
RESEARCH ARTICLE

Development of Genomic Microsatellite
Markers in Carthamus tinctorius L. (Safflower)
Using Next Generation Sequencing and
Assessment of Their Cross-Species
Transferability and Utility for Diversity
Analysis
Heena Ambreen☯, Shivendra Kumar☯, Murali Tottekkad Variath¤, Gopal Joshi,
Sapinder Bali, Manu Agarwal, Amar Kumar, Arun Jagannath*, Shailendra Goel*

Department of Botany, University of Delhi, Delhi, 110007, India

☯ These authors contributed equally to this work.
¤ Current address: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru
PO, Hyderabad, 502324, Andhra Pradesh, India
* shailendragoel@gmail.com (SG); jagannatharun@yahoo.co.in (AJ)

Abstract

Background

Safflower (Carthamus tinctorius L.), an Asteraceae member, yields high quality edible oil

rich in unsaturated fatty acids and is resilient to dry conditions. The crop holds tremendous

potential for improvement through concerted molecular breeding programs due to the avail-

ability of significant genetic and phenotypic diversity. Genomic resources that could facili-

tate such breeding programs remain largely underdeveloped in the crop. The present study

was initiated to develop a large set of novel microsatellite markers for safflower using next

generation sequencing.

Principal Findings

Low throughput genome sequencing of safflower was performed using Illumina paired

end technology providing ~3.5X coverage of the genome. Analysis of sequencing data

allowed identification of 23,067 regions harboring perfect microsatellite loci. The safflower

genome was found to be rich in dinucleotide repeats followed by tri-, tetra-, penta- and

hexa-nucleotides. Primer pairs were designed for 5,716 novel microsatellite sequences

with repeat length� 20 bases and optimal flanking regions. A subset of 325 microsatellite

loci was tested for amplification, of which 294 loci produced robust amplification. The

validated primers were used for assessment of 23 safflower accessions belonging to

diverse agro-climatic zones of the world leading to identification of 93 polymorphic primers

(31.6%). The numbers of observed alleles at each locus ranged from two to four and mean
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polymorphism information content was found to be 0.3075. The polymorphic primers were

tested for cross-species transferability on nine wild relatives of cultivated safflower. All prim-

ers except one showed amplification in at least two wild species while 25 primers amplified

across all the nine species. The UPGMA dendrogram clustered C. tinctorius accessions
and wild species separately into two major groups. The proposed progenitor species of saf-

flower, C. oxyacantha and C. palaestinus were genetically closer to cultivated safflower and

formed a distinct cluster. The cluster analysis also distinguished diploid and tetraploid wild

species of safflower.

Conclusion

Next generation sequencing of safflower genome generated a large set of microsatellite

markers. The novel markers developed in this study will add to the existing repertoire of

markers and can be used for diversity analysis, synteny studies, construction of linkage

maps and marker-assisted selection.

Introduction
Amember of the family Asteraceae, Safflower (Carthamus tinctorius L.) is a diploid (2n = 24),
mostly self-pollinating dicot with an estimated haploid genome size of 1.4 GB [1]. The crop is
grown in wide geographical zones across the world [2] with Kazakhstan and India currently
dominating safflower production [3]. It is a multi-purpose crop employed for diverse uses such
as dye production, edible oil extraction and for medicinal applications [4]. It has also been
exploited for production of biofuel and industrial oil [5,6]. Recently, transgenic safflower has
been employed as a plant factory for production of important pharmaceuticals of human inter-
est such as insulin and apo lipoprotein [7–9]. Considering the desirable oil composition of saf-
flower and its resilience to dry conditions, it can serve as an important source of edible oil
especially in arid regions of the world. However, undesirable features such as low yield, spiny
nature and susceptibility to several biotic stresses have reduced its cultivation in several regions
including India [10].

