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Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates
that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of
Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant
prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of
prebiotic carbohydrates, while the prebiotic-rich grain crops include barley, chickpea, lentil, lupin, and wheat.
Some prebiotic-rich crop germplasm have been reported in barley, chickpea, lentil, wheat, yacon, and
Jerusalem artichoke. A few major quantitative trait loci and gene-based markers associated with high fructan
are known in wheat. More targeted search in genebanks using reduced subsets (representing diversity in
germplasm) is needed to identify accessions with prebiotic carbohydrates. Transgenic maize, potato and
sugarcane with high fructan, with no adverse effects on plant development, have been bred, which suggests
that it is feasible to introduce fructan biosynthesis pathways in crops to produce health-imparting prebiotics.
Developing prebiotic-rich and super nutritious crops will alleviate the widespread malnutrition and promote
human health. A paradigm shift in breeding program is needed to achieve this goal and to ensure that
newly-bred crop cultivars are nutritious, safe and health promoting.

© 2014 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The microbial genome or microbiome includes complex
microorganism mixtures that have co-evolved with their human hosts.
Humans harbor over 100 trillion cells of microbial communities that
populate various sites in their anatomy [1]. Many species of bacteria
are found in the gastrointestinal tract especially in the colon, where
this flora is largely anaerobic. Diet variation modulates the composition
of gut microbiota. The composition of gut microbiota and the metabolic
interactions among its species may affect food digestion and energy
harvest. An increased understanding of the mechanisms involved in
the interactions involving gut microbiota, host and diet will open up
the avenues to treat complex human diseases [2,3,4,5].

Prebiotics have been characterized as a group of carbohydrates
that resist digestion and absorption in gastrointestinal tract
Católica de Valparaíso.
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(small intestine); which are fermented by the gut (large intestine)
microbiota, selectively promote the growth and activity of a limited
number of colonic bacteria, and alter the colonic microflora balance
towards a healthier composition [6,7,8]. The prebiotics consumption
may enhance immune function, improve colonic integrity, decrease
both incidence and duration of intestinal infections, down-regulate
allergenic response and improve digestion and elimination [9]. Some
cereal grain oligosaccharides may function as prebiotics and increase
the levels of beneficial bacteria in the large bowel [8,10,11]. Likewise,
prebiotics can also improve uptake of calcium, iron, and zinc, and
significantly decrease colon cancer, the level of triglycerides and
cholesterol [8,12,13,14,15,16].

Overweight and obesity cause 3.4 million deaths, 3.9% of years of life
lost, and 3.8% of disability adjusted life-years (DALYs) worldwide.
Populations with a body mass index (BMI) of 25 or greater are more in
the developed (up to 38%) than in the developing (up 13.4%) world.
Children and adolescents in the developed world are the most affected.
Overweight and obesity have therefore become a major global health
challenge [17]. Individuals with BMI above 25 are at increased risk of
diabetes mellitus, cardiovascular diseases, fatty lever (non-alcoholic),
and hypertension [18,19], which significantly impact on public health
cost. The evidence to date suggests that gut microbiota are involved in
the pathogenesis of obesity [19,20,21]. Obese and lean individuals
sevier B.V. All rights reserved.
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present different microbiota composition profile [22,23,24]. The obese
people use more energy from the diet [22,23,25,26]. The dietary
intervention (prebiotics) impacts gut microbial diversity and human
health, including obesity [19,22,27,28,29].

Higher intake of dietary fibers plays an important role in reducing
the risk of cardiovascular disease, regulating weight management and
immune function, and shaping microbial diversity in human
gastrointestinal tract [30,31,32]. Whole grains are concentrated
sources of dietary fiber, resistant starch, oligosaccharides, and
carbohydrates that escape digestion in the small intestine and are
fermented in the gut. The fibers that escape digestion in the small
intestine are fermented in the gut to produce short-chain fatty acids
(SCFAs), which are rapidly absorbed in the colon to provide additional
energy to the host [30], and prevent the establishment of potentially
pathogenic intestinal microbes [33]. SCFA production indicates
microbiota metabolic activity. The shift in gut microbiome of humans
consuming noble fibers such as polydextrose and soluble corn fiber
significantly affects the relative abundance of bacteria at the class,
genus and species level [34] as noted in humans who consume a high
cruciferous vegetable diet versus those fed with a refined grain diet
without vegetables [35]. This finding shows the dominant role of the
diet in shaping the gut microbial diversity [30,33,34,35], and provides
means for elucidating the role of gut microbiota on the subtle balance
between health and disease [30].

