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Abstract
Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which

severely affects ~25% of global population. Genetic biofortification of maize has emerged

as cost effective and sustainable approach in addressing malnourishment of iron and zinc

deficiency. Therefore, understanding the genetic variation and stability of kernel micronutri-

ents and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high

yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability

and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize

inbred panel selected from the national and the international centres that were raised at six

different maize growing regions of India. Phenotyping of kernels using inductively coupled

plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals

concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30

to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Sig-

nificant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r =

0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the addi-

tive main effects and multiplicative interactions (AMMI) model showed significant genotype

and genotype × environment interaction for kernel minerals concentration and grain yield.
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Most of the variation was contributed by genotype main effect for kernel iron (39.6%), man-

ganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc

(40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment inter-

action (GGE) biplot identified several mega environments for kernel minerals and grain

yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better

representative of the AMMI stability parameters. Dynamic stability parameter GGE distance

(GGED) showed strong and positive correlation with both mean kernel concentrations and

grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investiga-

tion will be useful in developing micronutrient-rich as well as stable maize hybrids without

compromising grain yield.

Introduction
Micronutrient malnutrition or hidden hunger is a growing concern worldwide and identified
among the top priority global problems. Out of 17 micronutrients, iron (Fe) and zinc (Zn) defi-
ciencies are the most widespread in developing countries including India [1]. Globally, one in
four people are affected by Fe deficiency anaemia (IDA) especially pregnant women and pre-
school-age children are at highest risk. Zn deficiency is also widespread (25% of population) in
the world and associated with incidence of diarrhoea, pneumonia and malaria among pre-
school children [2, 3]. In addition to Fe and Zn, manganese (Mn) and copper (Cu) also impor-
tant for synthesis of enzymes, hormones, vitamins, fluid regulation, cellular integrity and
energy production in humans [4]. The situation is more severe in Africa and South-East Asia,
where about two thirds of preschool-age children and half of all women are affected by malnu-
trition [5]. Widespread occurrence of malnutrition in African and South-East Asian countries
is mainly due to dependency of the population largely on cereal-based diets which possess
lower concentration of mineral elements [6].

Maize is a leading cereal in terms of both production (1014 million t) and productivity (4.91
t ha–1) contributing 34.3% of total cereal production. Sixty seven percent of its total production
comes from low and lower middle income countries, signifying its vital role in the addressing
the malnutrition and economy of millions of poor farmers [7]. Thus, breeding of maize culti-
vars with increased micronutrients concentration can fulfil the mineral-nutrition requirement
of malnourished population [8]. Development of micronutrient-rich maize cultivars requires
substantial and useful genetic variation for the target micronutrients. In maize, several studies
show the presence of appreciable variation for kernel mineral concentrations [9–15].

Phenotype is not only manifested as a result of its own genetic composition and its sur-
rounding environment but also their interactions [16]. Concentrations of mineral micronutri-
ents in the kernels are also influenced by various complex factors viz., genotype per se, soil
properties, and interactions among nutrients [17]. Selecting genotypes with stable expression
of mineral micronutrients across testing environments is as important as increasing the con-
centration of these mineral micronutrients in the kernels [9]. Previous experiments reported
the contribution of genotype (G) × environment (E) interaction to the expression of kernel
minerals concentration [9, 13–14, 18–19], however, in most of the studies phenotyping of ker-
nel minerals was based on less precision phenotyping platforms and no comparisons were
available between hill and plain environments on Fe and Zn accumulation in maize kernels.

Several univariate (joint regression analysis (JRA) [20–22]; ecovalence measure [23]; stabil-
ity variance [24]; environmental variances [25]; coefficient of variability [26]; superiority
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measure of genotypic performance [27]) and multivariate (AMMI [28–29]; GGE biplot [30])
statistical models are available to quantify the G × E interaction. Comparing the efficiency of
different stability models will aid to select better genotypes especially for the complex traits.
Hence, the assessment of stability of the maize inbred lines for kernel micronutrients status in
addition to grain yield is important to select the reliable inbred lines for breeding kernel micro-
nutrient rich maize cultivars. The present investigation aimed at evaluating stability perfor-
mance of kernel micronutrients and grain yield in maize in different agro-climatic zones of
India with a view to identify promising and stable inbred lines for kernel micronutrients and
grain yield.

Materials and Methods

Genetic material
A set of 50 maize inbred lines (S1 Table) selected from various Indian breeding institutes
(Acharya N. G. Ranga Agricultural University, Hyderabad; Banaras Hindu University, Vara-
nasi; Chaudhary Charan Singh Agricultural University, Hisar; G. B. Pant University of Agricul-
tural Science and Technology, Pantnagar; Indian Agricultural Research Institute, New Delhi;
Punjab Agricultural University, Ludhiana and Vivekananda Parvatiya Krishi Anusandhan
Sansthan, Almora) and CIMMYT, Mexico based on genetic diversity and place of origin (exotic
or indigenous) was used in this experiment.

Field evaluation
Trials were grown in six diverse environments of India which comprise three hill environ-
ments: Almora (29°36'N, 79°40' E; 1250 masl) Bajaura (32°20'N, 77°00'E; 1090 masl) and Bara-
pani (25°39'N, 91° 54' E; 1010 masl) and three plain environments: Delhi (28°23'N, 77°27'E;
229 masl), Dharwad (15°26'N, 75°07'E; 678 masl) and Hyderabad (17°22'N, 78°280E; 489 masl)
during Kharif season, 2013 and standard agronomic practices (http://agridaksh.iasri.res.in)
were followed to raise the trials. The field trials were part of the activities of the collaborative
project involving all researchers of the respective locations hence no specific permission was
required to carry out the trials. The soil nutrients profile of test locations given in S2 Table. All
trials were conducted in randomised complete block design with three replications and pheno-
typed for Fe, Zn, Mn and Cu concentrations, and grain yield. Grain yield was calculated by
considering fresh weight per plot, dry matter, shelling percent and moisture at 15% [31] and
expressed in kg/ha.