Conventional breeding programs in several crop species have resulted in the development
of cultivars with improved yield and increased resistance to several diseases. Improvements
can be achieved more efficiently and faster through analysis of global genetic diversity existing
in the crop for selection of elite genotypes and by molecular breeding approaches [11]. Applica-
tion of molecular markers in crop breeding has proven to be a powerful method for improve-
ment of several crop species [12]. A prerequisite for successful implementation of molecular
breeding in crops is the availability of strong molecular marker-trait association [11]. A com-
prehensive program to increase yield is essential for safflower improvement [13]. However, saf-
flower genetics and genomics are largely unexplored and scarcity of reliable molecular markers
in safflower is a major limitation for development of effective molecular breeding programs in
the crop [14, 15].

A wide range of dominant markers such as random amplified polymorphic DNA (RAPD),
amplified fragment length polymorphism (AFLP), inter-simple sequence repeat (ISSR) and
sequence-related amplified polymorphism (SRAP) have been used for assessing the genetic
diversity of safflower [16–20]. However, the dominant inheritance pattern of these markers
does not allow detection of allelic information, which is important for crop breeding.

Microsatellite Markers in Safflower

PLOS ONE | DOI:10.1371/journal.pone.0135443 August 19, 2015 2 / 22

data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



Conversely, co-dominant markers allow detection of allelic diversity but in safflower, the reper-
toire of co-dominant markers is limited. Since their discovery in early 1980’s, microsatellite
markers or SSRs (simple sequence repeats) have gained importance owing to their co-domi-
nant inheritance, multi-allelic nature, wide genome coverage, high reproducibility, high poly-
morphic index, adaptability to automation, high throughput genotyping as well as efficient
transfer to closely related species making them valuable tools for genetics and breeding [21–
23]. In safflower, earlier studies used conventional methods of library enrichment or EST data-
bases for development of microsatellite markers. Chapman et al. [24] generated 104 polymor-
phic EST-SSRs for linkage mapping in safflower. Naresh et al. [25] reported five EST-SSRs
used for testing the purity of safflower hybrids. Hamdan et al. [26] isolated 64 polymorphic
genomic SSRs from an enriched genomic library of safflower. However, these methods have
high development cost and low throughput restricting the use of microsatellite markers [27].
Next generation sequencing (NGS) provide resources for high-throughput SSR development at
a lower cost [28, 29]. Mining of NGS data for development of microsatellite markers has been
exploited in a variety of plant species viz., pigeon pea, chrysanthemum, chokecherry, grass pea
[30–33]. In safflower, Lee et al. [34] reported thirty polymorphic microsatellite markers derived
from pyro-sequencing data while Pearl et al. [35] reported first set of 244 single nucleotide
polymorphism (SNP) markers. Nonetheless, till date, only 203 polymorphic SSR markers have
been reported indicating an urgent need for enrichment of robust co-dominant markers in
safflower.

The genus Carthamus includes 18 species of which, C. tinctorius L. is the only cultivated
species [1]. The wild species of Carthamus are known to harbor several agronomically desirable
traits, which were lost during the course of safflower domestication [36–38]. Transferability of
microsatellite markers to closely related species and genera would assist in the identification of
marker-trait associations, which could be used for introgression of desirable loci from the wild
species to cultivated safflower thus broadening its gene pool. Such markers would also be useful
for synteny studies, identification of progenitor species and the study of genome evolution in
the crop.

The current study exploited the efficiency of next generation sequencing data for analysis of
microsatellite fraction present in safflower genome and derivation of a large set (5,716) of
novel microsatellite markers for safflower. A subset of 325 microsatellite markers was experi-
mentally validated using twenty-three geographically diverse safflower accessions. In addition,
cross species transferability of polymorphic markers was assessed. Markers generated in this
study would serve as important resources for population genetics, construction of linkage
maps and marker-assisted selection in the crop.

