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Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus
long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using
two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and
by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase
(AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8'-hydroxylase under the control of a drought-
inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were
detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In
transgenic barley, drought-inducible AtINCED expression afforded temporal control in ABA levels such that the ABA levels rose
sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment
due to down-regulation of endogenous HUNCED genes. Suppressing of ABA catabolism with the RNA interference approach of
ABA 8'-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type
under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein
structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN
RESISTANCEI-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-
fermentingl-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members
that could potentially impact ABA metabolism and stress adaptation in barley.

Drought compromises grain yield in cereals, espe-
cially when the stress occurs during postanthesis
(Boyer and Westgate, 2004; Sreenivasulu et al., 2007).
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In some crops, selection for and use of stay-green
types has been promoted as a means for combating
drought stress susceptibility (Thomas and Howarth,
2000). However, the molecular basis of stay-green
phenotype in barley (Hordeum vulgare) has not been
explored in detail. As the flag leaf is the principal
source organ, sustaining its photosynthetic activity
under postanthesis drought stress is considered a
strategy to mitigate the yield penalty. Water use ef-
ficiency (WUE) is the amount of biomass (carbon)
accumulated per unit of water, hence an important
trait under water-limited conditions (Condon and
Richards, 1992; Rebetzke et al., 2002; Richards et al.,
2002). Breeding for WUE is considered important
for developing drought-tolerant crops (Blum, 1996;
Richards, 1996; Richards et al., 2002). Genetic loci that
control transpiration efficiency have been identified
(Teulat et al., 2002; Hall et al., 2005; Juenger et al.,
2005). In Arabidopsis (Arabidopsis thaliana), ERECTA
as well as HARDY (encoding an APETALA2/Ethyl-
ene Responsive Factor-like transcription factor) genes
influence transpiration efficiency (Masle et al., 2005;
Karaba et al., 2007).
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Abscisic acid (ABA) synthesis is a universal response
of plants to drought, and this triggers major reprog-
ramming of the transcriptome, stomatal closure, and
restraint on transpirational water loss (Christmann
et al., 2007; Cutler et al., 2010; Raghavendra et al., 2010),
but this adaptation for survival inevitably reduces
photosynthesis, grain filling, and grain yield. There is
very little information on how WUE and other physi-
ological parameters are influenced in genotypes that
differ in ABA homeostasis. There have been several
studies on altering ABA levels by overexpression of
ABA biosynthesis or catabolism genes using constitu-
tive promoters. For example, transgenic overexpression
of 9-cis-epoxycarotenoid dioxygenase (NCED) genes in
tomato (Solanum lycopersicum), Arabidopsis, bean (Pha-
seolus vulgaris), and cowpea (Vigna unguiculata) en-
hances ABA content in leaves or whole plants and
reduces transpiration (Thompson et al., 2000; Iuchi
etal., 2001; Qin and Zeevaart, 2002; Aswath et al., 2005).
However, ubiquitous expression causes growth retar-
dation. Improved drought tolerance was observed
when transgenic tobacco (Nicotiana tabacum) and Arab-
idopsis plants were subjected to stress by withholding
irrigation (Iuchi et al., 2001; Qin and Zeevaart, 2002).
However, the impact on yield was not reported. Over-
expression of the genes for ABA catabolic enzymes
Cytochrome P450 or ABA 8'-hydroxylase (ABA8'OH)
decreased the ABA levels and caused an increase in the
phaseic acid (PA) content (Millar et al., 2006; Umezawa
et al., 2006; Yang and Zeevaart, 2006; Ji et al., 2011).
When ABAS'OH was down-regulated in barley by an
RNA interference (RNAi) approach, the ABA content
increased (Gubler et al., 2008), but there is no informa-
tion on the performance of these transgenics under
stress conditions.

There is now a wealth of information on ABA sig-
naling components. PYRABACTIN RESISTANCE1
(PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPO-
NENT OF ABA RECEPTOR (RCAR) proteins func-
tion as soluble ABA receptors (Ma et al., 2009; Park
et al., 2009) and act in concert with type 2C protein
phosphatase (PP2C)-Sucrose nonfermentingl-related
protein kinase2 (SnRK2) complex (Umezawa et al,,
2009, 2010; Vlad et al., 2009). Phosphorylated SnRK2
appears to be required for the activation of the ABA-
induced transcriptional cascade. In the simplest
model, binding of PYR/PYL/RCAR to ABA pro-
motes interaction with PP2C, thereby inhibiting the
phosphatase activity of PP2C; as a result, phosphor-
ylated SnRK2s can activate the relevant transcription
factors (Kline et al., 2010). An increase in endogenous
ABA resulting from environmental and/or develop-
mental cues would then lead to the sequestration of
PP2C and resultant activation of SnRK2s and their
downstream ABA-responsive element binding pro-
tein (AREB)/ABA-responsive element binding factor
(ABF)/basic-leucine zipper (b-ZIP) proteins and an-
ion channels (Cutler et al., 2010; Hubbard et al., 2010;
Klingler et al., 2010; Umezawa et al., 2010). The
complete pathway from perception by PYR/PYL/
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RCARs to the activation of AREB/ABFs has been
validated by transient expression experiments in
Arabidopsis mesophyll protoplasts (Fujii et al., 2009).
PYR/PYL/RCAR protein family members have been
identified in rice (Oryza sativa), maize (Zea mays),
sorghum (Sorghum bicolor), soybean (Glycine max),
grapevine (Vitis vinifera), citrus (Citrus sinensis), and
tomato (Klingler et al., 2010; Sun et al., 2011; Boneh
et al.,, 2012; Kim et al.,, 2012; Romero et al., 2012).
However, there is only sparse information on tran-
scriptional regulation of diverse members of ABA
receptors, especially in response to different levels of
ABA (McCourt and Creelman, 2008; Umezawa et al.,
2010).

How different levels of ABA impact ABA percep-
tion via the family of receptors and affect WUE in
crop plants remains to be systematically explored. In
this study, we addressed ABA homeostasis and WUE
in barley. We employed a pair of breeding lines
having a contrasting phenotypic response to drought.
One line senesces, while the other line shows a stay-
green phenotype. Additionally, we investigated trans-
genic lines that we generated wherein ABA metabolism
was altered by promoting biosynthesis or by dimin-
ishing catabolism under control of a drought-inducible
promoter. These investigations afforded a hitherto
unavailable account of ABA dosage-dependent re-
sponses in the ABA signalosome vis-a-vis WUE over
short-term and long-term drought conditions. The in-
formation on a subset of ABA receptors will also be
useful toward engineering cereal crops adapted to cli-
mate change.

RESULTS
Putative ABA Signaling-Related Genes in Barley

A set of putative ABA signaling genes in barley was
defined on the basis of the sequence homology to
Arabidopsis genes. Rice orthologs were included to
provide a monocotyledonae reference. The Arabi-
dopsis PYR/PYL/RCAR family has 14 members; of
these, 13 act to inhibit the function of PP2C genes that
act as negative regulators of ABA response. In barley,
nine orthologs were identified (HvPYR/PYL1 through
HvPYR/PYLY), of which eight were present as full-
length sequences (Table I). PYR/PYL/RCAR proteins
have a major birch pollen allergen (Bet v 1) domain
that provides a scaffold for binding hydrophobic lig-
ands. All Bet v 1 proteins have been grouped within
the large START domain superfamily (Iyer et al., 2001;
Radauer et al., 2008). The residues required for ABA
binding are located within domains that form two
loops around the ABA molecule. The one having a
consensus sequence SGLPA is referred to as the proline
gate, and the other with the sequence GG(E/D)HRL
is known as leucine latch (Melcher et al., 2009; Santiago
et al, 2009a). Both structures are generally well con-
served in the set of HvPYR/PYL proteins (Supplemental
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Table I. List of genes putatively involved in ABA signaling

The table shows the following details: HarvEST unigene identification, full-length cDNA identification, Affymetrix identification, full length/partial,
open reading frame size, predicted molecular mass for the deduced proteins, predicted subcellular localization, genomic sequence information, and

derived 5' upstream region of the translational start site.

Name HarvEST_ID  fl cDNA_ID Affymetrix_ID P:‘t[i'; | ORF M(;\':’:S‘;'ar ngﬁgzgn ﬁjg‘ig}i‘lg > gg’gsitgiam
bp kD bp
HVPYR/PYL1 35_6019 — — Full 618 22.2 Cytosol contig_120100 1,212
contig_1036022 —
HvVPYR/PYL2  35_47387 — — Full 531 20.1 Cytosol contig_1029272 560
HvPYR/PYL3  35_2538 AK361631 — Full 675 23.4 Cytosol contig_7680 783
contig_125541 —
HvPYR/PYL4  35_2536; AK376521 contig7717_s_at  Full 846 30.1 Chloroplast contig 520617 1,215
35_2537
contig_1022368 —
HVPYR/PYL5  35_4843; AK363238; — Full 639 22.6 Cytosol contig_9218 —
35_4842 AK360170
contig_17013 —
contig 2712 —
HvPYR/PYL6  35_27243 — contig26435_at  Full 600 21.7 Chloroplast  contig 2167379 1,210
HVPYR/PYL7  35_26005 — — 3’ Partial 430 Chloroplast contig 1050478 —
HVPYR/PYL8  35_39062 — — Full 591 21.2 Cytosol contig_59536 295
HVPYR/PYL9 AK362590 — Full 621 22 Chloroplast  contig 6622 2,643
HvPP2C1 35_20474 AK356066 contig13161_at Full 1,152 40.7 Cytosol contig_141492 1,381
HvPP2C2 35_16690 AK362128 contig9099_at Full 1,155  41.1 Chloroplast  contig 4567 —
HvPP2C3 35_9808 AK358849 — Full 780 27 Chloroplast/ contig 121052 1,500
cytosol
HvPP2C4 35_18890 AK251854 contig9585_at Full 1,434 49.7 Chloroplast  contig 2186347 997
contig_1024074 —
contig_2652 —
HvPP2C5 35_8070 AK374059 contig18582_at Full 1,197 42.2 Chloroplast  contig 120142 1,500
contig_1015267 —
HvPP2C6 35_7671 AK377029 contig17128_at Full 1,089 39.4 Nucleus contig_145966 1,500
contig_1023418 —
contig_2168525 —
contig_605940 —
HvPKABAT/ 35_3036; AK372880 contig_1561710  Full 1,029 38.8 Cytosol contig_48093 1,500
HvSnRK2.1 35_31805
contig_1010515 —
HvSnRK2.2 35_15989 AK250358 — Full 1,074 40.9 Cytosol contig_1016754 1500
contig_49192 —
HvSnRK2.3 35_16858 — — Full 1,089 419  Cytosol contig_2162606 —
HvSnRK2.4 35_2796 AK374298 contig_160473 Full 1,101 41.5 CytOSO| contig_59002 1,500
contig_1010711 —
HvSnRK2.5 35_15228 AK363699 contig_160302 Full 1,086 40.6 Cytosol contig_256359 1,099
HvSnRK2.6 35_15990 AK367758;  contig 127028  Full 1,074 40.1 Cytosol contig_114539 703
AK355634
HvSnRK2.7 35_21442 AK251684 — Full 1,026 38.5 Cytosol contig_41066 1,500
HvSnRK2.8 35_16493 AK374249; contig_5609 Full 1,026 38.6 Cytosol contig_102922 —
AK366400
HvSnRK2.9 35_20178 AK362030 — Full 1,182 44.2 Cytosol contig_45417 1,500
HVABI5 35_37023;  AK373571;  contig15335_s_at Full 1,062  37.7  Nucleus contig_99412 1,500
35_22244 AK371351

Fig. S1A), although within the Pro gate, an S residue is
replaced by T in HvPYR/PYLland an A by G in
HvPYR/PYL9; within the HvPYR/PYL2 Leu latch,
GGEHRL appears as DGNHPL. The phylogenetic
analysis shown in Figure 1A suggested that HvPYR/
PYL1 and HvPYR/PYL2 are both members of the
same subfamily 1 as Arabidopsis AtPYL7 through
AtPYL10, and HvPYR/PYL5, HvPYR/PYL6, and

Plant Physiol. Vol. 164, 2014

HvPYR/PYLS are similar to Arabidopsis subfamily
3 (AtPYR1 and AtPYL1 through AtPYL3). HvPYR/
PYL3, HvPYR/PYL4, HvPYR/PYL7, and HvPYR/
PYL9 cluster with three rice proteins to form a
separate clade. No HvPYR/PYL proteins could be
assigned to Arabidopsis subfamily 2 comprising
AtPYL4 through AtPYL6 and AtPYL11 through
AtPYL13.
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Figure 1. Phylogenetic trees of different families of ABA signaling. Protein alignments were done using ClustalW (MegAlign,
DNAStar) with sequences from Arabidopsis, rice, and barley. Subfamilies are shaded in different colors. [See online article for

color version of this figure.]

Six PP2C orthologs were identified (HvPP2C1
through HuPP2C6; Fig. 1B). Eleven conserved motifs
have been associated with PP2C proteins (Bork et al.,
1996). All these motifs are present in the deduced
barley proteins, with the exception of HvPP2C3 con-
taining only motifs 1 to 5 and HvPP2C6 lacking motifs
1,3, and 9. (Supplemental Fig. S1B). These two proteins
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also lack the conserved Trp (W) residue, which is
inserted between the PYR/PYL/RCAR Pro gate and
Leu latch regions (Supplemental Fig. S1B).