Sampling of kernels for micronutrients concentration
After the crop reached physiological maturity, 3 to 5 selfed cobs per entry were harvested with
husk and dried under shade. Husk was removed from each ear and seeds were manually shelled
by clean hands wearing contaminant-free gloves on a dust free and clean surface. Seeds were
placed in a clean plastic tray and representative grain samples were sampled by quartering
method. Seed samples were further dried at 40°C for 5 days in a clean, contaminant-free and
un-corroded oven. Care was taken at every step to exclude dust and metal contamination.
Kernels were washed quickly with 0.1 N HCl and followed by three rinse of milli-Q water to
remove any possible surface contaminants and dried in hot air oven for 2 hours at 70°C. From
each representative samples, 15 to 20 g of seeds were ground into fine powder using a Retsch
Mill (Retsch, Mixer Mills: MM 400) with zirconium oxide grinding jar [32].
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Estimation of micronutrients concentration through inductively coupled
plasma mass spectrometry (ICP-MS)
Flour samples (0.5 g) were digested in a microwave digestion system (Anton Parr: Multiwave
ECO) with concentrated nitric acid (Suprapur

1

grade, Merck, Germany) and digested samples
were transferred to 50 ml volumetric flask to make up the dilution volume. The kernel micro-
nutrients concentration were analyzed using ICP-MS platform with auto-sampling protocol
(Perkin Elmer, Model: NexION 300 ICP-MS). All micronutrients concentration were com-
puted as mg kg–1 kernels. Quality control and assurance was assessed using known working
standard after every ten sample reading.

Descriptive Statistics
Mean, range, correlation of kernel micronutrients and grain yield within and across locations
were computed using Genstat release 16.1 [33].

Repeatability and broad sense heritability
The repeatability h2 for each test location was computed as per Piepho and Mohring [34] and
Broad sense heritability (Hlr) of the entry means was computed as per Milligan et al. [35].

Additive main effects and multiplicative interactions (AMMI) model
Magnitude of genotype, environment and genotype × environment (G × E) interaction was
assessed by ANOVA using the AMMI model [36] by keeping genotype in fixed and environ-
ment in random effects. AMMI was performed by Genstat release 16.1 [33]. The AMMI model
for G genotypes and E environments is as

Yij ¼ mþ gi þ ej þ ∑
N

n¼1
lnginajn þ rij þ εij

Where, Yij = target trait response of ith genotype (i = 1, 2,. . ., I) in jth environment j (j = 1, 2,. . .,
J); μ = is the general mean; gi = main effect associated to the ith genotype; ej = main effect asso-
ciated to the jth environment; N = max (G-1, E-1) i.e the number of principal axes (principal
components) retained in the model to describe the pattern of the interaction between the ith

genotype with the jth environment; λn = singular value of the nth principal interaction axis; γin
= ith element of the singular column vector associated to axis n; αjn is the j

th element of the sin-
gular row vector associated to axis n; ρij is the AMMI residue; and εij = pooled error.

GGE biplot model
GGE biplot [37, 38] was constructed using entry means from each environment for kernel
micronutrients concentration and grain yield using Genstat release 16.1 software [33]. We gen-
erated GGE biplots using following mathematical model:

Yij � �Y :j ¼ l1xi1Zj1 þ l2xi2Zj2 þ eij

Where, Yij = average yield of ith genotype in jth environment, �Y :j = average yield over all geno-

types in jth environment and λ1ξi1ηj1 and λ2ξi2ηj2 = collectively the first and second principal
component (PC1 and PC2); λ1 and λ2 = singular values for the first and second principal com-
ponents, PC1 and PC2, respectively; ξi1 and ξi2 = PC1 and PC2 scores, respectively for the ith

genotype; ηj1 and ηj2 = PC1 and PC2 scores, respectively for j
th environment; and eij = residual

of the model associated with the ith genotype in the jth environment.

Stability of Micronutrients in Maize

PLOS ONE | DOI:10.1371/journal.pone.0139067 September 25, 2015 4 / 24



Rank correlation among different statistical models
Spearman correlation coefficient was computed among stability models for all the traits using
Genstat release 16.1 [33]. Traits (grain yield and kernel micronutrients concentration) ranking
as well as trait-stability ranking of Eberhart and Russell (ER), AMMI and GGE biplot (S3–S7
Tables) were used to compute the correlation coefficient [39–41].

Comparison of stability parameters
Sums of the absolute value of the IPC Scores: SIPC1 and SIPCF (AMMI). SIPC1 and

SIPCF are the sum of absolute value of the IPC scores for each inbred line and calculated as,

SIPC ¼
Xn

n¼1

l0:5

n gin

Where, N = 1 for SIPC1; for SIPCF, N was the number of IPC that were retained in the AMMI
model via F ratio test [42]. Genotypes with low SIPC and SIPCF value is generally considered
more stable across environments.

Averages of the squared eigenvector values: EV1 and EVF (AMMI). EV1 and EVF were
calculated as per Zobel [43]. EV1 and EVF parameters are averages of the squared eigenvector
values. For EV1, N was one; for EVF, N was the number of IPCs that were retained in the
AMMI model using F ratio test.

EV ¼
Xn

n¼1

gin
n

AMMI statistic coefficient (D). AMMI statistic coefficient (D) was calculated as per

Zhang et al. [44] and is referred to as AMMI distance. D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1
g2is

q
(i = 1, 2, 3, 4,. . ., n)

Where, D is the distance of the interaction principal component (IPC) point from the origin
in space, N is the number of significant IPCs, and γis is the score of genotype i in IPC [45].
Greater the distance of the genotype from the origin of the IPCs is considered less stability.
Genotype with the lowest value of the D statistic is considered the most stable [44].

AMMI stability value (ASV). Purchase et al. [46] developed ASV based on the AMMI
model’s interaction principal component analysis axis 1 (IPCA1) and interaction principal
component analysis axis 2 (IPCA2) scores. ASV is the distance from the coordinate point to
the origin in a two dimensional scattergram generated by plotting of IPCA1 score against
IPCA2 score. IPCA1 score contributes more to SSGE, therefore it has to be weighted by the pro-
portional difference between IPCA1 and IPCA2 scores to compensate for the relative contribu-
tion of IPCA 1 and IPCA 2.

ASVi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSIPCA1
SSIPCA2

� �2

þ ½IPCA2 Score�2
s

Genotype main effect plus genotype-by-environment interaction distance (GGED).
GGE distance generated as per Yan [47] in order to assign the rankings for each genotype.
GGE distance is the distance of each genotype from the ideal genotype. Lower GGE distance
score indicates the most desirable genotype.

Joint regression analysis (JRA) parameters. The regression coefficient (bi) and variance
in regression deviation (S2di) was calculated as per Eberhart and Russell (ER) model [22].
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Results

Environmental means and variance components
Descriptive statistical analysis of kernel micronutrients and grain yield revealed significant var-
iability within and across the agro climatic zones (Table 1). Relatively, lower mean kernel
micronutrients concentration (Fe: 27.18 mg kg–1; Zn: 9.07 mg kg–1; Mn: 6.66 mg kg–1; Cu: 1.43
mg kg–1) and grain yield (1920 kg ha–1) were recorded in Almora and Barapani, respectively as
compared to other locations. Genotypes accumulated higher kernel Fe in Dharwad, kernel Zn
and Mn in Delhi, kernel Cu in both Dharwad and Hyderabad and recorded higher grain yield
in Hyderabad.

