land Cover Dynam-
ics product (MCD12Q2; [23], [24]) to accommodate more than
two cropping cycles per year, to avoid problems caused by crop
cycles crossing arbitrary calendar boundaries, and to be more
robust against missing data. In contrast to the MCD12Q2 prod-
uct, however, we make no attempt to extract phenophase tran-
sition dates from the time series, but instead focus on counting
the total number of cycles in a given time frame.

Time series of enhanced vegetation index (EVI:
2.5× [ρnir − ρred]/[1 + ρnir + 6× ρred + 7.5× ρblue], where
ρ indicates reflectances in the specified wavelengths) were
constructed from Collection 5 MODIS Nadir BRDF-Adjusted
Reflectances (NBAR) along with their associated quality
control (QC) data (MCD43A4 and MCD43A2) [25]. We
distinguish this index from EVI calculated using reflectances
not corrected for BRDF effects by denoting it as “NBAR-EVI.”
NBAR-EVI time series had 8-day temporal resolution (result-
ing from the staggered 16-day compositing procedure), 500-m
ground resolution, and were assembled for years 2009–2012
for 40 MODIS tiles encompassing most of Asia. We also
assembled MODIS data for the time period 2008–2009 over
Bangladesh for field-scale assessment. Individual NBAR-EVI
weights were determined as the inverse of one plus the
cumulative red, blue, nir band BRDF Albedo Band Quality
Science Data Set in MCD43A2 (weight range: 0.1–1, worst to
best). Analyses were restricted to areas identified as agriculture
and agriculture/natural mosaic in the International Geosphere-
Biosphere Project (IGBP) classification scheme in the 2010
MODIS Land Cover Product (MCD12Q1, Type 1).

Fig. 1 graphically depicts our time-series segmentation pro-
cedure. The method is based on the MCD12Q2 approach [23]
which takes place where the linear slope over a moving-window
changes sign to indicate change points between ascending
(greening) and descending (browning) phases. However, where

Fig. 1. Overview of the segmentation process as applied to a 3-year, single-
pixel time series of NBAR-EVI values. First, a smoothing spline is applied to
the raw NBAR-EVI values (symbol size corresponds to fitting weight), then
potential peaks/troughs are identified, and finally screened by heuristics to
determine final segments.

the MCD12Q2 algorithm utilized a moving-window mean
smoothing filter on a gap-filled data, we interpolate and smooth
at once using a Loess filter that preliminary testing indicated
better preserved temporal NBAR-EVI trajectories and can inter-
polate long runs of missing data. We produced continuous daily
NBAR-EVI series using weighted Loess filtering with the span
parameter set to use 33% of the data at once. Moving win-
dow size selection is subjective, and in this case, exploratory
analysis indicated that 10 days yielded optimal results. There-
fore, slopes were calculated on 10-day moving windows on the
smoothed time series and days where the slope changed sign
flagged as potential change points.

Heuristic filtering is necessary to eliminate spuriously iden-
tified vegetation cycles. First, we screened change points by
eliminating peaks that were lower than 45% of the time series
maximum. For instance, Fig. 1 depicts two potential peak points
that were eliminated on the basis of this thresholding procedure.
Since some potential peaks may be high enough to clear the
global maximum threshold heuristic, but do not have a corre-
sponding trough point that covers a realistic amount of NBAR-
EVI amplitude, further filtering was necessary. Thus, we then
eliminated segments which did not cover an amplitude of at
least 35% of the time-series maximum amplitude (i.e., two
peaks separated by a shallow trough). Selecting these param-
eter values is a subjective process and our selection was guided
by visual interpretation of agricultural time series throughout
the region. We took the total number of valid peaks in the time
series to represent the cropping intensity for that pixel, and
recorded the totals for the years 2008–2009 and 2009–2012.

We assessed our results at two spatial scales. First,
we assessed district-, provincial-, and state-scale (hereafter
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Fig. 2. Location of 191 field validation samples (stars) throughout Bangladesh.
Extent is indicated on map in Fig. 3 with which this map shares a legend.

