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Abstract 

Legumes rank third in world crop production in which the major constraint to crop productivity is 

attributed to biotic and abiotic stress. Peanut, also known as groundnut (Arachis hypogaea L.) is a 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ICRISAT Open Access Repository

https://core.ac.uk/display/219473172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.icrisat.org/


2 

 

major oilseed crop in the world, both for oil and as a protein source. Host plant resistance 

provides the most effective and economic option to manage stress tolerance in peanut which is 

also time consuming involving expensive agronomic practices. However, for many biotic and 

abiotic stresses, effective resistance gene(s) in cultivated peanut have not been identified. Success 

in breeding for better adapted varieties to biotic/abiotic stresses depend upon the combined efforts 

of various research domains like plant and cell physiology, molecular biology, genetics and 

breeding. Moreover, availability of known genotypes with natural resistance to stresses is a 

prerequisite for the successful breeding program. With a few exceptions, crop improvement in 

peanut programs through conventional breeding has received little progress.  

Over the years, biotechnology has emerged as a promising tool to overcome both biotic 

and abiotic stresses in plants. Biotechnology applications include potential approaches, especially 

where the existing germplasm lacks the required traits for conventional breeding and provide 

promising ways to increase peanut productivity, either through improved seed quality or stress 

resistance. However, the progress has been very limited in legumes till date since these 

approaches require the identification of genes that control important agronomical traits, the 

understanding of gene regulation and metabolic pathways, along with methods of delivering 

genes or small RNAs into peanut plants. A new tool of engineering of multiple genes or 

regulatory machinery involving transcription factors has emerged for controlling the expression 

of different stress-responsive genes instead of inserting single genes for a single trait. Hence, 

researchers have focused their research on peanut functional genomics and biotechnology, and 

have achieved great strides during the recent decades. In this chapter, we discuss the recent 

progress and the current status of transgenic technology in peanut which offers the best option in 

host plant resistance breeding to combat various economically important biotic/abiotic stresses 

and its use in the crop improvement for stress tolerance. 
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9.1 Introduction 

Legumes, rich sources of proteins and minerals, are referred to as “poor man’s meat” in certain 

cultures. In order of importance, peanut, cowpea and beans represent about 80% of the production 

and cultivated area of food legumes, which are essential staples in the diets of millions.  Peanuts 

share approximately 10% among production of 286.7 million metric tons of the world total of 

oilseeds behind soybeans (53%), rapeseed (15 %) and cotton seeds (12 %). 

Peanut production process from planting to harvest is affected by different types of biotic 

and abiotic stresses that cause annual yield losses of over US$ 3.2 billion (Dwivedi et al. 2003). 

Since the mid-1970s, edible peanuts have increased in both domestic consumption and export 

trade in India. In contrast, production in Africa has declined by 17% over the last two decades. 

Acreage, production and productivity of peanut in India has shown large amount of fluctuations 

since 1993-94 to 2006-07. The productivity of peanut in India suffers mainly since 80% of the 

crop is grown under rainfed conditions by resource-poor farmers (Kaushik 1993). Lack of 

irrigation facilities to protect the crop from soil-moisture deficit during breaks in rainfall in the 

monsoon season affects germination. Rainfall pattern during the presowing months and 

availability of substitute high-value oilseed crops like soybean and sunflower with short durations 

requiring less water had a significant negative impact on acreage allocation decisions of the 

farmers (Patil et al. 2009). Resource-poor farmers who obtain low yields of 500-800 kg.ha
–1

 due 

to various biotic and abiotic constraints grow about 93.8% of the world’s production of peanut. 

Moreover, a big gap exists between the realized yield and potential yield of peanut at both 

subsistence and commercial systems of production in Asia and Africa.  
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The decrease in peanut productivity is mainly affected by various biotic, abiotic and 

economic factors. The economic status of the small and marginal farmers restricts them to use 

poor quality local seed in addition to minimum or no fertilizer applied during cultivation, which is 

essential as peanut is mostly grown in marginal and poor soils of low fertility. Use of complex 

fertilizers may also add to deficiencies of nutrients such as calcium and sulfur affecting the yields.  