The Arabidopsis SnRK2 family consists of 10
genes (Boudsocq et al., 2004). Of these, AtSnRK2.2,
AtSnRK2.3, and AtSnRK2.6 (all belonging to subfamily
I1I) are directly involved in ABA signal perception. The
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barley orthologs comprised nine full-length sequences.
One of these, designated as HUPKABA1/5nRK2.1, has
been characterized previously (Yamauchi et al., 2002).
We designated the additional ones as HvSnRK2.2
through HvSnRK2.9. These formed three phyloge-
netic clusters (Fig. 1C), SnRK2.2, SnRK2.3, and
SnRK2.9 (subfamily 1), SnRK2.4, SnRK2.5, and
SnRK2.6 (subfamily 3), and PKABA1/SnRK2.1,
SnRK2.7, and SnRK2.8 (subfamily 2). ABA-dependent
activation of the kinase and its interaction with
Abscisic acid-insensitivel (ABI1) requires an Asp-
rich domain (Domain II) in the C terminus (Belin
et al., 2006; Yoshida et al., 2006). Domain II was
found in the C-terminal region in PKABA1/SnRK2.1,
SnRK2.4, SnRK2.5, SnRK2.6, and SnRK2.8 (Supplemental
Fig. S1C).

Members of the ABI5/ABF subfamily of bZIP tran-
scription factors mediate ABA-induced transcription
by interacting with ABA response promoter elements.
Barley ABI5, ABF1, ABF2, and ABF3 have already
been described as members of the bZIP transcription
factor family, and we identified one additional partial
clone (named HvABF4; Fig. 1D). HvABI5 forms a
subgroup with AtABF2 and AtABF3 in phylogenetic
comparisons, while HvABF1 seems to be orthologous
to AtABI5 (Fig. 1D).

The Stay-Green and Senescing Types of Barley Show
Differential Photosynthetic Efficiency and WUE under
Terminal Drought

Senescence is a normal and eventual response of
plants experiencing terminal drought. Screening 16
elite barley breeding lines for terminal drought tol-
erance identified a line that showed stay-green
Lochow-Petkus (LP103) phenotype. This stay-green
line displayed a reasonable level of drought toler-
ance and produced a superior grain weight (Fig. 2;
Supplemental Fig. S2). The other lines senesced and
gave lower yields. Among them, LP110 was chosen as
a representative of the senescing lines. Withholding
water for 3 weeks induced senescence in the leaves
and spikes of line LP110 (Fig. 2B). By contrast, LP103
plants remained green for longer duration before se-
nescence ensued under postanthesis drought (Fig. 2A).
Stomatal conductance, transpiration, and assimilation
were markedly inhibited by drought in the senescing
line, but assimilation was maintained at a higher level
in the stay-green line than in the senescing line under
stress (Fig. 2, E-H). The WUE in senescing plants but
not in stay-green ones was reduced by 1 week of
drought stress exposure (Fig. 2H). The maintenance
of WUE allowed the drought-stressed stay-green
plants to produce larger grains in contrast to the
senescing ones (Fig. 2D). This result was reproducible
over two cropping seasons. The thousand grain weight
in the stay-green type, unlike in the senescing geno-
type, was not compromised in drought conditions
(Fig. 2D).

Plant Physiol. Vol. 164, 2014

Altered ABA Flux and Expression Dynamics of ABA
Perception and Sensor Genes in Stay-Green and
Senescing Lines

ABA accumulated to higher levels (15-fold) in the
flag leaf of drought-stressed senescing line than in the
stay-green line. The difference was most pronounced
in the early part of the grain-filling period, when the
plants had been exposed to 4 d of drought stress
(Fig. 2]). By 12 d after stress (DAS), the ABA level in
the flag leaf of the senescing line began to fall but still
remained at a higher level than in the control plants
that had been watered regularly. The behavior of the
stay-green plants was different; throughout the period
of stress (4 and 12 DAS), the flag leaf ABA content had
increased only about 3-fold over the level in irrigated
plants. This level remained steady throughout the
stress period (Fig. 2J). Both the assimilation rate and
WUE were sustained better in stay-green line at 4 and
8 DAS (Fig. 2, E and H). The flag leaf tissue in drought-
stressed senescing plants at 8 DAS contained more
ABA catabolites (dihydrophaseic acid [DPA], 2.7-fold)
and an inactive form of ABA (ABA-Glc ester, 4.5-fold;
Fig. 2I; Supplemental Table S2). The stay-green line did
not show this effect. Thus, ABA metabolism in the
senescing genotype was highly sensitive to drought
stress, while it was relatively unperturbed in the stay-
green type with well-balanced ABA homeostasis.

Transcription of genes associated with ABA syn-
thesis, degradation, and deconjugation was quantified
using quantitative real-time (qQRT) PCR (Supplemental
Fig. S3). In congruence with the increase in the ABA
content, HyNCED?2 transcript abundance in the flag
leaf of the senescing line was 6-fold higher in stressed
plants than in irrigated control plants at 8 DAS. By
12 DAS, however, NCED?2 transcription had diminished,
while barley B-glucosidase8 (HvBGS) expression had up-
regulated, suggesting that increased ABA flux might
operate through deconjugation events (Fig. 2I;
Supplemental Fig. S3). By contrast, ABA homeo-
stasis in the stay-green line was maintained via the
moderate induction of HNCED2 and HvBGS.

The transcription profiles of ABA receptor/signaling
genes also showed contrasting regulation in stay-green
and senescing plants. At 8 DAS, only HvPYR/PYL5 and
HuPYR/PYL7 were up-regulated in drought-stressed
flag leaf of the stay-green line. During this stage,
HvPYR/PYL3, HvPYR/PYL4, HoPYR/PYL5, HuPYR/
PYL6, and HuPYR/PYL8 were all down-regulated in
drought-stressed flag leaf of the senescing line (Fig. 2K;
Supplemental Fig. S4). Recall that ABA catabolite
levels in plants under these conditions were elevated
in stressed senescing plants but not in stay-green
plants (Fig. 2I). Notably, five of the six genes (HvPYR/
PYL3, HuvPYR/PYL4, HuvPYR/PYL5, HvPYR/PYL6,
and HouPYR/PYL8) that we monitored were up-
regulated in drought-stressed flag leaf at 12 DAS in
senescing line plants, while none of them showed this
change in the stay-green type (Supplemental Fig. 54).
This suggests that the two lines differ in their capacity
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Figure 2. Phenotype of two contrasting barley genotypes under control and drought stress conditions. A and B, Plants of the
stay-green (LP103) and senescing genotype (LP110) after 3 weeks of stress and respective control plants. C and D, Yield related
parameters showing mean values = sp with n = 10. E to H, Assimilation, stomatal conductance, transpiration rate, and in-
stantaneous WUE (assimilation/transpiration) of the two genotypes measured in flag leaf at 4 and 8 DAS. The graphs show mean
values = sp with n = 10. I, ABA metabolites PA, DPA, and ABA-Glc ester measured in flag leaves 8 DAS. J, ABA levels in flag
leaves after different stress duration in stay-green and senescing genotype. The graphs | and J show mean values = sp with n=2.
K, Expression of HvPYR/PYL5 and HvPP2C4 in flag leaves at 8 and 12 DAS. The graphs show mean values from two replicates
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to bind ABA and/or in their sensitivity to ABA. De-
spite the difference in the ABA levels in the flag leaf,
most of the PP2C and SnRK2 genes were markedly
induced by stress in both stay-green and senescing
plants (Supplemental Fig. 54).

Engineering ABA Biosynthesis and Catabolism Pathways
to Alter ABA Flux under Postanthesis Drought

Two transgenic approaches were undertaken to
alter ABA metabolism in barley, overexpression of
AtNCED6 that encodes the key enzyme for ABA
biosynthesis and RNAI silencing to repress the en-
dogenous ABAS'OH genes as a means to curtail ABA
degradation. These transgene constructs were placed
under control of the barley late embryogenesis abundant
(Lea) B19.3 promoter, which is induced in vegetative
tissues during postanthesis drought stress. Two in-
dependent homozygous transgenic lines of each
construct were used for evaluation of the physiological
performance under terminal drought stress. The lines
will be referred to as LN for the HvLea::AtNCED6 con-
struct and LOHi for the HoLea::Hv8'-hydroxylase RNAi
construct, respectively. In general, the transgenic
plants performed better than the parental line (referred
to as the wild type; WT) under stress. Both LN and
LOHi lines possessed a higher relative leaf water
content at 4 DAS (Fig. 3A). While the stress had a
negative impact on assimilation in the wild type, the
transgenic LN lines had higher assimilation rate, and
LOHi lines suffered to a lesser extent (Fig. 3B). In-
stantaneous WUE (assimilation/transpiration) was
not reduced in three of the four transgenic lines when
they were subjected to drought stress. There was
even an increase in LN transgenic lines (Fig. 3C).
This contrasted the reduction seen in the wild type
and one of the two LOHi lines. These results show
effective coordination of assimilation with the
balanced transpiration in LN plants under drought
stress.

Expression of the transgene AtNCED6 in flag
leaves was detected as early as 0.5 DAS, and highest
expression was observed at 8 DAS in both over-
expression lines (LN39 and LN51), with nearly 2-fold
increase under stress compared with control con-
ditions (Fig. 4A). In the RNAI lines (LOHi236 and
LOHi272), reduction in HvABA8'OHI transcript
levels in flag leaves was observed mainly under long-

term stress (12 DAS), with a clear reduction of
52% and 42% in LOHi236 and LOHi272 lines, re-
spectively. Among three HVABAS8'OH genes, only
HvABAS8'OH-1 was induced under stress in the wild
type (Fig. 4B, inset). Therefore, we focused on
HvABAS8'OH-1.

We measured the ABA content in the flag leaf of the
wild type and transgenic lines under control and
drought stress (0.5-12 DAS). This analysis showed that
under the conditions of short-term drought stress at
2 DAS, much more ABA was accumulated in AtNCED6
overexpression lines than in the wild type or in ABA
hydroxylase RNAI lines (Fig. 4C). In the wild type, the
highest level of ABA response was observed 2 d later
than in LN39 (4 DAS, 17-fold), and these wild-type
plants maintained higher ABA levels under long-
term stress (12 DAS). By contrast, by 4 DAS on-
wards, LN39 plants had reduced their ABA levels and,
under prolonged stress, maintained the ABA content
at a near-basal level. This was also reflected in LN39
transgenic line, where down-regulation of endoge-
nous HuNCEDI1 gene is noted (Supplemental Fig. S5;
Supplemental Table S3). In the LOHi line, ABA levels
did not reach as high as in the wild type under long-
term stress (4-12 DAS).

To understand the dynamics between ABA biosyn-
thesis and degradation under short-term and long-
term stress, we analyzed ABA catabolites in the wild
type and in the ABA hydroxylase repression line
(LOHI236) at 2 and 12 DAS. In the short term, the two
major ABA degradation products PA and DPA in-
creased similarly in the wild type and LOHi236 (2.8-
and 1.8-fold for PA and 1.8- and 1.5-fold for DPA,
respectively; Fig. 4D). While PA (9.2-fold) and DPA
(6.4-fold) reached very high levels under long-term
stress in wild-type plants (Fig. 4D), these degradation
products accumulated to a lesser extent at 5.5- and 4.8-
fold, respectively, in the LOHi236 RNAi plants.

Expression Dynamics of the ABA Receptor Complex Is
Modulated Differentially in Transgenic Lines with Altered
ABA Flux under Terminal Drought

Having determined that AtNCED6-overexpressing
lines and ABA8'OH RNA:i lines differ with respect to
altered ABA flux and homeostasis under short-term
versus long-term stress during the grain-filling pe-
riod, we investigated regulation of HvPYR/PYL family

Figure 2. (Continued.)

of qRT-PCR-experiments from biological independent material (n = 2) with an additional two technical replications. Relative
mRNA levels to reference gene HZ42K12 are shown by white and gray bars (mean * sp). TGW, Thousand grain weight;
ABA-GE, ABA Glc ester; DW, dry weight. Statistical analysis was carried out across genotypes for a given treatment using one-
way ANOVA at a = 0.05 with Tukey’s posthoc test (E-H and K). Letters a and b and x and y represent statistical differences
under control and stress conditions, respectively. Bars with similar or no letters indicate no statistical difference among gen-
otypes under a given treatment. Two-way ANOVA performed to identify the signified difference between accessions (stay-green
versus senescing lines) and condition (control versus drought stress) with P values of the f-test; & = 0.05 and 0.01. For further

details, see Supplemental Table S3.

Plant Physiol. Vol. 164, 2014

1683

Downloaded from www.plantphysiol.org on October 5, 2015 - Published by www.plant.org
Copyright © 2014 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org/cgi/content/full/pp.113.229062/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.229062/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.229062/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.229062/DC1
http://www.plantphysiol.org/
http://www.plant.org

Seiler et al.

A RWC 4 DAS

1007 4 ab ab b a
80 Xy X
% xy I T
60
=x
40
20
0 v
WT

LOHi236 LOHi272  LN39 LN51

c Water use efficiency
(instantaneous)

8 vz

. O o
a
X =

6
4 4
2.
0 4

a a
X T
WT LOHIi236 LOHi272 LN39 LN51

Ratio A/JE

B Assimilation
1449 C be
5 abc a = ab
= 10 - z Z
w x
b ] y
L 8 ) L
T 6 1
E
S 4 -
2 4
Q0 4

WT LOHi236 LOHi272  LN39 LN51

Figure 3. Physiological performance of the transgenic lines LOHi and LN compared with the wild type (WT) under control and
drought stress conditions. A, Relative leaf water content (RWC) estimated at 4 DAS. B and C, Assimilation rate and calculated
instantaneous WUE (assimilation [Al/transpiration [E]) in the wild type and transgenic plants. Mean values = st are given with
n = 15 for all the parameters. White and filled bars represent control and stress conditions, respectively. Statistical significant
differences among genotypes and a given treatment have been calculated using one-way ANOVA at a = 0.01 with Tukey’s
posthoc test. Letters a, b, and c and x, y, and z represent statistical differences under control and stress conditions, respectively.
Additional information of two-way ANOVA is provided in Supplemental Table S4.

members (Fig. 5). In general, HvPYR/PYL members
(exception of HvPYR/PYL1 and HvPYR/PYL5) were
down-regulated in the wild type and in both trans-
genic lines under stress (Fig. 5). Under short-term
stress (2 DAS), HvPYR/PYL5 was up-regulated in
the flag leaf of line LN39; this coincided with ABA
accumulation reaching its peak level. The transcript
levels did not change in the RNAIi line. In the wild
type, up-regulation of HuvPYR/PYL5 was found at
4 DAS, when the ABA level had peaked (Fig. 5). Under
prolonged drought stress (12 DAS), there were no
stress-associated differences in the expression of
HvPYR/PYL1 and HvPYR/PYL5 in any of these lines,
but transgenic lines showed highest repression in LN39
and LOHi236 transgenic lines under long-term stress
(Fig. 5; Supplemental Table S3). These results suggest
that the wild type and transgenic line LN39/LOHi236
likely differ in their source tissues with respect to ABA
binding and/or ABA sensitivity under short-term
drought stress.

