Euphytica (2015) 203:367–374 DOI 10.1007/s10681-014-1282-2

Molecular diagnosis to identify new sources of resistance to sclerotinia blight in groundnut (*Arachis hypogaea* L.)

Engin Yol · Hari D. Upadhyaya · Bulent Uzun

Received: 11 August 2014/Accepted: 15 October 2014/Published online: 7 November 2014 © Springer Science+Business Media Dordrecht 2014

Abstract Sclerotinia blight, caused by soil-borne fungus Sclerotinia minor Jagger, is one of the destructive diseases in groundnut. Pathogen affected plants usually displays lesions, wilt and collapse which cause high yield losses. Traditional field screening is time and resources consuming. Molecular markers associated with resistance genes offer an alternative selection technique which is relatively easy, more definite and not influenced by environmental fluctuations. In the present investigation, a marker-assisted diagnosis was done to screen 256 diverse germplasm for the presence or absence of SSR markers reported resistance or susceptibility to sclerotinia blight. One hundred and forty two genotypes from different botanical varieties were recognized as new potential sources of resistance to sclerotinia blight for field evaluation. The banding pattern related to the disease resistance is observed at high frequency in the variety vulgaris (39.4 %) and less distributed in the varieties fastigiata (38.0 %) and hypogaea (19.7 %) among the resistant genotypes in the collection. These genotypes had same banding pattern as reported for resistance germplasm. This work reports the successful application of marker-assisted diagnosis as a tool to identify resistance to sclerotinia blight in diverse collections.

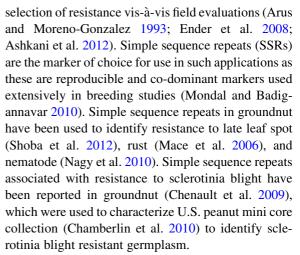
Keywords Sclerotinia minor Jagger · Disease resistance · Pathogen · Molecular markers · Marker-assisted selection

Introduction

Groundnut (Arachis hypogaea L., Fabaceae), also known as peanut, is one of the major oilseed crops worldwide in tropical, subtropical and warm areas of approximately 100 countries, grown on 24.7 million ha with a total production of nearly 41 million tons annually (FAO 2012). About two-thirds of global production is used for vegetable oil and the remaining is utilized for edible product and as seed (Upadhyaya et al. 2011). Groundnut is a rich source of edible oil (about 48 %) and protein (about 26 %), used globally for human nutrition (Sarvamangala et al. 2011). The biological value of groundnut protein is among the highest of the vegetable proteins (Shoba et al. 2012). The cake obtained after extraction of oil and plant haulms are used in the livestock feed industry (Nigam and Aruna 2008). Groundnut also fixes atmospheric nitrogen, thus, improving the soil fertility.

Many biotic and abiotic stress factors limit the groundnut production in various eco-agricultural

E. Yol · B. Uzun (⊠)


Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07058 Antalya, Turkey e-mail: bulentuzun@akdeniz.edu.tr

H. D. Upadhyaya International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India

systems. Leaf spots, rust and soil-borne diseases among the biotic stresses are globally important diseases affecting both production and seed quality (Liao and Holbrook 2007). Of recent, soil-borne pathogens have become more important in many parts of the world (Thiessen and Woodward 2012). Sclerotinia blight is one of the most destructive soil-borne diseases of groundnut (Livingstone et al. 2005), causing yield losses up to 50 % (Butzler et al. 1998). Sclerotinia blight is caused by soil-borne fungus S. minor Jagger which is an ascomycetes that produce white aerial mycelia and black, irregularly shaped sclerotia (Thiessen and Woodward 2012). Soil with pH near 6.5, cool temperatures and high relative humidity or rainfall are the favorable conditions for sclerotial germination and infection (Bailey and Brune 1997). Pathogens usually attack groundnut root and stem at or near the soil surface and destroy the vascular tissue of the crown, at which time the plant wilts and collapses (Laemmlen 2001). Several fungicides have been recommended to control the disease (Smith et al. 1992). Cultural practices such as crop rotation (Melouk and Backman 1995), tillage practices (Wu and Subbarao 2003), seed fungicide-treatment (Porter and Melouk 1997), and drip irrigation have been used to reduce the production costs, and soil contamination by fungicides (Gil et al. 2008) but these measures have not been sufficient to disease control. Host plant resistance is the most effective solution to manage sclerotinia blight and protect the environment (Chenault et al. 2009). However, desired progress through genetic resistance has not been achieved because of complicated inheritance mechanism and limited number of known sources of resistance (Chamberlin et al. 2010). Screening of more germplasm might help to find new sources of resistance to soil borne diseases to support breeding programs.

