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Dependency Measures for Assessing the Covariation 
of Spectrally Active and Inactive Soil Properties 

in Diffuse Reflectance Spectroscopy

Soil Physics

Rapid and reliable assessment of soil characteristics has become a main-
stream component for monitoring and management of agricultural and 
natural resources. Soil properties vary widely both in time and space 

(Cohen et al., 2005; Minasny and Hartemink, 2011). Even with decades of re-
search and development, the in situ and frequent assessment of different soil prop-
erties remains a formidable task. Remote sensing tools appear to be a feasible tech-
nology to provide a comprehensive solution to this problem (Vasques et al., 2010). 
Specifically, the diffuse reflectance spectroscopy (DRS) technique in the visible to 
near-infrared (VNIR) regions (350–2500 nm) has emerged as a rapid and nonin-
vasive technique for the estimation of soil properties (Ben-Dor et al., 2009). Two 
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Diffuse reflectance spectroscopy (DRS) is a rapid and noninvasive assess-
ment technique for several spectrally active soil properties (chromophores) 
such as sand, clay, organic C, and Fe contents. The approach is also used for 
estimating many spectrally inactive constituents (non-chromophores) based 
on the assumption of covariation between non-chromophores and chromo-
phores. The linkage between covariation and the ability of DRS to estimate 
a non-chromophore has not been reported in the literature. In this study, 
we evaluated the covariation assumption using three dependency measures 
(Pearson correlation coefficient, r; biweight midcorrelation, bicor; and mutu-
al information based adjacency, AMI), five chromophores (organic C, Fe, clay, 
and sand contents, and geometric mean diameter), and seven non-chromo-
phores (pH, electrical conductivity, P, K, B, Zn, and Al contents) measured 
in 247 Alfisol and 249 Vertisol samples. An average dependency index (ADI) 
was developed for each of the three measures (ADIr, ADIbicor, and ADIAMI). 
The first derivative of the reflectance in conjunction with partial least squares 
regression was used for data modeling. Model accuracy was evaluated using 
residual prediction deviation (RPD). The relationships between RPD values 
of non-chromophores and the ADI values were examined for different chro-
mophore groups (physical, chemical, and combined). The performance of 
ADIAMI was found to be superior to ADIr and ADIbicor. The ADIAMI comput-
ed using chemical chromophores gave strong linear relationships (R2 = 0.93) 
between ADIAMI and the RPD of chemical non-chromophores, suggesting that 
the AMI may be used as a robust dependency measure to assess the covaria-
tion of non-chromophores with chromophores in DRS.

Abbreviations: AMI, adjacency values of mutual information; bicor, biweight 
midcorrelation, DRS, diffuse reflectance spectroscopy; EC, electrical conductivity; FD, 
first derivative; GMD, geometric mean diameter; MI, mutual information; OC, organic 
carbon; PLSR, partial least squares regression; RPD, residual prediction deviation; VNIR, 
visible to near infrared.
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of the most attractive advantages of the DRS approach are (i) 
that it has the potential to replace the cumbersome and expen-
sive chemical analyses procedures used in soils and (ii) that it is 
amenable to both proximal and remote sensing mode of opera-
tions (Viscarra Rossel et al., 2006).

The uniqueness of the DRS technique is its capability to 
estimate a range of soil properties from a single reflectance spec-
trum of the soil by means of regression models. The DRS ap-
proach has been used for estimating soil texture (Volkan Bilgili 
et al., 2010), organic C (OC) contents (Galvao and Vitorello, 
1998; Fox and Metla, 2005; Singh et al., 2013), nutrient con-
tents including N (Vågen et al., 2006), P, and K (Mouazen et 
al., 2007), electrical conductivity (EC) (Shrestha, 2006), cation 
exchange capacity (CEC) (Fox and Metla, 2005), Fe content 
(Galvao and Vitorello, 1998), color (Mathieu et al., 1998), soil 
moisture contents (Whiting et al., 2004), carbonates (Gomez et 
al., 2008), mineralogical composition (Clark, 1999), hydraulic 
properties (Santra et al., 2009), and parameters for the aggregate 
size distribution function (Sarathjith et al., 2014) among others. 
The DRS models are generally evaluated using the residual pre-
diction deviation (RPD) criterion (Chang et al., 2001), which is 
defined as
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where Yi and ˆ
iY  are the observed and predicted response vari-

ables, respectively, Y  is the mean of the Yi values, and n is the 
number of soils in the validation data set. Chang et al. (2001) 
classified prediction accuracies into accurate (RPD > 2), moder-
ate (1.4 < RPD < 2), and poor (RPD < 1.4), although such a rule 
is still being debated (Bellon-Maurel et al., 2010).