Materials and Methods

Plant material and genomic DNA extraction
An accession of C. tinctorius L. (PI No: 560175) with high oil content (44%) was used for Illu-
mina paired-end sequencing. A geographically diverse set of 23 safflower accessions belonging
to seventeen countries was used to test the developed microsatellite markers. Cross species
transferability of polymorphic microsatellite markers was tested using nine wild relatives of
C. tinctorius L., including the probable progenitor species (C. oxyacantha and C. palaestinus).
Seed samples were obtained from USDA-ARS, WRPIS, Pullman, WA, USA and IPK Gene
Bank, Germany. Detailed information on plant material used in this study is given in Table 1.

Leaf material was harvested from 10-week-old plants of each accession and total genomic
DNA was isolated using CTAB method [39]. The qualitative and quantitative analysis of
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extracted DNA was done by electrophoresis on a 0.8% agarose gel and using a NanoDrop spec-
trophotometer (NanoDrop, Wilmington, DE).

Next generation sequencing using Illumina HiSeqTM 2000 and de novo
assembly
A 100bp-paired end sequencing run was performed on HiSeq 2000 platform (Illumina, USA)
by Macrogen Inc. (Korea). The FastQ files containing the raw data were submitted to the
sequence read archive (SRA) at National Centre for Biotechnology Information (NCBI) under
the accession number SRP050023. High quality reads were identified from genomic sequencing

Table 1. Details of plant material used in the study.

Species PI number# Origin Ploidy level Somatic chromosome number

Variability study

C tinctorius L. 613514 Australia 2X 24

C tinctorius L. 401477 Bangladesh 2X 24

C tinctorius L. 305188 India 2X 24

C tinctorius L. 401583 India 2X 24

C tinctorius L. 544007 China 2X 24

C tinctorius L. 262447 Kazakhstan 2X 24

C tinctorius L. 304408 (a) Pakistan 2X 24

C tinctorius L. 304408 (b) Pakistan 2X 24

C tinctorius L. 388905 Iran 2X 24

C tinctorius L. 388907 Iran 2X 24

C tinctorius L. 306687 Israel 2X 24

C tinctorius L. 340096 Turkey 2X 24

C tinctorius L. 576991 Germany 2X 24

C tinctorius L. 613465 Spain 2X 24

C tinctorius L. 306599 Egypt 2X 24

C tinctorius L. 306596 Egypt 2X 24

C tinctorius L. 239041 Morocco 2X 24

C tinctorius L. 348915 Canada 2X 24

C tinctorius L. 537111 Mexico 2X 24

C tinctorius L. 560169 USA 2X 24

C tinctorius L. 560172 USA 2X 24

C tinctorius L. 560175 USA 2X 24

C tinctorius L. var.inermis Schweinf CART 87 Romania 2X 24

Cross-species amplification

C. oxyacantha 426184 Afghanistan 2X 24

C. palaestinus 235663 Israel 2X 24

C. boissieri Halacsy Cart 85 Greece 2X 20

C. tenuis subsp. Foliosus Cart 91 Cyprus 2X 20

C. glaucus subsp. anatolicus Cart 43 Israel 2X 20

C. lanatus 235666 Portugal 4X 44

C. lanatus subsp. Creticus CART 10 - 4X 44

C. lanatus subsp. Lanatus CART7 - 4X 44

C. lanatus subsp. turkestanicus 426181 Afghanistan 4X 44

# Genotypes with CART ID are obtained from IPK while the rest have been procured from USDA.

doi:10.1371/journal.pone.0135443.t001
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data using NGS QC Toolkit at default parameters [40]. De novo assembly was performed using
SOAPdenovo version 2.04 (http://soap.genomics.org.cn//soapdenovo.html) [41] at various K-
mer values (21, 27, 33, 39, 45, 51, 57 and 63). The assembled contigs from each run were pooled
and clustered using CD-HIT (http://weizhong-lab.ucsd.edu/cd-hit/) [42]. Contigs with>90%
sequence similarities were considered redundant and removed.