This short review article provides an overview on plant prebiotics
sources and variability; the genotype × environment interaction
effects, the genetic and molecular basis of synthesis of fructans, and
progress towards designing prebiotics-rich and nutritionally-dense
food crops, need an interdisciplinary approach among food science,
nutrition and genomics-led crop breeding to tap microbiota and plant
genetic resources diversity.

2. Prebiotic carbohydrates in plants

To date, fructooligosaccharides (FOS), inulin, and
galactooligosaccharides (GOS) from plants are best-known sources of
prebiotics. In addition, the raffinose family of oligosaccharides and
resistant starch (the type that is not absorbed in the gastrointestinal
tract) has also been recognized as prebiotic carbohydrates because
these are not absorbed in the intestine and promote the growth
of beneficial bacteria in the gut [36,37]. In addition, some
polysaccharides found in plant cell walls, such as xylans and pectins,
have also been recognized as the potential sources for diverse
polysaccharides to produce new prebiotics [38].

3. Novel sources of variation

A literature search (2003–2014) revealed the presence of prebiotic
carbohydrates in a number of food crops, with vegetable and root and
tuber crops being the predominant sources (Table 1). For example,
garlic (Allium sativum L.), Jerusalem artichoke (Helianthus tuberosus L.),
leek (A. ampeloprasum L.), okra (Abelmoschus esculentus L. Moench),
onion (Allium cepa L.) and shallot (A. cepa L. var. aggregatum) among
vegetables; dragon fruit (Hylocereus species), jack fruit (Artocarpus
heterophyllus Lam), nectarine (Prunus persica L. Batsch), and palm fruit
(Borassus flabellifer L.) among fruits; chicory (Chicorium intybus L.) and
yacon [Smallanthus sonchifoliu (Poepping and Endlicher) H. Robinson]
among root crops; or the tuber crops dahliya (Dahlia species) and
gembili (Dioscorea esculenta (Lour.) Burk.) are the major sources of
fructans. Yacon accessions with high fructans include AJC 5189, ASL
136 and MHG 923 [39], while those from Jerusalem artichoke are JA
37 and CN 52687 [40]. More recently, the gourd family of vegetables,
which includes Benincasa hispida, Lagenaria siceraria, Momordica
charantia, Trichosanthes anguina, and Cucurbita maxima has been
reported as good source of digestible and indigestible fibers, with
significant prebiotic properties [41]. In addition, mushroom [Agaricus
bisporus (J.E. Lange) Emil J. Imbach] has also been reported as potential
source of prebiotic carbohydrates [42].

Barley (Hordeum vulgare L.), chickpea (Cicer arietinum L.), lentil
(Lens culinaris Medikus), and wheat (Triticum aestivum L.) show
genetic variability for prebiotic carbohydrates in grain crops (Table 1).
Huynh et al. [43] evaluated in glasshouse and in the field 62 bread
wheat cultivars and breeding lines of diverse origin for grain fructan.
They detected significant genotypic variation for grain fructan,
with no evidence of strong genotype × environment interaction.
The fructan contents of field-grown grain samples were positively
correlated (r = 0.83) with those of glasshouse-grown samples of
the same cultivars. The grain fructan content among 19 cultivars
varied from 0.66 to 2.27% grain dry weight, while in a set of diverse
germplasm it ranged from 0.7 to 2.9%. Cultivars such as Sokoll,
Halberd and Cranbrook had the highest levels of grain fructan (glass
house: 1.24 to 1.58%, field: 2.2 to 2.27%). Advanced lines had grain
fructan above 2%. Marotti et al. [44] detected large differences in
dietary fibers among modern and ancient durum wheat cultivars. The
insoluble dietary fiber (IDF), soluble dietary fiber (SDF) and total
dietary fiber ranged from 102 to 181, 18 to 37, and 127 to 199 g kg-1