collectively referred to as the “state-scale”) total cropped area
(Bangladesh and India), and total harvested area (Bangladesh,
China, and India) using national-scale inventory statistics.
Annual state-scale statistics were averaged over the study
period for assessment. In multicropped regions, total harvested
area exceeds the amount of land under cultivation (total cropped
area). Subpixel land cover heterogeneity was accounted for
by computing multiple regression models predicting inventory
total cropped area (Ainv) with state-scale aggregated agricul-
ture and agriculture/natural mosaic areas (Aag and Amosaic)
from the MODIS Land Cover product: Ainv = β0 + β1Aag +
β2Amosaic, where β1 and β2 are the subpixel calibration
coefficients for MODIS Land Cover agricultural and agricul-
ture/natural mosaic areas. Independent models were fit for India
and Bangladesh, and the mean model used for China which
lacked total cropped area statistics. We then conducted a pixel-
scale assessment utilizing field survey data. Survey results
recording the total number of cropping cycles in 2008 and 2009,
crop types, crop calendars, irrigation status, and GPS locations
for 191 fields in an intensively cropped region of Bangladesh
(see Fig. 2) were used to assess pixel-level results [26]. The sur-
vey was conducted from August 4 to 18, 2010 and concerned
the farming practices of the preceding 2 years. Fields in the sur-
vey had uniform crop types and management practices at the
500× 500 m scale.

III. RESULTS

Results showing average cropping intensity from 2009 to
2012 highlight geographic patterns in agricultural practices
across Asia (Fig. 3). In particular, the intensely cropped areas
of the Indo-Gangetic plain, Northeast China, and the Mekong
Delta [27] show high levels of multicropping. However, in the

western portions of the Sichuan Basin, where extensive terraced
rice cultivation exists, frequent missing data prevented reliable
retrievals.

Multiple regression model results indicated that the mean
subpixel fraction of agriculture in pixels classified as agricul-
ture and agriculture/natural mosaic were 82% and 34%, respec-
tively. While errors in the MCD12Q1 Land Cover product
contribute to uncertainty in the areal estimates ([12] calcu-
lated producer’s accuracies of 84% and 61%, and user’s accu-
racies of 93% and 28% for agriculture and mosaic classes,
respectively), there was high correlation between actual and
predicted state-scale total cropped area [R2 = 94%, p < 0.05,
Fig. 4(a)]. We then used the coefficients and the RS-mapped
multicropping areas to predict the total harvested area at the
state-scale. We find that we are able to explain 89% of the vari-
ability in reported total harvested area across all three countries
[p < 0.05, Fig. 4(b)]. Residual standard errors are 11 000 and
15 600 km2 for total cropped and total harvested area, respec-
tively. While large in an absolute sense, these errors represent
proportional errors of 5% and 6% in the largest province. The
pattern in Fig. 4(b) is largely driven by differences in state areas.
State-level comparisons of the ratio of total to net cropped areas
from inventory data and remote sensing results indicate low
correlation (R = 0.35) and considerable underestimates of total
cropped area from remote sensing, particularly for Bangladesh.

The class-specific user’s and producer’s accuracies for the
MCD2Q1 product are 83% and 93%, respectively, for class 12
“croplands” and 61% and 28% for class 14 “cropland/natural
vegetation mosaic” [12].

Field scale assessment highlights the outstanding challenges
in mapping cropping intensity at the pixel scale. The overall
classification accuracy was only 11%, and only 25% of fields
having two and four total cycles from 2008 to 2009 were cor-
rectly identified as such (Table I). Multicropping in general was
better mapped, with 22.7% of all fields having four or six total
cycles in 2008–2009 mapped as having four or five cropping
cycles. However, none of the fields having six total cycles were
correctly mapped. In fact, half of those fields were mapped
as only having two cropping cycles, and the other half were
mapped as having three or four. The peak and amplitude ratio
thresholds were implemented to reduce the detection of false
cropping cycles due to noise in the time series. However, these
heuristics may also limit algorithm accuracy by eliminating
true vegetation cycles. To test this effect, we again classified
cropping cycles for each of the 191 assessment fields, but with-
out the 35% amplitude threshold. Overall classification accu-
racy increased to 28% and multicropping accuracy increased
to 73% (Table II). While 75% of fields having four cropping
cycles were correctly classified, we still failed to map any triple
cropping (six total cycles 2008–2009). These results indicate
that the algorithm is overall quite conservative, tending to under
predict the actual number of cropping cycles at the pixel scale.

IV. DISCUSSION

These results indicate that while our algorithm is capa-
ble of capturing large-scale variations in cropping practices
across Asia, there are outstanding challenges to mapping
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Fig. 3. Mean cropping intensity (average cycles per year) over mainland Asia for the time period 2009–2012. Box indicates the extent of map in Fig. 2.