 The major abiotic factors affecting peanut production include drought, high temperature, 

low soil fertility, low soil pH and iron chlorosis. Among the biotic factors, fungal diseases, virus 

diseases, bacterial wilt disease, aflatoxin contamination, nematodes, foliar insect pests, and soil 

insect pests, pod borer (Helicoverpa spp.) play a significant role in yield reduction (Sharma and 

Oritz 2000; Dwivedi et al. 2003). The plant disease management technologies are greatly 

influenced by environmental pollution, deleterious effects of chemicals on nontarget organisms, 

resurgence of pesticide resistance among pathogens and outbreak of secondary pathogens. Hence, 

there is an urgent call for increased crop production to cater to the needs of the increasing 

population. In order to reconcile with the demands of intensive agriculture with maintenance of 

the ecosystem, pest control strategies employed in the future must be environmentally compatible 

and selective to target pests.  

9.2 Rationale for Transgenic Peanut Breeding 

From USDA estimates (FAS 2000), peanuts ranked third in production among oilseeds and 90% 

of world peanut production was accounted by developing countries (ERS 2001) with 2.5% 

increase annually. Though the world harvested area of peanut has changed very little since 1970s 

with an annual growth of only 0.1% (between 1972-1990) and 1.2% (between 1991-2000), the 

production has increased from 0.8 metric tons (during 1972) to 1.37 metric tons (during 2000) 

i.e., 1.9% increase per year (Revoredo and Fletcher 2002). It is generally accepted that the 

average yield of peanut is below its presumed potential, and efforts to improve the productivity of 

this crop by conventional breeding means have not been very effective. The major reason behind 

this is the lack of sufficient and satisfactory levels of genetic variability within the germplasm of 
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cultivated peanut. Many wild annual Arachis species, which possess a wealth of agronomically 

desirable genes, are sexually incompatible with the cultivated varieties. Several advanced 

research institutes or groups are working with ICRISAT and other partners to apply modern 

biotechnology to the problems of peanut improvement in developing countries. Biotechnology 

tools such as marker-assisted breeding, tissue culture, in vitro mutagenesis, embryo rescue and 

genetic transformation have contributed to solve or reduce some of these constraints. Major yield 

increases could be achieved by development and use of cultivars addressing  abiotic and biotic 

stresses. Comprehensive reviews on the history of molecular marker development in peanut were 

provided by Stalker and Mozingo (2001) and Dwivedi et al. (2003). However, only limited 

success has been achieved so far. The emergence of “omics” technologies and the establishment 

of model legume plants such as Medicago truncatula, Glycine max and Lotus japonicus (Cannon 

et al. 2009) are promising strategies for understanding the molecular genetic basis of stress 

resistance, which is an important bottleneck for molecular breeding. Understanding the 

mechanisms that regulate the expression of stress-related genes is a fundamental issue in plant 

biology and will be necessary for the genetic improvement of legumes (Bertioli et al. 2011). 

Transgenic research has opened exciting opportunities in plant protection which result in 

prolonged benefit in sustainable agriculture with a high degree of safety which is also an 

important part of second green revolution. The techniques of genetic modification will allow 

breeders to access new gene pools, particularly those of wild Arachis species, bringing valuable 

traits into the modern cultivated peanut that cannot be addressed by conventional means. 