All kernel micronutrients and grain yield showed moderate to high level of repeatabilities
within the environment. Positive and significant correlations were observed among all environ-
ments for all kernel minerals ranging from 0.36 (Zn: between Almora and Barapani) to 0.89
(Fe: between Dharwad and Hyderabad). Significant and positive rank correlations were only
found among the hill environments (Almora, Bajaura and Bararapani), between hill environ-
ments and Delhi, Dharwad and Almora, Hyderabad and Bajaura, and Hyderabad and Delhi
(Table 2) for grain yield.

Correlation among kernel micronutrients and grain yield
Correlation coefficients were computed in a pair-wise combination for all the kernel minerals
and grain yield. Significant and positive correlation (p< 0.05) was found between kernel Fe
and Zn and kernel Fe and Mn in all environments. However, coefficients of correlation
between kernel Fe and Cu concentration were found non-significant. Kernel Zn concentration
was also found significantly correlated with kernel Mn in all the environments except in Bara-
pani and with kernel Cu, except in Almora and Hyderabad. Coefficients of correlation between
grain yield and kernel mineral concentration showed non-significant to negative-significant
values. Significant and negative correlation was observed for kernel Fe and grain yield, kernel
Cu and grain yield in Dharwad and between kernel Zn and grain yield in Hyderabad (Table 3).

Combined AMMI-ANOVA and broad sense heritability
AMMI-ANOVA was performed for kernel minerals concentration and grain yield to know the
contribution of genotype, environment and G × E interaction component to the observed total
variation. AMMI-ANOVA on kernel mineral concentration and grain yield showed significant
contribution (p< 0.01) of main effects due to genotype, G × E interaction and environment
components.

For kernel Fe, Mn and Cu, the major portion of the variation was contributed by genotypic
effect (Fe: 39.6%; Mn: 41.3%; Cu: 41.1%) followed by G × E interaction effect (Fe: 27.5%; Mn:
23.4%; Cu: 25.8%) whereas the lowest contribution was by environmental effect (Fe: 13.8%;
Mn: 19.7%; Cu: 16.8%). On contrary, the environmental effect contributed predominately to
the total variation (Zn: 40.5%; grain yield: 37.0%) followed by G × E interaction effect (Zn:
26.3%; grain yield: 34.1%) and the least by genotypic effect (Zn: 21.3%; grain yield: 25.7%) for
kernel Zn concentration and grain yield. The first four principle components of G × E were
highly significant for all the traits. IPCA1 and IPCA2 explained the maximum portion of inter-
action effects ranging from 56.6% in yield to 63.3% in kernel Mn concentration. Significant
contribution of IPCA1 and IPCA2 towards G × E interactions for kernel micronutrient con-
centrations and grain yield confirmed the adequacy of the AMMI model, and therefore, respec-
tive biplots construction was justified (Table 4). High broad-sense heritability was observed for
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kernel micronutrients and grain yield. Kernel Mn showed the highest broad sense heritability
(89%) followed by kernel Fe and Cu (88%), kernel Zn (77%) and grain yield (72%).

Assessing the stability of genotypes based on AMMI Biplots
G × E interaction of kernel micronutrients and grain yield were analysed using AMMI biplots.
AMMI 1 biplot presenting both mean grain yield and stability simultaneously were used to
identify the best performing inbreds in the respective location and to make comparison with
other stability statistics.

Kernel Fe. For kernel Fe concentrations IPC1 accounted 34.6% of G × E interaction and
9.5% of the total variation. AMMI 1 biplots placed inbreds G14 (HKI-323) and G30 (SKV-
1161) on the IPC1 zero line suggesting their suitability for general adaptation. Several inbreds
with higher mean kernel concentrations found away from the IPC1 zero line was revealed that
they adapted to specific environment (Fig 1A).

Kernel Zn. IPC1 of AMMI 1 biplot for kernel Zn concentration explained 39.9% of inter-
action variation and biplot as whole explained 82.2% of treatment variation. AMMI 1 biplot
revealed several inbreds (G45: SKV-775, G3: CM-501) with high mean kernel Zn concentra-
tions (> 18 mg/kg). G21 (LM-13) showed least deviation from the IPC1 zero line (0.1) and
considered to be adaptable to all test environments (Fig 2A)

Kernel Mn. AMMI 1 biplot for kernel Mn concentration was explained 82.1% of total
treatment sum of square variance with a contribution of 36.6% from IPC1 to the total G × E
interaction. Based on AMMI 1 biplot, G23 (LM-16) and G48 (V-351) were found suitable for
broader adaptation with high kernel Mn (Fig 3A).

Table 2. Estimated repeatability (bold on diagonal) in each environment and phenotypic correlation
among environments for kernel minerals concentration and grain yield (Fe, Mn and grain yield: below
the diagonal; Zn, Cu: above the diagonal).

Env (Fe\Zn) Almora Bajaura Barapani Delhi Dharwad Hyderabad

Almora 0.75/0.64 0.56b 0.36b 0.51b 0.52b 0.58b

Bajaura 0.82b 0.64/0.83 0.54b 0.65b 0.62b 0.63b

Barapani 0.83b 0.77b 0.82/0.77 0.68b 0.60b 0.64b

Delhi 0.83b 0.79b 0.82b 0.88/0.83 0.75b 0.72b

Dharwad 0.88b 0.87b 0.84b 0.83b 0.81/0.79 0.71b

Hyderabad 0.82b 0.83b 0.79b 0.84b 0.89b 0.82/0.88

Env (Mn\Cu)

Almora 0.84/0.88 0.85b 0.85b 0.74b 0.80b 0.80b

Bajaura 0.83b 0.85/0.90 0.87b 0.76b 0.79b 0.83b

Barapani 0.78b 0.83b 0.75/0.57 0.78b 0.84b 0.84b

Delhi 0.84b 0.77b 0.81b 0.89/0.93 0.79b 0.78b

Dharwad 0.69b 0.72b 0.69b 0.72b 0.87/0.91 0.84b

Hyderabad 0.81b 0.75b 0.75b 0.86b 0.76b 0.86/0.71

Env (Grain yield)

Almora 0.97

Bajaura 0.59b 0.97

Barapani 0.64b 0.39b 0.98

Delhi 0.59b 0.33a 0.39b 0.98

Dharwad 0.31a 0.06 0.24 0.28 0.94

Hyderabad 0.27 0.29a 0.11 0.39b 0.10 0.97

a, bSignificant at p < 0.05 and p < 0.01, respectively.

doi:10.1371/journal.pone.0139067.t002
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Kernel Cu. AMMI 1 biplot of kernel Cu explained 79.8% of total treatment variation and
IPC1 alone contributed 32.9% to interaction variation. G2 (CM-139) and G16 (IARI-28503)
showed minimum deviation from IPC1 zero line and found stable across the locations
with> 3 mg/kg kernel Cu concentration (Fig 4A).

