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Abstract: This study was conducted to evaluate the performance of univariate spatial (ordinary
kriging- OK), hybrid/multivariate geostatistical methods (regression-kriging- RK, Co-kriging- CK) with

multivariate linear regression (MLR) in incorporation with ASTER data in order to predict the spatial
variability of surface soil salinity in an arid area in northern Iran. The primary attributes were obtained

from grid soil sampling with nested-systematic pattern of 169 samples and the secondary information
extracted from spectral data of ASTER satellite images. The principal component analysis, NDVI and

some suitable ratioing bands were applied to generate new arithmetic bands. According to validation
based RMSE and ME calculated by a validation data set, the predictions for soil salinity were found

ASTERm ultivariate ASTERm ultivariateto be the best and varied in the following order: RK > REG  > Co-kriging

ASTER> kriging. Overall, this comparative study demonstrated that RK approach was a better predicator

than other selected methods to predict spatial variability of soil salinity. The overall results confirmed
that using ancillary variables such as remotely sensed data, the accuracy of spatial prediction can

further improved. 
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INTRODUCTION 

Salinization is one of the main causes of soil degradation in arid and semi-arid regions around the world.
It reduces plant growth, agricultural production, and increases soil erosion and the reclamation of such land

resources is expensive and at times beyond the means of poor farmers (Fernandez-Buces et al., 2006;
Szabolcsm, 1989). Saline lands are sensitive to changes in climate, soil and hydrological properties in time and

space (Fernandez-Buces et al., 2006; Kerte sz and To th, 1994). The characterization and mapping of soil
salinity is difficult because of high seasonal and spatial variability in salt concentration (Fernandez-Buces et

al., 2006).
The global extent of primary salt-affected soils is about 955 Mha, while the secondary salinization affects

some 77 Mha, with 58% of these in irrigated areas (Metternicht et al., 2003). The salt-affected soils are usually
characterized considering soil water content, depth, evaporation, rainfall, chemical and physical properties such

as pH, ECe, ESP, Na  and other anion and cations (Fernandez-Buces et al., 2006; Kerte sz and To th, 1994).+

To create thematic maps using conventional mapping technique requires analyses of a large number of samples

using an extensive plan, resulting in high investment of time and cost. Besides, investigation and basic
management need to be timely based on the quantitative information accessed using field spectroscopy and

remote sensing (Milton, 1987).
Reflectance is a property, which is derived from the inherent spectral behavior. In earth surface studies,

spectral values of satellite images are closely related with soil surface physical and chemical characteristics,
especially salinity (Fernandez-Buces et al., 2006). This relationship is commonly studied using linear regression
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method. Therefore, digital information in different spectral bands can be used in the measurement of related

soil characteristics (Goulard and Voltz, 1992; Van der Meer, 2000). Several authors have characterized salt-
affected soils using satellite images, airborne photos and land radiometric techniques, based on the correlation

studies between spectral reflectance by salt content and soil salinity/alkalinity indicators to generate soil salt
spatial distribution map (Csillag et al., 1993; Fernandez-Buces et al., 2006; Verma et al., 1994).

Spatial analysis, interpolation and producing the maps of soil properties can be obtained by different
techniques, such as ordinary kriging (Lopez-Granados et al., 2002; Paz-Gonzalez et al., 2000) cokriging (Rivero

et al., 2007; Websrer and Oliver, 2001), kriging-regression (Lopez-Granados et al., 2005; Odeh et al., 1995).
A numerous number of studies have been made for salinity prediction using geostatistical techniques

(Hajrasuliha et al., 1980; Hosseini et al., 1994; Odeh et al., 1995; Walter et al., 2001). Geostatistical prediction
methods have opened up the possibility of mapping soil properties by using auxiliary data and cross-variogram,

which require about 100 sampling points (Kerry and Oliver, 2003). The prediction methods that incorporate
secondary informative variable with high spatial correlation, according to the target variable, such as digital

numbers of satellite image or digital elevation model (DEM), have been developed for use on a larger scale,
reducing time and costs.