Spectral reflectance (R) across the VNIR region of a soil 
is a collective response caused by the molecular vibrations of 
specific soil constituents and scattering phenomena because 
of the aggregated nature of soil particles (Ben-Dor, 2011). 
Specifically, the magnitude of R at a specific wavelength (l) is 
chemically influenced by the electronic transitions, overtones, 
and combinations of Fe-bearing minerals, clay minerals, and 
C–H functional groups of organic matter contents (Clark, 
1999) and physically influenced by the extent of scattering and 
self-shadowing effects of the surface roughness (Baumgardner 
et al., 1985). Thus, chemical constituents such as clay miner-
als, Fe oxides, OC content, and moisture content are referred 
to as spectrally active components or simply chemical chro-
mophores. The physical chromophores mainly consist of those 
factors affecting the diffusion of light in soil, such as texture, 
aggregate size distribution, roughness, porosity, etc. In addition 
to these spectrally active components, the DRS approach is also 
used for estimating several spectrally inactive soil attributes 
such as pH (Abdi et al., 2012; Viscarra Rossel and Webster, 
2012), micronutrients such as Zn (Abdi et al., 2012), and ma-
jor nutrients such as P, K, and S (Malley et al., 1999) among 

others. Although the term chromophore strictly applies to the 
functional groups influenced by the optical region of the re-
flectance spectra, we adopt the definition of Ben-Dor (2011) 
and refer to all spectrally active components of soil as chro-
mophores and spectrally inactive components as non-chromo-
phores. The success of estimating non-chromophores by the 
DRS approach is advocated as an outcome of the covariation 
of a non-chromophore with relevant chromophores (Stenberg 
et al., 2010). Hence, it was hypothesized that if the assumption 
of covariation is valid, then the strength of covariation may be 
linked with the predictability of non-chromophores.

Two popular ways of assessing the covariation assumption 
are by (i) comparing the prediction of a non-chromophore 
by the DRS approach and the pedotransfer function (PTF) 
approach (Bouma, 1989; Santra and Das, 2008), where non-
chromophores are expressed as linear combinations of chro-
mophores through multiple linear regression (MLR) models 
(Chang et al., 2001), or (ii) computing the Pearson correlation 
coefficient (r) between non-chromophores and chromophores 
(Nduwamungu et al., 2009; Volkan Bilgili et al., 2010; Abdi 
et al., 2012; Kinoshita et al., 2012) measured under laboratory 
conditions. Chang et al. (2001) observed that both DRS and 
PTFs yielded similar predictability for CEC and Cu, whereas 
the predictabilities by these two approaches were different for 
non-chromophores such as pH, K, and Mn. The inefficacy of 
MLR to accurately represent the relationship between chro-
mophores and non-chromophores may be one of the reasons 
for the dissimilar predictability. In the second approach, the 
prediction of a non-chromophore has been linked with the 
magnitude of r values with chromophores. Abdi et al. (2012) 
showed that the accurate prediction of pH (RPD = 3.23) was 
due to its correlation with both total C (r = 0.52) and total N 
(r = 0.54). Kinoshita et al. (2012) also observed similar results 
for CEC (RPD = 2.44), which was strongly correlated with 
active C (r = 0.86). However, the predictability was moderate 
for pH and Mg and poor for EC, P, K, Zn, and S, although 
some of these non-chromophores were strongly correlated 
with the chromophores in their study. The Pearson correla-
tion is a linear dependency measure based on the assumption 
of a normal distribution of the correlated attributes. Recently, 
Kinoshita et al. (2012) reported that no transformations were 
successful in conforming to a normal distribution for many soil 
properties in their study. In such situations, the use of r is not 
advisable. Moreover, the r values are highly sensitive to outliers 
(Abdullah, 1990). In general, both of these approaches were al-
ways not satisfactory in linking covariation with the prediction 
of all non-chromophores. This necessitates a close examination 
of the covariation assumption and the dependency measure 
used in the DRS approach.

In addition to the Pearson correlation coefficient, other de-
pendency measures such as biweight midcorrelation (bicor) and 
mutual information (MI) are used to account for both linear and 
nonlinear dependencies (Song et al., 2012). Specifically, these 
methods have been found to be more robust to outliers than 
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correlation measures. The bicor is a median-based correlation 
measure, while the MI measures the “distance” between the joint 
distributions of two variables. The efficacy of such dependency 
measures has not been explored in soil DRS studies. Thus, the 
objectives of this study were to: (i) evaluate three dependency 
measures (r, bicor, and MI) for assessing the covariation of se-
lected non-chromophores with chromophores; and (ii) assess 
the effects of covariation on the predictability of specific non-
chromophores in the DRS approach.