Grain Yield. AMMI 1 biplot explained 80.3% of total treatment sum of square variation
with the contribution of 34.5% from IPC1 to interaction component. G6 (CML-22), G24
(Pant-100), G34 (SKV-311), G36 (SKV-512), G38 (SKV-58) and G46 (SKV-8) were identified
as stable genotypes with mean grain yield of> 2.600kg ha–1 (Fig 5A).

Identification of mega-environments for kernel micronutrients and grain
yield
GGE biplots were generated to identify mega-environments for kernel micronutrients concen-
tration and grain yield. For kernel micronutrient concentrations, principle component axes
explained 79.9 to 89.7% of the G + G × E interaction variation (Fe: 89.7%; Zn: 79.9%; Mn:
88.7%; Cu: 88.9%). However, GGE biplot for grain yield depicted only 69.2% of the G + G × E

Table 3. Phenotypic correlation among kernel mineral micronutrients and grain yield across six test
environments.

Environment Zn Mn Cu Grain yield

Fe Almora 0.43c 0.36a 0.14 –0.05

Bajaura 0.37a 0.32a 0.13 –0.20

Barapani 0.40a 0.39a 0.21 0.07

Delhi 0.46b 0.40a 0.22 0.09

Dharwad 0.52c 0.38b 0.18 –0.41b

Hyderabad 0.40c 0.37a 0.12 –0.03

Pooled 0.44b 0.35a 0.15 –0.06

Zn Almora 0.43c 0.17 –0.03

Bajaura 0.31a 0.33a –0.05

Barapani 0.25 0.32a –0.09

Delhi 0.37b 0.51b –0.03

Dharwad 0.39b 0.49c –0.42

Hyderabad 0.37a 0.15 –0.30a

Pooled 0.36b 0.38b –0.16

Mn Almora 0.27 0.04

Bajaura 0.26 0.05

Barapani 0.37a –0.09

Delhi 0.32a –0.06

Dharwad 0.35a –0.26

Hyderabad 0.24 0.14

Pooled 0.32a 0.02

Cu Almora –0.18

Bajaura –0.13

Barapani –0.10

Delhi –0.06

Dharwad –0.33a

Hyderabad 0.02

Pooled –0.14

a,b,cSignificant at p < 0.05, p < 0.01 and p < 0.001, respectively.

doi:10.1371/journal.pone.0139067.t003
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interaction variation. GGE biplots for kernel micronutrients revealed narrow clustering of
most of the test locations. This could be due to the presence of high rank correlations among
environments for kernel micronutrients i.e. presence of non-crossover G × E interaction. Non-
spreading of environmental vectors in GGE biplots revealed the presence of strong rank corre-
lation between environments for kernel micronutrients concentration and non-crossover type
of G × E interaction.

GGE biplot for kernel Fe concentration grouped Hyderabad, Bajaura, Delhi, Dharwad and
Almora as mega-environment 1 in a single sector (sector 1) and Barapani in different sector

Table 4. Pooled AMMI-ANOVA for kernel minerals concentration and grain yield at six test environments.

Fe Zn Mn Cu Grain yield

Source d.f. M.S. %TSS M.S. %TSS M.S. %TSS M.S. %TSS M.S. %TSS

Total 899 47.50 - 27.50 - 10.46 1.34 0.12

Rep. (Env.) 12 33.70 0.95 4.90 0.24 7.47 0.96 0.38 0.38 0.01 0.00

Treatments 299 115.70b 80.95 72.60b 87.89 26.72b 84.99 3.38b 83.82 0.35b 96.94

Environments 5 1178.90b 13.79 2002.60b 40.56 370.15b 19.69 40.57b 16.82 8.05b 37.05

Genotypes 49 345.40b z39.60 107.40b 21.31 79.31b 41.34 10.12b 41.12 0.57b 25.76

Interactions 230 51.20b 27.56 27.90b 26.01 9.79b 23.96 1.36b 25.87 0.16b 34.13

IPCA 1 53 76.90b 9.53 48.30b 10.38 15.54b 8.77 1.94b 8.51 0.24b 11.77

IPCA 2 51 62.40b 7.44 28.10b 5.80 11.79b 6.40 1.47b 6.20 0.16b 7.55

IPCA 3 49 41.30b 4.74 28.30b 5.61 6.19b 3.22 1.20b 4.89 0.15b 6.63

IPCA 4 47 35.20b 3.87 15.50b 2.96 5.95b 2.98 1.04b 4.04 0.11b 4.93

Residuals 30 28.10a 1.97 10.40 1.26 8.15 2.60 0.90 2.23 0.09b 3.25

Error 438 17.7 18.1 6.70 11.87 3.09 14.05 0.46 15.81 0.01 2.96

a,bSignificant at p < 0.05 and p < 0.01, respectively.

doi:10.1371/journal.pone.0139067.t004

Fig 1. AMMI 2 (1A) and GGE (1B) biplots for kernel iron concentration in six environments.Mega-environment 1 comprises of Almora, Bajaura, Delhi
and Hyderabad; Barapani falls under mega-environment 2.

doi:10.1371/journal.pone.0139067.g001
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(mega-environment 2). G3 (CM-501) and G45 (SKV-775) were found suited for mega-envi-
ronment 1 and G15 (HUZM-185), G43 (SKV-671) and G49 (VQL-1) were found better fit to
sector 2 (Fig 1B). Kernel Zn-GGE biplot defined two mega-environments: 1) Almora, Bajaura,

Fig 2. AMMI 2 (2A) and GGE (2B) biplots for kernel zinc concentration in six environments.Mega-environment 1 comprises of Almora, Bajaura and
Delhi; mega-environment 2 holds Barapani and Hyderabad.

doi:10.1371/journal.pone.0139067.g002

Fig 3. AMMI 2 (3A) and GGE (3B) biplots for kernel manganese concentration in six environments. For kernel manganese concentration all the
environments grouped in a single mega-environment.

doi:10.1371/journal.pone.0139067.g003
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Delhi and Dharwad (mega-environment 1) and 2) Barpani and Hyderabad (mega-environ-
ment 2). G3 (CM-501) and G45 (SKV-775) were the best kernel Zn accumulators in mega-
environment 1 and mega-environment 2, respectively (Fig 2B).