In general, transcriptional up-regulation under
stress was observed for the PP2Cs (Supplemental Fig.
S6). Notably, the up-regulation of PP2C genes in
LN39 and LOHi236 was mainly confined to short-
term drought stress, and in particular, the induction
of PP2C1, 4 and 5 transcript accumulation was
moderate in LOHi236 during 12 DAS. The SnRK2-
related protein kinase genes (HvPKABA1/SnRK2.1 and
HvSnRK2.7) were up-regulated under short-term
drought stress in LN39. The relative expression levels
of HyPKABA1/SnRK2.1 and HvSnRK2.7 in LOHi236
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line were lower during midterm stress compared
with the wild type and LN39. Notably, this line
produced less ABA under stress compared with the
wild type.

Three-Dimensional Modeling of HvPYR/PYL
Protein Structures

As outlined in “Materials and Methods,” we con-
structed three-dimensional models for three HvPYR/
PYL proteins in I-TASSER (Roy et al., 2010). We se-
lected HvPYR/PYL5 (that shows highest homology
to Arabidopsis AtPYR1/RCAR11) as well as HvPYR/
PYL1 and HvPYR/PYL2 that show some differences
in the amino acid sequence of the gate and latch re-
gions, respectively (Fig. 6A). The general structure of
the predicted models (best scores) has an a-B-a2-86-a
topology (Fig. 6A) and exhibits very similar helix-
grip folds compared with AtPYR1 and AtPYL2, a
characteristic of the START protein superfamily (Iyer
et al., 2001). Interestingly, HvPYR/PYL5 has an ad-
ditional a-helix in the N-terminal region (residues
5-12) but lacks the small helical segment 3 that is
usually followed by six B-strands (Fig. 6B). The
largest a-helix consisting of 30 amino acids is located
at the C-terminal part of the protein. HvPYR/PYL1,
unlike HYPYR/PYL5, does not haves B-strands 2 and 3;
in HVPYR/PYL2, these two B-strands are predicted
as a very short segment of only three amino acid
residues (Fig. 6, A, C, and D). Additionally, like
HuvPYR/PYL5, HvPYR/PYL1 does not contain
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Figure 4. Expression levels of AtNCED6 and HVABA8 OH1, ABA, and ABA metabolite levels in the wild type (WT) and
transgenic lines under control and drought stress conditions. A, AtNCED6 expression in leaf tissue of two transgenic LeaNCED6
lines (LN) at different time points after stress induction analyzed by qRT-PCR. B, Expression of HVABA8' OHT in two RNAi lines
LeaABA8' OH (LOHi). Relative expression to reference gene HZ42K12 in leaf tissue at 2 (top graph) and 12 DAS (bottom graph)
is shown. The small graph within the bottom diagram represents the expression of three ABA hydroxylase genes in the barley
wild type. C, ABA levels in the wild type, LN, and LOHi plants. D, Levels of ABA metabolites under short- and long-term stress
in the wild type and RNAi line. White and filled bars represent control and drought stress, respectively. C, Control; S, stress;
ABA, cis-ABA; ABA-GE, ABA Glc ester; 7'OH-ABA, 7’-Hydroxy-ABA; t-ABA, trans-ABA; DW, dry weight. Statistically signif-
icant differences among genotypes and a given treatment have been calculated using one-way ANOVA at a = 0.05 (C and D)
with Tukey’s posthoc test. Letters a, b, and ¢ and x, y, and z represent statistical differences under control and stress conditions,
respectively. Two-way ANOVA tests have been calculated to show differences between control and stress with *P < 0.05 and
**P = 0.001 to calculate statistically significant differences. Additional information of two-way ANOVA is provided in
Supplemental Table S4.

a-helix 3. The sequence and structure of the gate
loop (between B-strands 3 and 4) and the latch re-
gion (between B-strands 5 and 6) of HvPYR/PYL5
are identical to those present in Arabidopsis PYR/
PYL/RCARs (Fig. 6B, middle). By contrast, the gate
and latch regions differ slightly in HvPYR/PYL1
(Fig. 6C, middle; Supplemental Fig. S1A), and the

Plant Physiol. Vol. 164, 2014

latch region differs in HvPYR/PYL2 (Fig. 6D, middle;
Supplemental Fig. S1A). Although the primary
structure does differ slightly, the three-dimensional
modeling indicates that the gate and latch regions
can have loop-like structures. Figure 2, B to D, in-
dicates putative ligand binding sites in the gate and
latch regions. It will be interesting to determine if

1685

Downloaded from www.plantphysiol.org on October 5, 2015 - Published by www.plant.org
Copyright © 2014 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org/cgi/content/full/pp.113.229062/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.229062/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.229062/DC1
http://www.plantphysiol.org/
http://www.plant.org

Seiler et al.

HvPYR/PYL2

Ocontrol @stress

0.012

0.01
0.008
0.006
0.004
0.002

HvPYR/PYL3

HvPYR/PYL4

2 412 2 412 2 4 12 DAS 2 412 2 412 2 4 12DAS 2 412 2 412 2 4 12DAS
WT LOHi236 LN39 WT LOHi236 LN39 WT LOHi236 LN39
HvPYR/PYLS8 HvPYR/PYL9
0.00025 3-21: 0.002
0.0002 0012 0.0015
0.00015 0.009 0.001
0.006 I
0.0001 i —
0.00005 0.003 IH I
B _ 0 . : 0
5 W B EAD D 4 BDAS 2 412 12 2 4 12DAS 2 412 2 412 2 4 12DAS
WT LOHi236  LN39 wT LOHi236 LN39 WT LOHi236 LN39
HvPYR/PYLA HvPP2C4

2 4 12DAS

2 4 12 2 4 12
WT LOHi236 LN39
WT
HvPYR/PYLS5
0.4 - 0.03
0.3 - ar
0.2 - .
. 0.01
W i
[}
n
0 L 1R EEEE i1 'L 0
2 412 2 4 12 2 4 12DAS 2
WT LOHi236 LN39 WT

2 4 12 DAS

LOHi236 LN39

HvPKABA1/SnRK2.1

LOHi236 LN39

Figure 5. Differential expression of putative ABA signaling genes in barley wild type (WT) and transgenic plants under terminal
drought stress analyzed by qRT-PCR. Differentially expressed genes in flag leaves that experienced different duration of stress
(2, 4, and 12 DAS). LOHi236 indicates RNAI line LeaABA8' OH, and LN39 indicates LeaNCED6 overexpression. The graphs
show mean values from two replicates of qRT-PCR experiments from biological independent material (n = 2) with an additional
two technical replications. Relative mRNA levels to reference gene HZ42K12 are shown by white and gray bars (mean = sp).
The significance of differences between control and stress was determined using two-way ANOVA, with *P = 0.05 and
**P =< 0.001. Statistically significant differences across genotypes were calculated using one-way ANOVA and are given in
Supplemental Table S4. [See online article for color version of this figure.]

the predicted structural differences influence func-
tional properties.

Physical Interaction of the ABA Receptor Components

A yeast (Saccharomyces cerevisiae) two-hybrid (Y2H)
assay was conducted to examine interactions between
selected HVPYR/PYLs and HvPP2C4. HvPYR/PYL],
HvPYR/PYL2, and HvPYR/PYL5 were fused to the
GAL4 DNA binding domain and HvPP2C4 was fused

1686

to the GAL4 activation domain to circumvent self-
activation of the Y2H gene reporters. After cotrans-
forming the cloned genes in pairs into the yeast strain
MaV203, interaction between receptor and phospha-
tase was tested on medium with (100 um ABA)
or without ABA supplementation. In this study,
HvPYR/PYL1 interacted with HvPP2C4 in the pres-
ence of ABA, while a weaker interaction was noted in
the absence of ABA. HvPYR/PYL5-HvPP2C4 interac-
tion was ABA dependent (Fig. 7). By contrast, no
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Figure 7. Interaction of HYPYR/PYL1 and HvPYR/PYL5 with HvPP2C4
in a Y2H assay using the HIS reporter. HYPYR/PYLs-binding domain
fusions were coexpressed with HvPP2C4-activation domain and tested
for positive interactions without (2) or with ABA (3) or cotransforma-
tion (control, 1). Positive (P) and negative (N) controls were provided
by the Invitrogen Y2H Kit. The numbers above the columns indicate
the medium as follow: SC-Leu-Trp (1), SC-Leu-Trp-His plus 50 mm
3-AT (2), and SC-Leu-Trp-His plus 50 mm 3-AT and 100 um ABA (3).
[See online article for color version of this figure.]

interaction was found between HvPYR/PYL2 and
HvPP2C4 regardless of ABA addition. Note the amino
acid changes in HvPYR/PYL2 in the core latch region
that is necessary for ABA binding (Supplemental
Fig. S1A). This region seems to be important for in-
teraction with PP2C. In summary, all three tested
HvPYR/PYL proteins behaved differently in the Y2H
screening.

To validate the interactions in planta, bimolec-
ular fluorescence complementation (BiFC) analysis
was employed (Fig. 8). Fluorescence was detected
predominantly in the cytoplasm and nucleus for the
combinations of dimer formation of HvPYR/PYL5,
HvPP2C4-HvPYR/PYL5, and HvPP2C4-HvPKABA1/
SnRK2.1 complexes. This finding is in agreement with
the interaction of Arabidopsis ABI1-AtPYL9, which
takes place in the nucleus and cytosol (Ma et al., 2009).
However, in rice, it was shown recently that the com-
plex of OsPYL/RCARS5-OsPP2C30 formed exclusively
in the nucleus (Kim et al., 2012). Adding ABA to the
protoplasts caused no changes in the interaction. Im-
posing desiccation stress with polyethyleneglycol or
mannitol treatment of protoplasts also did not change
the interactions (Supplemental Fig. S7). The interaction

of HVPYR/PYL5 with HvPP2C4 noted using BiFC
(Fig. 8) fits with Y2H data. However, in contrast to the
Y2H results, no interaction between HvPYR/PYL1 and
HvPP2C4 was detected (data not shown). Additionally,
we could demonstrate interaction between HvPP2C4
and HvVPKABA1/SnRK2.1 by BiFC (Fig. 8). This com-
bination could not be tested in Y2H due to self-
activation problems with both proteins (data not
shown). In summary, a complete ABA signaling com-
plex consisting of barley HvPYR/PYL5, PP2C4, and
PKABA1/5nRK2.1 is formed in planta, suggesting a
highly conserved mechanism in monocots and dicots.

DISCUSSION

Selection for higher WUE using quantitative trait loci
analysis has been undertaken as an approach to im-
prove drought tolerance (Chen et al., 2011; Zhengbin
et al., 2011). However, the genes for the trait have not
yet been isolated in cereals. From a physiological per-
spective, it is well known that ABA accumulation in
response to drought reduces transpirational water loss
and helps plants survive, but under long-term stress, it
is at the expense of photosynthetic productivity (Yoo
et al., 2010). Hence, understanding the fine regulation of
stomatal functions by ABA under short-term versus
long-term stress is important for devising strategies to
improve WUE and drought tolerance in crops
(Sreenivasulu et al., 2012). There is clear evidence from
studies on isolated leaf epidermis or guard cell proto-
plasts for the participatory role of ABA signaling com-
plex in affording ABA sensitivity and reduction of
water loss. However, the impact of any differences in
the ABA content and that of the activity of the ABA
signaling components on plant growth and develop-
ment under conditions of prolonged stress are unclear
(Ben-Ari, 2012; Merilo et al.,, 2013). In our study, we
have addressed this by investigating a pair of elite
breeding lines of barley, a line that senesces sooner
under drought (senescing line; LP110) and a line that
remains green for a longer duration (stay green; LP103)
despite the stress. In addition, we have used, in this
study, transgenic barley lines that have been engineered
for drought-inducible ABA production or diminution of
ABA catabolism to alter ABA homeostasis.