Considerable researches have been conducted on the use of statistical and geostatistical techniques for the
mapping of soil properties using series of satellite data such as bare soil landsat TM (thematic mapper) imagery

and AVHRR (advanced very high resolution radiometer) data from the NOAA (national oceanic and
atmospheric administration (Bishop et al., 2001; Kerte sz and To th, 19994) landsat ETM  (Enhanced thematic+

mapper plus) and ASTER (Advanced space borne thermal emission and reflection radiometer) for soil
phosphorus variability (Rivero et al., 2007) and SPOT2 satellite (Douaoui et al., 2006) for detecting the salinity

hazards.
No attempt however, has been made to incorporate ASTER data in the geostatistical approach for soil

salinity mapping in the arid regions. Therefore, this study was conducted to delineate soil salinity areas based
on an intensive and regular soil sampling, and using different prediction methods for arriving at the best

approach for soil salinity mapping in the sample area in Golestan province of Iran. 

MATERIALS AND METHODS

Description of the Study Area:
The study area located in north western of Iran, Golestan province in 25 km of Aq Qala town between

37< 12´ 18½ and 37<13´ 32½ northern latitudes and 54< 22´ 18½ to 54<  29´ 1½ eastern longitudes (Fig 1), which
covers 2000 ha area. The mean annual precipitation is 230.5 mm, which falls mainly from November to March.

The mean annual temperature is 19.01<C. According to the previous study (Akbarlo, 1995), the climate of the
area is a temperate semiarid. The study area is flat (maximum slope of 2%) and in some parts has loessial

hills. According to Soil Taxonomy (Soil Survey Staff, 2006), the soils of the study area are dominantly
classified as:

Fine-loamy, mixed, superactive, calcareous, thermic, Gypsic Aquisalids

Data:

The spatial soil salinity data used in this study was obtained using an intensive grid soil sampling. A
selected area of 2000 ha was sampled with intervals of 50, 100, 250, 500, 1000 m, in 169 sampled points on

a nested regular pattern (Fig 2). Soil samples (0-5 cm) were collected on middle of July 2006. The position

eof each point was registered with GPS. Soil samples were air-dried and passed through 2 mm sieve for EC

emeasurement. The surface electric conductivity (EC ) was measured using conductimeter (Inolab720.wtw) in
saturated soil extract (Page et al., 1992). In this study the VNIR and SWIR bands of ASTER from 2006 year

were used. The table 1 shows the description of VNIR and SWIR bands.

Geometric Correction and Image Processing:
The VNIR and SWIR bands were georefrenced with an available orthorectifed ETM  2002 imagery using+

image to image registration method and were rectified to the UTM zone 40 cartographic projections. Nearest
neighbor re-sampling type was used with the absolute field location accuracy (30 m, 15 m). The remote

satellite images were processed using the Geomatica V.8.0.1 software. In addition to main bands, some suitable
processing operations including, first component from selective principal component analysis of VNIR bands

and SWIR bands and standard principal component analysis of VNIR and SWIR data (Ren and Abdelsam,
2006), the NDVI (Normalized Difference Vegetation Index) from VNIR bands (Rouse et al., 1974) and some

ratio arithmetic bands were applied to identify salinity quantification (Table 2).
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Extraction of Spectral Number of Sample Points:

The spectral numbers (DN) of each sample point on main and proccessed bands were extraced using

extract function in IDRISI software. These spectral numbers were used for statistical analysis.

Statistical and Geostatistical Prediction Analysis:

Multiple Linear Regression (MLR) Method:

Every sampled soil point was located in the original images and synthetic images were extracted. It was

verified that all spectral values were normally distributed. Pearson linear correlations were determined between

ECe and spectral values in all bands, accepting a confidence level of 95%. Regression equation was developed

for those variables that showed higher significant correlation with digital numbers. The statistical analysis was

performed using SPSS statistical package (SPSS v. 13.0). Regression analysis was performed using following

equation:

  (1)

oWhere RSInd the index is derived from the remote sensing data observed at S  and f is the regression function

(Douaoui et al., 2006). Spatial distribution of ECe was constructed applying this equation to the images.   