Fig 4. AMMI 2 (4A) and GGE (4B) biplots for kernel copper concentration in six environments.Mega-environment 1 comprises of Almora, Bajaura,
Barapani and Hyderabad; Delhi and Dharwad falls under mega-environment 2.

doi:10.1371/journal.pone.0139067.g004

Fig 5. AMMI 2 (5A) and GGE (5B) biplots for grain yield in six environments.Mega-environment 1 comprises hill locations (Almora, Bajaura, Barapani);
mega-environment 2 comprises plain locations (Hyderabad, Delhi and Dharwad).

doi:10.1371/journal.pone.0139067.g005
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GGE biplot for kernel Mn concentration brought all the test locations in a single sector so it
could be considered as a single mega-environment. For kernel Mn concentration G48 (V-351),
G15 (HUZM-185) and G13 (HKI-193-2) inbred lines were found suitable for all the locations
(Fig 3B). For kernel Cu concentration two mega-environments were identified. Mega-environ-
ment 1 comprised of Almora, Bajaura, Barapani and Hyderabad and mega-environment 2
included Delhi and Dharwad. G2 (CM-139) was the best inbred for mega-environment 1 fol-
lowed by G15 (HUZM-185), G28 (SE-547), G16 (IARI-28503) and G33 (SKV-247). G44
(SKV-731), G50 (VQL-2), G32 (SKV-246) and G46 (SKV-8) were the best inbreds for mega-
environment 2 (Fig 4B).

GGE biplot for grain yield clearly distinguished hill and plain locations under two different
sectors. G9 (HKI-1128) was the best-yielding inbred in hill mega-environment followed by
G18 (IARI-28508), G4 (CML-124), G35 (SKV-38), G43 (SKV-671) and G13 (HKI-193-2). For
plain mega-environment, G26 (Pant-113) was the best-yielding inbred followed by G25 (Pant-
110), G38 (SKV-58), G24 (Pant-100), G5 (CML-161) and G36 (SKV-512) (Fig 5B).

Comparison of stability models in ranking of genotypes
Three stability models were compared for their efficiency in ranking of inbred lines based on
micronutrient concentration/grain yield, stability per se and stability-cum-micronutrient con-
centration/stability-cum-grain yield. Genotypes were mostly given similar rankings for kernel
micronutrients concentration and grain yield by all the three stability models (S3–S7 Tables).

For stability of kernel Fe, GGE biplot ranked G7 (CML-293) as the best stable inbred and
G19 (IARI-28509), the least. Both AMMI and JRA methods ranked G17 (IARI-28505), G46
(SKV-8), G41 (SKV-599), G12 (HKI-193-1), G20 (KMLD-82) and G31 (SKV-18) as the best
for stability per se. Based on concentration-stability parameter GGE, AMMI and JRA models
identified G17 (IARI-28505), G9 (HKI-1128), G41 (SKV-599), G47 (SKV-90) and G20
(KMLD-82) were the top ranked inbreds for both stability-cum-kernel Fe concentration (S3
Table). Stability ranking by all the three models identified G13 (HKI-193-2), G20 (KMLD-82),
G12 (HKI-193-1) and G36 (SKV-512) as stable inbreds for kernel Zn concentration. Similarly,
concentration-stability ranking by all the three stability models identified G13 (HKI-193-2),
G20 (KMLD-82), G15 (HUZM-185), G9 (HKI-1128) and G21 (LM-13) as the best for both
mean kernel Zn concentration-cum-stability (S4 Table). Inbred lines G5 (CML-161) and G4
(CML-124) were found as stable Mn accumulators in all stability models. For Mn concentra-
tion-cum-stability rankings, G13 (HKI-193-2) and G23 (LM-16) were found common among
top ten rank across all the stability models (S5 Table).

For kernel Cu all the three models identified G20 (KMLD-82), G34 (SKV-311) and G5
(CML-161) as a top stable inbreds. Further, G16 (IARI-28503), G9 (HKI-1128), G20 (KMLD-
82) and G37 (SKV-555) were identified within top ten ranks for Cu concentration-stability in
all the three models (S6 Table). For grain yield stability per se, G27 (Pant-119) and G49 (VQL-
1) were found to be the better performers in all the three stability models under investigation.
Further, yield-stability ranking of inbred lines by GGE, AMMI and JRA methods identified
G38 (SKV-58) as the best inbred, followed by G34 (SKV-311), G36 (SKV-512), G4 (CML-124)
and G46 (SKV-8) (S7 Table).

Rank correlation among different statistical models
Phenotypic spearman's rank correlation for kernel minerals concentration and grain yield
ranks among all the three models showed almost perfect and positive (p< 0.01) correlation
suggesting that all the three models are equally efficient in ranking of inbred lines (Table 5).
However correlation between the stability ranks among the models ranges from 0.26 (NS) to
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0.84 (p< 0.01). For kernel Fe stability and kernel Fe concentration-cum-stability ranks, signifi-
cant and strong positive correlation was observed between AMMI and JRA followed by GGE
and JRA, and GGE and AMMI (Table 5).

For kernel Zn concentration, GGE and AMMI models were found strongly correlated in
ranking the genotypes based on stability as well as kernel Zn concentration-stability ranks fol-
lowed by AMMI and JRA model. However, between GGE and JRA the strength of correlation
was moderate (r = 0.50, p< 0.01) (Table 5). No significant correlation was observed between
AMMI and GGE biplots for stability rankings of kernel Mn concentration. However, a moder-
ate positive and significant correlation was observed between GGE and JRA (r = 0.53, p< 0.01)
and AMMI and JRA (r = 0.48, p< 0.01) (Table 5).

For kernel Cu concentration, strong positive correlation was observed between GGE and
JRA models for stability as well as concentration-stability ranks (r = 0.76, p< 0.01; r = 0.82,
p< 0.01) followed AMMI and JRA (r = 0.63, p< 0.01; r = 0.74, p< 0.01), and GGE and
AMMI (r = 0.58, p< 0.01; r = 0.77, p< 0.01) (Table 5). Further, for grain yield, GGE and
AMMI models strongly correlated in assigning the ranks for both stability and grain yield-sta-
bility ranks (r = 0.68, p< 0.01; r = 0.80, p< 0.01) as compared to GGE and JRA (r = 0.34,
p< 0.01; r = 0.50, p< 0.01), and AMMI and JRA (r = 0.46, p< 0.01; r = 0.60, p< 0.01)
(Table 5). To sum-up, for kernel Zn concentration and grain yield, GGE ranks better reflected
the AMMI results than JRA model, whereas, for kernel Fe AMMI model represented JRA
results better than GGE. For kernel Mn and Cu, GGE ranks better depicted the JRA results
than AMMI.