dry weight, respectively. Colon bacteria ferment SDF easily, rapidly
and completely. In vitro research further revealed that SDF selectively
proliferate microbial growth, with fibers from the Kamut®Khorasan
(ancient durum wheat) and Solex (modern durum wheat) promoting
maximum growth of Bifidobacterium pseudocatenulatum B7003 and
Lactobacillus plantarum L12 strains in the gastrointestinal tract [44].
Sweet wheat [45] – a double mutant lacking GBSSI and SSIIa genes –
had about twice as much total dietary fiber and 7-fold higher
concentration of low-molecular-weight soluble dietary fiber, largely
fructan, in comparison to parental or wild-type line [46]. Sweet wheat
germplasm is an excellent source that may be used to raise fructan
levels by crossing it with other high fructan lines [45]. Some einkorn
wheat (Triticum monococcum) germplasm contain 2 to 3 times greater
inulin than maize (24–27 g kg-1) [47]. Likewise, barley cultivars such
as KVL 1113 and KVL 1112 are reported to contain grain fructan
as high as 3.9 to 4.2 g 100 g-1 [48]. Rye (Secale cereale L.) grains are
another source of rich dietary fiber. The total dietary fiber among
19 cultivars varied from 147 to 209 g kg-1 dry matter, of which 26 to
41 and 45 to 64 g kg-1 dry matter were arabinoxylans and fructan,
respectively [49].

Resistant starches (RS 1, RS 2, RS 3 and RS 4), which escape digestion
in small intestine but ferment in the colon by the resident microflora to
produce SCFAs, are receiving greater attention due to their potential role
in promoting human health [50]. RS 2 and RS 4 promote distinct
microflora, impacting colon health [51]. Their content ranges from
12 to 45 g kg-1 dry weight, among ancient and modern durum wheat
cultivars.

Grain legumes are rich sources of dietary fiber. Lupin and
chickpea kernel-derived fiber stimulates colonic bifidobacteria
growth and contributes to colon health [52,53]. Chickpea grains are
a good source of α-galactooligosaccharide (α-GOS), which varied
from 6.35% to 8.68% dry matter among 19 chickpea cultivars, with
ciceritol and stachyose, respectively, accounting for 50% and 35% of
the total α-GOS [54]. Chickpea accession ‘171’ had the highest
α-GOS (8.68%) and lowest sucrose (2.36%), which may be used to
obtain α-GOS for use as a prebiotic in functional foods. Chickpea
raffinose, another α-GOS was demonstrated to modulate the
intestinal microbial composition to promote intestinal health in
humans [55,56]. Johnson et al. [57] reported significant variation
for prebiotic carbohydrates, with raffinose, stachyose, sorbitol, and
verbascose being predominant sources of prebiotic carbohydrates in
lentil. Other plant products with significant prebiotic properties
include almond (Amygdalus communis L.) seeds and bamboo
[Gigantochloa levis (Buluh beting)] shoot crude polysaccharides
(BSCP), both promote the growth of beneficial microbes in the gut
[58,59].



Table 1
Genetic variation for prebiotic carbohydrates reported in cereal and legume, root and tuber, and fruit and vegetable crops.

Crop species Summary of variation reported Reference

Cereal and legume crops
Barley (20) Grain fructan, 0.9 to 4.2 g 100 g-1, KVL 1113 and KVL 1112 being highest [48]
Lentil (10) Sorbitol, 1039 to 1349 mg 100 g-1; mannitol, 160 to 294 mg 100 g-1; raffinose

and stachyose, 2319 to 2793 mg 100 g-1; verbascose, 922 to 1968 mg 100 g-1; and nystose,
52 to 79 mg 100 g-1

[57]

Durum wheat (10) Insoluble dietary fiber, soluble dietary fiber and total dietary fiber 102–181, 18–37 and
127–199 g kg-1 dry weight, respectively