Importance of ABA Homeostasis in Improving WUE under
Long-Term Drought Stress

The stay-green and senescing lines differed not only
in their assimilation performance under stress, but also

Figure 6. (Continued.)

models (best score) of HYPYR/PYL5 (B), HVPYR/PYL1 (C), and HVPYR/PYL2 (D). At left, N and C termini are indicated, and gate
and latch regions are shown in white. The middle shows an overlay with the top hit structural Arabidopsis analog (AtPYL2 for
HVPYR/PYL5 and HVPYR/PYL1, AtPYR1 for HYPYR/PYL2) generated with PyMOL. Green indicates the HvPYR/PYL sequence,
white indicates the Arabidopsis RCAR/PYR/PYL sequence, and orange- and magenta-labeled residues indicate different amino
acids at that position. At right, predicted ligand binding sites within the gate and latch regions and amino acid residues and their

position within the protein sequence are indicated.
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Figure 8. Interaction of ABA receptor components analyzed by BiFC. Pairs of PYR/PYL5-YFPS/PP2C4-YFPN, PYR/PYL5-YFPY/
PYR/PYL5-YFPY, and PP2C4-YFP/PKABAT/SNRK2.1-YFPN were transformed into Arabidopsis protoplasts. Fluorescence im-
ages were taken 1 d after transformation. The pictures are YFP, bright field, autofluorescence (auto), and merged images.

in ABA metabolism. The senescing line synthesized far
greater levels of ABA than the stay-green line under
short-term stress, and it continued to maintain a high
level of ABA and ABA catabolites under long-term
stress. Consistent with the observations that ABA ca-
tabolism is triggered to degrade excess ABA (Cutler
and Krochko, 1999), we found that ABA and also ABA
catabolites accumulated in a senescing breeding line of
barley under drought stress (Seiler et al., 2011). This
indicates a greater flux in ABA metabolism, affecting
WUE and assimilation negatively in the senescing line.

Plant Physiol. Vol. 164, 2014

By contrast, the relatively modest increase of ABA in
the stay-green line was held in check over long-term
stress, and this homeostasis appeared to help the line
sustain WUE and assimilation. Overaccumulation of
ABA or constitutive activation of ABA signaling re-
duces WUE and thus growth (Sreenivasulu et al., 2012;
Pizzio et al., 2013; Zhao et al., 2013). For example,
overexpression of NCED under the control of ribulose-
1,5-bisphosphate carboxylase/oxygenase small subunit gene
promoter, which is highly active in photosynthetic
tissues, causes leaf yellowing, reduced chlorophyll
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content, and reduced growth rate (Gittins et al., 2000;
Tung et al., 2008). The elevated ABA flux in our sen-
escing line might have resulted in low xanthophyll
content. These results emphasize that engineering
WUE enhancement in barley entails more subtle
changes to ABA metabolism that requires, as
a prerequisite, delineation of the ABA signalosome
components.

Because we found ABA homeostasis to influence
instantaneous WUE distinctly in elite breeding lines,
we manipulated endogenous ABA levels in transgenic
barley under the control of a drought-inducible pro-
moter. The rise in ABA accumulation under short-term
stress in LN39 carrying chimeric AtNCED correlated
with the expression of the transgene and also with
remodulated expression of HUNCED1 and HuNCED?2
genes (Fig. 4; Supplemental Fig. S5). While these plants
responded by increasing their ABA content in the short
term, they reprogrammed ABA metabolism to main-
tain a near-basal level over the long-term stress through
apparent feedback control via down-regulation of
HuNCED genes. These events appear to have held in
check the ABA levels under long-term stress. This type
of control over ABA homeostasis was lacking in the
wild type, where HuNCED2 expression seemed to
contribute to the increase in ABA from 4 to 8 DAS
and HuNCED1 expression during 8 and 12 DAS
(Supplemental Fig. S5). Thus, in the wild type, higher
ABA levels remained throughout the stress period
(Fig. 4C).

The net accumulation of ABA in LOHi236 (RNAi
construct of ABA8’'OH) was not as high as in AtNCED
transgenic line at the early stages (2 DAS). In the
wild type, long-term stress caused an increase in
ABA flux, but, in LOHi236, where ABA catabolism
has been repressed to some extent, the stress con-
dition had a modest positive effect on net ABA
production (Fig. 4D). Taken together with the ob-
servations that drought-induced AfNCED6 ex-
pression was associated with down-regulation of
HvABAS8'OH genes and that this resulted in improved
assimilation and WUE under terminal drought, the
results reinforce the notion that plants under long-
term stress benefit from modulated ABA homeosta-
sis. These results support the inference that net rate
of ABA accumulation in the wild type is highly and
upwardly responsive to drought, while the dynam-
ics of it is controlled tightly in the transgenic lines
enhancing WUE.

Expression Dynamics of ABA Perception Genes under
Short-Term versus Long-Term Drought Stress in Lines
That Show Differences in ABA Flux

Given that many potential members of the ABA
signalosome were identified in barley, it was of
interest to elucidate their functlonal aspects. The
highest ABA content (342 ng g™' dry weight) seen in
wild-type barley flag leaf was at 4 DAS, a time point
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at which higher expression of PYR/PYL5 in flag leaf
was witnessed. However, as a consequence of
transgenic express1on of AtNCED, the ABA levels
reached 428 ng g™' dry weight already at 2DAS, and
under these conditions, PYR/PYL1 and PYR/PYL5
were also induced (Fig. 5). This suggests that differ-
ences in ABA levels can modulate the ABA signal-
osome by altering the expression of specific receptors
in the family. In the RNAI line, where there was a
moderate increase in ABA content that was less
compared with the wild type, there were no changes
in the transcript level. In Arabidopsis, it has been
reported that an increase in ABA via either exoge-
nous supply or enhanced production under water
deficit conditions down-regulates AtPYLS, AtPYL4,
AtPYR1, and AtPYL1 expression; the other members
remain constant or show slight up-regulation (Santiago
et al., 2009b; Szostkiewicz et al., 2010). We found,
in wild-type barley, no change in the expression of
six HPYR/PYL genes under short-term stress but
down-regulation under prolonged stress (Fig. 5). In
the senescing type of barley breeding line, elevated
flag leaf ABA content down-regulated the transcrip-
tion of ABA receptors when the plants reached
midpoint in drought stress, but HoPYR/PYL tran-
scription was again up-regulated when the ABA level
had been reduced in long-term stress (Supplemental
Fig. 54). No such adjustments in receptor gene ex-
pression were found in the stay-green type that
maintained ABA homeostasis under long-term
stress. Collectively, all these results point to dif-
ferent levels of ABA in short-term versus long-term
stress having an impact on perception by various PYR/
PYL members that appear to have specialized
functions with respect to signaling dynamic cellular
ABA content (Miyakawa et al., 2013; Okamoto et al.,
2013).

Most barley PP2C and SnRK2 members were
prominently up-regulated under stress in the sene-
scing and stay-green types, the wild type, and the
LN39 transgenic line (Supplemental Figs. S4 and S6),
regardless of the differences in the ABA content.
A similar situation has been reported in Arabidopsis,
where PP2C genes are elevated, while the majority of
PYR/PYL members are down-regulated upon exoge-
nous ABA treatment (Santiago et al., 2009b; Szostkiewicz
et al., 2010). These authors also reported that ABA-
related stress conditions or treatments alter the ratio
of PP2C to PYR/PYL at both transcript and protein
levels. Recently, it was postulated that an increase in
this ratio might be necessary for activation of the
downstream ABA signaling cascade under stress
conditions (Chan, 2012). It is interesting to note that
PP2C:PYR/PYL transcript ratio in the wild type was
preferentially higher under stress, and this corre-
lated with reduced WUE. The RNA.i line that had a
lower ABA flux than the wild type under stress
showed an unaltered PP2C:PYR/PYL ratio; a similar
situation was also found in the stay-green line that
had a reduced ABA flux.
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Receptor Combinations and ABA Responses under
Postanthesis Drought Stress

PYR/PYL, PP2C, and SnRK2 families comprise many
members, and various combinations of them in receptor
complexes are conceivable. Structural differences in the
members do impact WUE and drought tolerance.
In Arabidopsis, overexpression of PYL4*"*" mutant
affords stress tolerance (Pizzio et al.,, 2013); over-
expression of AtPYL13, which is known to differ from
other PYLs in its ABA binding pocket, leads to im-
proved drought tolerance (Zhao et al., 2013). Thus,
some of the fine differences and expression levels in
the signalosome components can have physiological
consequences.

As shown in this study on barley and in other studies
on Arabidopsis (Szostkiewicz et al., 2010; Pizzio et al,,
2013; Zhao et al., 2013), the compositions of the receptor
complexes affect sensitivity to and selectivity for ABA
and impact WUE. The transcriptional activation of a
subset of receptors (HvPYR/PYL1 and HuvPYR/PYL5)
by elevated ABA under short-term stress in LN39
suggests that this complex is pertinent to mediate ABA
signaling under these conditions. HvPYR/PYL5 be-
longs to subfamily 3 that includes the well-characterized
AtPYR1 and AtPYL1. These form dimers in Arabi-
dopsis (Miyazono et al., 2009; Santiago et al., 2009b;
Yin et al., 2009; Dupeux et al., 2011). Our Y2H and
yellow fluorescent protein (YFP) complementation
experiments suggest that HvPYR/PYL5 forms a
homodimer (Fig. 8). The three-dimensional model for
HvPYR/PYL5 protein presented in Figure 6 includes
the ABA-binding residues located within the domains
that form two loops around the ABA molecule
(Melcher et al., 2009; Santiago et al., 2009a). It is known
that the Ser residue of the Pro gate (SGLPA) directly
interacts with a catalytic Glu residue of AtABI1
(Miyazono et al., 2009). Thr is present instead of Ser in
HvPYR/PYL], and it did not dimerize in our analyses.
Dimerization might prevent basal activation of the
signaling pathway in the absence of ABA, as the in-
terfaces of the receptors for homodimerization and
PP2C binding are largely overlapping (Dupeux et al.,
2011). After binding of ABA, the dimeric proteins
dissociate to form the signaling complex. While mono-
meric receptors have a competitive advantage for binding
to ABA and PP2Cs, monomeric and dimeric receptors
can form high-affinity complexes with PP2C (Ma et al.,
2009; Santiago et al., 2009b).

The monomeric proteins of Arabidopsis, AtPYLS5,
PYL6, and PYLS, show partial interaction with PP2C in
absence of ABA. The dimeric receptors such as PYR1
and PYL1 do not interact under these conditions in
Arabidopsis. Our findings in barley suggest a similar
scenario as in Arabidopsis; barley PYR/PYL5, known
to participate in homodimer formation, interacted with
HvPP2C4 only in presence of ABA. By contrast,
HvPYR/PYL1 showed weak interaction even in ab-
sence of ABA, hinting that the in planta oligomeric
state of these two putative receptors is different.

Plant Physiol. Vol. 164, 2014

AtPYR1 residue H60 plays a key role in determining
the oligomeric state of ABA receptors, and a H60P
substitution leads to destabilization of the PYR1 dimer
(Dupeux et al., 2011). HvPYR/PYL1 and HvPYR/
PYL2 both contain a P residue at the correspond-
ing position (H77 in HvPYR/PYL1 and H53 in
HvPYR/PYL2), and this would explain the ABA-
independent interaction of PYR/PYL1 with PP2C4 in
the Y2H assays. The C terminus of HvPKABA1/SnRK2
includes an Asp-rich domain (Domain II) that is
known to be required for both ABA-dependent acti-
vation of the kinase (Belin et al., 2006) and its inter-
action with ABI1 (Yoshida et al., 2006), and we found
interaction between HvPP2C4 and HvPKABA1/
SnRK2.1.

The overall implication is that plants employ PYR/
PYL-ABA-PPC2 to fine-tune specific ABA signaling
pathways in response to the prevailing levels of ABA
(Santiago et al., 2012). The three major findings from
our study supports general occurrence of this scenario.
(1) The PYR/PYL, PP2C, and SnRK2 gene family
members are generally conserved across the monocot/
dicot divide while exhibiting variation at the binding
sites in selected members. (2) A drought-sensitive line
of barley (senescing type) and the stay-green type
differ remarkably in their regulation of PYR/PYL
genes and also in their ABA levels over the course of
postanthesis drought stress. The drought-sensitive
plants that had high concentrations of ABA senesced,
while the stay-green type plants modulated their
PYR/PYL expression in the face of lower steady-state
levels of ABA and survived longer under terminal
drought. (3) Transgenic lines in which the ABA flux
was modulated by expression of NCED (or an RNAi
construct of ABA8'OH) under the control of a drought-
inducible promoter corroborated the connectivity be-
tween ABA homeostasis, WUE, and PYR/PYL5:PP2C4
complex. Taken together, the results offer interesting
insights into the combinations of active receptor com-
plexes during postanthesis drought in barley and raise
the prospects for improving WUE through conven-
tional breeding of appropriate lines or through tar-
geted transgenic approaches for fine manipulations of
ABA flux and perception.

MATERIAL AND METHODS
Barley Gene Annotation of ABA Signaling Pathway

Barley (Hordeum wvulgare) genes encoding proteins involved in ABA sig-
naling were identified by a Blastn, Blastx, and tBlastx homology search of the
50,000 unigenes represented in the HarvEST database (http://harvest.ucr.
edu), with the known Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa)
ABA signaling sequences retrieved from the PubMed and TIGR databases,
respectively (http://www.ncbinlm.nih.gov; http:/ /rice.plantbiology.msu.
edu/). The five best hits of each Blast search were selected and used to identify
corresponding full complementary DNA (cDNA) sequences, using 24K full-
length barley cDNA database (Matsumoto et al., 2011). The in silico translation
product of each cDNA was queried for the presence of conserved domains
identified in Arabidopsis. Multiple sequence alignments were performed us-
ing ClustalW (DNAStar) and ClustalW2 (http:/ /www.ebi.ac.uk/Tools/msa/
clustalw2; Larkin et al., 2007).
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Screening Germplasm and Breeding Material for
Drought Tolerance

A panel of 16 barley lines was screened for their yielding capacity under
terminal drought (Supplemental Fig. S2). The plots subjected to terminal
drought stress each comprised 50 plants and were randomly arranged in three
replications. Well-watered control plots were also raised in parallel. A rainout
shelter was installed over the droughted plots at anthesis, and 1 week later,
irrigation was withheld until maturity. The following season, stay-green
LP103 (variety QUENCH) and senescing LP110 (variety PASADENA) were
regrown in a 10-replicate trial conducted in the same way as above. Grain
yield per plot and thousand grain weight from both the irrigated and drought-
stressed plants were obtained (at least 10 replicate plots per entry; Fig. 2C).

