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This paper analyzes technical efficiency and the value of the marginal product of productive inputs vis-a-

vis pesticide use to measure allocative efficiency of pesticide use along productive inputs. We employ the

data envelopment analysis framework and marginal cost techniques to estimate technical efficiency and

the shadow values of each input. A bootstrap technique is applied to overcome the limitations of DEA and

helps to estimate the mean and 95 percent confidence intervals of the estimated quantities. The methods

are applied to a sample of vegetable producers in Benin over the period 2009–2010. Results indicated that

bias corrected technical efficiency scores are lower than the initial measures and the former estimates are

statistically significant. The application results show that vegetable producers are less efficient with respect

to pesticide use than other inputs. Also, results suggest that pesticides, land and fertilizers are overused.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Unlike productive inputs (e.g. fertilizers or improved crop vari-

ties) which have a more straightforward relationship with higher

roductivity and for which there are well-established methods and

odels that can be used to predict their effect on crop yields, pesti-

ides do not have a direct impact on crop yields, other than limiting

he possible adverse effects of pests, and are extremely diverse with

early a thousand active ingredients currently in use. Vegetable pro-

uction is impacted by the presence of large range of insects, implying

ncreasing use of pesticides. Williamson, Ball, and Pretty (2008) indi-

ated that the relative costs of pesticides have risen sharply in recent

ears, implying that farmers continuously need to adapt the use of

esticides in order to avoid over- or under use. Insights in the value

f the marginal product (VMP) of pesticides in vegetable production

nd the impact of other inputs on the VMP of pesticides can help in

etermining the optimal use of pesticides.

Parametric and non-parametric approaches have been used to

tudy the value of the marginal product of pesticides. Oude Lansink

nd Carpentier (2001) and Skevas, Stefanou, and Oude Lansink (2013)

dopted a parametric approach to measuring the VMP of pesticides,
∗ Corresponding author. Tel.: + 223 20 70 92 00/+1 41 86562131;

ax: +223 20 70 92 01.

E-mail address: alphonsesingbo@gmail.com, a.singbo@cgiar.org (A.G. Singbo).
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istinguishing damage abatement inputs and productive inputs. Both

tudies report overuse of pesticides. Non-parametric approaches are

n attractive alternative to parametric approaches, since a functional

orm of the distance or production function does not have to be as-

umed. Furthermore, the non-parametric Data Envelopment Analysis

DEA) approach allows for simultaneous measurement of technical

fficiency and the VMPs of inputs. However, despite their clear ad-

antages, non-parametric approaches have rarely been used in the lit-

rature to address this question. Oude Lansink and Silva (2004) used

EA to estimate the VMP of pesticides and to investigate the impact of

roductive inputs on the VMP of pesticides. Skevas, Oude Lansink, and

tefanou (2012) use DEA to represent a production technology that

onsiders both pesticides’ dynamic impacts and production uncer-

ainty (accounted through variability in climatic conditions) in their

ffort to investigate the performance of Dutch arable farms. Their

esults show that ignoring the effects of variability in production

onditions may lead to an overestimation of farmers’ inefficiency.

shortcoming of previous nonparametric approaches is their failure

o perform statistical inference on the estimated VMP’s of pesticides.

ecently bootstrap methods (Simar & Wilson, 2008) have been pro-

osed in the literature to enable statistical inference in DEA models.

owever, these methods have not yet been applied in the estimation

f VMPs from DEA models.

Against the background of the foregoing, the objective of this study

s to estimate technical efficiency and the shadow price values (VMP)

https://core.ac.uk/display/219473611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejor.2015.02.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.02.042&domain=pdf
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Table 1

Specification of the models.

Models Technical efficiency Objective

for choice variables function

Model 1:

Radial technical efficiency in the full

input space

γki = γli = γ1i min
γ1i ,λ

γ1i

Model 2:
of pesticides and other inputs in vegetable production. The VMPs

are estimated from different DEA models, each determining technical

efficiency and VMP on a different part of the frontier. Statistical in-

ference on technical efficiency and VMPs is obtained using a smooth

bootstrap procedure. Also, the impact of different inputs on the VMP

of pesticides is investigated. This paper contributes to the literature

by being the first to employ a bootstrap method for performing sta-

tistical inference of technical efficiency and for the value of marginal

products (VMPs) in order to overcome the main drawback of DEA

approach. The method is applied to vegetable production in Benin.

The remainder of this paper is organized as follows. Section 2

presents the DEA models and the bootstrap technique to perform

statistical inference on the VMPs of pesticides and other inputs. The

case study of vegetable production in Benin is described in Section 3,

followed by the presentation of the empirical results in Section 4.

Concluding remarks follow in the last section.

2. Input distance function with damage abatement inputs

2.1. DEA models incorporating damage abatement inputs

Consider a sample of N farms which produce Q outputs from P pur-

chased productive inputs and A purchased damage abatement inputs

(pesticides). Let y ∈ �Q
+, x ∈ �P+, and z ∈ �A+ denote vectors of non-

negative outputs, non-negative productive inputs and non-negative

damage abatement inputs, respectively. The production technology

for a decision making unit (DMU) is fully represented by the input

requirement set:

L(y) = {(x, z) ∈ �P
+ × �A

+|(x, z) can produce y} (1)

which represents the set of all feasible combinations of vectors of

productive and damage abatement inputs given a vector of outputs y.