MATERIALS AND METHODS
Study Area and Soil Sampling

This study was conducted using surface (0–10-cm) soil 
samples from 247 Alfisols and 249 Vertisols collected from 
different districts of Karnataka, India. The soils were air dried, 
ground, and sifted through a 2-mm sieve and stored for chemical, 
physical, and spectral analyses. The soils were collected as a part 
of a large-scale effort to enhance agricultural productivity across 
Karnataka State by ICRISAT, Patancheru, Hyderabad, India. 
These soils were similar to those used by Sarathjith et al. (2014). 
Alfisols are slightly acidic in reaction because they formed under 
weathering of ancient crystalline and metamorphic rocks, while 
the Vertisols are slightly alkaline and are of igneous origin. In 
contrast to Alfisols, the Vertisols have high base saturation and 
high soil organic fractions intimately mixed with clay and less 
dehydrated Fe oxides (Lotse et al., 1972).

Measurement of Soil Properties 
and Spectral Reflectance

Five chromophores (OC contents, extractable Fe, clay and 
sand contents, and geometric mean diameter) and seven non-
chromophores (pH, EC, P, K, B, Zn, and Al) were estimated for 
all the soil samples. Soil OC and particle size distribution were 
determined using the chromic acid digestion method (Walkley 
and Black, 1934) and the international pipette method (Gee and 
Bauder, 1986), respectively. Soil pH and EC were measured po-
tentiometrically using a 1:2.5 soil/water ratio. The soil geometric 
mean diameter (GMD) was determined by dry sieving of 100- 
to 200-g soil samples in a stack of eight sieves (1.18-, 0.3-, 0.2-, 
0.18-, 0.125-, 0.09-, 0.075-, and 0.053-mm nominal diameters) 
and a pan at the bottom. The samples retained in the top sieve 
and bottom pan sieve were arbitrarily assigned the aggregate di-
ameter (di) of 1.18 and 0.005 mm, respectively. The mass fraction 
(wi) of soil aggregates retained in each sieve and the pan were 
weighed. The GMD was computed as
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Extractable P was measured using NaHCO3 as an ex-
tractant (Olsen and Sommers, 1982). The NH4OAc method 
(Helmke and Sparks, 1996) was used in the estimation of ex-
tractable K. Zinc was extracted by diethylenetriaminepentaacetic 
acid (DTPA) reagent (Lindsay and Norvell, 1978) and B was ex-

tracted by hot water (Keren, 1996). Inductively coupled plasma 
optical emission spectrometry (HD Prodigy, Leeman Labs) was 
used for nutrient content analysis.

Proximal spectral reflectance of the soil samples at the 350- 
to 2500-nm range were recorded in the laboratory using a por-
table spectroradiometer (Field Spec 3 FR, Analytical Spectral 
Devices Inc.). A contact probe with a 1500-h halogen bulb light 
source and having 10-mm spot size was used for the active sens-
ing of the soil spectra. About 50 g of soil was placed in an Al 
moisture box (10-cm diameter) and the soil surface was leveled 
(Mouazen et al., 2010) with a rubber cork used as a mallet before 
the spectral measurements. Four reflectance spectra acquired 
from different quadrants in the central area of the container were 
smoothed using a third-order Savitsky–Golay filtering algorithm 
with a span length of 9 nm (Vasques et al., 2010). The average of 
these four reflectance spectra was calculated to obtain the rep-
resentative spectrum of the soil. A reference spectrum was col-
lected after every soil sample using a circular (9.2-cm diameter) 
Spectralon white reference panel (Labsphere).

Relationship of Soil Properties 
with Spectral Reflectance

All necessary data processing and statistical modeling 
was performed using MATLAB (R2012a, The Mathworks) 
software. Soil attributes with a skewed frequency distribution 
were transformed into natural logarithm or Box–Cox scale. 
The normality check was performed using the one-sample 
Kolmogorov–Smirnov test statistic at the 5% significance level. 
Soil attributes failing the normality test even after logarithmic 
and Box–Cox transformation were left untransformed. The re-
flectance values before 400 nm and after 2450 nm were excluded 
in data modeling due to their poor signal/noise ratio. A range 
of modeling approaches including the wavelet packet approach 
(Sahadevan et al., 2013) and partial least squares regression 
(PLSR) in conjunction several spectral transformations such as 
absorbance, standard normal variate, Kubelka–Munk, discrete 
wavelets, and first derivative (FD) were examined in this study. 
The results of the FD and PLSR combination emerged as the 
best prediction approach for the majority of the soil attributes 
in both soil types. Hence, this modeling scheme was adopted for 
all the soil attributes so as to facilitate model efficacy compari-
sons across soil attributes.