Traditional method of screening of germplasm in affected field plots is time and resource consuming. Several factors contribute to the development of uniform occurrence of diseases in the field conditions, which often make it difficult to achieve uniform infestation of disease pressure on test genotypes, leading to misclassification of germplasm. Advances in molecular marker technologies have opened the door to applying these techniques for screening of breeding populations to increase the efficiency of selection (Boopathi 2013). Marker assisted diagnosis probably would be cost-effective and faster for

The aim of this investigation was to identify new sources of variation for sclerotinia blight in 256 peanut germplasm using SSR markers previously reported associated with resistance to sclerotinia blight.

Materials and methods

Plant materials

Two hundred and fifty six groundnut germplasm, which include ICRISAT groundnut mini core collection (Upadhyaya et al. 2002), breeding lines, local landraces, and registered cultivars, were used as a genetic material in this study (Table 1). PI 482189 (resistant) and PI 496448 (susceptible) were used as controls by Chamberlin et al. (2010) to differentiate the test materials into resistance or susceptible category based on SSR marker profile.

Molecular analysis

The seeds were germinated in the West Mediterranean Agricultural Research Institute's fields of Antalya, Turkey ($36^{\circ}52'$ N. $30^{\circ}50'$ E. 15 m elevation). Ground-nut leaves were collected from plants and stored at -80 °C for DNA extraction. DNA isolation was carried out using the CTAB method (Doyle and Doyle 1990). The quality and quantity of the DNA extracts were checked by agarose gel electrophoresis with a DNA standard. The DNA extracts were suspended in milli-Q PCR water and stored at -20 °C.

The PCR analyses were conducted and templates for PCR reaction set up for 20 μ l as follows: 2 μ l of

Table 1 Association of sclerotinia blight resistant marker with the genotypes of groundnut collection