A non-parametric representation of L(y) is:

L (y) = {
(x, z) : Y ′λ ≥ yi, X′λ ≤ xi, Z′λ ≤ zi, I′λ = 1, λ ≥ 0

}
(2)

where Y is the (N × Q) matrix of observed outputs, yi is the vector of

observed outputs of farm i, X is the (N × P)matrix of observed produc-

tive inputs, xi is the vector of productive inputs used by farm i, Z is the

(N × A) matrix of observed damage abatement inputs, zi is the vec-

tor of damage abatement inputs used by farm i; λ is a (N × 1) vector

of intensity variables (farm weights) and I is the (N × 1) unit vec-

tor. We assume that (1) satisfies the standard regularity conditions:

possibility of inactivity, no free lunch, strong input and output dispos-

ability,1 closedness of L(y) and variable returns to scale (VRS) (Färe,

1988, p. 35; Färe & Grosskopf, 1990; Fukuyama & Weber, 2002). The

VRS condition (I′λ = 1) ensures that increased amounts of inputs do

not necessarily lead to a proportional increase of the amount of out-

puts. Technical efficiency is defined as the ability of a farm to use the

minimum feasible amounts of productive and/or damage abatement

inputs to produce a given level of output. Hence technical efficiency

is measured relative to production possibilities characterized by L(y).
The Shephard input distance function is defined as:

DI (x, z, y) = sup
{
γ > 0 :

(
x/γ , z/γ

) ∈ L (y)
}

(3)

where γ is the input sub-vector space technical efficiency scores for

the DMU. The input distance function can reflect joint production of

multiple outputs, while duality between the input distance function

and the cost function allows retrieval of the input shadow prices.

In order to compute the technical efficiency of an individual input,
1 Since we applied our models to small scale farms we maintain strong disposability

assumption for fixed inputs because strong disposability implies weak disposability,

but the converse does not hold (see Färe, Grosskopf, & Lovell, 1994, p. 38 for details).

We experimented by assuming weak disposability of fixed inputs as in Skevas et al.

(2012) and found that the technical inefficiency scores are relatively close but greater

than or equal to the ones obtained from imposing strong disposability.
ub-vector technical efficiency measures are introduced to generate

echnical efficiency measures of a subset of inputs rather than for the

ntire vector of inputs, holding all other inputs and outputs constant.

our input-oriented models are constructed for measuring technical

fficiency, i.e. they contract inputs in four different directions.

The first model (Model 1) measures technical efficiency by radi-

lly contracting all productive inputs (fixed and variable inputs) and

amage abatement inputs equiproportionately, while keeping out-

uts constant. In this model, we assumed that producers can adjust

ll inputs. This standard radial measure is incapable of identifying

he technical efficiency of individual input use, since such a mea-

ure treats the contribution of productive and abatement inputs to

echnical efficiency equally. The technical efficiency score obtained

rom this model is a radial measure and is restrictive in that it as-

umes that inefficient producers can be brought to the frontier only

y shrinking all inputs. In other words, this model assumes that a

echnically inefficient producer will have the same degree of input

veruse for all inputs. The second model (Model 2) measures techni-

al efficiency by radially contracting only variable productive inputs

quiproportionately, given the fixed inputs, the damage abatement

nputs and outputs. The third model (Model 3) measures technical ef-

ciency by radially contracting all damage abatement inputs in equal

roportions, given the productive inputs (variable and fixed inputs)

nd the output level. The fourth model (Model 4) is a variation of the

ussell technical efficiency measure that allows for non-proportional

ontractions in each input. This model allows for non-proportional

eductions in each subset of inputs, allowing for different technical

fficiency scores of productive inputs and damage abatement inputs.

his is equivalent to the non-radial notion of input technical effi-

iency, as discussed by Kopp (1981). The main purpose of having four

ifferent input-oriented models (radial and non-radial) is to have four

eparate sets of shadow price calculations of pesticide and productive

nputs at four different points on the production frontier. This proce-

ure was also applied by Ball, Lovell, Nehring, and Somwaru (1994)

nd Oude Lansink and Silva (2004). It helps to show the variation in

he results according to each point on the frontier. The general form

f the four models is given by:

min
γi,λ

γji

s.t.
Yλ ≥ yi

Xλ ≤ γkixi

Zλ ≤ γlizi

Iλ = 1
λ ≥ 0

(4)

here γk and γl are the input sub-vector space technical efficiency

cores for farm i. The specification of each of the four models is sum-

arized in Table 1.
Radial technical efficiency in the

productive input subspace

γki = γ2i , γli = 1 min
γ2i ,λ

γ2i

Model 3:

Radial technical efficiency in the

damage abatement input subspace

γki = 1, γli = γ3i min
γ3i ,λ

γ3i

Model 4:

Non-radial technical efficiency

measure

γki �= γli min
γki ,γli ,λ

(γki + γli)/2
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A set of dual variables for each observation is obtained from each

odel. These dual variables are used to generate the value of the

arginal product (shadow price) of each input. Using the first deriva-

ive of output with respect to inputs, the marginal products of each

nput for output q are given by (Ball et al. 1994; Oude Lansink & Silva,

004):