 

Geostatistical Analysis:

Spatial variation with interdependence is commonly described with a variogram (Warrik et al., 1989). In

geostatistics, the concept of variance from classic statistics is extended to semivariance. The spatial structure

of each property was characterized by experimental semivariogram using the following equation (Lopez-

Granados et al., 2005):

  (2) 

hwhere ã  is the experimental semivariogram value at distance interval h; N(h): number of sample pairs within

distance interval h; z(xi), z(xi+h): sample values at two points separated by the distance interval h. Spherical,

exponential  models were fitted to the experimental semivariograms defined by Eqs. (3) and (4) respectively

(Deutsch and Journel, 1998):

If h#a   (3)

If h>a

  (4)

o owhere a is the range, C  the nugget effect, and C +C the sill or total semivariance. 

Ordinary kriging (OK):

aThis method solely utilizes primary data as ECe measured at sampled locations u  to estimate ECe at

unsampled locations. The constancy of the mean is assumed only within a local neighborhood W(u) centered

at the location u being estimated. Here, the mean is deemed to be a constant but unknown value, i.e.,

m(u')=constant but unknown, u'åW(u). The OK estimator is written as a linear combination of the n(u) data

aZ(u ) with a single biasedness constraint (Simbahan et al., 2006):

 With   (5 )

In addition to OK, we evaluated RK and Co-kriging as hybrid interpolation methods in which soil variation

is quantified using deterministic and empirical models incorporate one or more ancillary variables in the

estimation of ECe.
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Regression-kriging (RK):

This method is based on the use of simple or multiple regressions with simple kriging (Lark and Beckett,

1995; Odeh et al., 1995) for the investigation of spatial variability of continuous variables. This kriging method

is an interpolation that incorporates secondary information into the kriging system (Lopez-Granados et al.,

2005). The method uses the auxiliary variables (spectral data) to define the spatial trend of the target variable

(ECe) and performs simple kriging on the residuals (Goovaerts, 1997). Therefore, after applying the multiple

linear regression models to image data from ASTER in the given points, the residual values were extracted.

At each sampling point, the residual value was calculated by subtracting the trend estimate (multiple linear

functions) from the original ECe value. Then, the appropriate semivariogram was fitted to residuals and simple

kriging was carried out on the residuals. The final estimate of ECe was obtained by adding the trend estimate

to the simple kriged estimate of the residuals (Goovaerts, 1997; Odeh et al., 1995). The step by step flow chart

of this method is presented in Fig 3.

Cokriging (CK):

Cokriging is a multivariate extension of kriging in which the secondary information is incorporated in the

1 vestimation at unsampled locations by accounting for multi-scale correlations of the primary variable Z  and N -

v1 secondary attributes Z  (Dobermann et al., 1997; Goovaerts and Webster, 1994). Auto and cross-variograms

of all primary and secondary variables were computed and modeled in the form of a linear model of

coregionalization (Gulard and Voltz, 1992). The co-located CK estimator for an unsampled location u is then:

  (6)

The statistical analysis was performed using SPSS statistical package (Wagner, 2007) and Minitab

(Gardiner, 1997). Geostatistical analysis was performed using Variowin (Panattier, 1996) and GS  software+

(GS  v. 5.1) to fit the semivariograms, cross variogram, and kriging analysis.+

Comparison of Estimation Methods:

The performance of the different interpolation methods was assessed by cross-validation (Issaks and
Srivastava, 1989). The mean error (ME) and root mean square error (RMSE) were used to evaluate model

performances in cross-validation mode. 

Validation was performed using 36 samples randomly chosen from the 169 samples (approximately 20%

of all samples). Indices were adopted for comparing four mapping methods including kriging, co-kriging,

kriging-regression and multiple linear regression, in this, i.e.; mean error (ME) and root-mean-square-error

(RMSE):

  (7)

  (8)

where: 

N; Number of validation points 

i i i; estimated value at point x  and Z(x ); ground observation value at point x .