Identification of microsatellites, functional annotation and development
of primer pairs
The assembled sequences were mined for perfect microsatellites using an in-house developed
Perl script (S1 Script). The script contains separate modules for different SSR types (di- to
hexa-nucleotides) and provides the details in terms of SSR type, repeat number, start and end
position of repeat in the query sequence, total length of repeat and the complete sequence.
Clustering was performed using CD-HIT on the identified sequences harboring microsatellites
(clustering criteria; similarity> = 90% and 80% length coverage) to remove redundancy.
Imperfect and compound SSR types were not included in the analysis. Functional annotation
of the retrieved microsatellite sequences was performed using web-based automated annota-
tion pipeline, FastAnnotator using default parameters (http://fastannotator.cgu.edu.tw/) [43].

Sequences containing microsatellites with repeat length of� 20 bases (10 units for di-; 7
units for tri-, 5 units for tetra- nucleotides) and optimal flanking regions (� 30 bases on both
flanks of microsatellite) were used to design primers. The web-based program, BatchPrimer3
version 1.0 (http://probes.pw.usda.gov/batchprimer3/) [44] was used for designing primer
pairs with following parameters: primer length 18–28 bases; product size ranging from 100bp-
500bp; optimum annealing temperature between 50°C to 65°C and GC content of 40% to
80% with an optimum value of 60%. Other parameters were used at default setting. Blast+ ver-
sion 2.2.26 (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.26/) was used to query the
previously reported SSR markers [24–26, 34] against the marker set for which primers were
designed in the current study.BLASTN hits with an E value less than 1x10-13 were considered
significant.

Validation of microsatellites
Primers were synthesized at Integrated DNA Technology, USA. Genomic DNA of two saf-
flower accessions (PI: 560172 and 560175) was used as template for standardization of PCR
conditions. The PCR was conducted in a total reaction volume of 15μl containing 50 ng of tem-
plate DNA, 1X PCR buffer, 2mM of MgCl2, 0.2mM of each dNTP, 0.3mM each of forward and
reverse primers and 1.25 U of Taq DNA polymerase (Biotools, Spain). Amplifications were
performed in a Veriti thermal cycler (Applied Biosystems, USA) with the following cycling
conditions: Initial denaturation at 96°C for 5 mins followed by 28–30 cycles of 96°C for 45s,
primer annealing temperature (Tm; optimized for each primer pair; ranging between 55°C to
65°C) for 30s, DNA extension at 72°C for 1 min and a final extension at 72°C for 7 mins. The
generated amplicons were analyzed on 2% agarose gel for product size and amplicon quality.

Genotyping and cross species transferability
Primer pairs producing a clear unambiguous band were used for genotyping a panel of 23 saf-
flower accessions (Table 1). The polymorphic markers were further assessed for their cross spe-
cies transferability in nine wild relatives of C. tinctorius L. (Table 1). For polymorphic markers,
M13 tailing of the PCR product was adopted as described earlier [45, 46]. The labeled PCR
products were analyzed on 6.5% PAGE using 4300 DNA analyzer system (LICOR, USA).
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Marker diversity analysis
Statistical analyses of genetic data [Average number of alleles per locus (Na), gene diversity
per locus (He), observed heterozygosity (Ho) and polymorphic information content (PIC)] of
microsatellite markers were evaluated using POWERMARKER version 3.25 (http://www.
powermarker.net) [47]. Cluster analysis for polymorphic microsatellite loci across the tested
panel was performed using DARwin version 5.0.158 (http://darwin.cirad.fr/darwin) [48] based
on simple matching coefficient.

Results and Discussion

Genome sequencing of C. tinctorius L.
Illumina paired-end technology was used for sequencing the safflower genome. We obtained
48,502,680 raw reads with an average read length of 101 bases which provided ~3.5X coverage
of the genome. The average quality score (Q) of raw reads was>25 in all the sequencing cycles
(Fig 1). The raw sequences were checked for sequence artifacts such as low quality reads and
adaptor contamination using NGS QC Toolkit [40]. A total of 44,164,564 (91.06%) high quality
filtered reads were obtained with 98.1% bases showing a Q value of>20.