Pm
pqi = ∂yqi

∂xpi

= −∂γmi/∂xpi

∂γmi/∂yqi

, m = 1, . . . , 4; p = 1, . . . , P;

q = 1, . . . , Q; i = 1, . . . , N,

Pm
aqi = ∂yqi

∂zai

= − ∂γmi/∂zai

∂γmi/∂yqi

, m = 1, . . . , 4; a = 1, . . . , A;

q = 1, . . . , Q; i = 1, . . . , N, (5)

here MPm
pqi is the marginal product of the productive input p for

utput q and for observation i estimated from model m, MPm
aqi is the

arginal product of the damage abatement input a for output q and

or observation i estimated from model m and γ mi is the technical

fficiency score for the ith observation in model m(=1, . . . ,4). The

uantities �γ mi/�χpi, �γ mi/�zai and �γ mi/�yqi are the dual variables

n model m(=1, . . . ,4) associated with the constraints on the produc-

ive input p, the damage abatement input a and the output q. The

alue of the marginal product of each input is obtained as:

Vm
pqi = wq MPm

pqi,

Vm
aqi = wq MPm

aqi, (6)

here wq is the observed price of output q, SVm
pqi is the value of the

arginal product of the productive input p for output q and for ob-

ervation i estimated from model m, SVm
aqi is the value of the marginal

roduct of the damage abatement input a for output q and for obser-

ation i estimated from model m. Each model provides an estimate

f the shadow prices of each input at a particular point on the fron-

ier. Since our model includes multiple outputs, the values of the

arginal product are calculated for each output separately. If farm-

rs maximize profits, then the shadow prices of a given input is the

ame across outputs (Varian, 2002, p. 566). However, in practice the

hadow prices computed from the two outputs will not coincide. To

ircumvent this problem, revenue shares of the Q outputs are used

o compute a weighted (using revenue shares as weight) average of

he shadow prices for each input of observation i in each model as

ollows:

Vm
pi =

Q∑
q=1

(
ρqi × SVm

pqi

)
,

Vm
ai =

Q∑
q=1

(
ρqi × SVm

aqi

)
, (7)

here ρqi is the revenue share of output q for observation i, SVm
pi is

he weighted average value of the marginal product of the productive

nput p for observation i estimated from model m, SVm
ai is the weighted

verage value of the marginal product of the damage abatement input

for observation i estimated from model m.

The extent to which damage abatement inputs are underused or

verused is inferred from a comparison of the shadow prices and

arket prices. Shadow prices are greater (lower) than market prices

or inputs that are underused (overused).

The technical relation between damage abatement inputs and pro-

uctive inputs is investigated using the four models outlined above.

he approach used is to first generate shadow prices of the productive

nputs using each model. Next, one damage abatement input con-

traint is increased by one unit and new shadow prices of the produc-

ive inputs are generated for each model. This constraint perturbation

s done for each of A damage abatement inputs. Comparison of the
hadow prices of the productive inputs from the perturbed model and

he original shadow prices provides information on the local techni-

al relation between these inputs and a particular damage abatement

nput (Oude Lansink & Silva, 2004). If increasing a damage abatement

nput increases (reduces) the shadow price of another input, then

he two inputs are local complements (substitutes). Furthermore, in-

reasing the pesticides constraint is expected to decrease the shadow

rice of pesticides because the value of the marginal product of pes-

icide is positive but declining in pesticide use and can be seen from

q. (5) which comes from the first order condition of cost minimiza-

ion problem.

.2. Smooth bootstrap procedure

Simar and Wilson (1998, 2000) methodologically studied the sta-

istical properties of nonparametric envelopment estimators and de-

eloped a single-smooth bootstrap algorithm which can be used to

xamine the statistical properties of technical efficiency scores gen-

rated through DEA. As the statistical properties of the frontier are

btained from finite samples, the corresponding measures of techni-

al efficiency are sensitive to the sampling variations of the obtained

rontier. Hence, the DEA estimators could be biased upward (Simar &

ilson, 1998, 2008).

The full-sample homogenous smooth bootstrap is a consistent way

o analyze the sensitivity of technical efficiency scores relative to the

ampling variations of the estimated frontier. As stated by Simar and

ilson (1998, 2000), we assume a data-generating process where

arms randomly deviate from the underlying true frontier in a radial

irection. We apply the full-sample homogenous smooth bootstrap

o overcome the possible statistical noise that may affect the mea-

urement of technical efficiencies and shadow price of pesticides.

herefore, the model accounts for the effects of statistical noise due

o measurement error and statistical noise (e.g. variability in produc-

ion conditions). In this paper, we subsequently estimate the bias-

orrected technical efficiency scores along with the shadow prices

rom the bootstrap sample. Ninety-five percent confidence intervals

re also generated for technical efficiency scores and shadow prices.

he algorithm is given in Appendix.

. Case study: vegetable production in Benin

Vegetables are essential for a healthy and balanced diet in Sub

aharan Africa. However, vegetable crops are susceptible to pests and

iseases and subject to increasing use of pesticides. Williamson et al.

2008) found that vegetable producers in Benin used larger volumes of

esticides than vegetable farmers in Ghana and Ethiopia and reported

igher frequency of application (every 3–5 days insecticides spraying)

han cotton farmers. Previous research also showed that small scale

egetable farmers did not receive adequate agricultural extension

ervices and were lacking knowledge in pesticide use (Ngowi, Mbise,

jani, London, & Ajayi, 2007).