RESULTS AND DISCUSSION

eDescriptive statistical of EC  in the selected area showed mean value and standard deviation, 105.93 and

e59.57dS/m respectively. The coefficient of variation (CV) value of EC  calculated 0.56. To define variability

into categorical classes, we followed the system suggested by Wilding (Wilding, 1985). According to this

e classification any property with CV more than 0.35 is classified as high variable, therefore, EC indicated high

variability in the selected area. Low skewness value (0.011) confirmed that the given property followed up the

normal distribution in the study area.

e Pearson linear correlations between digital numbers of Aster data and measured EC values (Table 3)

erevealed that EC  showed significant correlations (p<0.05 and p<0.01) with spectral data in all of bands, except

VNIR1 and VNIR2. Negative correlation meant that small digital numbers for all bands except SWIR5, NDVI,

ePCA3 bands corresponded to high values of EC . 
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eLinear stepwise regression model was derived to predict EC  using ancillary datasets (i.e., spectral data

and indices) as predictor variables. The results showed the significant ASTER data (P<0.05) with ECe included

SWIR1, SWIR6, SUM48, PCA2, and they contributed in the multiple regression model with the highest R .adj2

eof 0.45, and the lowest Cp, MSEp, ME and RMSE. The regression model for prediction of EC  and its

statistics are summarized in Table 4. Khajeddin (Khajeddin, 1995) indicated that among MSS data, MSS1 and 

eMSS2 data had highest correlation with EC . Douaoui et al. (Douaoui et al., 2006) revealed that the salinity 

index  (SI3=               ) synthesized by SPOT data, showed the highest correlation(r= 0.49) with soil

salinity. 

eThe experimental variogram was obtained for soil surface EC  (Fig 4a). An exponential model was fitted

to the experimental variogram with a nugget effect of 2278.62 (dS/m) , a sill of 1935.73 (dS/m)  and a range2 2

of 4700 m (Table 5). Range is the distance beyond which spatial dependence between soil samples is ceases

to exist and it can be used as indicator of the appropriate cell size for a filed survey in site-specific

management (Lopez-Granados et al., 2005). Thus, range is important, both to define the different classes of

spatial dependence for the soil variables as described previously in Lopez-Granados et al., (2005) and to

establish the sampling interest for future surveys. The sampling interval should be less than half of the range

o 0 eas a “rule of thumb” (Kerry and Oliver, 2003). The ratio of dependency (C /C+C *100) for EC , calculated

54%. Different classes of spatial dependency for the soil variable can be evaluated by the described ratio .[3]

For the ratio between 26 and 75%, the soil variable was considered to be moderately spatially dependent.

Therefore, in the study area soil surface salinity showed moderately spatial dependency. 

The co-kriging (CK) is the logical extension of kriging to situations where two or more variables are

spatially independent, and one of them, the one of immediate interest, is undersampled (McBratney and

eWebster, 1983). Pearson linear correlation between soil EC  and spectral values of ASTER bands (Table 4)

erevealed that SWIR1 showed highest correlation with EC  data, although this correlation was moderate (r=0.43),

but it was used as auxiliary variable in this method.

e     To investigate spatial variability structure of EC  and SWIR1 spectral band, experimental variograms were

calculated for those variables in different directions (0<, 45<, 90< and 135<). After of confidence of isotropy

in all selected direction, omnidirectional variogram was considered for subsequent analysis. Theoretical

evariograms were fitted to EC  and SWIR1 data respectively with calculated models in Figs 4a and 4b. The

illustration of interrelationships of two variables is presented in Fig 4c.