	ICRISAT					ICRISAT			
	Genebank					Genebank			
Accession	Entry (ICG) / Cultivar		Botanical	Marker		Entry (ICG) / Cultivar		Botanical	Mark
No.	Name	Subspecies	variety	Score*	Accession No.	Name	Subspecies	variety	Scor
ACG 1	ICG 36	fastigiata	vulgaris	L	ACG 56	ICG 4412	hypogaea	hypogaea	S
ACG 2	ICG 76	hypogaea	hypogaea	S	ACG 57	ICG 4527	hypogaea	hypogaea	S
ACG 3	ICG 81	fastigiata	vulgaris	L	ACG 58	ICG 4538	hypogaea	hypogaea	S
ACG 4	ICG 111	hypogaea	hypogaea	S	ACG 59	ICG 4543	fastigiata	vulgaris	L
ACG 5	ICG 115	fastigiata	fastigiata	L	ACG 60	ICG 4598	hypogaea	hypogaea	S
ACG 6	ICG 118	fastigiata	vulgaris	S	ACG 61	ICG 4670	fastigiata	fastigiata	L
ACG 7	ICG 156	hypogaea	hypogaea	S	ACG 62	ICG 4684	fastigiata	vulgaris	L
ACG 8	ICG 163	hypogaea	hypogaea	S	ACG 63	ICG 4729	fastigiata	vulgaris	L
ACG 9	ICG 188	hypogaea	hypogaea	L	ACG 64	ICG 4746	hypogaea	hypogaea	L
ACG 10	ICG 297	fastigiata	fastigiata	L	ACG 65	ICG 4750	fastigiata	vulgaris	L
ACG 11	ICG 332	fastigiata	fastigiata	L	ACG 66	ICG 4911	fastigiata	vulgaris	L
ACG 12	ICG 334	fastigiata	vulgaris	L	ACG 67	ICG 4955	fastigiata	vulgaris	L
ACG 14	ICG 397	fastigiata	fastigiata	L	ACG 68	ICG 4998	hypogaea	hypogaea	S
ACG 14	ICG 434	fastigiata	vulgaris	L	ACG 69	ICG 5016	hypogaea	hypogaea	S
ACG 15	ICG 442	fastigiata	vulgaris	L	ACG 70	ICG 5195	fastigiata	vulgaris	L
ACG 16	ICG 513	hypogaea	hypogaea	S	ACG 71	ICG 5221	fastigiata	fastigiata	L
ACG 17	ICG 532	hypogaea	hypogaea	S	ACG 72	ICG 5236	fastigiata	vulgaris	L
ACG 18	ICG 721	hypogaea	hypogaea	S	ACG 73	ICG 5286	hypogaea	hypogaea	L
ACG 19	ICG 862	hypogaea	hypogaea	S	ACG 74	ICG 5327	hypogaea	hypogaea	S
ACG 20	ICG 875	hypogaea	hypogaea	S	ACG 75	ICG 5475	fastigiata	fastigiata	L
ACG 21	ICG 928	hypogaea	hypogaea	S	ACG 76	ICG 5494	fastigiata	vulgaris	L
ACG 22	ICG 1137	fastigiata	vulgaris	L	ACG 77	ICG 5609	fastigiata	fastigiata	L
ACG 23	ICG 1142	fastigiata	fastigiata	L	ACG 78	ICG 5662	hypogaea	hypogaea	S
ACG 24	ICG 1274	fastigiata	fastigiata	L	ACG 79	ICG 5663	hypogaea	hypogaea	S
ACG 25	ICG 1399	fastigiata	fastigiata	L	ACG 80	ICG 5745	hypogaea	hypogaea	S
ACG 26	ICG 1415	fastigiata	vulgaris	L	ACG 81	ICG 5779	fastigiata	vulgaris	L
ACG 27	ICG 1519	fastigiata	vulgaris	L	ACG 82	ICG 5827	hypogaea	hypogaea	L
ACG 28	ICG 1668	hypogaea	hypogaea	S	ACG 83	ICG 5891	hypogaea	hypogaea	S
ACG 29	ICG 1711	fastigiata	vulgaris	L	ACG 84	ICG 6022	fastigiata	fastigiata	L
ACG 30	ICG 1973	fastigiata	vulgaris	L	ACG 85	ICG 6057	hypogaea	hypogaea	S
ACG 31	ICG 2019	fastigiata	vulgaris	L	ACG 86	ICG 6201	fastigiata	fastigiata	L
ACG 32	ICG 2106	fastigiata	vulgaris	L	ACG 87	ICG 6263	fastigiata	vulgaris	L
ACG 33	ICG 2381	hypogaea	hypogaea	L	ACG 88	ICG 6375	fastigiata	vulgaris	L
ACG 34	ICG 2511	hypogaea	hypogaea	S	ACG 89	ICG 6402	hypogaea	hypogaea	L
ACG 35	ICG 2738	fastigiata	fastigiata	L	ACG 90	ICG 6407	fastigiata	vulgaris	L
ACG 36	ICG 2772	hypogaea	hypogaea	S	ACG 91	ICG 6646	fastigiata	fastigiata	N/A
ACG 37	ICG 2773	hypogaea	hypogaea	L	ACG 92	ICG 6654	fastigiata	vulgaris	N/A
ACG 38	ICG 2777	hypogaea	hypogaea	S	ACG 93	ICG 6667	hypogaea	hypogaea	S
ACG 39	ICG 2857	hypogaea	hypogaea	L	ACG 94	ICG 6703	hypogaea	hypogaea	L
ACG 40	ICG 2925	hypogaea	hypogaea	S	ACG 95	ICG 6766	hypogaea	hypogaea	S
ACG 41	ICG 3027	hypogaea	hypogaea	S	ACG 96	ICG 6813	hypogaea	hypogaea	S
ACG 42	ICG 3053	hypogaea	hypogaea	S	ACG 97	ICG 6888	fastigiata	fastigiata	L
ACG 43	ICG 3102	fastigiata	vulgaris	L	ACG 98	ICG 6892	hypogaea	hypogaea	S
ACG 44	ICG 3240	fastigiata	vulgaris	L	ACG 99	ICG 6993	hypogaea	hypogaea	L
ACG 45	ICG 3343	fastigiata	vulgaris	L	ACG 100	ICG 7000	hypogaea	hypogaea	L
ACG 46	ICG 3421	fastigiata	vulgaris	L	ACG 101	ICG 7153	hypogaea	hypogaea	S
ACG 47	ICG 3584	fastigiata	vulgaris	L	ACG 102	ICG 7181	fastigiata	fastigiata	L
ACG 48	ICG 3673	fastigiata	fastigiata	L	ACG 103	ICG 7190	fastigiata	vulgaris	L
ACG 49	ICG 3681	fastigiata	fastigiata	L	ACG 104	ICG 7243	hypogaea	hypogaea	S
ACG 50	ICG 3746	fastigiata	vulgaris	L	ACG 105	ICG 7906	fastigiata	vulgaris	L
ACG 51	ICG 3775	fastigiata	vulgaris	L	ACG 106	ICG 7963	hypogaea	hypogaea	L
ACG 52	ICG 3992	hypogaea	hypogaea	S	ACG 107	ICG 7969	fastigiata	vulgaris	L
ACG 53	ICG 4156	hypogaea	hypogaea	S	ACG 108	ICG 8083	fastigiata	vulgaris	L
ACG 54	ICG 4343	hypogaea	hypogaea	S	ACG 109	ICG 8106	fastigiata	fastigiata	L
ACG 55	ICG 4389	hypogaea	hypogaea	S	ACG 110	ICG 8285	hypogaea	hypogaea	S