Assembly of the quality filtered and trimmed sequences were performed using SOAPdenovo
version 2.04 [41]. Various k-mer values (21, 27, 33, 39, 45, 51, 57 and 63) were used for assem-
bly and assembled sequences at each k-mer were pooled resulting in 4,078,739 contigs. Redun-
dancy in contigs was removed using CD-HIT program [42], which resulted in 2,043,956
contigs with an average contig length of 264bp. Around 90% of the contigs were found in the
size range of 100bp to 499bp. Length distribution of the obtained contigs is given in Table 2.

Fig 1. Quality score during sequencing cycles of HiSeqTM 2000.

doi:10.1371/journal.pone.0135443.g001

Microsatellite Markers in Safflower

PLOS ONE | DOI:10.1371/journal.pone.0135443 August 19, 2015 6 / 22

http://www.powermarker.net/
http://www.powermarker.net/
http://darwin.cirad.fr/darwin


Contigs<100 bases in length were excluded from further analyses. The generated safflower
genome showed an average GC content of 38%, which is in consonance with several plant spe-
cies such as Arabidopsis (36%), grape (34.6%), tomato (36.2%), potato (35.6%), rubber (36.2%)
and mungbean (34.69%) [49–53].

Discovery of microsatellites
An in-house developed Perl script (S1 Script) was used for mining perfect microsatellites from
the clustered genomic data. Perfect repeats were selected as these are known to have higher
mutation rates than imperfect loci and are expected to therefore, yield more polymorphism
[54]. Additionally, more allelic variation is observed with increasing number of repeats [55].
Thus, sequences with repeat length< 20 bases were not analysed as these may not be signifi-
cantly polymorphic. Following these criteria, we identified 31,390 microsatellite sequences
which were further filtered to remove redundancy using CD-HIT and a non-redundant set of
23,067 putative microsatellite loci was obtained.

Significant heterogeneity was observed in frequency, motif type and repeat length of SSRs in
safflower. Di-nucleotides were the most frequent type of repeats representing 71% of total
SSRs, followed by tri- (10%), tetra- (5.8%), penta- (5.13%) and hexa-nucleotide repeats (4.26%;
Fig 2). Di-nucleotides are known to be the most represented SSRs in genomes of several plant
species viz., pigeonpea, mungbean, sweet potato and sesame [30,54,56,57]. The safflower
genome was highly enriched with AT/TA repeats accounting for 57.65% of all the dinucleotide
motifs followed by AG/TC (27.5%) and AC/GT (14.8%) repeats. This is in consonance with
the observations of Lee et al., [34] who isolated microsatellites based on pyro-sequencing of the
safflower genome. In general, plant genomes have been reported to be rich in AT repeats [58–
60]. We did not obtain any CG/GC repeat in the analyzed data (Fig 3 and Fig 4A). Among tri-
nucleotide repeats, AAT was the most common motif (35.6%) followed by AAG (25%). How-
ever, Lee et al., [34] reported ACC to be the most frequent tri-nucleotide repeat (27%) in saf-
flower. This variation could be due to differences in the quantum of data generated in the two
studies. While Lee et al. [34] reported 1100 contigs with SSRs, we obtained a significantly
higher number of SSR-containing contigs (23,067) which may represent a more accurate

Table 2. Length distribution of clustered sequences.