Outliers in the data sets were removed by analyzing the re-
siduals resulting from the principal component regression rela-
tionships between soil property and FD spectra at the 5% level of 
significance. The remaining soils were partitioned into calibration 
and validation data sets in a 3:1 ratio by means of the Kennard–
Stone algorithm (Kennard and Stone, 1969; Nocita et al., 2014). 
Relationships between soil attributes and the FD reflectance were 
established by PLSR. The number of latent variables required for 
PLSR was determined by a leave-one-out cross-validation scheme 
(Viscarra Rossel, 2007). The accuracies of the developed PLSR 
models were evaluated using the coefficient of determination (R2), 
root mean squared error (RMSE), and the RPD.
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Covariation Assessment Using 
Dependency Measures

The covariation between the chromophores (X) and a non-
chromophore (Y) measured in our study was established by three 
dependency measures: r, bicor, and MI. The r value indicates the 
linear dependencies between X and Y, with values bounded be-
tween 1 (strong positive correlation) and −1 (strong negative 
correlation). A value of 0 denotes no correlation between X and 
Y. If X  and Y  denote the average values of X and Y, respectively, 
for n observations, then r is computed as
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The bicor is a median-based correlation measure found to 
be more robust to outliers than the Pearson correlation (Wilcox, 
2005). In this approach, two normalized variables ui and vi are 
first computed using
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where Xm and Ym represent the medians and XMAD and YMAD 
denote the median absolute deviations of X and Y, respectively. 
The weight for Xi (wi

X) may then be defined as
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The value of wi
X ranges between 0 and 1 by assigning the indica-

tor I(1 − |ui|) a value of 1 if I(1 − |ui|) is >0, or 0 otherwise. The 
weight decreases as Xi moves away from the median and becomes 
0 when it exceeds 9XMAD. The multiplier 9 in Eq. [4–5] is linked 
with the scale estimator used in the bicor estimation yielding the 
optimum efficiency (Wilcox, 2005). A similar weight may be de-
fined for the Y variable (wi

Y). For the given weights, bicor is then 
computed as
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Mutual information is a measure of the amount of informa-
tion that one random variable contains about another random 
variable. The MI has an added advantage over Pearson correla-
tion in its capacity to measure nonlinear relationships between 
variables (Battiti, 1994). The MI may be computed as

( ) ( ) ( ) ( )MI , ,X Y H X H Y H X Y= + −
 [8]

where H(X) and H(Y) represent the marginal entropies of X and 
Y, respectively and H(X,Y) denotes the joint entropy. If p(x) and 
p(y) are the probability mass functions of X and Y, respectively, 
and p(x,y) represents their joint distribution, then
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The MI was computed using the MI toolbox for MATLAB de-
veloped by Hanchuan Peng (www.mathworks.in/matlabcentral/
fileexchange/14888-mutual-information-computation). The the 
adjacency values of MI (AMI), which range between 0 and 1, 
were computed as suggested by Song et al. (2012):

( )
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RESULTS AND DISCUSSION
Descriptive Statistics of Soil Properties

Descriptive statistics of the different soil properties ana-
lyzed in this study are given in Table 1. Generally, Alfisols are 
dominantly coarse textured and less clayey, in contrast to the 
Vertisols, which are generally fine-textured and clayey soils. The 
two soil groups were distinctly different with regard to their clay 
mineralogy, with the Vertisols being mostly montmorillonitic 
and the Alfisols being more kaolinitic. The average OC content 
in both soil types was found to be low and similar in magnitude. 
The average pH underlined the slight acidic nature of the Alfisols 
as well as the alkaline nature of the Vertisols.