Development of transgenic peanut therefore has a good potential for its improvement. Advances 

in biotechnology have provided alternative pest control strategies that are based on natural 

biological processes. Tissue culture and genetic engineering have proven as important powerful 

tools in biotechnology that have been extensively used, either by taking advantage of naturally 

occurring defense mechanisms, which confer disease resistance of avoidance or by modifying 

plant genome to develop pest resistance. 
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9.3 Genetic Transformation in Peanut 

Successful genetic transformation of plants, including peanut, generally requires a reproducible 

tissue culture system to regenerate whole fertile plants from single cells (totipotency) as well as a 

method to deliver the gene(s) of interest to those regenerating cells. Transformation frequencies 

are directly related to the tissue culture response, and therefore highly regenerative cultures are 

often transformation competent. The inefficient, inconsistent and genotype dependent published 

protocols for peanut regeneration have emboldened some researchers in adopting non tissue 

culture-based approaches, that do not depend on the regeneration of adventitious shoot buds for 

generating transgenic plants of peanut (Rohini and Rao 2000). In vitro regeneration of whole 

plants of economically important commercial cultivars of peanut from explants such as 

protoplasts, cell suspension cultures, callus tissue or organized tissue such as embryonic axes, 

mature and immature embryonic axes (Atreya et al. 1984; Hazra et al. 1989; Brar et al. 1994; 

Baker et al. 1995), cotyledons (Atreya et al. 1984; Ozias-Akins 1989) and leaves (Baker and 

Wetzstein 1992; Livingstone and Birch 1995) either by organogenesis or embryogenesis have 

been reported with different culture media containing different phytohormone combinations 

(Table 9.1, 9.2). 

Regeneration by organogenesis occurs either by direct development of shoots from the 

surface of cultured explants (Hazra et al. 1989; McKently et al. 1991) or by an intervening callus 

phase (Bajaj et al. 1981; Bajaj and Gosal 1983, 1988). The reports of organogenesis from de-

embryonated cotyledons, immature leaflets, seed explants, epicotyls, hypocotyls and anther-

derived callus (Mroginski and Fernandez 1980; Mroginski et al. 1981; Narasimhulu and Reddy 
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Table 9.1: Responses of various explants and hormones on in vitro shoot regeneration in peanut 

Explant Medium Growth regulators Morphogenic response  Genotype/  

cultivar 

Reference 

 

Ovaries  MS BA (0.5 mg/l) + NAA (2 mg/l)  MK 374, M 13, 

TMV 2, Robut-

33-1 

Sastri et al. 1980 

Ovules MS Kinetin+ GA3 Shoots and roots  Martin 1970 

Immature embryos - TDZ (10 mg/l) - New Mexico 

Valencia 

Kanyand et al. 1994 

B5 Picloram (0.5- 1 mg/l) Shoots with roots Several varieties Ozias- Akins et al. 1992 
Cotyledonary 

nodes 

MS NAA (1 mg/l) +BA (3 mg/l) Multiple shoots  Banerjee et al. 1988 

De-embryonated 

cotyledons 
MS Zeatin (4 mg/l) or kinetin (4 

mg/l) 
Multiple shoots 

 

MK 374, M 13, 

TMV 2, Robut-

33-1 

Sastri et al. 1980 

 

MS 2,4-D (2 mg/l)+ kinetin (2 mg/l) Multiple shoots 

 

ICG 4367, US 

48, TMV 2, TG 

19B 

Narasimhulu and Reddy 1983 

Moist cotton wool BA (1 mg/l) Multiple shoots 

 
TG-17 Bhatia et al. 1985 

Mature cotyledons MS + B5 organics BA(20M)+ 2,4-D (10M) Multiple shoots JL-24,J-11, 

ICGS-11, ICGS-

44, Robut 33-1 

Sharma and Anjaiah 2000 

Embryo axis MS None Shoots regenerated into 

plantlets 

 Atreya et al. 1984 

Epicotyl MS Casein hydrolysate Multiple shoots, roots  Bajaj 1982 

MS BA (10 mg/l)+ NAA (1 mg/l) Organogenesis  New Mexico 

Valencia 
Cheng et al. 1992 

MS None  9-28% shoots ICG 4367, US 

48, TMV 2, TG 

19B 

Narasimhulu and Reddy 1983 

Mesocotyl  MS IAA (11M)+ kinetin(2.3M) Shoots with roots  Bajaj 1982 
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Hypocotyl MS IAA (2 mg/l)+ kinetin (2 mg/l) Shoots ICG 4367, US 