[44]

Lentil (22) Raffinose, stachyose, and verbascose 1.6 to 2.4 g, 1.7 to 2.9 g, and 1.2 to 1.9 g 100-1

dry matter, respectively
[89]

Chickpea (19) α-galactooligisaccharide (α-GOS), 6.35 to 8.68%, Ciceritol the main sugar [54]
Wheat (62) Grain fructan in cultivars 0.66 to 2.27% dry weight; germplasm 0.7 to 2.9% dry weight;

advanced lines N2% dry weight
[43]

Einkorn wheat, maize and rice Inulin 55–85, 24–27, and 1.7 to 8.4 g kg-1 in einkorn wheat, maize and rice, respectively [47]
Rye (19) Arabinoxylans 26 to 41 and fructan 45 to 64 g kg-1 dry matter [49]

Root and tuber crops
Dahlia, yam and gembili Dahlia and gembili tubers high in inulin type fructan, 78% and 68%, respectively, than

that of yam tubers (49%)
[90]

Yacon (23) Ploidy level significantly impacted the content and distribution of fructooligosaccharides
(FOS); 11 lines high in short chain-FOS, while 12 lines high in long chain-FOS

[91]

Yacon (35) Fructooligosaccharide (FOS), 6.4 to 65 g 100-1 dry matter, AJC 5189 high in FOS [39]
Yacon (4) Oligofructans, 42.84 to 49.13 mg g-1 fresh tubers [92]
Yacon (4) Inulin content, 141–289 mg kg-1 dry matter, with tubers having greater levels than rhizomes [93]
Yacon (10) Fructan, 31–89 g kg-1 fresh root weight; ASL136, MHG923 and MHG927 being highest in

fructan (72–89 g fructan kg-1)
http://www2.cipotato.org/publications/
program_reports/97_98/51yacon.pdf

Fruit and vegetable crops
Jerusalem artichoke (79) Inulin, 55.3 to 74.0% dry weight, JA 37 and CN 52867 promising for both yield and inulin [40]
Fruits (32) and vegetables (41) Most fruits, except nectarine (0.89 mg g-1 fresh weight), contain low amount of FOS; vegetables

with high FOS: scallion 4.1 mg g-1, onion 2.24 mg g-1, garlic 1.76 mg g-1, and Jerusalem artichoke
1.6 mg g-1 fresh weight

[94]

Varieties of plant foods (47) Garlic and Jerusalem artichoke had high inulin-type fructan (19.4 to 29.2 g 100 g-1 fresh weight)
than shallot and red onion (3.6 to 8.8 g 100 g-1 fresh weight); FOS highest in Jerusalem artichoke
(5.2 g 100 g-1 fresh weight)

[95]

Bulb (3) and roots/tubers (7) Inulin type fructan 27 to 42% dry weight in garlic, shallot and onion; sweet potato, white radish,
cassava and yam bean contain 0.42 to 2.14%

[96]

Fruits and vegetables (13) Jackfruit (flesh, 98 mg g-1; seeds, 29 mg g-1 dry extract), okra (49 mg-1 dry extract), and palm fruit
(pericarp, 14 mg g-1; flesh, 47 mg g-1; embryo, 34 mg g-1 dry extract) rich in oligosaccharides

[97]

Pitaya (dragon fruit) Red-fleshed dragon fruits contain more oligosaccharides 89.6 g kg-1 than white-fleshed types,
86.2 g kg-1 fresh fruit weight

[98]

Onion (15) Fructan 0.84 to 3.04%, San Juan de la Rambla being highest in fructan [99]
Fruits (43) and vegetables (60) High fructan vegetables: garlic, artichoke, shallots, leek bulb, and onions (1.2 to 17.4 g 100 g-1

fresh weight); fruits with detectable fructan: longon, peach, persimmon, and melon
(0.21 to 0.46 g 100 g-1 fresh weight)

[100]