Reflectance Characteristics of 
Alfisols and Vertisols

Reflectance spectra for both Alfisols and Vertisols (Fig. 
1a) were similar with respect to three distinct absorption peaks 
around 1400, 1900 (water absorption bands), and 2200 nm (met-
al–hydroxyl stretching), as reported in the literature (Clark et 
al., 1990; Post and Noble, 1993). The characteristic absorptions 
are at montmorillonite singlets (near 1400, 1900, and 2200 nm) 
in Vertisols and kaolinite doublets (near 1400 and 2200 nm) in 
Alfisols (Wetterlind and Stenberg, 2010). These two soil groups 
differed in their overall reflectance. The higher reflectance of 
Alfisols in the VNIR region may be attributed to their Fe oxide 
contents (Leone and Sommer, 2000). Moreover, the Vertisols 
were generally greyish to black in color compared with the more 
reflective light brown and reddish color of the Alfisol samples. 
Other spectral dissimilarities between the Vertisols and Alfisols 
were observed around 550, 850, and 2200 nm (Fig. 1b and 1c). 
The characteristic feature around 550 and 850 nm may be linked 

www.mathworks.in/matlabcentral/fileexchange
www.mathworks.in/matlabcentral/fileexchange
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with the electronic transition band of Fe2+ and Fe3+ (Bayer 
et al., 2012) in the Alfisols. The absorption peak around 
2200-nm wavelength was found to be sharp in the Alfisols 
and blunt in the Vertisols, which may be associated with 
the clay mineralogy of these soil types.

Prediction of Soil Properties Using Diffuse 
Reflectance Spectroscopy

Table 2 lists the regression statistics for the predic-
tion of soil properties of both Vertisols and Alfisols us-
ing the FD-PLSR approach with an optimum number 
of latent variables. Only the extractable Fe and GMD in 
the Vertisols were accurately predicted among all the soil 
chromophores in the validation data set. Moderate predic-
tion accuracies were noted for OC in both soil groups and 
for sand contents, clay contents, and Fe in the Alfisols. The 
modeling approach failed to estimate sand and clay con-
tents in the Vertisols and GMD in the Alfisols. The pH and P 
in the Vertisols and the pH and K in the Alfisols were the accu-
rately predicted non-chromophores. Moderate predictions were 
obtained for EC, Zn, and Al in the Vertisols. Prediction of the 
remaining soil properties such as K and B in the Vertisols and 
EC, P, B, Zn, and Al in the Alfisols was poor. The accuracy of 
prediction calculated in terms of R2 and the RPD of prediction 
were comparable and often better than those reported in the lit-
erature for extractable Fe (Abdi et al., 2012; Viscarra Rossel and 
Webster, 2012), clay (Chang et al., 2001; Viscarra Rossel et al., 
2006), sand (Kinoshita et al., 2012), OC (Stevens et al., 2006; 
Morgan et al., 2009; Summers et al., 2011), pH (Malley et al., 
1999; Viscarra Rossel and Webster, 2012), EC (Zornoza et al., 
2008; Kinoshita et al., 2012), P (Mouazen et al., 2007; Kinoshita 
et al., 2012; Debaene et al., 2014), K (Volkan Bilgili et al., 2010; 
Abdi et al., 2012), and Zn (Chang et al., 2001; Kinoshita et al., 
2012). Thus, the modeling approach followed in this study may 
be best suited for these two types of soils.

Assessment of Covariation Criteria
Interestingly, not all the chromophores showed excellent 

predictability; only extractable Fe and GMD in the Vertisols 
showed excellent prediction, and relatively high RPD values may 
be seen for OC, Fe, and clay in the Alfisols, although the predic-
tion is only in the moderate range. Table 2 clearly shows that the 
prediction accuracies for a given non-chromophore are different 
across soil types. For example, the prediction of K in the Vertisols 
(RPD = 1.26) and Alfisols (RPD = 2.03) had different strengths 
of prediction. Some of the non-chromophores showed excellent 
prediction, however, suggesting that the covariation of a strongly 
predicted non-chromophore may be linked with the predictabil-
ity of chromophores. Thus, these two data sets present an oppor-
tunity to evaluate the strength of covariation as an indicator of 
predictability for non-chromophores seen in DRS studies.

Table 3 shows different covariation measures of r, bicor, 
and AMI for both non-chromophores and chromophores. 
Although the parameter r does not always indicate causation, 
the p values ³99% level of significance indicate strong corre-
lation with chromophores in the Vertisols. Despite significant 

Table 1. Descriptive statistics of soil properties.