Relationship among mean kernel micronutrients concentration and
stability parameters
Genotype ranks based on per semean of target traits and stability parameters were used to
compute the Spearman’s rank correlation coefficient. Here, we selected mean concentration of
minerals/grain yield, six AMMI parameters [sums of the absolute value of the IPC scores
SIPC1 and SIPCF, averages of the squared eigenvector values EV1 and EVF, AMMI statistic
coefficient (D) and AMMI’s stability value (ASV)], GGE distance from GGE biplot, regression
coefficient b and variance deviation (S2d) of JRA. Inbreds were ranked based on mean concen-
tration of kernel mineral/grain yield and stability parameters [41] (S8–S12 Tables). Significant
and positive correlation was observed among all the AMMI stability parameters for all the ker-
nel micronutrients and grain yield.

Further, within AMMI parameters correlation between SIPC1 and EV1, SIPCF and EVF,
SIPCF and D, and EVF and D were found stronger (r> 0.9, p< 0.01). Similarly, significant
and positive correlation was observed between mean kernel minerals concentration/yield and
GGED for all the traits (Table 6). For kernel Fe concentration, no significant correlation was
observed between mean Fe concentration and AMMI parameters, and GGED and AMMI
parameters. It explains the possibility of selecting inbred with relative stable performance and
high kernel Fe concentration. However, all the AMMI parameters significantly correlated with
S2d parameter of JRA. Regression coefficient b was found significantly correlated with SIPC1,
SIPCF and EV1 (p< 0.05) (Table 6). Mean Zn concentration was negatively correlated
(p< 0.05) with SIPC1, EV1, EVF and ASV but no association was found with other stability
parameters of AMMI. Moderate negative correlation was observed between kernel Zn concen-
tration and S2d of JRA suggesting that stable performance associated with moderately lower
level of kernel Zn concentration (Table 6).

AMMI parameters SIPCF, EVF, D and ASV were negatively correlated with mean kernel
Mn concentration and positively with S2d of JRA. However, no significant correlation was
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Table 5. Spearman’s rank correlation among three stability models in ranking of 50 maize inbreds for kernel minerals concentration/grain yield,
stability and kernel minerals concentration/grain yield-stability.

Fe

GGE rank AMMI rank JRA rank

Stab. Conc.-Stab. Conc. Stab. Conc.-Stab. Conc. Stab. Conc.-Stab.

GGE rank Conc. –0.06 0.67b 1.00b –0.25 0.61b 0.99b –0.24 0.63b

Stab. 0.69b –0.05 0.53b 0.39b –0.09 0.55b 0.38b

Conc.-Stab. 0.68b 0.21 0.73b 0.65b 0.23 0.74b

AMMI rank Conc. –0.23 0.62b 0.99b –0.22 0.65b

Stab. 0.61b –0.30a 0.84b 0.44b

Conc.-Stab. 0.55b 0.50b 0.89b

JRA rank Conc. –0.29a 0.60b

Stab. 0.58b

Zn

GGE Rank Conc. –0.36b 0.53b 1.00b –0.40b 0.53b 0.97b –0.40b 0.54b

Stab. 0.57b –0.35a 0.80b 0.36b –0.38b 0.50b 0.08

Conc.-Stab. 0.54b 0.38b 0.81b 0.50b 0.13 0.56b

AMMI Rank Conc. –0.38b 0.55b 0.97b –0.39b 0.55b

Stab. 0.53b –0.39b 0.76b 0.28a

Conc.-Stab. 0.53b 0.31a 0.73b

JRA Rank Conc. –0.37b 0.59b

Stab. 0.51b

Mn

GGE rank Conc. –0.22 0.58b 0.99b –0.33a 0.58b 0.98b –0.62b 0.35a

Stab. 0.63b –0.24 0.26 0.04 –0.22 0.53b 0.37b

Conc.-Stab. 0.57b –0.05 0.47b 0.58b –0.03 0.59b

AMMI rank Conc. –0.35a 0.57b 0.98b –0.63b 0.34a

Stab. 0.55b –0.36a 0.48b 0.17

Conc.-Stab. 0.55b –0.14 0.46b

JRA rank Conc. –0.62b 0.37b

Stab. 0.45b

Cu

GGE rank Conc. –0.15 0.65b 1.00b –0.25 0.61b 0.98b –0.28a 0.61b

Stab. 0.64b –0.15 0.58b 0.39b –0.17 0.76b 0.47b

Conc.-Stab. 0.65b 0.25 0.77b 0.62b 0.35a 0.82b

AMMI rank Conc. –0.25 0.61b 0.99b –0.28a 0.61b

Stab. 0.58b –0.26 0.63b 0.26

Conc.-Stab. 0.59b 0.29a 0.74b

JRA rank Conc. –0.27 0.61b

Stab. 0.55b

Grain Yield

GGE rank Yield –0.17 0.64b 0.98b –0.11 0.67b 0.97b –0.30a 0.56b

Stab. 0.64b –0.13 0.68b 0.39b –0.19 0.34a 0.09

Yield.-Stab. 0.65b 0.42b 0.80b 0.59b 0.03 0.50b

AMMI rank Yield –0.13 0.66b 0.98b –0.31a 0.55b

Stab. 0.63b –0.16 0.46b 0.26

Yield-Stab. 0.63b 0.08 0.60b

JRA rank Yield –0.30a 0.58b

Stab. 0.57b

a, bSignificant at p < 0.05 and p < 0.01, respectively.

doi:10.1371/journal.pone.0139067.t005
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Table 6. Spearman's rank correlation coefficient among kernel minerals concentration/grain yield and stability parameters (a, bSignificant at
p < 0.05 and p < 0.01, respectively).