Production of Transgenic Material

Vector Construction

The barley Lea B19.3 promoter (740 bp) was amplified from barley genomic
DNA using Lea forward 5'-CCGTGTGCACATATACGAT-3' and reverse
5'-TGCACGCTGCCTGGGACC-3" primers and high-fidelity DNA Polymerase
(Roche). AINCED6 was amplified with high-fidelity DNA Polymerase (Roche)
from Arabidopsis genomic DNA (NCED genes lack introns) using gene-
specific primers of NCED6 (forward 5'-CCACCATGCAACACTCTCTTCGT-3'
and reverse 5'-GATCAGAAAACTTGTTCCTTCAAC-3'). The following PCR
conditions were used: one cycle at 94°C (2 min), 30 cycles at 94°C (15 s), 56°C
(30 s), and 72°C (2 min for NCED6, 1 min for Lea promoter), followed by
extension at 72°C (7 min). Both amplified products were cloned into pCR4-
TOPO vector (Invitrogen) and confirmed by sequencing. Using the TOPO
clones as templates, the promoter region was amplified with primers con-
taining PstI and EcoRI restriction sites at the 5" and 3’ end, respectively, and
further cloned into pNOS-ABM vector (DNA Cloning Service) containing the
Agrobacterium tumefaciens nos terminator downstream of the multiple cloning
site used. AtNCED6 coding region was amplified with gene-specific primers
containing HindllI sites from the TOPO vector and subsequently cloned into
Lea-pNOS1 (pNOS-ABM with Lea promoter). The complete expression cassette
was excised using Sfil restriction enzyme and cloned into the binary barley
transformation vector p6U (DNA Cloning Service). Correct orientation was
confirmed by sequencing.

For the repression of HYABA8'OH-1 under control of Lea B19.3 promoter,
an RNAI approach was undertaken. First, Lea promoter was amplified with
primers containing Spel restriction sites and ligated into pNOS-ABM to create
Lea-pNOS2. A 500-bp fragment of HVABA8'OH-1 was amplified from the
corresponding barley EST clone (HS06MO03_contig211107) using primers
HvABAS8'OH-1 forward 5'-TGCTCGAGTGGATGGTCAAGTTC-3" and re-
verse 5-TTCACTAGTAGGAAGACATAGAT-3" with Xhol/Spel restriction
sites for the sense and HvABAS'OH-1 forward 5'-TGGTCGACTGGATGGT-
CAAGTTC-3" and reverse 5-TTCGGATCCAGGAAGACATAGAT-3' with
Sall/BamHI restriction sites for the antisense fragment, respectively. The
chosen fragment is placed in a rather conserved region of HvABA8'OH-1, so it
is likely that all three ABA8'OH genes will be suppressed. Upon PCR ampli-
fication (one cycle at 94°C [2 min], 30 cycles at 94°C [15 s], 55°C [30 s], and
72°C [30 s], followed by extension at 72°C [7 min]), both amplified products
were subcloned into the pAxi vector derived from pNOS-ABM through in-
sertion of a 200-bp intron flanked by restriction sites. Correct clones were
verified by sequencing. The RNAi cassette was subsequently excised from
pAxi using Pstl/Sall and ligated into Lea-pNOS2 (see above). The complete
RNAi expression cassette was further excised using Sfil restriction enzyme and
cloned into p6U.

Transformation of Barley and Production
of Homozygous Lines

Stable transformed barley plants (cv Golden Promise) were obtained by
A. tumefaciens-mediated transformation following a protocol reported previ-
ously (Hensel et al., 2009). In brief, immature embryos were dissected from
caryopses harvested 12 to 16 d after flowering. Upon inoculation and cocul-
ture with A. tumefaciens strain AGL-1 harboring an appropriate binary vector
as specified above, the explants were grown on media supplemented with
hygromycin to provide selective conditions. Rooted regenerants tested posi-
tive for the presence of the hygromycin phosphotransferase (hpt) gene were then
established in soil and cultivated in a phytochamber providing 12-h daylength
at 14°C/12°C day/night, respectively. At booting stage, the plants were
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transferred to a glasshouse cabin (16-h-light period, 18°C/16°C day/night,
respectively) and grown until maturity.

For the pLea:NCED6 construct (NCED6 overexpression), single-copy ho-
mozygous plants were identified by conventional segregation analysis across
generations based on hpt-specific PCR and DNA gel blot. Two independent
homozygous lines (T, generation) harboring a single insertion of the transgene
were used for the experiments. For the plLea:ABA8'OH RNAIi construct,
doubled haploid plants were produced using embryogenic pollen cultures
generated from primary transgenic plants following the protocol previously
described by Coronado et al. (2005).

Growth Conditions of Transgenic and Breeding Material

For the experimental analyses, wild-type barley (cv Golden Promise) and
homozygous transgenic plants (pLea:NCED6 and pLea:ABA8'OH RNAi) were
cultivated in a growth chamber (phytochamber) with a 16-h-light/8-h-dark
cycle at 20°C/15°C, respectively. Spikes were labeled at anthesis, drought
stress was imposed, and these plants were maintained at 10% soil moisture
level by monitoring soil moisture using a moisture meter HH2 coupled with
soil moisture sensor SM200 probes (Delta T Devices). Another batch of plants
from a given experiment was continuously watered and treated as unstressed
control. Two replications were maintained by growing them independently,
and additional technical replications were maintained by the pool of samples
collected from average of five plants. The flag leaves as well as first leaves
were harvested from the wild type and transgenic lines at 2, 4, 8, and 12 DAS
from stress and control plants. Imposition of stress took place at 4 d after
flowering. These stages were chosen to cover short and long duration of stress.
Material obtained from this batch of plants was used for measuring hormones,
gene expression profiling, and various physiological experiments. As de-
scribed above, the contrasting breeding material (stay-green and senescing
plants) was cultivated, drought stress was imposed at 8 d after flowering, and
flag leaf samples were harvested at 4, 8, 12, and 16 DAS.

Physiological Traits

Infrared gas analysis was carried out on individual fully emerged flag leaves
of breeding material of stay green and senescing during 12 and 16 d after
flowering (corresponding to 4 and 8 DAS) and flag leaf of transgenic and wild-
type plant material during 4 DAS using a LCpro+ device (ADC Bioscientific).
A constant supply of 400 uL L™ CO, (flow rate, 200 umol s™') was provided by
a CO, cartridge and a photon flux density of 900 umol m™ s™ by a mixed red/
blue light-emitting diode light source mounted above the leaf chamber head.
The net assimilation rate, internal CO, concentration, stomatal conductance,
and transpiration rate were all recorded from five individual plants growing
in both well-watered and drought-stressed conditions, with four technical
replications per measurement. The measurements were only taken once the
internal CO, concentration had stabilized (2-3 min after insertion of the leaf
within the device). The instantaneous WUE was calculated from the ratio
between the assimilation rate and the transpiration rate.

Phytohormone Measurements

The content of ABA and certain of its degradation products and Glc esters
was measured along with that of cytokinin, gibberellins, and auxin hormone
analysis. These were assessed by HPLC electrospray ionization-tandem mass
spectrometry (carried out at the Plant Biotechnology Institute). The assays
were calibrated using deuterated internal standards, as described elsewhere
(Chiwocha et al., 2003; Kong et al., 2008).

qRT-PCR Analysis

RNA was isolated from breeding material as well from the wild type and
transgenic lines from two independent biological replications and two technical
replications (pooled from five plants) using the TRIzol reagent (Invitrogen) and
RNAeasy columns (Qiagen). The RNA was converted to ¢cDNA following
Seiler et al. (2011). Gene-specific primers (targeting 25 ABA signaling genes)
were designed using Primer Select software (DNAStar), and the relevant se-
quences are given in Supplemental Table S1. The reactions were performed in
384-well plates with an ABI PRISM 7900 HT Sequence Detection System
(Applied Biosystems) using SYBR Green to monitor double-stranded DNA
synthesis. For a more detailed protocol, see Seiler et al. (2011). The
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amplification profile consisted of a denaturation step (50°C for 2 min, 95°C for
10 min), followed by 45 cycles of 95°C for 15 s and 60°C for 60 s. Amplicon
dissociation curves were recorded after cycle 45 by heating from 60°C to 95°C
with a ramp speed of 1.9°C min™. Data were collected from cycles 3 to 15 to
generate a baseline-subtracted plot of the logarithmic increase in fluorescence
signal versus cycle number, using SDS2.2.1 software (Applied Biosystems). A
normalized reporter threshold of 0.2 was applied to obtain cycle threshold (Cy)
values. To allow comparisons between different PCRs or templates, C; values
for each gene were normalized to the C; value of the reference gene (elon-
gation factor 1a, EST clone HZ42K12). PCR efficiency was calculated from
the slope of the exponential phase of the amplification, following the sug-
gestions made by Ramakers et al. (2003). Transcription levels are presented in
the form 27T, where AC; represents the difference between the Cy values of
the target and the reference genes. Primer sequences can be found in
Supplemental Table S1.

In transgenic barley plants, the mRNA expression levels of the AtNCED6
gene and two HuNCED and three HvABAS8'OH endogenous genes were
monitored following gene specific primers: AINCED6 (forward 5-GACA-
AAGGTTATGTAATGGGG-3' and reverse 5'-CTTGTTCCTTCAACTGATTC-3");
HoNCED1 (forward 5'-CCAGCACTAATCGATTCC-3' and reverse 5'-GAGA-
GTGGTGATGAGTAA-3'); HuNCED2 (forward 5-CATGGAAAGAGGAA-
GTTG-3' and reverse 5'-GAAGCAAGTGTGAGCTAAC-3'); HvABA8' OH-1 (forward
5'-AGCACGGACCGTCAAAGTC-3' and reverse 5'-TGAGAATGCCTACGTAGIG3');
HvABA8'OH-2 (forward 5'-GAGATGCTGGTGCTCATC-3' and reverse 5'-ACGT-
CGTCGCTCGATCCAAC3'); and HvABAS8'OH-3 (forward 5'-CCGGCGG-
CAGCGTCTTCT-3' and reverse 5'-GTGTTGCCGTCCTGGGTGTCC-3').
qRT-PCR was performed as described above.

Y2H Assay

The full-length coding regions of barley PYR/PYL1, PYR/PYL2, PYR/
PYL5, PP2C4, and PKABA1/SnRK2.1 genes were initially cloned into pCR8/
GW/TOPO TA vector (Invitrogen) and further introduced into pDEST22
(GAL4 activation domain, AD) and pDEST32 (GAL4 DNA binding domain,
BD) vectors using GATEWAY technology following the manufacturer’s in-
structions (ProQuest Two-Hybrid System with Gateway Technology, Invi-
trogen). Clones containing the PP2C4 (AD), PP2C4 (BD), PYR/PYL1 (AD),
PYR/PYL1 (BD), PYR/PYL2 (AD), PYR/PYL2 (BD), PYR/PYL5 (AD), PYR/
PYL5 (BD), PKABA1/SnRK2.1 (AD), and PKABA1/SnRK2.1 (BD) fusions were
validated by sequence analysis and subsequently used in the Y2H assay.
Specific combinations of activation domain and binding domain plasmids
were cotransformed into the yeast (Saccharomyces cerevisiae) strain MaV203
(MATa; leu2-3,112; trp1-901; his3A200; ade2-101; gal4A; gal80A; SPAL10 pgcarq':
URA3; GALI:lacZ; HIS3 450.11:HIS3@LYS2; canl®; cyh2®), using a lithium
acetate/polyethylene glycol protocol described by Gietz and Woods (2006),
and the transformed cells were spread on synthetic complete (SC)-Leu-Trp
media plates. Autoactivation levels of yeast transformants harboring PP2C4
(BD), PYR/PYL1 (BD), PYR/PYL2 (BD), PYR/PYL5 (BD), and PKABA1/
SnRK2.1 (BD) were determined using synthetic dextrose medium lacking Leu
and His (-leu, -his), to which 0, 10, 25, 50, 75, or 100 mm of the His biosyn-
thesis inhibitor 3-amino-1,2,4-triazole (3-AT) was added (Durfee et al., 1993).
Interactions were determined by growth of double yeast colonies on to three
selective medium plates: SC-Leu-Trp, SC-Leu-Trp-His plus 50 mm 3-AT, and
SC-Leu-Trp-His plus 50 mm 3-AT and 100 um ABA (mixed stereoisomers,
Sigma). The empty vectors pDEST22, pDEST32, Krev1, RalGDS-wt, RalGDS-m1,
or RalGDS-m2 were cotransformed as positive and negative controls as men-
tioned in the manufacturer’s instructions. The selection plates were incubated at
30°C, and growth of the colonies was assessed after 3 d. The screening experi-
ment was performed in triplicate.