The problems associated with pesticide use in developing coun-

ries have been widely documented (see Dinham, 2003 for an

verview). Inappropriate and excessive use of pesticides has nega-

ive consequences for the efficiency of the abatement of the intended

est. Moreover operator and consumer health, farm livestock, soil

rganisms, wildlife, vegetation and the natural environment are neg-

tively affected (Williamson et al., 2008). Availability and affordabil-

ty of pesticides was a major concern for many vegetable producers;

ence underuse of categories of pesticides has been likely too. In

enin, pesticides are traded in formal and informal markets where

oth approved and banned pesticides are sold.

The empirical economics literature on pesticide use in veg-

table production in Benin, however, has paid little attention to

he VMP of pesticides and factors determining this VMP. Most
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Table 2

Descriptive statistics.

Variable Unit Mean Std. deviation

Quantities

Aggregate output for 106 FCFA 2.521 6.519

traditional vegetables

Aggregate output for 106 FCFA 1.203 2.016

non-traditional vegetables

N-fertilizer 105 FCFA 2.342 4.209

Other inputs 105 FCFA 1.049 1.702

Land area hectare 0.638 1.509

Labor 102 man-hour 3.195 1.156

Capital 105 FCFA 6.034 9.423

Water 106 liter 5.124 12.287

Insecticides 104 FCFA 3.328 4.795

Other pesticides 104 FCFA 4.134 10.372

Prices

Paasche weighted average Index 1.004 0.448

price index for traditional

vegetable

Paasche weighted average Index 0.873 0.590

price index for non-traditional

vegetables

Note: 1 U.S. dollar = 494.030 FCFA in 2010 or 1 Euro = 655.957 FCFA.

Table 3

Average technical efficiency scores and confidence intervals (n = 136; B = 2000).

Models Initial Bias 95 percent

efficiency corrected confidence

scores efficiency interval

scores Lower Upper

bound bound

Model 1: radial technical efficiency 0.849 0.724 0.716 0.726

measure of all inputs

Model 2: radial technical 0.652 0.362 0.341 0.371

efficiency measure of

productive inputs

Model 3: radial technical efficiency 0.635 0.314 0.297 0.327

measure of pesticides

Model 4: Russell-type Productive 0.879 0.787 0.779 0.789

technical efficiency Pesticides 0.656 0.439 0.412 0.454

measure
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farm-level economic analysis of pesticide use has focused on cost-

benefit analysis and the willingness to pay for biopesticides or or-

ganically grown vegetables (Adégbola & Singbo, 2001; Coulibaly,

Cherry, Nouhoheflin, Aitchedji, & Al-Hassan, 2006; Coulibaly,

Nouhoheflin, Aitchedji, Cherry, & Adégbola, 2011; Martin, Assogba-

Komlan, Houndete, Hougard, & Chandre, 2006; Singbo, Nouhoeflin,

& Assogba-Komlan, 2008). A major limitation of these studies is that

they treat pesticides as a productive input, ignoring agronomic evi-

dence which suggests that pesticides are a damage abatement input

(Lichtenberg & Zilberman, 1986). Hence, empirical evidence based

on studies that ignore the damage abatement nature of pesticides is

biased (Lichtenberg & Zilberman, 1986).

The intensification of vegetable production in urban areas is ac-

companied by problems of pesticide overuse and misuse. In this re-

gard, the efficiency of vegetable production in Sub Saharan Africa is

especially important because of its intensive use of chemical inputs.

As indicated by Fernandez-Cornejo (1994), the improvement in the

effectiveness of input use, particularly in the case of fertilizers and

pesticides, can increase farm profitability as well as alleviate health

and environmental concerns. Food safety concerns about pesticide

residues are pertinent in vegetables which are often consumed with

little post-harvest processing.

The data used in this study were obtained through a survey among

specialized vegetable producers in southern Benin in the period 2009–

2010. The sample was selected based on the proportion of traditional

and non-traditional vegetable farms in each administrative region and

is representative of the urban and peri-urban vegetable producers in

Benin. A sample of 136 producers of traditional and non-traditional

vegetables is obtained which covers a range of farm sizes. Table 2

reports the descriptive statistics of key variables.

The variable list contains two aggregate outputs (traditional veg-

etables and non-traditional vegetables2), six productive inputs (N-

fertilizer, land, labor, capital, water and other variable inputs,) and

two damage abatement inputs (insecticides and other pesticides).

Traditional vegetables consist of tomato, solanum plants, okra, pep-

per, amaranth, corchorus, bitterleaf, African basil, cockscomb and

onion. Non-traditional vegetables consist of lettuce, cabbage, cour-

gette, cucumber, beet, carrot, radish, turnip, French bean, melon,

squash, watermelon, celery, chicory, chives, coriander, dill, fennel,
2 Traditional vegetables refer to all plant species that have been used by communities

for several generations and are integrated as part of the cultural habits (Achigan-Dako,

Pasquini, & Assogba-Komlan, 2009).

s

c

m

0

l

arden mint, leek, overripe, parsley, rocket and thyme. The quantity

f output is measured as the sum of the revenues from traditional and

on-traditional crops, respectively. It is important to notice that we

elected a subsample from the original sample of producers, in par-

icular those who produce both outputs because accounting for zero

alues in DEA model is problematic. Variable productive inputs rep-

esent N-fertilizer, water and other variable inputs. N-fertilizer rep-

esents the cost of purchased nitrogen. Water consists of the quantity

f water used. Other variable input consists of seeds and other mis-

ellaneous expenses. Fixed inputs are labor, land and capital. Labor

s assumed to be fixed input, as a large share of a total labor consists

f family labor and hired labor and is measured in man-hours. Land

epresents the total area under vegetable crops and is measured in

ectares. Capital consists of machinery and equipment and is mea-

ured in replacement cost.