As already explained, for bi-variate interpolation method, the SWIR1 data was used as an exhaustive

secondary information source. Therefore in order to co-kriging analysis was necessary to calculate cross-

evariogram of EC  and SWIR1 band data. Since soil electrical conductivity was negatively correlated with

SWIR1 band data, therefore the cross semi-variogram was negative (Fig 4c). Table 5 shows the

ecoregionalization parameters for EC  with the fitted models. Rivero et al. (2007) showed for prediction soil

phosphorus variability in a Florida wetland with ASTER and ETM  data, the NDVI index had strongest spatial+

cross-semivariogram structure for soil TP and a spherical model was fitted for prediction of TP with this

method (CK).

eThe experimental variogram was calculated for the residual value of EC  estimated use of multiple

regression model (REGm) (Fig 5). An spherical model was fitted to the experimental variogram with a nugget

effect of 1530.5 (dS/m) , a sill of 1519.58 (dS/m)  and a range of 1226.5 m (Table 5).2 2

For comparing results of different predictors, correlation coefficient (r), ME and RMSE determination were

used of 20% data (n=36) to evaluate the performance of the map prediction quality. Validation results for ECe

prediction from the four geostatistical and statistical methods are summarized in Table 6 including ordinary

kriging (OK), co-kriging (CK), regression kriging model based on the multivariate regression model (RK) and

linear regression model. 

ME and RMSE value calculated for different approaches (Table 6) showed that higher predictions errors

were obtained with kriging and cokriging methods. Regression-kriging (RK) approach was clearly the best

method for the prediction of ECe showing the lowest ME (-1.04) and RMSE (44.08) values and highest

correlation coefficient (0.66). According to validation based RMSE and ME calculated by a validation data set,

the predictions for soil salinity were found to be the best and varied in the following order:

ASTE R m u tivariate ASTERm ultivariate ASTERRK > REG  > Co-kriging >Kriging. Therefore, the map derived using RK method

could be used as the best qualified map for salinity management in the given study area.

Douaoui et al.(2006) in detecting salinity hazards within a semiarid context by means of combining soil

and ETM  data found that RK performed better than other spatial models including multiple linear regression+

(MLR),  ordinary  kriging  (OK), classification method (CL), and classification-kriging. In another study,
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Rivero et al. (2007) recommended the ETM-NDVI (model REGETM) showed a stronger relationship to soil

phosphorus (r =0.68) to predict soil phosphorus variability with RK rather than other interpolation methods.

Odeh and McBratney (2000) demonstrated superiority of RK to other prediction methods such as OK, universal

kriging, multiple-linear regression and CK. Dungan (1998) in comparing geostatistical (OK, CK and stochastic

simulation) with linear regression for prediction vegetation parameters indicated that correlation coefficients

between main and secondary data more than 0.89, the best model was obtained for CK. Knotters et al. (1995)

showed that correlation coefficients more than 0.70, CK and kriging combined with linear regression methods

produced better results. Ordinary kriging method, showed the poorest prediction results, because of the spectral

data was ignored and only the measured EC values were considered. Therefore when secondary information

is available, was suggested to incorporate them into soil properties for providing map.

Fig. 1: Location of the study area in the Golestan province, northern Iran

Fig. 2: Soil sampling grid on the ASTER image (SWIR1 band)
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Fig. 3: Flow chart of regression-kriging method (Odeh et al., 1995)

(a)

(b)
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(c)

Fig. 4: Experimental variograms and fitted variograms for ECe and spectral band: a) ECe surface b) SWIR1

spectral band c) Cross variogram ECe-SWIR1 band.

Fig. 5: Experimental and fitted variogram for ECe residuals (REGm)

Table 1: The description of VNIR and SWIR bands of ASTER data  

Subsystem Band No. Spectral range (ìm) Spatial resolution (m) Quantization levels

VNIR 1 0.52-0.6

2 0.63-0.69 15 8 bits

3N 0.78-0.86

3B 0.78-0.86

SWIR 4 1.60-1.70

5 2.145-2.185

6 2.185-2.225 30 8 bits

7 2.235-2.285

8 2.295-2.365

9 2.360-2.430

TIR 10 8.125-8.475

11 8.475-8.825

12 8.925-9.275 90 12 bits

13 10.25-10.95

14 10.95-11.65

Table 2: M ain and processed bands 

Bands (bands made procedure) No.