Soil attribute
Vertisols (n = 249) Alfisols (n = 247)

Mean Range Mean Range

Clay, % 14.64 (36)† 4.29–43.42 12.40 (53) 2.10–34.30
Sand, % 65.62 (15) 21.96–87.82 78.10 (10) 50.90–91.60

GMD‡ 0.31 (25) 0.17–0.52 0.21 (25) 0.13–0.45

Organic C, % 0.40 (38) 0.11–0.93 0.38 (36) 0.11–0.91

Fe, mg L−1 7.65 (111) 1.20–104.70 14.88 (84) 2.00–104.80

pH 8.54 (6) 6.00–9.60 6.67 (21) 4.30–9.50

EC, µS cm−1 0.58 (318) 0.08–28.20 0.42 (67) 0.10–0.90

P, mg L−1 10.05 (126) 0.47–60.40 11.77 (85) 0.90–57.40

K, mg L−1 232.16 (38) 39.00–618.75 118.83 (89) 11.00–738.00

B, mg L−1 1.59 (105) 0.16–14.72 0.52 (70) 0.10–2.60

Zn, mg L−1 0.65 (161) 0.14–15.24 0.95 (63) 0.22–4.20
Al, mg L−1 1.53 (31) 0.60–4.00 2.23 (53) 1.10–11.20
† Values in parentheses are the coefficients of variation (%).
‡ Geometric mean diameter.

Fig. 1. (a) Average spectral reflectance of Vertisols and Alfisols samples, (b) first derivative of the average reflectance of Vertisols, and (c) first 
derivative of the average reflectance of Alfisols.
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correlations with Fe and GMD, which had excellent prediction 
accuracies (RPD > 2), the parameter EC showed moderate 
RPD in the Vertisols. In contrast, pH has significant correla-
tion (p < 0.001) with all the chromophores except GMD and 
showed excellent predictability (RPD > 2) for this soil group. 
Such an inconsistent trend for Pearson correlation precludes its 
use as a good dependency measure for explaining covariation 
and its role in the estimation of non-chromophores in the DRS 
approach.

Except for a few isolated cases, bicor showed similar 
trends as the r values. This was expected because bicor and r 
values should be similar for most normally distributed data 
and we had most of our parameters transformed to have a nor-
mal distribution. Similar to r values, MI also did not explain 
the excellent prediction for pH and moderate prediction for 
EC despite large adjacency values. With the lack of a test of 
significance, the superiority of AMI factors could not be as-
sessed, although their range appeared to be narrow compared 
with the two other dependency measures: AMI values ranged 

from 0.01 to 0.34 and r values ranged from −0.81 to 
0.65. With no one-to-one relationship between the de-
pendency measures and the RPD values, we also exam-
ined whether these measures as a group could explain the 
strength of prediction as influenced by the strength of 
dependency. We estimated an average dependency index 
(ADI) by taking the average of the absolute dependency 
values shown in Table 3 for all the chromophores (OC, 
sand, clay, Fe, and GMD) for each non-chromophore 
with the assumption that the covariation assessment may 
be more appropriate when the dependencies (significant 
or insignificant) of a non-chromophore with several 
chromophores are considered together rather than ex-
amining them for individual chromophores. Thus, three 
ADI values corresponding to r (ADIr), bicor (ADIbicor) 
and AMI (ADIAMI) were estimated for each non-chro-
mophore. Figures 2a, 2b, and 2c show these three ADI 
values as functions of the corresponding RPD values for 
all seven non-chromophores considered for both the soil 
groups. A linear trend between the RPD values and ADIr 
(R2 = 0.39), ADIbicor (R2 = 0.37) and ADIAMI (R2 = 
0.49) values may be noted, suggesting that the increase 
in the predictability of a non-chromophore is tied with 
how strongly it depends on all the chromophores and not 
just one of them.

To further assess the linearity between the ADI and 
RPD values, we further estimated the ADI values corre-
sponding to physical (clay, sand, GMD) and chemical (OC 
and Fe) chromophores separately. Many soil DRS stud-
ies explained the prediction of a non-chromophore by its 
covariation with physical, chemical, or a combination of 
both (combined chromophores) categories. Recently, both 
Abdi et al. (2012) and Nduwamungu et al. (2009) linked 
the prediction of pH with total C and total N (chemical 
chromophores). Chang et al. (2001) reported that the pre-
diction of pH was dependent on clay and organic matter 

(combined chromophores). The ADI values for the physical 
chromophores (Fig. 2d–2f ) show no linear association between 
the RPD values and ADIr (R2 = 0.00), ADIbicor (R2 = 0.00), 
and ADIAMI (R2 = 0.00), suggesting that the physical chromo-
phores may be least significant in explaining the predictability 
of non-chromophores despite the strong dependencies that ex-
isted between them. The reason may be associated with the lack 
of absorption at discrete wavelengths in the reflectance spectra 
for physical chromophores. In contrast, the influence of chemi-
cal chromophores at discrete wavelengths in the spectra together 
with their dependency for non-chromophores may have resulted 
in a very strong linear relationship between the RPD values of 
the non-chromophores and ADIr (R2 = 0.73), ADIbicor (R2 = 
0.77), and ADIAMI (R2 = 0.93) values (Fig. 2g–2h). The per-
formances of ADIr, ADIbicor, and ADIAMI were superior when 
only chemical chromophores were considered in their compu-
tation. All the non-chromophores considered in this study are 
generally chemical in nature. This suggests that the prediction of 

Table 2. Regression statistics of number of latent variables (LV), num-
ber of soils (n), coefficient of determination (R2), root mean squared 
error (RMSE), and residual prediction deviation (RPD) for the predic-
tion of soil properties using diffuse reflectance spectroscopy.