Read length (base pair) Number

100–499 1843988

500–999 183848

1000–1999 15330

2000–2999 586

3000–3999 126

4000–4999 46

5000–5999 19

6000–6999 9

7000–7999 1

8000–8999 1

9000–9999 1

10000–10999 1

Total 2,043,956

Average length (base pair) 264

Total nucleotides clustered 540749137

doi:10.1371/journal.pone.0135443.t002
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distribution of SSR frequencies. Another factor could be the inherent bias observed in individ-
ual sequencing runs [61,62] that could have led to differences between the two studies. The
least frequent tri-nucleotide motif was CGC for which only one locus was detected and it repre-
sented the only GC-rich trimer repeat obtained in the current study (Figs 3 and 4B). Low fre-
quency of GC-rich repeats was also reported in genomic sequences of other crops [52, 53].
Among tetra-nucleotide repeats, the ACAT motif was the most predominant (Fig 3).

The microsatellite motifs were also assessed for their repetitive unit length. The reiteration
number of a SSR motif ranged from 4 to 24 and di-nucleotides were found to have greater
number of reiteration units, which gradually decreased in higher motif types (Fig 5).

Functional annotation of microsatellite sequences
In order to study the potential functional significance of 23,067 microsatellite sequences,
annotation was performed using FastAnnotator [43], which reported the average length
and GC content of these sequences to be 300 bp and 30%, respectively. More than 50% of
sequences (~ 13,000) were greater than 200 bp in length and the N50 of these sequences was
383 nucleotides. Out of the total set analyzed, 2,611 sequences were found to have similarity
with sequences in the NCBI non-redundant protein database and 1,003 sequences (4.3%) were
found to have at least one functional annotation. Around 738 sequences were assigned gene
ontology (GO) while 99 sequences contained at least one domain. Ten sequences were found
to be common among all annotation categories while 155 sequences were found to be common
among GO and domain categories. Only one sequence was found to share the GO and enzyme
annotation (Fig 6). S1 Table provides detailed information regarding annotated SSR sequences.

Fig 2. Distribution analysis of major classes of microsatellites in safflower genome.

doi:10.1371/journal.pone.0135443.g002
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Nine hundred and four contigs were mapped to gene ontology terms with 767, 695 and 757
assignments distributed under biological process, cellular component and molecular function
ontology, respectively. Fig 7 shows GO classification (Level 2) of annotated microsatellite
sequences. In the biological process ontology class, cellular and metabolic processes were pre-
dominant. Under molecular function class, binding and catalytic activity were the most abun-
dant while cell part and organelle have the highest number of assignments under cellular
component class. Similar results for distribution of GO terms were obtained in earlier studies
on safflower floral transcriptome [63]. The present study thus reports a novel set of microsatel-
lites, which might be correlated with the expressed components of safflower genome.

Validation of SSRmarkers
Primer pairs were designed for microsatellite loci using BatchPrimer3 version 1.0 [44] which
allows detection of SSR motifs and designs primers from flanking regions. Out of 23,067 micro-
satellite loci identified above, 5,737 loci were recognized with sufficient flanking region and ful-
filled the criteria for primer design (seeMethods). Homology search of 5,737 microsatellite loci
against the previously reported SSRs in safflower [24–26,34] was performed. The BLASTN
results revealed that 14 and 7 sequences had significant similarity (E value< 1x10-13) with
SSRs previously reported by Chapman et al. [24] and Lee et al. [34], respectively. These
sequences were removed from the analysis leading to the identification of 5,716 novel microsat-
ellites in safflower.

Fig 3. Frequency distribution of SSRs with most and least represented repeat motif in each class.

doi:10.1371/journal.pone.0135443.g003
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Fig 4. Characterization of di- and tri-nucleotide microsatellites discovered in safflower genome.

doi:10.1371/journal.pone.0135443.g004
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A subset of 325 microsatellite loci, designated as NGSaf_1 to NGSaf_325, was chosen for
experimental validation and included di- (58), tri- (257) and tetra-nucleotide (10) repeats.
These sequences have been submitted in the NCBI GenBank database under the accession
numbers KM670560-KM670883 (S2 Table). High representation of trimeric repeats (79%) was
selected to increase the probability of their presence in the coding regions [64]. It is believed
that selective forces do not allow expansion of any repeat type other than trinucleotides in cod-
ing regions to avoid frame shift mutations that could alter protein functionality [60]. These
repeats therefore, have a greater probability for stronger marker-gene/trait association and a
high rate of transferability across species. Details of untested primer pairs are provided in S3
Table.