In the study area, insecticides dominated chemical pest manage-

ent, reflecting not only the serious problems of insect attack in veg-

table production, but also the availability and relatively low cost of

any older generation insecticides. Other pesticides consist of fungi-

ides, herbicides, nematicides, acaricides, fumigant, rodenticides and

iopesticides. We limit our study to two categories of pesticides to

void zero values in the damage abatement inputs. The data set ex-

ibits considerable variation, especially with respect to the quantity

f damage abatement inputs where standard deviations exceed the

eans and the difference between the minimum and maximum is

elatively large.

. Results and discussion

.1. Technical efficiency analysis

The results of each model for the smoothed bootstrap with 2000

ootstrap replications for each observation are reported in Table 3.

he results consist of the average initial technical efficiency scores, the

verage bias-corrected technical efficiency estimates and the lower

nd upper bounds of the 95 percent confidence intervals of the av-

rage technical efficiency. The technical efficiency scores generated

rom the four models suggest a significant amount of technical in-

fficiency. Since the initial DEA estimates in all models are outside

he 95 percent confidence intervals (meaning that the bias estimates

re large relative to the standard error estimates), the bias-corrected

echnical efficiency estimates are preferred over the initial estimates

Simar & Wilson, 2008). In each model, the initial technical efficiency

cores for the 136 units yield an average uncorrected technical effi-

iency score of 0.635 (Model 3) to 0.879 (Model 4), while the bootstrap

odel generates an average bias-corrected score of 0.314 (Model 3) to

.787 (Model 4). The 95 percent confidence intervals are of moderate

ength. The average bias-corrected technical efficiency score of Model
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Table 4

Average shadow values of inputs and 95 percent bootstrap confidence intervals (n = 136; B = 2000).

Inputs Market price Model 1 Model 2 Model 3 Model 4

Shadow price 95 percent CI Shadow price 95 percent CI Shadow price 95 percent CI Shadow price 95 percent CI

Productive inputs

N-fertilizer 1a 0.83 [0.28;2.61] 0.70 [0.27;2.57] 0.68 [0.28;2.67] 1.07 [0.42;2.82]

Other inputs 1a 0.54 [0.22;1.40] 0.60 [0.26;1.47] 0.62 [0.26;1.41] 0.73 [0.22;1.99]

Land area 5.00b 2.00 [0.53;7.35] 2.21 [0.57;7.21] 2.17 [0.55;7.48] 2.86 [0.51;8.76]

Labor 1.19c 3.24 [1.36;6.26] 3.92 [1.42;6.62] 3.06 [1.42;6.34] 3.64 [1.54;7.42]

Capitald – 1.43 [0.18;3.90] 1.41 [0.19;3.55] 1.97 [0.19;6.32] 3.30 [1.06;6.11]

Water 0.00e 0.52 [0.09;1.63] 0.92 [0.13;1.68] 0.54 [0.13;1.37] 1.07 [0.28;3.56]

Damage abatement inputs

Insecticides 1a 0.36 [0.21;0.71] 0.43 [0.21;0.75] 0.36 [0.22;0.62] 0.0006 [0.00;0.004]

Other pesticides 1a 0.47 [0.13;1.27] 0.45 [0.14;1.33] 0.43 [0.15;1.31] 0.0025 [0.00;0.012]

Note: CI: Confidence intervals, 1 U.S. dollar = 494.030 FCFA in 2010 or 1 Euro = 655.957 FCFA.
a Prices of N-fertilizer, other inputs, insecticides and other pesticides are set to one because these inputs are aggregated and measured in FCFA. For instance, if a producer wants

to buy 1 FCFA of fertilizer, he/she has to pay 1 FCFA.
b Land price is based on the state land price per ha (Law no. 164/PC/MFAEP-EDT of 11 September, 1964) since the majority of land cultivated in urban and peri-urban areas is the

property of the state (106 FCFA). In fact, Benin is still a transition country in terms of its land policy with heterogeneous nature of land tenure arrangements (Le Meur, 2008).
c Labor price per man-hour is the price for permanent hired labor (FCFA) and is calculated from the survey data.
d – A market price of capital is not calculated as we should compute a price index for capital which is not comparable to a real market price level.
e Water price is set to be zero as the cost for irrigation equipment is included in capital and the labor used for irrigation is included in labor.
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suggests a relatively higher amount of technical inefficiency than

odels 1 and 2. Since Model 3 measures technical efficiency in the

se of pesticides, this indicates that vegetable farms in the sample are

ess efficient in the use of pesticides. This implies that by using pes-

icides efficiently, the vegetable producers would be able to reduce

heir pesticide use by almost 69 percent, on average, keeping output

nd productive inputs constant. Also, the bias-corrected technical ef-

ciency score of Model 4 indicates, on average, a higher amount of

echnical inefficiency in the use of pesticides than in the use of pro-

uctive inputs, given the output level. Since the estimated technical

fficiency score of pesticides in Models 3 and 4 is lower than the tech-

ical efficiency in Model 1, the results suggest that the application of

esticides is more difficult to manage for vegetable producers than

he use of productive inputs such as fertilizers, labor, land, capital

nd water. These findings can be explained by the fact that in the

onventional agricultural production system, the technical efficiency

f pesticides is generally more dependent on weather, soil conditions

nd pest incidence than the technical efficiency of productive inputs

Oude Lansink & Silva, 2004). The formulation and the method of

pplication also have greater influence on the technical efficiency

f pesticides on the size of the target pest population than the choice

f active ingredient (van Emden & Service, 2004).