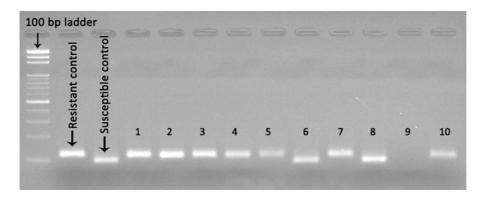
Table 1 continued

	ICRISAT					ICRISAT			
	Genebank					Genebank			
	Entry (ICG) /					Entry (ICG) /			
Accession	Cultivar		Botanical	Marker		Cultivar		Botanical	Marker
No.	Name	Subspecies	variety	Score*	Accession No.	Name	Subspecies	variety	Score
ACG 111	ICG 8490	hypogaea	hypogaea	S	ACG 166	ICG 13858	fastigiata	fastigiata	L
ACG 112	ICG 8517	fastigiata	fastigiata	L	ACG 167	ICG 13941	fastigiata	vulgaris	S
ACG 113	ICG 8567	fastigiata	vulgaris	L	ACG 168	ICG 13942	hypogaea	hypogaea	S
ACG 114	ICG 8760	hypogaea	hypogaea	S	ACG 169	ICG 13982	hypogaea	hypogaea	L
ACG 115	ICG 9037	hypogaea	hypogaea	S	ACG 170	ICG 14008	hypogaea	hypogaea	S
ACG 116	ICG 9157	fastigiata	vulgaris	L	ACG 171	ICG 14106	fastigiata	fastigiata	L
ACG 117	ICG 9249	fastigiata	vulgaris	L	ACG 172	ICG 14118	fastigiata	vulgaris	L
ACG 118	ICG 9315	fastigiata	fastigiata	L	ACG 173	ICG 14127	fastigiata	fastigiata	L
ACG 119	ICG 9418	fastigiata	vulgaris	L	ACG 174	ICG 14466	hypogaea	hypogaea	S
ACG 120	ICG 9507	fastigiata	vulgaris	S	ACG 175	ICG 14475	hypogaea	hypogaea	L
ACG 121	ICG 9666	hypogaea	hypogaea	S	ACG 176	ICG 14482	hypogaea	hypogaea	L
ACG 122	ICG 9777	hypogaea	hypogaea	S	ACG 177	ICG 14523	hypogaea	hypogaea	S
ACG 123	ICG 9809	fastigiata	vulgaris	L	ACG 178	ICG 14630	fastigiata	fastigiata	L
ACG 124	ICG 9842	hypogaea	hypogaea	S	ACG 179	ICG 14705	hypogaea	hypogaea	L
ACG 125	ICG 9905	hypogaea	hypogaea	S	ACG 180	ICG 14710	fastigiata	fastigiata	L
ACG 126	ICG 9961	hypogaea	hypogaea	S	ACG 181	ICG 14985	fastigiata	vulgaris	L
ACG 127	ICG 10036	fastigiata	peruviana	L	ACG 182	ICG 15042	fastigiata	fastigiata	L
ACG 128	ICG 10092	fastigiata	fastigiata	L	ACG 183	ICG 15190	hypogaea	hypogaea	S
ACG 129	ICG 10185	hypogaea	hypogaea	S	ACG 184	ICG 15287	fastigiata	vulgaris	L
ACG 130 ACG 131	ICG 10384	fastigiata fastigiata	vulgaris fastigiata	L	ACG 185	ICG 15309	fastigiata	fastigiata hirsuta	L
ACG 131 ACG 132	ICG 10474 ICG 10479	hypogaea		L	ACG 186	ICG 15419	hypogaea		L
ACG 132 ACG 133	ICG 10479 ICG 10554	nypogaea fastigiata	hypogaea fastigiata	L	ACG 187 ACG 188	NC-7 PF-259860	hypogaea	hypogaea	S
ACG 133	ICG 10554 ICG 10566	fastigiata	fastigiata fastigiata	L	ACG 189	NC-3033	hypogaea hypogaea	hypogaea	S
ACG 134	ICG 10300	fastigiata	fastigiata	L L	ACG 199	5015	hypogaea hypogaea	hypogaea hypogaea	S S
ACG 136	ICG 11088	fastigiata	peruviana	L	ACG 191	5026	hypogaea	hypogaea	S
ACG 137	ICG 11000	hypogaea	hypogaea	L	ACG 192	5030	hypogaea	hypogaea	L L
ACG 138	ICG 11144	fastigiata	fastigiata	L	ACG 193	5067	hypogaea	hypogaea	L
ACG 139	ICG 11219	hypogaea	hypogaea	S	ACG 194	88/3	hypogaea	hypogaea	S
ACG 140	ICG 11249	fastigiata	vulgaris	L	ACG 195	Ant-92/1	hypogaea	hypogaea	S
ACG 141	ICG 11322	hypogaea	hypogaea	S	ACG 196	427-24	hypogaea	hypogaea	S
ACG 142	ICG 11426	hypogaea	hypogaea	L	ACG 197	437-3-4-B-2	hypogaea	hypogaea	L
ACG 143	ICG 11457	hypogaea	hypogaea	S	ACG 198	393-2-1-2-2	hypogaea	hypogaea	N/A
ACG 144	ICG 11515	fastigiata	vulgaris	L	ACG 199	70/1145-1/03	hypogaea	hypogaea	L
ACG 145	ICG 11651	fastigiata	vulgaris	L	ACG 200	75/1073-A	hypogaea	hypogaea	S
ACG 146	ICG 11687	fastigiata	vulgaris	L	ACG 201	75/1073-B	hypogaea	hypogaea	S
ACG 147	ICG 11855	hypogaea	hypogaea	S	ACG 202	Bari-89	hypogaea	hypogaea	S
ACG 148	ICG 11862	hypogaea	hypogaea	S	ACG 203	Best Dagar	hypogaea	hypogaea	N/A
ACG 149	ICG 12000	hypogaea	hypogaea	S	ACG 204	V.Banbim P.	hypogaea	hypogaea	S
ACG 150	ICG 12189	fastigiata	vulgaris	L	ACG 205	88 Bocounba	hypogaea	hypogaea	S
ACG 151	ICG 12276	hypogaea	hypogaea	L	ACG 206	Home bay	hypogaea	hypogaea	S
ACG 152	ICG 12370	hypogaea	hypogaea	S	ACG 207	Florigiant	hypogaea	hypogaea	L
ACG 153	ICG 12625	fastigiata	aequatoriana	L	ACG 208	Flamingo	hypogaea	hypogaea	S
ACG 154	ICG 12672	hypogaea	hypogaea	S	ACG 209	Shulamit	hypogaea	hypogaea	S
ACG 155	ICG 12682	fastigiata	vulgaris	L	ACG 210	Sunrunner	hypogaea	hypogaea	S
ACG 156	ICG 12697	fastigiata	vulgaris	N/A	ACG 211	Florunner	hypogaea	hypogaea	S
ACG 157	ICG 12879	fastigiata	vulgaris	L	ACG 212	Swallow	hypogaea	hypogaea	S
ACG 158	ICG 12921	fastigiata	vulgaris	L	ACG 213	Behirim	hypogaea	hypogaea	L
ACG 159	ICG 12988	fastigiata	vulgaris	L	ACG 214	Cine	hypogaea	hypogaea	S
ACG 160	ICG 13099	hypogaea	hypogaea	S	ACG 215	Kadriye	hypogaea	hypogaea	S
ACG 161	ICG 13491	fastigiata	vulgaris	L	ACG 216	Osmaniye	hypogaea	hypogaea	N/A
ACG 162	ICG 13603	fastigiata	vulgaris	L	ACG 217	Osm. Erzin	hypogaea	hypogaea	S
ACG 163	ICG 13723	hypogaea	hypogaea	S	ACG 218	Anamur-B	hypogaea	hypogaea	S
ACG 164	ICG 13787	hypogaea	hypogaea	S	ACG 219	Anamur-K	hypogaea	hypogaea	S
ACG 165	ICG 13856	fastigiata	fastigiata	L	ACG 220	Gazipasa	hypogaea	hypogaea	S