Out of 325 tested SSR primers, 294 (90.4%) generated high quality reproducible amplicons
of expected size. Thirteen primer pairs failed to provide any PCR product and 18 primer pairs
produced multiple amplicons, which were difficult to evaluate and were excluded from further
analysis (S2 Table). The process of SSR development is subjected to attrition at each step. A
mean 50% attrition between primer design and successful amplification of SSR loci has been
reported in earlier studies [52, 65]. Lee et al. [34] tested 509 primer pairs in safflower, of which
only 302 (59.3%) produced successful amplification. The higher rate of successful amplification
in the current study (90.4%) could be due to improved generation and analysis of sequencing
data.

Fig 5. Reiteration units observed for various classes of SSRs in safflower genome.

doi:10.1371/journal.pone.0135443.g005
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Polymorphism analysis and cross species transferability of SSR
markers
Based on their geographical origin, 23 safflower genotypes from 17 countries of the world
(Table 1) were selected for testing the discriminatory potential of validated microsatellite

Fig 6. Functional annotation of microsatellite sequences.

doi:10.1371/journal.pone.0135443.g006

Fig 7. Distribution of annotated genomicmicrosatellites ofC. tinctorius L. among the Gene Ontology
functional classes: Biological process, Cellular component andMolecular function (Level 2).

doi:10.1371/journal.pone.0135443.g007
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markers. Out of the 294 microsatellite loci which produced robust amplification, 93 (31.6%)
were polymorphic among the studied genotypes (Table 3). The average number of alleles (Na)
per locus varied from 2 to 4 while the mean observed heterozygosity (Ho) and mean gene
diversity (He) were 0.0494 and 0.3746, respectively. The low level of observed heterozygosity
might be attributed to the highly self-pollinating nature of the crop. Sixty-eight polymorphic
markers revealed 2 alleles, 23 markers yielded 3 alleles while 2 markers detected 4 alleles
among the 23 accessions. In total, 213 alleles could be identified in the assessed genotypes
using 93 polymorphic SSR loci. Polymorphism information content (PIC) was calculated for
each marker and ranged from 0.0416 (NGSaf_43, 91, 115) to 0.5602 (NGSaf_69) with a mean
PIC of 0.3075 (Table 3).

In our data, some repeat motifs were found to be more polymorphic among the studied
accessions than other repeat types. The repeat motif ‘AG’ exhibited highest polymorphism
(57.1%) among all analyzed repeats followed by ‘AAT’ (46.4%). Detailed information regarding
motif type and percent polymorphism is given in Table 4. It has been reported that different
taxa exhibit different preferences for SSR types [59]. This information would help in selection
of motif types and increase the probability of finding polymorphic markers in safflower.

The cross species transferability of polymorphic SSR loci was also assessed in nine wild spe-
cies of safflower (Table 1). Each primer pair, except NGSaf_307, was found to be amplifiable in
two or more of the tested wild relatives (S4 Table). Twenty five SSR markers showed 100%
transferability to all the wild relatives. The highest rate of cross transferability of markers was
observed in C. oxyacantha (97%) followed by C. palaestinus (87%) while markers were found
to be least transferable in C. tenuis (42%) (Fig 8). Based on cytogenetic studies, C oxyacantha
and C. palaestinus, had been proposed as the possible progenitors of cultivated safflower [66].
The high rate of cross species amplification of SSR markers obtained in the present study sup-
ports the earlier observations on homology between these species and their possible contribu-
tion to the safflower genome [67].