.2. Analysis of shadow values and input relations

The estimation of the input distance function allows us to gen-

rate shadow prices of damage abatement inputs for each producer,

long with their confidence intervals. In order to get the shadow val-

es of each productive unit, we use expressions (6) and (7) under

he hypothesis that the shadow prices of outputs are equal to their

bserved market prices as suggested by Ball, Lovell, Luu, and Nehring

2004) and Färe and Grosskopf (1990). Table 4 reports the bootstrap

ample average of the shadow values of all productive and damage

batement inputs and the corresponding 95 percent confidence in-

ervals. Shadow values of productive inputs (pesticides) in Model 2

re smaller (larger) than their values in Models 1 and 3. The differ-

nces between the shadow values of Model 2 versus Models 1 and 3

eflect the different points at the frontier at which the shadow prices

re evaluated. This is because shadow prices in model 2 are evaluated

t the point on the frontier that reflects the minimum quantity of

roductive inputs required for producing a given bundle of vegetable

utputs and the quantity of pesticide use. Overall, shadow prices of

roductive inputs in Model 4 are larger than their respective values
n the other models.
In Models 1, 2 and 3, the shadow price of fertilizer was found

o be lower than the market price, which suggests overuse of fertil-

zer. For example, in Model 2, where performance was evaluated in

he productive input subspace, vegetable producers’ return for each

dditional FCFA of fertilizer use was 0.70 FCFA, which suggests that

ertilizer is less productive. An explanation of the low shadow price

f fertilizer is that a continuous and intensive vegetable production

ractice is observed on poor sandy soils with a large use of nutri-

nts (Drechsel, Graefe, Sonou, & Cofie, 2006). An additional hectare

f land yielded at least 2.00 × 106 FCFA of revenue, which suggests

high competition for urban and peri-urban farmland. However, the

hadow prices of land are significantly lower than the market price,

hich implies overuse of land in vegetable farming.

The average shadow price of labor in all models was found to

e significantly higher than the market price, implying underuse of

abor. For each additional hour of labor, producers’ return ranged from

.06 × 102 FCFA (model 3) to 3.92 × 102 FCFA (Model 2).

The shadow price of water in all four models is higher than the

arket price, indicating underuse of water. This result implies that

he value of the marginal product of irrigation exceeds the cost of irri-

ation, meaning that water was not optimally used at the farm level.

his result is consistent with the finding of Danso, Drechsel, Akinbolu,

nd Gyiele (2003) in West Africa showing that manual irrigation (the

ost common method of irrigation) in vegetable production needs to

e carried out with high frequency, leading to underuse. However, the

ncreased use of irrigation in vegetable production may be attributed

o risk aversion by producers related to the probability of droughts

Henry & Bowen, 1981), as access to water is a crucial requirement

or year-round vegetable production.

From an additional FCFA of insecticides, producers’ return ranged

rom 0.6 × 10−3 FCFA (Model 4) to 0.43 FCFA (Model 2). The return

rom each additional FCFA of other pesticides was 0.25 × 10−2 FCFA

Model 4) to 0.47 (Model 1). The results imply that insecticides and

ther pesticides were less productive for vegetable producers. The

hadow prices of insecticides and other pesticides are lower than their

verage market prices in all models, suggesting overuse of insecticides

nd other pesticides. This means that vegetable producers could in-

rease their profitability by decreasing the use of insecticides and

ther pesticides. This result implies that producers are allocatively

nefficient in damage abatement input use. This finding is in line with

he conventional wisdom in the agricultural community that farmers

veruse pesticides (Macharia, Mithofer, & Waibel, 2011; Sexton, Lei, &

ilberman, 2007). An explanation for excessive use of pesticides is an

ntensive growing systems with high yields, short rotations and thus a
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Table 5

Average differences in the shadow values of inputs and the corresponding 95 percent bootstrap confidence intervals when the insecticides and other pesticides

constraints change by one unit (n = 136; B = 2000).

Inputs Model 1 Model 2 Model 3 Model 4

Difference 95 percent CI Difference 95 percent CI Difference 95 percent CI Difference 95 percent CI

Insecticides

N-fertilizer 0.157 [−1.80;2.04] 0.165 [−1.63;1.93] 0.187 [−1.81;1.81] −0.026 [−1.90;1.86]

Other inputs −0.002 [−0.91;1.08] −0.024 [−1.00;0.95] −0.048 [−1.03;0.91] −0.044 [−1.43;1.28]

Land area −0.31 [−6.19;5.34] −0.047 [−5.84;4.72] 0.039 [−6.15;4.75] −0.017 [−6.13;5.88]

Labor 0.540 [−2.78;3.58] −0.709 [−3.74;3.78] 0.514 [−3.60;3.69] −0.283 [−3.57;2.73]

Capital 0.815 [−1.93;3.70] −0.034 [−2.26;2.58] −0.702 [−5.07;2.24] −0.378 [−3.57;2.50]