Table 1 continued

	ICRISAT Genebank					ICRISAT Genebank			
Accession No.	Entry (ICG) / Cultivar Name	Subspecies	Botanical variety	Marker Score*	Accession No.	Entry (ICG) / Cultivar Name	Subspecies	Botanical variety	Marker Score
ACG 221	Çom	hypogaea	hypogaea	S	ACG 239	Schwarz	fastigiata	fastigiata	L
ACG 222	NC-Fla-14	hypogaea	hypogaea	S	ACG 240	Spancross	fastigiata	fastigiata	L
ACG 223	NC-10-C	hypogaea	hypogaea	S	ACG 241	PF-161317	fastigiata	fastigiata	L
ACG 224	GP-NC-343	hypogaea	hypogaea	S	ACG 242	PF-248759	fastigiata	fastigiata	L
ACG 225	88488	hypogaea	hypogaea	S	ACG 243	PF-268771-B	fastigiata	fastigiata	L
ACG 226	88121	hypogaea	hypogaea	S	ACG 244	C 1-27	fastigiata	fastigiata	L
ACG 227	PI-315633	hypogaea	hypogaea	S	ACG 245	AF-2B Grif	fastigiata	fastigiata	L
ACG 228	PI-315621	hypogaea	hypogaea	S	ACG 246	Argentine	fastigiata	fastigiata	L
ACG 229	Edirne-9p-53	hypogaea	hypogaea	S	ACG 247	Bayramic	fastigiata	fastigiata	L
ACG 230	M-44-A	hypogaea	hypogaea	S	ACG 248	Comet	fastigiata	fastigiata	L
ACG 231	M-44-B	hypogaea	hypogaea	L	ACG 249	N. M.Valan	fastigiata	fastigiata	L
ACG 232	Anamur-2006	hypogaea	hypogaea	L	ACG 250	T. Power	fastigiata	fastigiata	L
ACG 233	97-Vietname	fastigiata	fastigiata	L	ACG 251	96-Australia	fastigiata	fastigiata	L
ACG 234	98-Australia	fastigiata	fastigiata	S	ACG 252	Taianan	fastigiata	fastigiata	S
ACG 235	Florispan	fastigiata	fastigiata	L	ACG 253	Н	fastigiata	fastigiata	S
ACG 236	1	fastigiata	fastigiata	L	ACG 254	Early rumir	fastigiata	fastigiata	L
ACG 237	18/38	fastigiata	fastigiata	L	ACG 255	Egret	fastigiata	fastigiata	S
ACG 238	Starr	fastigiata	fastigiata	L	ACG 256	DixilAnax	fastigiata	fastigiata	S