Soil 
attribute

LV
Calibration Validation

n R2 RMSE n R2 RMSE RPD

Vertisols
Organic C† 7 175 0.78 0.18 58 0.60 0.19 1.60

Fe‡ 9 175 0.91 0.11 59 0.80 0.12 2.24

Clay† 8 176 0.73 0.16 59 0.26 0.20 1.17

Sand 8 178 0.74 4.35 60 0.47 5.87 1.39

GMD§ 11 176 0.92 0.02 59 0.84 0.02 2.53

pH¶ 9 175 0.89 0.15 58 0.76 0.19 2.07

EC#‡ 10 177 0.89 0.43 59 0.56 0.64 1.51

P¶ 7 175 0.83 4.07 59 0.80 2.53 2.26

K† 7 175 0.63 0.22 59 0.36 0.20 1.26

B† 14 178 0.91 0.21 59 0.32 0.42 1.23

Zn‡ 7 174 0.75 0.34 58 0.57 0.40 1.54

Al‡ 10 176 0.78 0.10 59 0.52 0.15 1.46

Alfisols

Organic C 8 174 0.72 0.06 58 0.69 0.07 1.82

Fe† 11 175 0.87 0.28 58 0.66 0.40 1.74

Clay† 14 178 0.94 0.13 59 0.69 0.25 1.80

Sand¶ 4 174 0.80 3.48 58 0.59 3.50 1.57

GMD† 9 175 0.88 0.09 58 0.43 0.11 1.34

pH¶ 11 175 0.92 0.36 58 0.83 0.47 2.46

EC¶ 5 176 0.32 0.22 59 0.27 0.22 1.18

P† 9 175 0.54 0.57 59 0.30 0.70 1.20

K† 11 174 0.87 0.28 58 0.75 0.37 2.03

B¶ 10 175 0.64 0.18 58 0.39 0.22 1.30

Zn† 9 173 0.66 0.30 58 0.42 0.39 1.32
Al¶ 7 179 0.55 0.48 60 0.30 0.44 1.20

† Soil properties subjected to natural logarithm transformation.
‡ Soil properties subjected to Box–Cox transformation.
§ GMD, geometric mean diameter.
¶ �Soil properties where transformations failed and data remained 

untransformed.
# EC, electrical conductivity.
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chemical non-chromophores was mainly due to their dependen-
cies with the chemical chromophores.

A similarity in the spread of data points may also be noted in 
the scatter diagrams for ADIr and ADIbicor. This may due to the 
fact that the dependency measures based on the mean (r) and me-
dian (bicor) look similar when the variables are normally distrib-
uted. In this study, most of the soil properties were transformed 
to have normality in their frequency distribution. Interestingly, 
the ADIAMI outperformed ADIr and ADIbicor in case of com-
bined physical and chemical chromophores. The capability of 
AMI to account for nonlinearities associated with some of the 
untransformed soil attributes may have resulted in the better 
performance of ADIAMI (Fig. 2c, 2f, and 2i). The strong linkage 
between the RPD and ADIAMI values was well depicted when 
the latter was computed using the chemical chromophores alone 
(Fig. 2i). Almost all the data points were located very close to 
the best-fit line (R2 = 0.93) in the scatter diagram. Moreover, 
the slope of the regression lines between RPD and ADIAMI was 
more than those of the other two dependency measures, suggest-
ing higher sensitivity of the MI measure for the predictability. 
Similarly, the intercept of the RPD vs. ADIbicor regression line 
was larger than the other two dependency measures, suggesting 
greater dependency of RPD on ADIbicor; however, the R2 for the 
regression line was less compared with the ADIAMI. Thus, the 
excellent relationship found between the RPD and ADIAMI sug-
gests that the prediction of the non-chromophores in the study 
may be related to their AMI with the chemical chromophores. 
Thus, the use of AMI may be advocated as a better covariation 
measure capable of explaining the predictability of non-chromo-
phores in DRS studies.