Fig. 4. (a) Census-based total cropped area versus MCD12Q1 calibrated agricultural areas for all districts and states in Bangladesh and India with total cropped
greater than 100 km2. (b) As (a), but for total harvested area and including results for China.

cropping intensity at the pixel scale. Even when heuristic fil-
tering is relaxed, there is considerable difficulty in detecting
more than two cropping cycles per year. Analyzing time series
over field assessment sites indicates that the primary cause for
missed crop cycle detections is abundant missing data, primar-
ily related to the Asian monsoon when MODIS may not obtain
a cloud-free observation for many weeks at a time (Fig. 5).
Underestimates of total cropped areas resulting from missing

data in MODIS are also common to other studies [14]. Ref-
erence [15] showed stronger correlations with inventory data,
but did not account for subpixel heterogeneity in MODIS Land
Cover as we did. Persistent data gaps mean that entire crop-
ping cycles may be missing from the remote sensing record.
For example, Fig. 6 shows the time series and segmentation
or a field in Bangladesh that reported triple cropping in 2008
and 2009. Here, the data do not suggest more than two cycles,
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TABLE I
CONFUSION MATRIX FOR FIELD-BASED ASSESSMENT

Rows are instances of an actual cropping class (1–6),
and columns are instances of a predicted class. “T”
are row/column totals. For instance, out of 110 field
recorded instances of six crops in 2 years, our algo-
rithm predicts 23 as having only four crops.

TABLE II
AS TABLE I, BUT WITHOUT AMPLITUDE RATIO HEURISTICS

but an additional harvest may have occurred during the long
period of missing data from May to July (a time period corre-
sponding to the “Aus” cropping season). Thus, future improve-
ments in mapping cropping intensity in Asia will only be
realized with methodologies which reduce the missing data
problem through incorporation of ancillary and alternative
remote sensing data sources such as moderate resolution geo-
stationary satellites (e.g., SEVIRI [28], [29]), microwave sen-
sors (e.g., SeaWinds [30]), and subnational-scale inventory
data. In a multisensor fusion context, higher resolution mul-
tispectral sensors may provide additional and complementary
information, even without benefit of high temporal resolution
(e.g., pan-sharpening coarser resolution data).

Interpretation of pixel-scale results is further complicated by
the fact that substantial subpixel heterogeneity in land use and
cropping practices exists throughout this region. Thus, MODIS
reflectance time series may represent the composite response
of natural and cultivated vegetation, and multiple independent
crops. This is a particular challenge when cultivated and natu-
ral vegetation cycles are out of phase (resulting in two detected
cycles when only one was cultivated), and when cropping prac-
tices are diverse and field sizes are small compared to MODIS
pixels. In some cases, crop cycles overlap in the same field.
For example, in Northeast China it is common practice for
maize to be planted between rows of winter wheat such that the
maize has already emerged when the wheat harvest occurs. This
results in a shallow NBAR-EVI trough following the wheat har-
vest because rather than returning to a fallow state, the field
contains juvenile maize plants. Relaxing heuristic thresholds
may help this problem to some extent, but at the cost of robust-

Fig. 5. Average fraction of non-missing data in MCD43A4 product from 2001–
2012 for tiles in India (h25v07), China (h25v07), and for comparison, over the
arid Southwest, United States (h08v05).

Fig. 6. Example time series and segmentation for a field in Bangladesh that
reported three cropping cycles in 2008 and 2009.

ness against noise. This may be a viable solution if agricultural
areas can be identified a priori, because greater than one cycle
per year in nonagricultural areas could be suppressed. How-
ever, this makes it impossible to use this valuable information
to inform the classification of agricultural areas themselves.

V. CONCLUSION

We developed and demonstrated a methodology for map-
ping cropping intensity, defined here as the number of cropping
cycles in a specified time period, and applied it across Asia.
State-scale aggregated total cropped and total harvested areas
were well correlated with national inventory statistics once
MODIS subpixel heterogeneity was accounted for. Field scale
assessment highlighted the difficulty in accurately determining
cropping intensity, particularly in fields with three cycles per
year. We find that field scale results are quite sensitive to the
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amplitude threshold heuristic, and that eliminating or reducing
this parameter can improve results, but at the expense of robust-
ness against missing data. In general, the algorithm described
here produces conservative estimates of pixel-level cropping
intensity. Long periods of missing data associated with the
Asian monsoon are implicated as the main cause for crop-
ping intensity under estimates because entire crop cycles may
be missed due to persistent cloud cover. Therefore, the most
promising path toward improving cropping intensity estimates
from time series of remotely sensed images is to ameliorate
the missing data problem using multisensor fusion with other
remote sensing data sources such as microwave and geostation-
ary sensors. Despite these challenges, we show that time series
of MODIS NBAR-EVI and a straight-forward time-series seg-
mentation algorithm are capable of highlighting the dominant
continental-scale patterns of agricultural practices throughout
Asia, and producing reasonable estimates of state and provin-
cial level total cropped and total harvested areas.
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