Fe SIPC1 SIPCF EV1 EVF D ASV GGED b S2
d

Conc. –0.11 –0.23 –0.13 –0.24 –0.23 –0.23 0.68b 0.06 –0.22

SIPC1 0.63b 0.97b 0.52b 0.64b 0.81b 0.13 0.28a 0.61b

SIPCF 0.59b 0.96b 0.98b 0.80b 0.19 0.29a 0.91b

EV1 0.48b 0.61b 0.78b 0.12 0.31a 0.58b

EVF 0.96b 0.71b 0.17 0.24 0.88b

D 0.83b 0.20 0.28 0.93b

ASV 0.21 0.20 0.84b

GGED 0.00 0.23

b 0.01

Zn

Conc. –0.38b –0.21 –0.42b –0.29a –0.26 –0.38b 0.54b 0.12 –0.39b

SIPC1 0.69b 0.94b 0.62b 0.68b 0.89b 0.41b 0.05 0.67b

SIPCF 0.60b 0.91b 0.96b 0.81b 0.34a 0.37b 0.86b

EV1 0.53b 0.60b 0.86b 0.38b –0.01 0.60b

EVF 0.93b 0.67b 0.14 0.28 0.85b

D 0.80b 0.26 0.33a 0.91b

ASV 0.38b 0.17 0.76b

GGED 0.19 0.13

b 0.14

Mn

Conc. –0.16 –0.46b –0.16 –0.45b –0.44b –0.35a 0.57b 0.08 –0.63b

SIPC1 0.47b 0.93b 0.48b 0.49b 0.69b 0.04 0.29a 0.16

SIPCF 0.46b 0.93b 0.97b 0.79b –0.18 0.32a 0.73b

EV1 0.46b 0.50b 0.67b 0.03 0.38b 0.10

EVF 0.93b 0.77b –0.20 0.38b 0.68b

D 0.83b –0.16 0.36a 0.71b

ASV –0.05 0.37b 0.48b

GGED 0.13 –0.03

b 0.01

Cu

Conc. –0.30a –0.25 –0.30a –0.23 –0.27 –0.25 0.65b –0.20 –0.28a

SIPC1 0.73b 0.92b 0.61b 0.69b 0.93b 0.12 0.38b 0.57b

SIPCF 0.74b 0.94b 0.98b 0.79b 0.39b 0.49b 0.81b

EV1 0.65b 0.74b 0.89b 0.16 0.39b 0.65b

EVF 0.96b 0.68b 0.40b 0.47b 0.80b

D 0.76b 0.38b 0.48b 0.83b

ASV 0.25 0.43b 0.63b

GGED 0.19 0.35a

b 0.25

Grain Yield

Grain Yield –0.14 –0.17 –0.15 –0.08 –0.16 –0.13 0.65b 0.16 –0.31a

SIPC1 0.53b 0.97b 0.46b 0.52b 0.93b 0.50b 0.14 0.40b

SIPCF 0.48b 0.90b 0.95b 0.64b 0.17 0.23 0.69b

EV1 0.41b 0.49b 0.90b 0.48b 0.19 0.36b

EVF 0.94b 0.59b 0.18 0.19 0.69b

D 0.63b 0.18 0.28 0.70b

(Continued)
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found between AMMI parameters and GGED for kernel Mn concentration (Table 6). On the
other hand, kernel Cu concentration was positive and significant among AMMI parameters
and also between AMMI parameters with both b and S2d although there was no correlation
between b and S2d (Table 6). No correlation was observed between grain yield and AMMI
parameters as well as between AMMI parameters and b (Table 6).

Discussion

Exotic and Indian maize inbreds revealed significant genetic variability
for kernel minerals concentration
Extensive phenotyping of 50 diverse inbred lines selected from various international and
national institutes based on multi-location trials showed the presence of ample variability for
kernel minerals concentration and grain yield. The extent of variation suggested that the genes
responsible for kernel micronutrients accumulation were available within the maize germplasm
and therefore could be used for improving kernel minerals concentration through appropriate
breeding strategies.

Variability studies across six diverse environments identified inbreds with high and low
minerals concentration. For kernel Fe and Zn, CM-501 and SKV-775 recorded highest concen-
tration, whereas inbred lines HKI-161 recorded the lowest concentration. Similarly for both
kernel Mn and Cu, HKI-163 and HUZM-185 can be used to derive the transgressive segregants
and develop segregating mapping population. Several studies reported the polygenic inheri-
tance of kernel micronutrient concentration [48–50]. Selective inter-mating followed by selec-
tion, recurrent selections and marker-assisted selection of target QTLs could be employed to
increase the kernel micronutrients concentration. Present investigation revealed the presence
of higher kernel Fe in the selected genotypes as compared to kernel Zn. These results are in
accordance with that of Banziger and Long [10] and Simic et al. [51]. On the contrary high ker-
nel Zn concentration was reported by Chakraborti et al. [13].

Kernel Fe and Zn could be improved simultaneously
Significant phenotypic correlation among kernel micronutrients suggested the possibility for
simultaneous genetic improvement of kernel micronutrient traits in maize through appropriate
breeding strategies. Positive and significant correlation exist between kernel Fe and kernel Zn
(r = 0.37 to 0.52) and between kernel Fe and kernel Mn (r = 0.32 to 0.40) from the multi-loca-
tion trials. However, the strength of correlation varies among the environment. These results
suggested that correlation among the minerals is under the control of both genetic and envi-
ronmental factors. The genetic basis of the correlation among kernel minerals could be due to
co-segregation of mineral transporter genes in inbred lines and/or presence of common trans-
porters for multiple minerals [52]. Several studies have also reported the presence of positive
correlation among minerals including Fe and Zn [9, 12, 53].

Table 6. (Continued)

Fe SIPC1 SIPCF EV1 EVF D ASV GGED b S2
d

ASV 0.42b 0.20 0.46b

GGED 0.23 0.03

b –0.23

doi:10.1371/journal.pone.0139067.t006
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Stability models revealed significant contribution of genotypic and
interaction main effects
Stable performance of genotype for the target trait(s) is the key requirement in germplasm
enhancement and wider adaptation for cultivation. Present investigation revealed the presence
of significant G × E interaction for all the traits in six target environments which includes both
hill and plain locations and lead to identification of mega-environment(s) for each trait under
study. Significant level of G × E interaction for kernel minerals and grain yield in maize were
also reported by Gregorio [18], Oikeh et al. [9] and Prasanna et al. [19].

The AMMI-ANOVA revealed large proportion of variation due to genotype component
for kernel Fe, Mn and Cu. However, environmental contribution to the total variation was
lesser than genotypic and interaction effect for kernel Fe, Mn and Cu concentration except
for kernel Zn and grain yield. These results explained that kernel Zn and grain yield are
much sensitive to the environmental factors as compared to kernel Fe, Mn and Cu. Signifi-
cant contribution to the source of variation from genotype for grain Fe concentration and
environment for grain yield and kernel Zn were also reported by Bashir et al. [54] and Men-
kir [12].

High heritability coupled with positive and significant correlation among all environments
suggested that G × E interaction for kernel minerals is mainly a non-crossover type and it is
further depicted as close grouping pattern of environments in GGE biplots. On the contrary,
non-significant to significant correlation among the test environments for grain yield resulted
in crossover type G × E interaction with widespread environmental vectors on GGE biplot.
Minerals are the basic requirement for most of the metabolic activities including photosynthe-
sis. Hence, plants were evolved to maintain optimal level of all mineral nutrients as the first cri-
teria in order to ensure basic survival over other agronomically important traits such as grain
yield. Therefore, this could be the underlying reason for non-crossover interaction and better
heritability for kernel micronutrients as compared to crossover interaction and lower heritabil-
ity for grain yield. Significant proportions of G and G × E components to the total variation
further suggested that selection approaches can be employed to breed inbreds with both high
kernel minerals concentration and grain yield simultaneously.