Figure in bracket within the first column refers to either the number of accessions within a crop or number of different crop species evaluated for prebiotic compounds.
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Research on identifying genetic variation for prebiotic carbohydrates
in most of these crops is in its infancy. However, there is a growing
awareness to develop “wholesome” functional food for improving
human health. Core [60] and mini core [61] collections that represent
diversity of the entire collection of a given species preserved
in a genebank are reported in most of the grain crops [62,63];
thus suggesting that these could be used as resource to identify
prebiotic-rich germplasm for use in crop breeding. Likewise, many
genebanks have large germplasm collections of fruits, vegetables, and
root and tuber crops (Fig. 1 and Table 2), which were previously
reported as source of high fructans (Table 1). There is a need to
develop representative subsets in these crops, which could be
systematically evaluated for prebiotic carbohydrates.

4. Genotype × environment interaction

Research to date suggests that most of the nutritional traits are highly
influenced by environment (location) and genotype × environment
interaction effects, with environments having major effects [64]. In a
trial involving 10 lentil cultivars evaluated at two locations for two
years, Johnson et al. [57] reported significant year and location effects
for sorbitol, mannitol and verbascose, and year × location × cultivar
effects for sorbitol, while Putta et al. [40] detected genotype ×
environment interaction for inulin content in Jerusalem artichoke.
The environment effects in both the trials were the most significant.
Genotype × environment interaction (P ≤ 0.001) is also reported for
rafinnose family of oligosaccharides [65]. These results reinforce the
need for multilocation evaluation of germplasm/cultivars to identifying
those with high prebiotic carbohydrates for use in plant breeding.

5. Genomic regions associated with prebiotics

Quantitative trait loci (QTL) associated with fructan and inulin is
known in wheat [66]. QTL on chromosomes 2B, 3B, 5A, 6D and 7A have
been associated with high fructan in a double haploid (DH) mapping
population involving a high-fructan breeding line (Berkut) and the
low-fructan cultivar Krichauff [66]. QGfc.aww-6D.2 and QGfc.aww-7A.1
had the largest effects (17 and 27% of the total phenotypic variation,
respectively). Validation in another mapping population involving
Sokoll and Krichauff confirmed that QGfc.aww-6D.2 and QGfc.aww-7A.1
show similar effects. Gene-based single nucleotide polymorphism
(SNP) markers have successfully been mapped to a major QTL
(QGfc.qww-7A.1) [66], which affects the accumulation of fructan in
wheat grains [68]. Furthermore, the alleles controlling high- and
low-fructan were associated in fructan production in a diverse set of
128 wheat lines [67]. Stem-water soluble carbohydrate (SWSC) in

http://www2.cipotato.org/publications/program_reports/97_98/51yacon.pdf
http://www2.cipotato.org/publications/program_reports/97_98/51yacon.pdf
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Fig. 1. Proportion of accessions representing 12 fruit, vegetable, root and tuber crops preserved across 288 genebanks globally (Source: http://apps3.fao.org/wiews/).
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wheat consists mainly of fructans and sucrose and can serve as a source
for grain development and fructan synthesis [68]. It is likely that genes
affecting SWSC [69] could affect grain fructan accumulation. Likewise,
two major QTL for inulin content, Xgcag9 on chromosome 2BL-2 and
Xgwm499 on chromosome 5BS contributed respectively 20 and 15% of
the phenotypic variation in a DH population involving AC Reed and
Grandin [66]. There are QTL with major effects on the fructan level of
the vegetative tissues of barley, onion and ryegrass [70,71,72].

Arabinoxylans represent the major dietary fibers present in wheat
bran and its hydrolysis leads to the formation of arabinoxylan
oligosaccharides (AXOS) [73], which has a strong prebiotic effect
[74]. QTL mapping and validation revealed that QGax.aww-2A.1 and
QGax.aww-4D.1 had a major effect on wheat grain arabinoxylan
accumulation [75], which are apparently different at two QTL with
large effects on grain fructan that are in chromosome 6D and 7A [66].