^{*} L is resistant, S is susceptible, N/A is no amplification


10 × PCR buffer, 0.4 mM of dNTPs mix, 2.5 mM of MgCl₂, 0.3 µM each primer, 1 unit of Taq DNA polymerase (Fermentas Life Sciences, Burlington, Canada), 1 µl genomic DNA template and Milli-Q water to a final volume of 20 µl. The SSR marker (Forward primer: 5' TACAGCATTGCCTTCTGGTG 3'; Reverse primer: 5' GCACACCATGGCTCAGTT-ATT 3'), tightly linked to sclerotinia blight resistance gene (Chenault et al. 2009), amplification was performed in a programmable thermocycler (BIONEER, MyGenieTM) under the following conditions: 94 °C for 2 min, 35 cycles of 94 °C for 45 s, annealing temperature 60 °C for 1 min, 72 °C for 90 s, and then a final extension of 10 min at 72 °C (Ferguson et al. 2004). PCR products were separated in 2-3 % agarose gels in 1× TBE buffer and visualized under UV light after staining with ethidium bromide. The expected bands were determined visually and recorded. Amplified products were also analyzed in the Fragment AnalyzerTM which is high resolution bio-imaging system (Advanced Analytical Technologies GmbH, Heidelberg, Germany). The DNF-900 Reagent Kit was used for qualitative analysis of DNA fragments ranging from 35 to 500 bp. The markers for 35 and 500 bp fragments were used for normalization, respectively. After analysis, virtual gel imaging was analyzed with the software PROSize 2.0 (Version 1.2.1.1) (Advanced Analytical Technologies, AMES, IA, USA). All reactions were performed twice. Amplified bands were scored as previously reported by Chenault et al. (2009). The authors identified four possible band amplifications (L, S, B, and b) using with the sclerotinia blight associated marker. If a genotype had only the 145 bp band, it was scored as L. When genotypes had predominant 145 and 100 bp bands, they were scored as B and b, respectively. Genotypes amplified only 100 bp band were given an S score.

Results and discussion

Molecular marker analysis was performed to screen sclerotinia blight resistance in groundnut collection. Two different band patterns (L and S) were observed in agarose gel (Fig. 1) and high bio-imaging system following to PCR amplification (Fig. 2). No genotypes had patterns B and b.

Chenault et al. (2009) stated that genotypes with 145 bp band were scored as "L" associated with sclerotinia blight resistance while genotypes carrying only 100 bp were given a score of "S" indicating

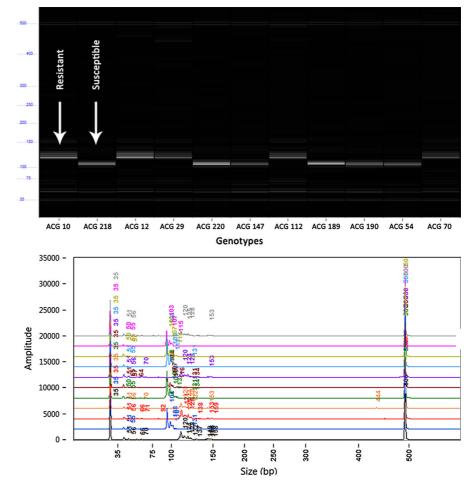


Fig. 1 Agarose gel showing the amplification products using sclerotinia blight associated marker. Resistant and susceptible controls are PI 482189 and PI 496448, respectively. The

selected genotypes are numbered as follows: *lanes 1–10*, ACG 1; ACG 9; ACG 24; ACG 25; ACG 30; ACG 38; ACG 127; ACG 122; ACG 91; ACG 207