Mega-environments were identified for kernel minerals and grain yield
Amaximum of two mega environments were identified for all the traits except for kernel Mn
concentration where all the environments under study were considered as single mega-envi-
ronment. For grain yield, hill and plain environments were grouped into separate mega-envi-
ronments. Contrastingly, for kernel micronutrients there was no clear-cut grouping of hill and
plain environments and thus, suggested that stability of grain yield is more influenced by soil,
altitude and other environmental factors as compared to kernel minerals. This also depicted in
terms of closeness of respective environmental vectors in GGE biplot.

Inbred lines G9 (HKI-1128) and G18 (IARI-28508) were found as best grain yielder in
mega-environment 1 (Almora, Bajaura and Barapani). Genotypes G26 (Pant-113) and G25
(Pant-110) were found best suited for plain locations (Hyderabad, Delhi and Dharwad). G3
(CM-501) was the best kernel Fe and Zn accumulator both in plain (Delhi, and Dharwad)
and hill (Bajaura and Almora). Similarly G15 (HUZM-185) was found to accumulate higher
kernel Fe, Mn and Cu in Barapani. These best fit genotypes in respective environments for
the target traits could be used by the researchers for development of location-specific hybrids
[55].
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Minerals concentration could be improved without compromising grain
yield
Both grain yield and kernel minerals concentration are complex traits affected by genetic and
non-genetic factors, including genotype, soil properties, environmental conditions and interac-
tions of genes [56]. Correlation between grain yield and kernel minerals concentration in most
of the locations under investigation were found non-significant. Banzigar and Long [10] also
reported non-significant correlation between kernel Fe/Zn concentration and grain yield in
maize landraces, cultivars and germplasm pools. Hence, there could be the possibility to
improve the kernel micronutrients and grain yield simultaneously. Significant negative correla-
tion was found between kernel Fe and grain yield, kernel Cu and grain yield in Dharwad envi-
ronment, and between kernel Zn and grain yield in Hyderabad. However, the observation was
location-specific and was noticed only in two environments out of six locations. Hence, kernel
minerals including Fe and Zn in maize could be genetically improved without compromising
grain yield in many of the testing locations.

Inbreds G9 (HKI-1128) and G13 (HKI-193-2) possess moderately high amount of each ker-
nel minerals and grain yield with relative stable performance across the locations. These
inbreds could therefore, be used in breeding programme for simultaneous improvement of ker-
nel minerals and grain yield. Since, the traits are polygenically controlled, selective inter-mating
followed by selection or recurrent selection are the better approaches to capture all the superior
alleles for kernel micronutrients and grain yield.

AMMI and GGE biplot models found superior to JRA model
JRA [20], GGE biplot [30, 47] and other models have been proposed to quantify the G × E
interaction patterns and to identify the stable and high yielding genotypes in plant breeding
programs. However, JRA, AMMI and GGE biplot are widely used in today’s context. Here, the
comparison of stability models was performed employing rank correlation from JRA, GGE and
AMMI models. Positive and significant correlations were observed among all stability models
for mean yield or kernel minerals concentration, stability and mean yield or kernel minerals
concentration-cum-yield (Table 5). However, the strength of correlation varies between the
stability models. For kernel Mn and Cu concentrations, GGE and JRA models were found
highly correlated as compared to GGE and AMMI or AMMI and JRA. Goyal et al. [57] also
reported JRA and GGE were highly correlated while identifying stable triticale genotypes for
high yield. On other hand, AMMI and JRA were found highly correlated for kernel Fe concen-
tration as compared to GGE and AMMI for kernel Zn concentration and grain yield.

Strong and positive rank correlation for stability and mean kernel minerals concentration/
grain yield-stability were observed between GGE and AMMI models in ranking the stable
genotypes for kernel Zn concentration and grain yield. These suggested that both GGE and
AMMI models are equally effective when contribution of environment variation is higher than
the total variation. Advantage of AMMI and GGE models over JRA models were also reported
in other cereal crops including wheat [41, 58] and maize [59]. Out of three models, GGE biplot
and AMMI showed similar results in ranking genotypes for grain yield [60]. Although all the
three methods show almost similar results with high correlation coefficient, AMMI and GGE
biplot models explained better understanding of G × E interaction over JRA in our experiment.

Stability parameters grouped into static and dynamic parameters
Correlation coefficient was computed to derive association among stability parameters, grain
yield/kernel minerals concentration. The present investigation revealed association among ten
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stability parameters and grouped them as static and dynamic stability parameters [61] (S1 Fig).
Static stability is based on environmental variance of the genotypes which is detected as all
deviations from the genotypic mean. Concept of static stability is useful when the stability of
line per se is more important; however, it may be associated with relatively poor yielding ability
of genotypes although it possesses stable expression.

In the static stability parameters of AMMI model, strong and positive correlation was found
among AMMI stability parameters especially among SIPCF, EVF and D; and SIPC1 and EV1
suggested that they were almost comparable in discriminating the genotypes according to their
stability levels for kernel minerals concentration and grain yield across the test environments.
Hence, any of these AMMI parameters could be used as an alternative for assessing the stability
of the genotypes [54]. ASV showed positive and significant correlation with all other AMMI
parameters. Therefore, among AMMI parameters ASV is the better representative stability
parameter for AMMI analysis. Positive and significant correlation between ASV and other
AMMI parameters have also been reported in other cereal crops [41, 54].

Dynamic stability parameters detect the stability of genotypes for yield and other quantita-
tively inherited traits [61] assuming genotype's performance will be consistent to the changes
in the environment. In the present investigation, GGED and grain yield/kernel micronutrients
follow dynamic stability parameters. Strong and positive correlation was observed between
GGED and mean kernel minerals concentration and grain yield and were grouped together in
PCoA analysis (S1 Fig). Presence of both G and G × E in GGED probably increased the herita-
ble portion of the phenotype which was nearer to the mean performance of genotype for any
target traits. The association of mean grain yield with GGED was also supported by previous
reports [41, 54].

Conclusion
The present investigation reports the presence of significant genetic variability for minerals
concentration and grain yield from multi-location trials. The study also identified stable
inbreds and mega environments for those traits to realise the genetic potential. The identified
inbreds for high kernel Fe and Zn in the present investigation could serve as potential genetic
resource for improvement of kernel Fe and Zn in maize without compromising grain yield.
The presence of significant portion of heritable variation also suggested that stable maize
hybrids can be developed through appropriate selection strategies for the micronutrients.
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