Fructans, the major component of water-soluble carbohydrate
temporarily reserved in the stem are used for grain filling by temperate
cereals. Research shows that sucrose:sucrose 1-fructosyltransferase
(1-SST), sucrose:fructan 6-fructosyltransferase (6-SFT), and fructan–
fructan 1-fructosyltransferase (1-FFT) enzymes are involved in fructan
synthesis in barley and wheat [76,77,78]. More recently, Kooiker et al.
[79] investigated the effect of TaMYB13-1 gene and its influence
on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression
resulted in up-regulation of all three families of fructosyltransferases
and γ-vacuolar processing enzyme (γ-VPE-1) involved in the maturation
of fructosyltransferases in the vacuole. The overexpression of these
target genes was highly correlated in recombinant inbred lines and
during stem development as well as the transgenic and non-transgenic
wheat, supporting a direct regulation of these genes by wheat
transcription factor TaMYB13-1. Further TaMYB13-1 overexpression
in wheat led to enhanced fructan accumulation in the leaves and
stems and also increased spike weight and grain weight per spike
in transgenic plants under water-limited environments. This finding
suggests that TaMYB13-1 plays an important role in coordinated
up-regulation of genes necessary for fructan synthesis and can be used
as a molecular tool to improve the high fructan trait.

6. Designing prebiotic-rich and super-nutritious crops

Marker-assisted selection (MAS) is used in plant breeding to speed
and increases the precision of genetic progress; and when integrated
into optimized molecular breeding strategies, it can also lower the
cost of selection [63]. As noted above few validated QTL with major
effects and associated with grain fructan or arabinoxylans are
known in wheat. Nguyen et al. [75] identified microsatellite marker
gpw-95001-4D nearest at grain arabinoxylans QTL (QGax.aww-4D.1),
while Huynh et al. [66] reported microsatellite marker gwm681-7A,
closely associated with a major grain fructan QTL (QGfc.aww-7A.1).
Huynh et al. [67] successfully mapped gene-based SNPs, Ta1-FFT,
Ta6-SFT, and TaWIVRV, co-located with each other and with the
grain fructan QTL, QGfc.aww-7A.1 [66]. SNP alleles controlling high or
low fructan are associated with fructan production in diverse 128
wheat lines [66]. These markers are available for indirect selection of
segregants with high grain fructan or arabinoxylan concentrations in
wheat. For example, the validated QTL QGfc.aww-7A.1 with a major
effect and SNP-based markers may be used for targeted enhancement
of grain fructan in wheat.

Chicory, artichoke and onion are good sources of inulin molecules,
which are synthesized by two enzymes, sucrose:sucrose 1-SST
and fructan:fructan 1-FFT [80] with a chain length of up to 200° of
polymerization [81]. Tubers of transgenic potato (Solanum tuberosum
L.) containing 1-SST and 1-FFT genes had full spectrum of inulin
molecules present in globe artichoke, with no adverse effect on plant
growth or tuber yield [82]. The inulin containing tubers however
display a reduction in starch content, which means that synthesis of
inulin does not increase tuber storage capacity. Hellwege et al. [82]
found that inulin produced in potato tubers is indistinguishable from
inulin isolated from artichoke roots. More recently, Stoop et al. [83]
produced transgenic maize and potato containing 1-SST and 1-FFT from
Jerusalem artichoke. Transgenic maize expressing 1-SST or 1-SST and
1-FFT driven by endosperm-specific promoter produced 3.2 mg g-1

kernel inulin type fructan, with no adverse effect either on kernel
development or in germination. Potato tubers expressing 1-SST
accumulated 1.8 mg inulin g-1 tuber, while the tubers with a combined
expression of 1-SST and 1-FFT accumulated 2.6 mg inulin g-1 tuber. The
introduction of fructan biosynthetic pathway in a high-sucrose maize
background increased inulin accumulation to 41 mg g-1 kernel,
indicating that sucrose availability is limiting fructan production in
transgenic maize.