Fig. 2 Fragment AnalyzerTM shows the gel picture and peak analysis graphic for the selected resistant/susceptible genotypes

susceptibility. In the present study, 142 genotypes showed the sclerotinia blight resistant fragment with 145 bp in the collection, while 100 bp band detected in 108 genotypes was associated with susceptibility

(Table 1). Rest of six genotypes amplified no band following PCR amplification. The resistance allele in this study was present in higher frequency than susceptible resistance allele in the groundnut

Table 2 Botanical variety comparison of genotypes tested by the marker

Botanical	Marker score							
variety	L	S	В	b				
hypogaea	27	101	_	_				
fastigiata	54	5	_	_				
vulgaris	56	3	_	_				
peruviana	2	_	_	_				
aequatoriana	1	_	_	_				
hirsuta	1	_	_	_				

collection. The present investigation therefore reports new sources of resistance to sclerotinia blight in groundnut. For a better comparison, in the U.S peanut mini core collection only 39 individuals from spanish, valencia, runner market types were classified as new potential sources of resistance (Chamberlin et al. 2010).

The cultivated groundnut has two subspecies, A. hypogaea ssp. hypogaea and A. hypogaea ssp. fastigiata (Gregory et al. 1980), and six botanical varieties hypogaea, hirsuta, fastigiata, peruviana, aequuatoriana and vulgaris. Moreover, the commercially grown cultivars are grouped into four market classes, the runner, virginia, spanish, and valencia market types (Krapovickas and Rigoni 1994). In the present study, the vulgaris types (39.4 %) were found more resistant to sclerotinia blight than those of fastigiata (38.0 %) and hypogaea (19.7 %) types (Table 2), with showing R banding pattern using the SSR marker among the resistant genotypes of the collection. This result highly compatible with the field study by Porter et al. (1975) who stated that spanish-type (variety *vulgaris*) groundnut has more resistance to sclerotinia blight than virginia types. Chenault et al. (2009) also identified high resistance in spanish types through molecular analysis.

This study included 186 groundnut mini core genotypes from ICRISAT. In the mini core collection, the R banding pattern related to the disease resistance is observed at high frequency in the variety *vulgaris* (48.6 %) and less distributed among the varieties *fastigiata* (31.3 %) and *hypoegaea* (17.3 %) among the resistant genotypes in the mini-core collection. Variety *peruviana* had only two genotypes in the collection and both of them consistent with resistance marker. The botanical variety *aequatoriana* was presented only one germplasm which was indicated

resistance to sclerotinia blight disease after molecular analysis. The presence of sclerotinia blight resistance in the U.S. peanut mini core collection was also examined with molecular survey by Chamberlin et al. (2010). All spanish genotypes in that collection carrying S banding pattern which is less observed in the virginia (46 %) and runner market types (35 %). These findings confirm the usefulness of the sclerotinia blight resistant marker and effectiveness of MAS for groundnut breeding programs.

The wild species are good sources of sclerotinia blight resistance genes in groundnut (Tallury et al. 2014). However interspecific incompatibility and unfavorable linkage drag associated with resistance to diseases cause to limited success in transferring disease resistance (Murty and Jahnavi 1983). Molecular markers tightly linked to disease resistance loci may increase selection efficiency in interspecific derivatives (Mace et al. 2006). In this study, the disease resistant marker indicated that it could be directly used for marker-assisted breeding. However it is insufficient without yield traits. Groundnut is an industrial crop and comprehensive information or database on agronomic traits of all genotypes must be available for optimal commercial exploitation. The sclerotinia blight resistant sources identified from different botanical varieties in the present study therefore should be evaluated agronomically to provide better opportunities in developing high yielding resistant cultivars appropriate for different regions.

Acknowledgments This study was supported by the Ministry of Science, Industry and Technology of Turkey with the grant number of SANTEZ-01527-STZ-2012-2. We are grateful to International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Gene bank, Hyderabad, India for supplying genetic material and to the Scientific Research Projects Coordination Unit of Akdeniz University for continuous supports.

Conflict of interest The authors declare that there are no conflicts of interest.

References

Arus P, Moreno-Gonzalez J (1993) Marker-assisted selection. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects. Chapman and Hall, Cambridge, pp 315–331