BiFC Analysis and Transient Gene Expression in
Arabidopsis Protoplasts

HuvPP2C4 was cloned into the pSPYNE vector, which contains the
N-terminal 155 amino acids of YFP, and HvPYR/PYL genes were cloned
into the pSPYCE vector, containing the C-terminal 86 amino acids of YFP.
To test for dimer formation, HUPYR/PYL genes were additionally cloned
into pSPYNE vector. To check interaction of PP2C4 with PKABA1/SnRK2.1
of the SnRK2 family, HyPKABA1/SnRK2.1 and HvPP2C4 were cloned into
pSPYCE and pSPYNE vectors, respectively. Combinations of BiFC con-
structs were cotransformed into Arabidopsis protoplasts and fluorescence
was detected.
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PYR/PYL1, PYR/PYL2, PYR/PYL5, PP2C4, and PKABA1/SnRK2.1 in
pCR8/GW/TOPO TA vector (previous section) were subsequently recom-
bined via an LR recombination into the binary plant transformation vectors
pSPYNE and pSPYCE (Walter et al., 2004), resulting in fusion with the N- or
C-terminal portion of the YFP sequence, respectively. Arabidopsis protoplast
isolation and transient expression assays were performed as described in Yoo
et al. (2007. Plants were grown in soil under short-day conditions (8-h light/
16-h dark at 20°C and 18°C, respectively) for 4 weeks. Freshly isolated leaf
mesophyll protoplasts (0.5 mL) were cotransfected with various pairs of
plasmid DNA (pSPYNE/pSPYCE) and pUGW15-CFP, which was used as
transformation control (Nakagawa et al., 2007). The total amount of DNA was
50 pg in 1:1:1 ratio. YFP fluorescence was evaluated 1 d after transfection
(incubation in dark) using the LSM 710 Laser Scanning System (Zeiss). To
investigate a possible ABA response, 5 um ABA (mixed stereoisomers, Sigma)
was applied after transfection and then additionally incubated for 1 h at room
temperature. For stress treatment, protoplasts were centrifuged at 200g for
1 min and suspended in media (Yoo et al., 2007) containing 10% (w/v)
polyethylene glycol or 800 mm mannitol, respectively, followed by 1 h incu-
bation at room temperature.

Molecular Modeling of Barley PYR/PYLs

The three-dimensional models of the complete amino acid sequence of
barley HvPYR/PYL1, HvPYR/PYL2, and HvPYR/PYL5 were created by
the I-TASSER server (Roy et al., 2010). From the proposed models, we
selected the one with best scores, downloaded structural overlays with
Arabidopsis analogs, predicted ligand-binding sites from the I-TASSER
server, and further processed it by using the PyMOL Software (The
PyMOL Molecular Graphics System, Version 1.3, Schrédinger). The com-
plete results including coordinates of the models along with Z-score sig-
nificance could be searched at I-Tasser database (http://zhanglab.ccmb.
med.umich.edu/I-TASSER /search.html) with the following identifica-
tions for HvPYR/PYL1 (S91589), HvPYR/PYL2 (591695), and HvPYR/
PYL5 (S91499).

Statistical Analysis

Values derived from several biological replicates were used to calculate
standard deviations, and statistical significance was assessed using the Stu-
dent’s t test and one-way ANOVA across genotypes for a given treatment at
a = 0.05 or 0.01 with Tukey’s posthoc test using the SPSS software package
(IBM). In addition, two-way ANOVA was also performed to identify the
signified difference between accessions (stay-green versus senescing line; wild
type versus transgenic lines) and condition (control versus drought stress)
with P values of the f-test. Letters a, b, and c and X, y, and z represent sta-
tistical differences across genotypes under control and stress conditions, re-
spectively. Bars with similar or no letters indicate no statistical difference
among genotypes under a given treatment.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Amino acid sequence alignment of the Arabi-
dopsis PYR1/RCART11 protein with putative barley PYR/PYL ortholo-
gous proteins, barley and Arabidopsis PP2Cs, and the Arabidopsis
SnRK2.2, SnRK2.3, and SnRK2.6 proteins with barley SnRK2 ortholo-
gous proteins.

Supplemental Figure S2. Field screening of different barley lines.

Supplemental Figure S3. Differential expression of putative ABA biosyn-
thesis, degradation, and deconjugation genes in two barley contrasting
genotypes under terminal drought stress analyzed by qRT-PCR.

Supplemental Figure S4. ABA, ABA metabolites, and differential expres-
sion of putative ABA signaling genes in two barley contrasting geno-
types under terminal drought stress.

Supplemental Figure S5. Relative expression levels of barley endogenous
genes HUNCED1, HUNCED2, and ABA8'OH1-3.

Supplemental Figure Sé6. Differential expression of putative ABA signaling
genes in barley wild type and transgenic plants under terminal drought
stress analyzed by qRT-PCR.
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Supplemental Figure S7. Interaction of ABA receptor components using
different stress treatments analyzed by BiFC.

Supplemental Table S1. List of genes putatively involved in ABA
signaling /biosynthesis and primer sequences used for qRT-PCR.

Supplemental Table S2. Levels of ABA, ABA metabolites, and other hor-
mones in flag leaf and seeds under control and stress conditions at
8 DAS.

Supplemental Table S3. Statistically significant differences in expression
of ABA biosynthesis and signaling genes between contrasting breeding
lines.

Supplemental Table S4. Statistically significant differences in expression
of ABA biosynthesis and signaling genes between genotypes, ABA me-
tabolites, and physiological traits of transgenics.
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Supplemental Figure S1A. Amino acid sequence alignment of the Arabidopsis PYR1/RCAR11
protein with putative barley PYR/PYL orthologous proteins. The alignment was performed with the
Clustalw?2 program at the EBI web server (http://www.ebi.ac.uk/Tools/msa/clustalw2/ using the
default settings. “Gate” and “latch” regions are shaded in yellow. Residues in contact with ABA
hormone are indicated in red and bold, according to the PYL2 crystal structure of Melcher et al.
(2009). * indicates fully conserved residues; : (colon) indicates conservation between groups of
strongly similar properties, . (period) indicates conservation between groups of weakly similar
properties.




AtABI2

AtABI1

HvPP2C1
HvPP2C2
HvPP2C3
HvPP2C4
HvPP2C5
HvPP2C6

AtABI2

AtABI1

HvPP2C1
HvPP2C2
HvPP2C3
HvPP2C4
HvPP2C5
HvPP2C6

ATABI2

AtABI1

HvPP2C1
HvPP2C2
HvPP2C3
HvPP2C4
HvPP2C5
HvPP2C6

AtABI2

AtABI1

HvPP2C1
HvPP2C2
HvPP2C3
HvPP2C4
HvPP2C5
HvPP2C6

AtABI2

AtABI1

HvPP2C1
HvPP2C2
HvPP2C3
HvPP2C4
HvPP2C5
HvPP2C6

AtABI2

AtABI1

HvPP2C1
HvPP2C2
HvPP2C3
HvPP2C4
HvPP2C5
HvPP2C6

AtABI2

AtABI1

HvPP2C1
HvPP2C2
HvPP2C3
HvPP2C4
HvPP2C5
HvPP2C6

------------ MDEVSPAVAVPFRPFTDPHAGLR-—----——====——=—-GYCN--——
------------ MEEVSPAIAGPFRPFSETQMDFTG---—-—--—---- IRLGKGYCNNQYS
---------------------------- Y =
-------------------------- MAAAAAL C—— - —— oo
---------------- MDALGAALPRLALADADP -~~~ === —m oo

------ GESRVTLPE-SSCSGDGAMKDSS-----FEINTRQDSLTSSSSA-MAGVDISAG
NQDSENGDLMVSLPETSSCSVSGSHGSESRKVL ISRINSPNLNMKESAAAD IVVVDISAG
_________ AGDGAAARG-GCSAECA----—--—————————————-GGIERPPDLG-SRA
_________ GEDEPAPRDPAAAAECAAAG-------——--———--—-GGVER-LDLGDGRA
--------- GPDDACGSPCSVASDCSSVASADFEGL ---FSPSGADAGPPSLLSDDLPAA
DGLPTGGEGGEASAAGSPCSVTSDCSSVASADFEGVGLGFFAAGVEGGAVVFEDSAASAA
________ RLEVRRLGRTASAAAEDEGAKR-----=—-———-—---VRPAPDSSSDSSDS
_________ RPVSFKTKRIVVWNPLKHRRFR-----————————-VGGTRTMVEASSSAQ

vee :v 1
DEINGSDEFDPRSMNQSEKKVLSRTESRSLFEFKCVPLYGVTSI1(GRRPEMEDSVST IPR
DEINGSD------- I TSEKKMISRTESRSLFEFKSVPLYGFTS IGGRRPEMEDAVSTIPR
GDGCG-———————— KRSVYLMECVPLWGCAAARGRAAEMEDACAAVPR
ALVAGG---——-———— - —————— KRSVYLMECEPVWGCVATRGRGGEMEDACAAVPR
AAEAAT —————— VPCRSVFALDSPPLWGLQSVGGRRPEMEDAAAVVPR
TVEAEAR--————————————— VAAGGRSVFAVECVPLWGFTS I(GRRPEMEDAVVAVPR
AKVAPEP--——————— o ——— PLAAPRCSACVSHGAVSV §GRRREMEDAVAVAAP
AVRGAREVG-—--——————————— EATTAAAVMGPPKEDGKGHRGGGWKSEDGSLHCGYS

- * * - -

Q
Se—mmmm SSGSMLDGR------ FDPQSAAHFFGVYDGHGGSQV.
LPARMLASS-RELDG IGGDFDAAELRLPAHLFGVYDGHGGSEV.
VPVRLLARR-QDLDGLG--LDADALRLP$HLFAVFDGHGGSEV!
VPLWMVAGNGAAVDGLD----RASFRLPAHFFAVYDGHGGAEYV,
LPLWMLTGN-NMVDGLD----P1SFRLP$HFFGVYDGHGGAQV.
DT——————- AAVEGSG---DVEHGAGERGFFAVYDGHGGSRV

GRR-—==—-- ASMEDFYDMRSSKMDAKK INLFGVFDGHGGSC
. :*-*:*****:
3
EIVKEKP-——————- EFCDGDTWQEKWKKALFNSFMRVDSEIETVAH-———————————-
EIAKEKP--—-———- MLCDGDTWLEKWKKALFNSFLRVDSEIESVA--———=————————

VLRDGRGLEE- - --LGEVGEVDVKESWEKVFGDCFQKVDDEVSGKA IRFSNGVT-——-——
ELR--RPPKD----LGEMSDVDMKEHWDDL FTKCFQTVDDEVSGLASRLVDG - -~ - - -
ELRAAEG-—————- RDDLSSLDSRKQWEKAFVDCFCRVDAEVE —————————————————
ELSRIEGSVS----GANLGAVEFKKQWEKAFVDCFSRVDDEVAGKVSRGGGGNVGTSSVT
EVRLRRPRPEGGGQGRAVDNEADGARWKEAMTACFARVDGEVGYDDG-————————————
HSAF I TPT == ——— e KTAISESYTRTDTDFLDAETN-———————————

- * -

4 5 5a
———————— VGSTSVVAVYFPTHIFVANCGDSRAVLCREKTPLALSVDHKPDRDDERA
————————— VGSTSVVAVFPSHIFVANCGDSRAVLCRGKTALALSVDHKPDREDEA
-ELRPEP IAADNVGSTAVVAIMCSSHVITANCGDSRVVLCRGKEP 1 ALSVDHKPDRKDER
R
Y
Y

-EPRLEPI1AAENVGSTAVAVVVCSSHVVVANCGDSR I VLSREKEPVALS I DQKPDRKDE
———————— AGSTAVAAVMCSSHI 1VINCGDSRAVLCRGKAPLALSLDHKALG---|
GTAMADPVAPETVGSTAVVAV JCSSHI 1VINCGDSRAVLCRGKQPVAHLSVDHKPNREDE
————— VGSTAVVAVMGPRR1VVADCGDSRAVLSRGGVPVHLSSDHKPDRPDE;]
———————— DGSTASTAIL IDNHLYVANVGDSRAV I SKAGKA IALSDDHKPDRSDER

*kk - - - - 4- xxxAx x- - *h K-k

5be eevee o eeeeeb ° 7 8

GARVFGVLAMSRSIGDRYLK 1PDPEVISVRRVKHEDDCL I LASD|
GARVFGVLAMSRS IGDRYLKHAYI 1PDPEVTAVKRVKHEDDCL I LASD
GYRVSGILAMSRS1GDRYLKAHL I PKPEVYVVPRAKWDDDCL ILASD
GHRVSG I LAMSRS IGDRYLKAYI 1PKPEVTVVPRAKDDDCL I LASD