Water 0.308 [−1.08;1.43] −0.128 [−0.92;1.63] 0.268 [−0.77;1.55] −0.212 [−2.07;1.14]

Insecticides −0.344∗∗ [−0.70;−0.19] −0.402∗∗ [−0.68;−0.18] −0.323∗∗ [−0.58;−0.17] −0.0004a [−0.004;0.0003]

Other pesticides 0.067 [−0.76;0.86] 0.046 [−0.80;0.96] 0.028 [−0.90;0.90] 0.0003 [−0.009;0.008]

Other pesticides

N-fertilizer −0.060 [−1.93;1.82] 0.005 [−1.57;1.77] 0.002 [−1.87;1.82] −0.049 [−1.56;1.83]

Other inputs 0.31 [−0.74;1.03] 0.025 [−0.85;0.75] 0.006 [−1.01;0.84] −0.057 [−1.37;1.17]

Land area 0.101 [−5.31;5.26] −0.042 [−5.46;5.75] 0.206 [−5.60;4.97] 0.348 [−5.81;6.12]

Labor 0.435 [−2.73;3.34] −0.652 [−3.19;3.81] 0.215 [−3.48;3.81] 0.099 [−3.12;3.06]

Capital 0.843 [−2.18;3.10] −0.031 [−2.33;2.52] −0.589 [−4.97;2.39] 0.170 [−3.10;3.44]

Water 0.33 [−0.95;1.55] −0.005 [−0.84;1.46] 0.452 [−0.62;1.77] 0.19 [−1.73;1.92]

Insecticides 0.032 [−0.31;0.34] −0.088 [−0.38;0.21] −0.019 [−0.30;0.21] −0.00001 [−0.0025;0.002]

Other pesticides −0.465∗∗ [−1.27;−0.12] −0.448∗∗ [−1.34;−0.13] −0.426∗∗ [−1.30;−0.14] −0.00252a [−0.012;0.00007]

∗∗Significance at 5 percent level.
a Significance at 20 percent level.
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high use of insecticides, herbicides, fungicides, nematicides as well as

pest resistance against pesticides (de Kort, 1993; Kortenhoff, 1993).

As pesticides are used in a prophylactic way to prevent anticipated

infestations, the overuse of pesticides may kill pest species as well

as beneficial species. Destruction of a pest’s natural enemies often

leads to rapid resurgence of the pest or to introduction of secondary

pests, which necessitates more treatments (de Kort, 1993). In all four

models the results also show that more than 97 percent of vegetable

producers in the sample overuse the damage abatement inputs (in-

secticides and other pesticides). The magnitude of the outcome varies

by model and shadow values may take a range of values in reality,

depending on which model applies.

Based on the estimation results of the linear programming prob-

lem in (4), we performed a further analysis of technical relation be-

tween inputs. Table 5 reports the differences in the shadow values of

productive and damage abatement inputs resulting from increasing

separately by one unit the constraint of each pesticide. The 95 percent

confidence intervals are also presented in Table 5. In general, the im-

pact of an increase in each damage abatement input on the shadow

value of a productive input is not significant at the 5 percent signifi-

cance level. This result implies that there is no evidence of technical

relations between productive and damage abatement inputs. This

result contrasts with Oude Lansink and Silva (2004) who found evi-

dence of strong technical relationships between both types of inputs.

It should be noted though that Oude Lansink and Silva (2004) did not

make the bias-correction using a bootstrap approach.

As expected, in all four models, the shadow price of insecticides

decreases significantly when the insecticide constraint is increased

by one unit. The same result is found for other pesticides.

In sum the results in Table 5 suggest no evidence of technical in-

terdependence between pesticide use and productive inputs. This is

the challenge in most of empirical analysis of the economics of pes-

ticides where the estimated form of such relationships can be critical

for farm-level decision making (Hall & Moffitt, 2002; Marsh, Huffaker,

& Long, 2000; Saphores, 2000; Sexton et al., 2007). As indicated by

Skevas et al. (2013), a reason for the lack of technical interdepen-

dence in this study could be the failure to account for the dynamics

of pesticide use where increased pesticide pressure on soil organisms

may affect fertilizer use through a decrease in the soil’s nutritional

characteristics.

These results could be of interest in defining an efficient point of

pesticide use in vegetable production. From the above results, the
ain problem with the use of pesticides could be related to the

ix of approved and banned pesticides. As indicated by Snelder,

asipiqueña, & de Soo, (2008) in the case of Philippines, a mecha-

ism is needed to control the use and sale of restricted and banned

esticides as most of the pesticides used in vegetable production are

reely sold in stores and markets. Since, the market of approved pesti-

ides (selective pesticides) for vegetable production is missing, policy

akers should make such products available to producers, while a

istribution channel is required for low-cost application products.

ue to lack of training in pesticide use, vegetable producers do not al-

ays respect the re-entry periods after spraying and essential harvest

ntervals are not known. In this respect, integrated pest management

ddressing the issues of pesticides use and alternatives must be ad-

usted and reinforced to the case of vegetable products with emphasis

n cost-effective pest-control methods for covering the investment

isks. However, its success is strongly related to a good extension

ervice in the early stage (van Lenteren, 1993).

. Conclusions

This study uses different DEA models to estimate the technical

fficiency and VMP of pesticides and other inputs. Additionally, the

mpact of inputs on the value of the VMP of pesticides is determined.

he homogenous smoothed bootstrap method is used to determine

onfidence intervals of technical efficiency scores and VMPs.