Sugar beet (Beta vulgaris L.) is an economically important crop
but lacks enzymes to produce fructans. It is a rich source of sucrose
that accumulates in the vacuole of its taproot cells. Transgenic sugar
beet containing onion fructosyltransferases 1-SST and 6G-FFT had an
efficient conversion pathway of sucrose into complex, onion-type
fructans, without any adverse effect on taproot growth or the loss of
storage carbohydrate content [84,85]. More recently, Hanlie Nell

http://apps3.fao.org/wiews/


Table 2
Select genebanks holding major germplasm collections of chicory, dahlia, dragon fruit,
gembili, garlic, jack fruit, Jerusalem artichoke, leek, okra, onion, shallot and yacon.

Accession
number

Jerusalem artichoke
Institute of Field and Vegetable Crops Novi Sad, Serbia 120
North Central Regional Plant Introduction Station, USA 107
Leibniz Institute of Plant Genetics and Crop Plant Research, Germany 102

Onion
National Res. Centre for Onion and Garlic, India 1300
Northeast Regional Plant Introduction Station, Cornell University, USA 1156
Royal Botanic Gardens, Kew, United Kingdom 976

Garlic
National Res. Centre for Onion and Garlic, India 750
Vegetable Section Olomouc, Czech Republic 623
Asian Vegetable Research and Development Center, Taiwan, China 505

Jack fruit
Laboratoire d'Ecologie Moléculaire, Université de Pau, France 81
Regional Station Thrissur, NBPGR, India 72
Department of Agriculture Sabah, Malaysia 57

Dragon fruit
Programa de Recursos Genéticos Nicaragüenses, Nicaragua 50
Southern Fruit Research Institute, Viet Nam 24
Departamento Nacional de Recursos Fitogenéticos y Biotecnología,
Ecuador

18

Yacon
Estación Experimental Agraria Baños del Inca, Perú 123
Universidad Nacional de Cajamarca, Perú 110
Estación Experimental Agraria Andenes, Perú 89

Shallot
Science and Advice for Scottish Agriculture, United Kingdom 707
Leibniz Institute of Plant Genetics and Crop Plant Research, Germany 329
Station d'Amélioration Pomme de Terre et Plantes à Bulbes, France 319

Leek
Agriculture and Food Research Council, United Kingdom 128
Leibniz Institute of Plant Genetics and Crop Plant Res., Germany 95
The Netherlands Plant Research International, Netherlands 88

Okra
Regional Station Akola, NBPGR, India 2286
University of Georgia, USA 2220
University of the Philippines, Los Baños College, Philippines 942

Dahlia
Research Institute of Landscaping and Ornamental Gardening,
Czech Republic

224

Vytautas Magnus University, Lithuania 115
National Plant Material Center USDA/SCS, USA 15

Gembili
Dry-lowlands Research Programme, Papua New Guinea 149
Dodo Creek Research Station, Solomon Islands 112
University of the Philippines, Los Baños College, Philippines 73

Chicory
Station de Génétique/Amélioration des Plantes, INRA, France 400
Unité Expérimentale d'Angers, Groupe d'Étude et de contrôle des
Variétés et des Semences (GEVES), France
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Leibniz Institute of Plant Genetics and Crop Plant Res., Germany 223
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succeeded in introducing the 1-SST and 1-FFT from Cynara scolymus
in sugarcane (Saccharum officinarum L.). Transgenic sugarcane plants
accumulated inulin up to 165 mg g-1 fresh weight, which is
comparable to that found in native plants; therefore, exhibiting great
potential as a future industrial inulin source. It seems therefore
feasible to introduce fructan biosynthesis pathways in both staple and
industrial crops, as already noted in transgenic maize, potato, sugar
beet, and sugarcane health-imparting prebiotics for use in functional
food to promote human health.
Malnutrition is widespread and casts enormous negative
socio-economic impact at the individual, community, and national
levels [86]. The world population by 2050 is expected to be around
9 billion; and providing enough food that is nutritious (protein and
prebiotic-rich and micronutrients dense) and safe (free from toxic
compounds and microbial toxins) to humankind is the greatest
challenge in the 21st century. To date, the research has shown that
nutritional traits can be combined into improved genetic background
using both conventional and nonconventional plant breeding. For
example, seed iron-dense beans and rice, maize with high tryptophane
and lysine, or β-carotene rich maize and sweet potato cultivars have
been developed and are commercially grown in some areas of Africa,
Asia, Central and South America, while “Golden Rice 2” variants
(containing high β-carotene) have been developed using transgenic
breeding and are being introgressed into several Asian rice cultivars [64].