VNIR1............SWRI6 M ain bands of ASTER except TIR bands 1

PCA1vnir First component of PCA of VNIR bands 2

PCA1swir First component of PCA of SWIR bands 3

PCA1vnir&swir First component of PCA of VNIR&SWIR bands 4*

NDVI (vnir 3-vnir 2)/(vnir 3+vnir 2) 5**

SUB48 (swiir1/swir5) 7

SUM 48 (swiir1+swir5) 8

*(Ren and Abdelsalm, 2006)

: (Jimenez-M unoz et al., 2006; Rouse et al., 1974)**
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eTable 3: Correlation coefficients between spectral indices and measured EC  values

eSpectral bands Correlation coefficients (EC )

SWIR1 -0.433**

SWIR2 -0.344**

SWIR3 -0.366**

SWIR4 -0.316**

SWIR5 0.287**

SWIR6 -0.361**

VNIR1 -0.046

VNIR2 -0.093

VNIR3 -0.185*

NDVI 0.177*

PCA1vnir -0.314**

PCA1swir -0.241**

PCA1vnir&swir 0.315* **

SUM 48 -0.373**

SUB48 -0.276***

Correlation is significant at the 0.01 level.  Correlation is significant at the 0.05 level * 

Table 4: Regression model to predict ECe with spectral values

M odel R R .adj Cp M SEp RMSE M E2

ECe = 730-12.4Swir1-9.77Swir6+15.5 sum48-1.64 PCA1swir 0.68 0.45 0.037 0.41 52.24 -0.60

eTable 5: Geostatistical analysis of electric conductivity ( EC ), spectral band(SWIR1), coregionalization matrix parameters (CK) and

regression kriging (RK)

Prediction model Variogram model Sill Nugget Range (m)

Ordinary kriging (OK) Exponential 1935.73 2278.62 4700

SWIR1 Exponential 98 23.52 3429.75

eEc -SWIR1 Spherical -260 -109.55 4700

RK(kriging of residuals) Spherical 1519.58 1530.5 1226.5

Table 6: Summary of validation statistics M E and RM SE using of 20 % data (n=36)

Soil parameter model Correlation coefficient M E RMSE

Regression-kriging 0.66 -1.04 44.08

eEC M ultiple linear regression 0.55 -1.17 49.39

Co-kriging 0.34 -1.60 59.42

Ordinary kriging 0.33 -3.63 80.22

In general, geostatistical estimation methods incorporated to spectral data of ASTER had higher favorable

RMSE results than multivariate regression prediction method using SWIR1, SWIR6, SUM48 and PCA1swir

images derived from ASTER data. It seems that using only from one auxiliary variable such as SWIR1 with

relatively low to moderate correlation coefficient with ECe, in CK technique, can not improve prediction,

whereas addition of more correlated images including, SWIR6, SUM48 and PCA1swir in RK and MLR

techniques improved prediction accuracy. These results are accordance with other studies (Knotter et al., 1995;

Odeh and McBratney, 2000; Rivero et al., 2007). On the other hand ordinary kriging also showed lower

accuracy than multiple linear regression combined with ASTER data, indicating that in ordinary kriging only

the spatial component of soil variable was considered and the spectral data were completely ignored.

 

Conclusion:

Generally, results from this study confirmed that remote sensing data can play an important role in

improving predictions of salinity levels, can be captured by these sensors. Depending on the strength of the

relationships between target soil variable and ancillary environmental variables, the spatial variability of soil

observations models differ in performance. Therefore, this comparative study in an arid zone showed, RK and

multiple regression models could predict the soil surface salinity with more accuracy than other geostatistical

and hybrid methods. Daytime ASTER data may show to what remote sensing improves salinity prediction

models. The overall results exposed the using remote-sensing data and ground monitoring may be useful to

map the soil salinity and manage them in the arid regions.
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