SUMMARY AND CONCLUSIONS
The prediction of non-chromophores using the DRS ap-

proach is assumed to be related to their covariation with chromo-
phores, but none of the existing methods and analyses succinctly 
depicts the linkage between covariation measures and the pre-
dictability of a non-chromophore. This study was performed to 
find an appropriate dependency measure to evaluate the covaria-
tion assumption using two major soil groups of India. Based on 
the fundamental definition of chromophores, OC and Fe were 
considered as chemical chromophores, soil texture and GMD as 
physical chromophores. The other soil properties, namely pH, 
EC, P, K, B, Zn, and Al, were treated as non-chromophores. The 
first derivative of soil reflectance in conjunction with the PLSR 
modeling approach was used for predicting all the soil properties. 
The model accuracies were evaluated using RPD. The utility of 
three different dependency measures, namely r, bicor, and AMI, 
were examined. An overall covariation measure was generated 
for each dependency measure (ADIr, ADIbicor, and ADIAMI) 
as the average of the dependency values of a non-chromophore 
with different chromophores. The covariation assessment was 
performed for three chromophore groups (combined, physical, 
and chemical). Linkage between the RPD of non-chromophores 
and ADIr, ADIbicor, and ADIAMI was examined for each chro-
mophore group. It was noted that the predictability of non-
chromophores was mainly due to their dependency with chemi-
cal chromophores. The physical and combined chromophores 
were less reliable for explaining the predictability of non-chro-
mophores with any of the dependency indices. Among the three 
dependency indices, the performance of ADIAMI was superior 
to ADIr and ADIbicor. An excellent relationship (R2 = 0.93) 

Table 3. Covariation between non-chromophores and chromophores.

Chromophore
Vertisols Alfisols

pH EC† P K B Zn Al pH EC P K B Zn Al
Pearson correlation coefficient

Organic C −0.32** 0.14 0.49** 0.28** 0.03 0.36** −0.01 0.39** −0.20* 0.21** 0.65** 0.29** 0.39** −0.19*
Fe −0.24** 0.26** 0.63** −0.17* 0.12 0.43** −0.21* −0.81** 0.20* 0.10 −0.55** −0.12 −0.15 0.03
Clay 0.24** 0.45** 0.18* 0.08 0.48** 0.19* −0.24** −0.45** 0.19* −0.19* −0.44** 0.04 −0.33** −0.12
Sand −0.35** −0.54** −0.06 −0.17* −0.60** −0.14 0.32** 0.01 −0.02 0.16 0.04 −0.20* 0.21** 0.18*
GMD‡ −0.06 0.55** 0.42** 0.03 0.49** 0.45** −0.15 −0.11 0.06 −0.18* −0.19* 0.06 −0.28** 0.03

Biweight midcorrelation
Organic C 0.41 0.13 0.49 0.29 0.03 0.36 0.04 0.41 0.18 0.20 0.66 0.26 0.42 0.19
Fe 0.24 0.28 0.59 0.14 0.15 0.46 0.22 0.82 0.19 0.10 0.56 0.06 0.15 0.06
Clay 0.23 0.48 0.2 0.08 0.50 0.21 0.19 0.48 0.16 0.16 0.45 0.02 0.35 0.29
Sand 0.28 0.53 0.07 0.16 0.57 0.12 0.28 0.00 0.08 0.15 0.03 0.16 0.16 0.34
GMD 0.08 0.56 0.4 0.01 0.50 0.45 0.15 0.11 0.08 0.18 0.19 0.03 0.26 0.15

Mutual information based adjacency values
Organic C 0.17 0.05 0.13 0.10 0.08 0.07 0.07 0.09 0.08 0.05 0.17 0.12 0.09 0.05
Fe 0.13 0.14 0.28 0.07 0.10 0.12 0.07 0.34 0.06 0.09 0.13 0.06 0.06 0.11
Clay 0.12 0.14 0.04 0.06 0.16 0.06 0.09 0.18 0.03 0.08 0.13 0.05 0.08 0.13
Sand 0.12 0.13 0.03 0.10 0.18 0.07 0.10 0.04 0.01 0.05 0.04 0.07 0.07 0.08
GMD 0.07 0.13 0.11 0.05 0.14 0.10 0.04 0.05 0.02 0.05 0.04 0.07 0.05 0.07
* Significant at p < 0.01.
** Significant at p < 0.001.
† EC, electrical conductivity.
‡ GMD, geometric mean diameter.
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between RPD and ADIAMI was found in the case of chemical 
chromophores. This implies that the prediction of a non-chro-
mophore relies on its AMI with chemical chromophores. Thus, 
the use of AMI may be advocated rather than the conventional 
use of r for evaluating the covariation between chromophores 
and non-chromophores.
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