Cluster analysis for assessment of phylogenetic relationships in
Carthamus sp.
Cluster analysis based on simple matching coefficient was used to assess the genetic relationships
between C. tinctorius (safflower) genotypes and related wild species (Fig 9). The analysis grouped
the studied accessions into two major clusters (I and II). All safflower genotypes, irrespective of
their geographical origin, clustered in a single group (subgroup Ia) although some indicative
groupings were observed for genotypes from USA and the European gene pool. Inclusion of
more accessions from these geographical zones might be useful in identifying regional gene pools
in the crop. The two wild species, C. oxyacantha and C. palaestinus, grouped together in sub-
group Ib of cluster I. The clustering of C. oxyacantha and C. palaestinus along with C. tinctorius
genotypes in cluster I supports the hypothesis that these wild species are more closely related to
cultivated safflower than the other wild relatives. All the other wild species grouped together in
Cluster II. Distinct clustering of accessions with differences in chromosome number was also
observed. All Carthamus accessions with chromosome number n = x = 12 grouped together in
cluster I. Cluster II segregated into two subgroups. Cluster IIa contained the diploid wild species
with basic chromosome number = 10 (C. glaucus subspecies anatolicus, C. boissieriHalacsy and
C. tenuis) while the tetraploid relatives (C. lanatus subspecies creticus, C. lanatus, C. lanatus
subspecies turkestanicus and C. lanatus subspecies lanatus; basic chromosome number = 11)
grouped in Cluster IIb.

Cross species amplification of microsatellite markers improves with decreasing phylogenetic
distances [68]. The family Asteraceae is reported to have a low level of genetic conservation
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resulting in limited transferability of microsatellite markers across different genera [69]. Cross-
genera transferability of microsatellite markers from sunflower has been shown to be inade-
quate and of limited use in safflower [14, 70]. Molecular markers developed in the current
study demonstrated a high rate of interspecific amplification (ranging from 42% to 97%) within

Table 4. Repeat motif type and their rate of polymorphism observed in the present study.

Repeat Motif type Total primer per motif Polymorphic primers Percentage polymorphism

Dinucleotides

AT 9 1 11

AG 28 16 57

AC 21 7 33

Trinucleotides

AAT 26 11 42

AAC 32 10 31

AAG 62 12 19

ACC 16 3 19

ACG 10 2 20

ACT 39 10 25.6

AGC 15 3 20

AGG 21 5 24

ATC 26 8 30.7

CCG 8 1 12

doi:10.1371/journal.pone.0135443.t004

Fig 8. Cross-species transferability of 93 polymorphic safflower microsatellite markers in various species of genusCarthamus.

doi:10.1371/journal.pone.0135443.g008
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the genus Carthamus. We have also established the efficiency of these markers in elucidating
the genetic relationships between members of the genus Carthamus. These markers could also
be used for synteny studies between cultivated and wild species of safflower.

Conclusion
In conclusion, our study provided an insight into the microsatellite components of safflower
genome. Using next generation sequencing data, a large set of 5,716 novel microsatellite prim-
ers were designed of which, 325 markers were experimentally validated. Ninety-three markers
were found to be polymorphic among the studied accessions. These markers were successfully
used for genetic analysis in C. tinctorius L. and also showed significant cross species transfer-
ability in related wild species. Our data supports C. oxyacantha and C. palaestinus as the possi-
ble progenitors of cultivated safflower. We were also able to distinguish between various wild
species with differing basic chromosome numbers. Markers generated in this study will
enhance the current repository for safflower and would be useful in crop improvement pro-
grams. The current study also supports the efficiency of next generation sequencing data in
providing faster and reliable resources for marker development in non-model crops.

Supporting Information
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S3 Table. Details of 5, 391 SSR primers designed in present study.
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Fig 9. Phylogenetic dendrogram based on 93 polymorphicmicrosatellite markers, elucidating the
genetic diversity and relationships among and between safflower accessions and its wild relatives.
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