- Ashkani S, Rafii MY, Rusli I, Sariah M, Abdullah SNA, Rahim HA, Latif MA (2012) SSRs for marker-assisted selection for blast resistance in rice (*Oryza sativa* L.). Plant Mol Biol Report 30:79–86
- Bailey JE, Brune PD (1997) Effect of crop pruning on Sclerotinia blight of peanut. Plant Dis 81:990–995
- Boopathi NM (2013) Genetic mapping and marker assisted selection. Springer, India
- Butzler TM, Bailey J, Beute MK (1998) Integrated management of Sclerotinia blight in peanut: utilizing canopy morphology, mechanical pruning, and fungicide timing. Plant Dis 82:1312–1318
- Chamberlin KDC, Melouk HA, Payton ME (2010) Evaluation of the U.S. peanut mini core collection using a molecular marker for resistance to *Sclerotinia minor* Jagger. Euphytica 172:109–115
- Chenault KD, Maas A, Melouk HA, Payton ME (2009) Discovery and characterization of a molecular marker for Sclerotinia minor (Jagger) resistance in peanut. Euphytica 166:357–365
- Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15
- Ender M, Terpstra K, Kelly JD (2008) Marker-assisted selection for white mold resistance in common bean. Mol Breed 21:149–157
- FAO (2012) FAOSTAT. FAO, Rome. http://faostat.fao.org/site/ 567/default.aspx. Accessed 18 June 2014
- Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (*Arachis hypogaea* L.). Theor Appl Genet 108:1064–1070
- Gil SV, Harob R, Oddinoc C, Kearneyc M, Zuzac M, Marinellic A, Marcha GJ (2008) Crop management practices in the control of peanut diseases caused by soilborne fungi. Crop Prot 27:1–9
- Gregory W, Krapovickas A, Gregory M (1980) Structure, variation, evolution, and classification in *Arachis*. In: Summerfield R, Bunting A (eds) Advances in legume science. Royal Botanic Gardens, Kew, London, pp 469–481
- Krapovickas SA, Rigoni VA (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1–186
- Laemmlen F (2001) Sclerotinia diseases. Agriculture and Natural Resources, University of California Publication, 8042:1–5
- Liao B, Holbrook C (2007) Groundnut. In: Singh RJ (ed) Genetics resources, chromosome engineering and crop improvement, Oilseed Crops, vol 4. CRC Press, Boca Raton, pp 231–289
- Livingstone DM, Hampton JL, Phipps PM, Grabau EA (2005) Enhancing resistance to *Sclerotinia minor* in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137:1354–1362
- Mace ES, Phong DT, Upadhyaya HD, Chandra S, Crouch JH (2006) SSR analysis of cultivated groundnut (*Arachis hypogaea* L.) germplasm resistant to rust and late leaf spot diseases. Euphytica 152:317–330

- Melouk HA, Backman PA (1995) Management of soil borne fungal pathogens. In: Melouk HA, Shokes FM (eds) Peanut health management. APS, Minnesota, pp 75–82
- Mondal S, Badigannavar AM (2010) Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (*Arachis hypogaea* L.). Plant Breed 129:68–71
- Murty UR, Jahnavi MR (1983) Breeding potential of interspecific tetraploids in *Arachis* L. In: Feakin SD (ed) Proceedings of an international workshop on cytogenetics of *Arachis*. ICRISAT, Patancheru, pp 125–130
- Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong W, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010) Recombination is suppressed in an alien introgression on chromosome 5A of peanut harboring Rma, a dominant root knot nematode resistance gene. Mol Breed 26:357–370
- Nigam SN, Aruna R (2008) Improving breeding efficiency for early maturity in peanut. Plant Breed Rev 30:295–316
- Porter DM, Melouk HM (1997) Sclerotinia blight. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Subrahmanyam P (eds) Compendium of peanut diseases, 2nd edn. American Phytopathological Society Press, St. Paul, pp 34–35
- Porter DM, Beute MK, Wyne JC (1975) Resistance of peanut germplasm to *Sclerotinia sclerotiorum*. Peanut Sci 2:78–80
- Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (*Arachis hypogaea* L.). Field Crop Res 122:49–59
- Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2012) SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (*Arachis hypo-gaea* L.). Euphytica 188:265–272
- Smith FD, Phipps PM, Stipes RJ (1992) Fluazinam: a new fungicide for control of sclerotinia blight and other soil borne diseases of peanut. Peanut Sci 19:115–120
- Tallury SP, Hollowell JE, Isleib TG, Stalker HT (2014) Greenhouse evaluation of section *Arachis* wild species for sclerotinia blight and cylindrocladium black rot resistance. Peanut Sci 41:17–24
- Thiessen LD, Woodward JE (2012) Diseases of peanut caused by soilborne pathogens in the Southwestern United States. ISRN Agron 2012:1–9
- Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002) Developing a mini core of peanut for utilization of genetic resources. Crop Sci 42:2150–2156
- Upadhyaya HD, Sharma S, Dwivedi SL (2011) *Arachis*. In: Chittaranjan K (ed) Wild crop relatives: genomic and breeding resources legume crops and forages. Springer, Berlin, pp 1–19
- Wu BM, Subbarao KV (2003) Effects of irrigation and tillage on the dynamics of Sclerotinia minor sclerotia and lettuce drop incidence. Phytopathology 93:1572–1580