Results show that vegetable producers have a lower technical

fficiency in the use of pesticides than in the use of other inputs.

lso, results suggest that vegetable producers overuse insecticides

nd other pesticides. The overuse of pesticides can be attributed to

he characteristics of the vegetable production system and may also

oint at high risk aversion of farmers, i.e. farmers overuse pesticides

n order to reduce the risks of pests and diseases. The study shows

hat there is no evidence of technical interdependence between pes-

icides and productive inputs, i.e. other inputs have no statistically

ignificant impact on the VMP of pesticides. The overuse of pesticides

ead to economic losses, i.e. producers can increase their profitability

y reducing pesticides use. The results suggest the need for a more

ational pesticide application, i.e. by using information about the on-

arm costs and benefits of pesticides. The government may support

he adoption of more rational pesticide use practices by providing

etter information to farmers through extension services. Also, the

overnment may pursue a policy that aims to reduce the dependence
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f producers on pesticides. Integrated pest management addressing

he issues of pesticides usage and alternatives may be adjusted and

einforced to the case of vegetable products with emphasis on cost-

ffective pest-control methods.
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ppendix

Bootstrap algorithm used for generating bias corrected technical

fficiency scores and estimating shadow prices and their confidence

ntervals

In this appendix, we present the algorithm used for Model 1, which

an be extended and applied to the other three models. To start with,

e assume that the distribution of efficiency is homogeneous over

he input-output space. The algorithm for obtaining a set of bootstrap

echnical efficiency estimates {γ̂ ∗
b
(x, z, y)|b = 1, . . . , B} and a set of

ootstrap shadow prices involves the following steps:

art 1. Computing the original and biased corrected technical efficiency

cores, along with their confidence intervals

1) From the original data set Xn, compute the technical efficiency,

γ̂i = γ̂ (xi, zi, yi) ∀ i = 1, . . . , n. γ̂i ≥ 0, assuming variable returns

to scale (VRS).

2) Select a value of the smoothing parameter (the bandwidth), h,

using the normal reference rule (Simar & Wilson, 2008, p. 459).

3) Generate a naïve bootstrap sample β∗
1 , . . . , β∗

n by drawing inde-

pendently, uniformly and with replacement from the set of D2n,

where D2n = {γ̂1, . . . , γ̂n,−γ̂1, . . . ,−γ̂n}.

4) Draw the error term ε∗
i
, i = 1, . . . , n independently from the prob-

ability density kernel function and compute β∗∗
i

= β∗
i

+ h∗ε∗
i

for

each i = 1, . . . , n.

5) For each i = 1, . . . , n, compute β∗∗∗
i

= β∗ + β∗∗
i

−β∗

(1+h2σ−2
β

)
1/2 , where

β∗ = n−1
n∑

i=1

β∗
i

and σ 2
β

= n−1
n∑

i=1

(β∗
i

− β∗)2.

6) Compute the bias corrector γ ∗
i
, where γ ∗

i
= { −β∗∗∗

i
∀β∗∗∗

i
< 0,

β∗∗∗
i

otherwise.
.

7) Define the bootstrap sample χ ∗
n = {(x∗

i
, yi)|i = 1, . . . , n}, where

x∗
i

= γ ∗
i

x̂∂ (yi) = γ ∗
i
γ̂ −1

i
xi.

8) Compute the technical efficiency estimate γ̂ ∗(x, y) for the fixed

point (x, y), using the reference set χ ∗
n .

9) Repeat steps (3)–(8), B(2000) times to obtain a set of bootstrap

estimates {γ̂ ∗
l
(x, y)|b = 1, . . . , B}.

0) Calculate the bias of the original estimator as follows: bias(γ̂i) =
B−1 ∑B

b=1 γ̂ ∗
i,b

− γ̂i.

1) Construct a bias-corrected estimator of the true value of γ by

computing ̂̂γ ∗∗
i = γ̂i − bias( γ̂i) = 2γ̂i − B−1

B∑
b=1

γ̂ ∗
i,b

.

2) Generate the confidence interval of level 0.95 for γi by computing

γ̂i − c0.025 ≤ γi ≤ γ̂i − c0.975, where ca denotes the ath-quantile of

the sampling distribution of (γ̂ ∗
i

− γ̂i). Finding cα/2 and c(1−α)/2 is

carried out by sorting the values of (γ̂ ∗
i

− γ̂i) in increasing order

and then deleting the (α
2 × 100) percent of the elements at either

end of the sorted list.

art 2. Computing the shadow values and their confidence intervals

3) For each set of bootstrap estimates {γ̂ ∗
l
(x, y)|b = 1, . . . , B} ob-

tained in (9), generate the dual variable quantities ∂γi/∂xpi,
∂γi/∂zai and ∂γi/∂yqi (Eq. (5)) and for each output category,

compute the value of the marginal product of each input using

Eq. (6).

4) Using output revenue shares as weights, generate a set of boot-

strap estimates of the average of the shadow prices for each input

as indicated in Eq. (7).

5) From the set of bootstrap estimates of the average of the shadow

prices for each input in (14), construct the 95 percent level of

confidence intervals as in the case of the efficiency scores in (12).

Note: In the case of Model 4, we simultaneously estimate technical

fficiencies for both productive inputs and pesticides by using two

ifferent smooth parameters in (2) to each input sub-set to generate

he bootstrap sample.
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