< T

GYRVFGVLAMSRS IGDRYLKHWI IPVPEVT 1VPRAYDDECL 1LASD

GYRILGVLATSRSIGDYYLKHYVIAEPEVTVMDRTOKDEFLILASD

TWRVGGVLAMSRAFGDRLLKRAVVAEPEIQEQEIDOELEYLILASD
*

OO T >t >

134
150
74

81

108
165
108
112

186
198
133
138
164
220
157
165

225
236
183
184
200
276
204
194

277
287
242
243
249
336
259
246

337
347
302
303
259
396
319
306



8 9 10

ATABI2 GLWDVMTNEEVCDLARKR I LLWHKKNAMAGEA-LLPAEKRGEGKDH 396

AtABI1 GVWDVMTDEEACEMARKR I LLWHKKNAVAGDASLLADERRKEGKDHAAMSAAEYLSKLAJl 407

HvPP2C1 GLWDVMSNEDACKVARRQ I LLWYKNNNDGANS----DGGSEPTMNHAAKAAADCLVRLAL 358

HvPP2C2 GLWDWVSNEEACKVARRQ IQQWHKNNSVTTSS----SDGGDGSTDHAAQAAADYLVRLAL 359

HvPP2C3 |-———- -4

HvPP2C4 GLWDWVL.SNEEVCDVARKR I LLWHKKNGVNLSS----AQRSGDSPDHAAQAAAECLSKLAL. 452

HvPP2C5 GLWDWWSNDVACKIARNCLSGRAASKYPESVS———————————- GYTAADAAALLVELAM 367

HvPP2C6 GLWDWSNEHAVAFVKG-——————— === —— EV{CPEAAARKLTEI 339
11

AtABI2 QHGSKDNISVVVVDLKG IRKFKSKSLN---- 423

AtABI1 QRGSKDNISVVVVDLKPRRKLKSKPLN---- 434

HvPP2C1 MHGSGDNISVIVIDLKSRKKPKGKS ——---- 383

HvPP2C2 KHGSQDNITVIVVDLKPRRKISKNNS - ——--— 384

HvPP2C3 o it

HvPP2C4 QHGSKDNITVIVVDLKAQRKFKSKT-—---- 477

HvPP2C5 ARGSKDN ISVVVVELRRLKSRAAAVIKDNRS 398

HvPP2C6 AHGSTDNITCIVIEFHRANMVNK - ===———- 362

Supplemental Figure S1B. Amino acid sequence alignment of barley and Arabidopsis type-2C
protein phosphatases. The Arabidopsis ABI1, ABI2 and the six members from barley were aligned
with ClustalW2 program at the EBI web server (http://www.ebi.ac.uk/Tools/msa/clustalw?2/ using the
default settings. The eleven conserved motifs found in the PP2C family are boxed and numbers are
indicated above each region. Conserved amino acids are shaded in yellow. * indicates fully conserved
residues; : (colon) indicates conservation between groups of strongly similar properties, . (period)
indicates conservation between groups of weakly similar properties. The conserved W residue
involved in ABA binding is marked with a red triangle; residues involved in binding to PYR/RCARs
are marked with blue circles. Phosphatase sites are indicated by green triangles. Functional residues
are based on studies by Melcher et al., (2009) and Santiago et al., (2012).
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KPTVGTPAYIAPEVLSRK_YDGKVADVWSCGVTLYVMLIGSYPFEDPEDPRNFRKTISRI
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LSVQYSIPDNVDISPECRHLISRIFVGDPALRITIPEIRSHNWFLKNLPADLMDDDSMSS
LSVQYSIPDYVHISSECRDL IAKIFVGNPATRITIPEIRNHPWFLKNLPADLVDDSTMSS
LGVQYSIPDY IHIPMDCRNLLSRIFVANPATRITIPEIKNHPWFLKNLPADLMDGPTVSN
LNVQYAIPDYVHISPECRHL ISRIFVADPAKRISIPEIRNHEWFLKNLPADLMNDNTMTT
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HVSNRK2.2 MSTQYKIPEYVHVSQDCKQLLASIFVANPAKRITMRE IRNHPWFLKNLPRELTEAAQAMY 276
HvSnRK2.7 LGVQYSIPDYVRVSSDCRRLLSQIFTADPSKRITIAEIKKLPWYLKSLPKEIAERDRANF 277
- * -*- - -, *-- ** * **-- ** *** KKk - - -
SnRK2-specific box / domain |
HVPKABAL/SNRK2.1 QLA-————— oo mmmm e DMNTP$QSLEEAMAT IQEAQKP{EDN 304
HVSNRK2.8 2 GVNAPRQSLEEIMAI 1QEARIPEDG 304
AtSNnRK2.2 QFQ-m——m e e EPEQPNQSLDTIMQIISEATIPVR 323
AtSNRK2.3 0] = EPEQPNQSLDTIMQIISEATIPRAVR 322
HvSNRK2 . 4 QYE=m=—m e e EPEQPNQTMDQIMQILTEATIPPAC 328
HVSNRK2 .5 QYE——mmmm o EPEQPNIQSMDE IMQ ILAEAT IPRAG 323
HvSNRK2.6 QYE————— e EPDQPNQNMNE IMQIMAEAT IPPAS 318
AtSnRK2.6 QF D mm o e ESDQPGQSIEEIMQIIAEATVPPAG 321
HvSNRK2.3 YRR--———————- DN=—— e AVPSFSEQTSEE IMKIVQEARTMPKS 307
HvSnRK2.9 YNRRHVDVVAPSSNNGTGAGAGASSNGAAAAVTAPAPAYSAQSVEE IMKIVQEAQTVPKP 336
HVSNRK2.2 YKR-————————— DN--—— SAPTYSYQSVEE IMKIVEEAQKPPPS 307
HvSnRK2.7 KEP-—-——————- EK--— - —— ATETAAS QPVEEIMRIIQEAKAP:DM 310
- * *- **x

HVPKABA1/SNRK2.1 ALGLAGQVACH{-LGSMBLB-BIBFBVBDIBIENSEDFYCPRl---------———-——- 342
HvSNRK2.8 SK-FAGQLSVHGLGSMELD-PIB-BVE-APVEDSEDFMCAll- - - - —————————— 341
AtSNRK2.2 NRCLDDFMADNEDEBBBND -DFEDSESE - IDVDSSCEINVYAL - - - ———————- 362
AtSnRK2.3 NRCLDDFMTDNEDEDDBME - DFDSESE- IDIDSSCENVYALR - - - - ———————————— 361
HvSNRK2.4 SR-INHILTDGFBDMBDDME - DEESDSD - EDIDSSCEINYAM - - - - ——————————— 366
HVSNRK2.5 SR-INQFLNDJEDEDPDMD -DEDSDAD - EDVESSCEINNAM|- - - - - ——-——————- 361
HvVSNRK2 .6 ALG INKFLPDJEDEDDDMD - DEDSDED - IDMDSSCENVYAM- —— - ———————————— 357
AtSnRK2.6 TONLNHYLTGYEDIDDEMEEREESPERDEDIDSSCENVYAM- - - ————————————— 362
HvSNRK2.3 SRPS--YGWG KEGEDRPEEREEE-EDEYDKRVKEVHASGELRMSSLRIS 362
HvSNRK2.9 DKPVTGYGWG DBGNQEGEEEEEYGEDEYDRTVREVHASGDFGMSKLQI- 393
HvSNRK2.2 TTPVAGFGWA DGKKPEEEAEEDBEEDEYEKQLNEVRASGEFHIS—--—- 357
HvSnRK2.7  SKSS----—--4-———————ABAALLAELAELQSDDDDEPGVEGETY--—————————— 341

ABA-specific box / domain Il

Supplemental Figure S1C. Amino acid sequence alignment of the Arabidopsis SnRK2.2, 2.3 and 2.6
proteins with barley SnRK2 orthologous proteins. The alignment was performed with the ClustalW2
program at the EBI web server (http://www.ebi.ac.uk/Tools/msa/clustalw2/ using the default settings. ATP
binding domain, activation loop and C-terminal conserved regions are boxed with conserved amino acids
shaded yellow. Conserved residues belonging to the Asp-rich domain of one group of kinases are shaded
magenta. * indicates fully conserved residues; : (colon) indicates conservation between groups of strongly
similar properties, . (period) indicates conservation between groups of weakly similar properties. Functional
domains are noted according to Yoshida et al. (2006).
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Supplemental Figure S2. Yield data obtained from field screening with 16
selected barley lines. From the breeding panel, stay-green (LP103) and senescing
genotype (LP110) are selected, which are indicated by coloured boxes. Bars
represent mean values from 10 replicate plots per genotype.
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Supplemental Figure S3. Differential expression
of putative ABA biosynthesis, degradation and
deconjugation genes in two barley contrasting
genotypes under terminal drought stress analyzed
by qRT-PCR in flag leaves at 8 and 12 days after
stress (DAS). The graphs show mean values from
two replicates of qRT-PCR-experiments from
biological independent material (n=2) with an
additional two technical replications. Relative
mRNA levels to reference gene HZ42K12 are
shown by colour-coded bars (mean + SD).
Statistical ~ significant  differences = among
genotypes and a given treatment have been
calculated using one-way ANOVA at a = 0.05
with Tukey post-hoc test. Letters a, b and x, y
represent statistical differences under control and
stress conditions, respectively. The significance of
differences between control and stress was
determined using two-way ANNOVA with * p <
0.05 and ** p < 0.001. Details are given in
Supplemental Table S4.
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Supplemental Figure S4. ABA, ABA metabolites and differential expression of putative ABA signaling genes
in two barley contrasting genotypes under terminal drought stress. A: Levels of ABA and ABA metabolites in
flag leaves and seeds at 8 days after stress (DAS) under control and stress conditions. ABA, Cis-abscisic acid;
PA, phaseic acid; DPA, dihydrophaseic acid; ABA-GE, ABA glucose ester; neo-PA, neo-phaseic acid; 7°OH-
ABA, 7'-Hydroxy-ABA; t-ABA, trans-ABA.; DW, dry weight. B: Differentially expressed genes in flag leaves
at 8 and 12 DAS. The graphs show mean values from two replicates of QRT-PCR-experiments from biological
independent material (n=2) with an additional two technical replications. Relative mRNA levels to reference
gene HZ42K 12 are shown by white and grey bars (mean = SD). Days after stress imposition (DAS) are shown
on the X-axis.

Statistical analysis was carried out across genotypes for a given treatment using one-way ANOVA at a = 0.05
with Tukey post-hoc test Letters a, b, ¢ and X, y, z represent statistical differences under control and stress
conditions, respectively. Bars with similar or no letters indicate no statistical difference among genotypes under
a given treatment. The significance of differences between control and stress was determined using two-way
ANNOVA with * p <0.05 and ** p <0.001. Details are given in Supplemental Table S4.
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Supplementary Figure S5. Relative expression
levels of barley endogenous genes HvVNCEDL,
HVNCED2 and ABA8’OH1-3 in wild type (WT)
and transgenic lines under control and drought
stress conditions in leaf tissue analyzed by gRT-
PCR. The graphs show mean values from two
replicates of gRT-PCR-experiments from biological
independent material (n=2) with an additional two
technical replications. LN: LeaNCEDG6; LOHi:
LeaABA8’OH RNAI; C = control, S = stress; DAS
= days after stress. Statistical analysis has been
done using two-way ANOVA and is presented in
Supplemental Table S4.



HvPP2C1 HvPP2C2
4 - 10 4
3 81 *k
*% 6 1
2 . "
. 4 4 * *
*% *
1 *k 2
0 A 0 A
2 4 12 2 4 12 2 4 12DAS 2 4 12 2 4 12 2 4 12DAS
wT LOHi236 LN39 wT LOHi236 LN39
HvPP2C5 HvPP2C6
0,5 - 0,25 -
04 02 -
*% *%
03 - « . 015 -
0,2 1 ke * 0,1 A
0,1 | 0,05
0 A 0
2 4 12 2 4 12 2 4 12DAS 2 4 12 2 4 12 2 4 12 DAS
wWT LOHi236 LN39 wT LOHi236 LN39
HvSnRK2.3 HvSnRK?2.4
1 A 1,2 -
*
038 7 . 09 -
06 1 .
" 0,6 -
0,4
02 | 0,3 -
0 0 A
2 4 12 2 4 12 2 4 12DAS 2 4 12 2 4 12 2 4 12DAS
WT LOHi236 LN39 wT LOHi236 LN39
HvSnRK2.7
HVSNRK2.5 S
0,15 - 0.16 1 .
0,12 . il 012 4 I .
0,09 I
' 0,08 |
0,06
0,04 *
0,03 .
0 - 0 -
2 4 12 2 4 12 2 4 12DAS 2 4 12 2 4 12 2 4 12 DAS
WT LOHi236 LN39 wWT LOHi236 LN39

Supplemental Figure S6. Differential expression of putative ABA signaling genes in barley wild type (WT)
and transgenic plants under terminal drought stress analyzed by qRT-PCR. Differentially expressed genes in flag
leaves which experienced different duration of stress (2, 4 and 12 days after stress imposition, DAS). LOHi236:
. The graphs show mean values from two replicates
of qRT-PCR-experiments from biological independent material (n=2) with an additional two technical
replications. Relative mRNA levels to reference gene HZ42K 12 are shown by white and grey bars (mean + SD).
The significance of differences was determined using two-way ANNOVA with * p < 0.05 and ** p < 0.001.
Statistical significant differences across genotypes was calculated using one-way ANOVA. Further details are

RNAI line LeaABA8’OH, LN39: LeaNCEDG6 overexpression

given in Supplemental Table S4.
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Supplemental Table S1: List of genes putatively involved in ABA signalling/biosynthesis and primer sequences used for gRT-PCR.