Advances in prebiotic research have conclusively demonstrated that
fructans, and the fructooligosaccharides – including inulin – are
nondigestible fibers promoting the growth of beneficial microbiota in
the gut, which positively impact micronutrient absorption and
utilization in humans [7,8,11,13,16]. Exploratory research to date
suggests that it is possible to identify prebiotic-rich genetic resources,
as evidenced in barley, wheat, chickpea and lentil among grain crops.
Likewise, some fruit, vegetable, root and tuber crops have also
been identified as rich sources of prebiotic carbohydrates. A global
search of genebank data repository revealed that many of the latter
group of crops (fruit, vegetable, root and tuber) have large germplasm
collections (Fig. 1 and Table 2), which needs to be scientifically
scrutinized to form representative subsets and evaluated for prebiotic
carbohydrates. A paradigm shift in plant breeding is needed to
incorporate nutritional quality (prebiotic rich and nutrient dense) as
important objective that ensures that newly developed cultivars are
not nutritionally inferior [64].

7. Perspectives

Humans are confronted today with diet-related health problems
that in ancient times were of minor importance [87]. Human gut
microbiota is populated by an array of bacterial species, which has
established multiple mechanisms to influence human health. Diet has
a dominant role in shaping the gut microbial diversity and human
health. Inulin and fructan are the best-characterized prebiotics
obtained from plants. Limited search has revealed sufficient genetic
variation for inulin and fructan in barley and wheat grains. Prebiotic
compounds are abundant in vegetable, root and tuber crops as well in
some fruit crops. Targeted search for identifying genetic variability for
prebiotics is yet to begin. Genebanks are the repository of large
collection of plant germplasm. Reduced subsets representing diversity
of entire germplasm collection of a given species preserved in the
genebanks are available in most of the grain crops, which need
evaluation to identifying novel germplasm rich in prebiotic
carbohydrates for use in plant breeding. Crops lacking such
representative subsets require developing these germplasm samples to
capture the diversity available in the genebank.

Chicory, artichokes and onion are good sources of fructan.
Transgenic maize and potato containing 1-SST and 1-FFT genes from
Jerusalem artichoke, transgenic sugar beet containing 1-SST and
6G-FFT genes from onion, and transgenic sugarcane containing 1-SST
and 1-FFT from globe artichoke have shown high fructan with no
adverse effect on plant development, which clearly indicates that it is
feasible to introduce fructan biosynthesis pathways in both staple and
industrial crops, to produce health-imparting prebiotics to promote
human health.

The evidence to date strongly suggests that manipulation of gut
microbiota represents a novel approach in treating obesity and
related metabolic disorders. Culture-independent assays and modern
high-throughput sequencing and bioinformatics tools (not the subject
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of this review) provide opportunities to investigate taxonomic and
functional diversity of the gut microbiota. These developments are
powerful means of understanding the contribution of the human
microbiome to health and its potential as a target for therapeutic
interventions [88]. The dietary interventions (prebiotics) to induce
microbial change offer a great opportunity towards improved human
health [20,21,22,27]. Increasing in the levels of prebiotics together
with other quality traits (fat, protein, minerals, and vitamins) in staple
food crops is therefore an important strategy to enhance nutrition and
health of malnourished people worldwide.

Research to date suggests that it is feasible to develop nutritionally
dense crop cultivars to fight widespread malnutrition, more specifically
in the developing world. It is encouraging to note that plant breeders
are aware that other quality traits such as micronutrients, vitamins and
now prebiotics are equally important as are oil and protein. They are
progressively taking a holistic approach to breed crops that provide
wholesome food promoting human health at large. A multidisciplinary
approach involving all stakeholders is needed to develop nutritionally
dense and prebiotic-rich cultivars adapted to diverse agro-ecosystems.
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