Receptor/

L Gene Forward primer Reverse primer
Transcription factor/Enzyme
PYR/PYL HVPYR/PYL1 AGGCGATCACCGGCTAAGGAAC GGCCGCCCATCAATACTCTGTG
HVPYR/PYL2 AGGCCATGGGACGAGCACACTA AACCGGCGCACGTACTCCATCT
HVPYR/PYL3 GTTTCTTCGGCGCGTGAGCAT TTGGACAAGCAGGGAGGAGAGG
HVPYR/PYL4 CCCCCTCCGGTCAACTCTCG CCACCACCACCACCACGGATTT
HVPYR/PYL5 CCGCCGGCAGAATAACGAC CCCTCCCGAGAAAAAGCAAAGA
HVPYR/PYL6 GAGGGCAACACCGAGGAGGACA CGATGGCGGCGAGTTTCTGG
HvVPYR/PYL7 CCGCAGGCGTACAAGCACT CCGACACGACCCGCACCTC
HvVPYR/PYLS8 CGTTCTTGTGCGTGTGGTGATG CGCCCCGGGAAGGTGTGG
Snfl related protein kinases HvPKABA1/SnRK2.1 GCAGAAACCGGGCGATAACG GCTCCCCAGGCAGGCAACC
HvSnRK2.2 ACAACAGCGCCCCAACCTACTC CTCCGCCCACCCGAAACC
HvSnRK2.3 GGGATAACGCCGTGCCTTCTT GTCGTCGCCCCAACCATAGC
HvSnRK2.4 TTGTTGGGGATCCTGCTTTGAG GATCGGCGGGGAGGTTCTTTA
HvSnRK2.5 ATCCCGGCGGCTGGTTCTC CAAGGTCGTCCATGTCGTCGTC
HvSnRK2.6 CTTGCAGCCAGCTACGGTGAG CTGAGAGCGGAACGGGTGAAAC
HvSnRK2.7 GCTGCGTGCCTGCTTCGTA CGCTTCGTGGCCTTATTGTTG
HvSnRK2.8 GCGCCCCGGCTCAAGATA AAGGACCTCGGGGGCAATGTAG
HvSnRK2.9 GAGGGGGAGGAGGAGGAGGAGT CGGCGCCATGTGGTGAGAAG
Protein phosphatases 2C HvPP2C1 TCGCCAGCAGCCGTGAGC CCGCCGTGCCCATCGTAGA
HvPP2C2 GCACGTCGGCAAATCCAGCAGT TTTCCTCCGGGGTTTCAAGTCG
HvPP2C3 GGGCGGCAAGGTCATCCAGT GGGCAACCACCGTCACCTCAG
HvPP2C4 TGGCCTCTGGGATGTATTGTCG GAGCCGCTGGATCTGGGGAGTC
HvPP2C5 ACGCGGCAGCAAGGACAACATC ATCCCCATCCAGCCAGCCACTC
HvPP2C6 GATCGTTTGTTGAAGCGGTTTG CACGTCCCACAGGCCATCACTA
ABI5 HvABI5 CCGGTCCCTGTTGCCCCTAAAG CGCCGCCCATACCGAGTG
9-cis-epoxycarotenoid dioxygenase HvVNCED1 CCAGCACTAATCGATTCC GAGAGTGGTGATGAGTAA
HvVNCED2 (Millar et al., 2006) (Millar et al., 2006)
CATGGAAAGAGGAAGTTG GAAGCAAGTGTGAGCTAAC
(Millar et al., 2006) (Millar et al., 2006)
ABA-hydroxylase HvVABAS8'OH1 AGCACGGACCGTCAAAGTC TGAGAATGCCTACGTAGTG
(Millar et al., 2006) (Millar et al., 2006)
HvABA8'OH2 GAGATGCTGGTGCTCATC ACGTCGTCGCTCGATCCAAC
(Millar et al., 2006) (Millar et al., 2006)
HvVABA8'OH3 CCGGCGGCAGCGTCTTCT GTGTTGCCGTCCTGGGTGTCC




Beta-glucosidase

Zeaxanthin epoxidase

Short-chain dehydrogenase
Aldehyde oxidase

Reference gene

HvBG2
HvBG4
HvBG8

HvZEP1
HvVZEP2

HvSDR3

HvAO5b

HZ42K12

GCCGGTGGGAACTCAGCAACAG
CCCGCCGGAGTTCGTCTTC
CCCCGGCCAGGCGTATTCC

GCGAGAGGCGGGGGAGAAGT
CTTCCTGGCTCGTCGGTTCGTC

GCCGCAGCGTCCCCTCTC

TTGGCGTTGTGATTGCTGAGAC

TTACCCTCCTCTTGGTCGTTTTG

GTCGGCAGGTGAGTCGGTAGCA
TCCTCAGCCACAGCACCCTCAT
TCCCAGGCTTATTCGTCATCCA

TGGTGACAAGGGGTGGCTGAAG
GCTGGGAGTGGAGGGCGTGTAA

ACAACAAGCGCCCAGTCAGTGC

AAAACGGGGGAGGATGGAAGTA

TCTTCTTGATGGCAGCCTTGG



Supplemental Table S2. Levels of ABA, ABA metabolites and other hormones in flag leaf and seeds under control and stress conditions at 8 days after stress impositon
(DAS).

Hormone levels are given in ng g dry weight including standard deviation (SD). ' Only one of the two biological replicates gave a detectable value, thus no SD was
calculated. n. d. not detected. Asterisks in brackets indicate statistical significant differences (Student’s t-test) between control and stress with * p < 0.05. Two-way
ANNOVA statistics is presented in Supplemental Table S3.

Substance Short gt)agtr%neen Stress Flag leaf girrzfrsoclmg Stress

name Flag leaf

Flag leaf Flag leaf

cis-Abscisic acid ABA 115+0.1 870 + 335.4 110+ 21.6 1054 + 613.8
Abscisic acid glucose ester ABA-GE 402 292 £11.6 189" 858 +171.1 (*)
Phaseic acid PA 1506 + 131.5 3812 + 227.7 (*) 911 +452.4 6212 + 2240.1
Dihydrophaseic acid DPA 310+52.5 689 + 205.7 1924 £+ 1105.8 5198 + 724
7'-Hydroxy-abscisic acid 7-OH-ABA 39" 55.5+5.5 n. d. 56 + 26
neo-Phaseic acid neo-PA 15" 44 + 30 21* 425+45
trans-Abscisic acid trans-ABA 110 52+8 67" 30.5+35
cis-Zeatin-O-glucoside c-Z0G 267.5+10.5 274 + 34 3545+95 388+ 17
trans-Zeatin t-Z n. d. n. d. n. d. n. d.
trans-Zeatin riboside t-ZR 75+05 5+0 6+2 8+2
Indole-3-acetic acid IAA 21+6 31.5+95 19' 29+5
N-(Indole-3-yl-acetyl)-
aspartic acid IAA-Asp n. d. n. d. n. d. n. d.
Gibberellin 4 GA4 n. d. n. d. n. d. n. d.

Gibberellin 34 GA34 n.d. n.d. n. d. n.d.




Supplemental table S3. Statistical significant differences in expression of ABA biosynthesis and signalling genes

between genotypes, ABA metabolites and physiological traits

Two-way ANOVA performed to identify the signified difference between accessions (stay-green versus senescing
lines) and condition (control versus drought stress) with P values of the f-test. at a =0.05 yellow colour and 0.001
with pink colour.

Pr(>F) Pr(>F)
accession: condition accession condition acces§|_on:
accession  condition  (a:c) condition
PA 0,48 0,03 0,26 ABAOH1 0,11 0,29 0,16
AO5b 0,03 0,79 0,28
Pr(>F) BG2 0,14 0,02 0,19
accession condition accession:condition BG4 0,00 0,01 0,01
DPA 0,01 0,05 0,10 BG8 0,01 0,00 0,01
MCSU2 0,08 0,00 0,07
Pr(>F) NCED2 0,00 0,00 0,00
accession  condition  accession:condition SDR3 0,84 0,95 0,10
ABA.GE 0,20 0,16 0,12 ZEP1 0,00 0,00 0,04
ZEP2 0,91 0,00 0,99
Pr(>F) PYL3 0,00 0,01 0,01
accession  condition  accession:condition PYL4 0,03 0,06 0,01
ABA 0,89 0,10 0,44 PYL5 0,08 0,12 0,02
PYL6 0,08 0,00 0,99
4DAS PYL7 0,04 0,57 0,46
accession  condition accession:condition PYLS 0,06 0,00 0,01
A 0,00 0,00 0,00 PP2C2 0,71 0,00 0,08
E 0,00 0,00 0,00 PP2C4 0,49 0,03 0,53
gs 0,00 0,00 0,01 PP2C5 0,00 0,00 0,00
WUE 0,00 0,00 0,00 PP2C6 0,28 0,23 0,32
SnRK2.1 0,00 0,00 0,00
8DAS SnRK2.2 0,03 0,09 0,38
accession condition accession:condition SnRK2.3 0,28 0,00 0,13
A 0,18 0,00 0,00 SnRK2.4 0,52 0,76 0,82
E 0,00 0,00 0,00 SnRK2.5 0,27 0,01 0,12
gs 0,19 0,00 0,26 SnRK2.6 0,11 0,01 0,57
WUE 0,07 0,00 0,00 SnRK2.7 0,38 0,02 0,89
SnRK2.8 0,00 0,02 0,00
Pr(>F) SnRK2.9 0,03 0,01 0,16
accession condition accession:condition ABI5C 0,77 0,31 0,42
Transpira
tion 0,00 0,00 0,00
Pr(>F)
accession condition accession:condition
stom.con
duct 0,19 0,00 0,26
Pr(>F)
accession condition accession:condition
Assimilati
on 0,18 0,00 0,00
Pr(>F)
accession condition accession:condition
WUE 0,07} 0,00| 0,00




Supplemental table S4. Statistical significant differences in expression of ABA biosynthesis and signalling genes between genotypes, ABA metabolites and physiological traits.
Two-way ANOVA performed to identify the signified difference between accessions (WT versus transgenic lines) and condition (control versus drought stress) with P values of
the f-test. at a =0.05 yellow colour and 0.001 with pink colour.

0.5DAS 2DAS 4DAS
accession: accession: accession:
accession condition condition accession condition condition accession condition condition
ABA 1,97092E—18| 3,26386E—22| 1,0542E-21 HvNCED1 | 0,000545313 9,16009E-08 0,00046473 HvVNCED1 | 0,002149847 3,15072E-07 0,01171593
HvNCED2 | 0,01247954 0,000186649 0,01426485 HvNCED2 | 0,04358301  0,1547288 0,053761
2DAS | HvOH1 0,4755137 0,6821573  0,05433579 HvOH1 0,08744942  0,8410828  0,1129395
accession condition accession:condit{HYOH2 0,5031865 6,53919E-06 0,2353506 HvOH2 0,1679798 0,000541223 0,9771922
ABA 5,35331E-10| 1,2785E-14| 4,4577E-09 HvOH3 0,170472 0,03274808 0,1781575 HvOH3 0,01739717 0,5997266 0,03585336
4DAS
accession:
accession condition condition 8DAS 12DAS
) . accession: ) . accession:
ABA 1,00728€-06| 4,372416-13| 1,8654€-06 accession condition condition accession condition condition
HvNCED1 | 0,07608875  0,9458097  0,05051297 HvNCED1 | 0,09234385 0,3715041 0,07811752
8DAS | HvNCED2 | 0,00237305 0,9861702 0,8511587 HvVNCED2 | 0,004969074 2,41306E-07 0,00478103
accession condition accession:conditiHvOH1 0,1868525 0,3812774  0,03742999 HvOH1 0,1412324 0,003135118 0,3416329
ABA 0,0001766| 1,81856E—08| 7,6583E-05 HvOH2 0,0182674 0,05378561 0,01776784 HvOH2 0,2080661 0,003722729 0,00317209
HvOH3 0,01252186 0,016088 0,4596926 HvOH3 0,01953302  0,9606031 0,1231886
12DAS Pr(>F) accession condition a::t;c:;stliz::
accession: accession:
accession condition condition accession condition condition RWC 0,0004382 0,0000000 0,0029311
ABA 0,06464358] 5,243536-05] 0,00195802  |Assimilatio] 8,23E-10 5,70E-54 3,00E-17
WUE 1,03E-09 0,009329111  3,03E-09




2DAS 4DAS 12DAS
accession: accession: accession:
accession condition condition accession condition condition accession condition condition

HvPP2C1 0,04734 0,00012 0,04000 HvPP2C1 0,12813 0,00162 0,17016 HvPP2C1 0,00811 0,00054 0,00957
HvPP2C2 0,19426 0,00006 0,17049 HvPP2C2 0,23360 0,00047 0,38787 HvPP2C2 0,01610 0,00230 0,04153
HvPP2C4 0,27139 0,00010 0,15355 HvPP2C4 0,01325 0,00006 0,03988 HvPP2C4 0,00327 0,00046 0,00776
HvPP2C5 0,38597 0,00894 0,32555 HvPP2C5 0,01542 0,00000 0,11364 HvPP2C5 0,00152 0,00012 0,00727
HvPP2C6 0,11499 0,25478 0,12047 HvPP2C6 0,13860 0,14808 0,36052 HvPP2C6 0,01001 0,37224 0,10318
PKABA1.SN 0,12430 0,00016 0,05222 PKABA1.SN 0,02536 0,00001 0,00827 PKABA1.SN 0,01958 0,00568 0,18582
PYR.PYL1 0,05162 0,50789 0,02046 PYR.PYL1 0,08219 0,15620 0,17172 PYR.PYL1 0,00000 0,07220 0,26329
PYR.PYL2 0,01641 0,18632 0,69155 PYR.PYL2 0,97713 0,00065 0,99157 PYR.PYL2 0,00570 0,00118 0,03165
PYR.PYL3 0,03983 0,00079 0,04726 PYR.PYL3 0,12387 0,00185 0,12451 PYR.PYL3 0,03815 0,00240 0,03655
PYR.PYL4 0,00187 0,00023 0,01511 PYR.PYL4 0,57630 0,01821 0,35276 PYR.PYL4 0,00162 0,00110 0,00679
PYR.PYL5 0,07522 0,04900 I 0,16677 PYR.PYL5 0,02068 0,01198 0,01693 PYR.PYL5 0,49990 0,82692 0,83354
PYR.PYL7 0,22068 0,60709 0,45651 PYR.PYL7 0,13489 0,09193 0,88274 PYR.PYL7 0,05187 0,19850 0,75694
PYR.PYL8 0,11549 0,53886 0,16878 PYR.PYL8 0,54628 0,01367 0,94371 PYR.PYL8 0,00720 0,00089 0,04534
PYR.PYL9 0,00020 0,00018 0,00267 PYR.PYL9 0,02648 0,00025 0,03743 PYR.PYL9 0,45450 0,03850 0,31101
SnRK2.3 0,53887 0,10250 0,01638 SnRK2.3 0,17342 0,00115 0,07570 SnRK2.3 0,03815 0,00374 0,24784
SnRK2.4 0,00933 0,03290 0,03223 SnRK2.4 0,13814 0,06413 0,19410 SnRK2.4 0,00017 0,03257 0,25720
SnRK2.5 0,07640 0,35322 0,00549 SnRK2.5 0,60211 0,00007 0,11118 SnRK2.5 0,02527 0,00278 0,17667
SnRK2.7 0,49146 0,00011 0,12618 SnRK2.7 0,00033 0,00470 0,02078 SnRK2.7 0,00549 0,45058 0,00089