48, TMV 2, TG 

19B 

Narasimhulu and Reddy 1983 

Apical meristem MS +B5 vitamins NAA (10M)+ BA (0.1M) Single shoots with many 

roots 
 Kartha et al. 1981 

 NAA (10M)+ BA (1M) Shoots without any 

further development 
 Kartha et al. 1981 

Plumule MS BA(30M)+ NAA(5M)+ 

brassin (1M) 

Multiple shoots Okrun  Ponsamuel et al. 1998 

Immature leaflets MS + Gamborg vitamins NAA (1 mg/l)+ BA (1 mg/l) 50% shoots  Pitman et al. 1983 

MS NAA (4 mg/l)+ BA ( 5 mg/l)  JL24 Chengalrayan et al. 1994 

MS NAA (2 mg/l)+ BA ( 4 mg/l) Shoots NC-7 Utomo et al. 1996 

Leaflets MS NAA (1 mg/l)+ BA ( 1 mg/l) 

BA (2 mg/l)+ NAA (0.5 mg/l) 

Organogenic callus 

Shoot primordia 

 

TMV2 

Mroginski et al. 1981 

Venkatachalam et al. 1999 

MS: Murashige and Skoog (1962) 
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1983; Pittman et al. 1983; McKently et al. 1990; Willcox et al. 1991; Li et al. 1994) had a very 

low frequency of transformation. However, not much success with genetic transformation of 

peanut genotypes was achieved until recently (Sharma and Anjaiah 2000) due to the lack of 

efficient protocols to obtain whole plants through in vitro regeneration of adventitious shoot buds 

from the transformed tissues. Direct regeneration systems favors easy accessibility for 

Agrobacterium-mediated genetic transformation because of advantages of de novo production of 

shoot primordia, synchronous with the period of cellular differentiation, rapidity of 

morphogenesis and lack of requirement for frequent subcultures. Sharma and Anjaiah (2000) 

obtained success of high-frequency direct shoot regeneration from mature cotyledon explants in 

various peanut genotypes. Shoot organogenesis and plants were also successfully obtained using 

immature leaflets (McKently et al. 1991; ICRISAT unpubl. data). 

Regeneration via somatic embryogenesis also has been reported (Gill and Saxena 1992; 

Zhuang et al. 1999; Cucco and Jaume 2000) which has been used in transformation studies in 

peanut (Ozias-Akins et al. 1992, Sellars et al. 1990, Chengalrayan et al. 1994, 1997). However, 

conversion of somatic embryos into plants remains inefficient and limits the application of 

somatic embryogenesis in many systems, including genetic transformation (Wetzstein and Baker 

1993).  

Developments in genetic transformation for incorporation of novel genes into the peanut 

gene pool have emboldened researchers with new opportunities for crop improvement in this 

important legume to pursue the development of transgenic peanut plants resistant to various 

diseases, insect pests, enhanced nutritional quality and abiotic stresses (Sharma and Anjaiah 

2000; Rohini and Rao 2001). Transformation of plants involves the stable introduction of 

desirable DNA/gene sequences into the nuclear genome of cells, which are capable of giving rise 

to a whole transformed plant. Transformation and regeneration are interdependent and the 

totipotency (i.e., single cell capable of giving rise to a whole plant in vitro) of the somatic plant 
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cells via organogenesis or somatic embryogenesis under appropriate hormonal and nutritional 

conditions (Skoog and Miller 1957) is the essential feature for development of an efficient tissue 

culture techniques. Totipotent cells give rise to adventitious shoots or somatic embryos, which are 

both competent and accessible for gene transfer and will give rise directly to nonchimeric 

transformed plants. Development of an efficient transformation system for the introduction of 

genes into the crop plants also depends on the various factors such as development of reliable and 

reproducible tissue culture regeneration systems, selection and preparation of suitable gene 

constructs and vectors, recovery and multiplication of transgenic plants, molecular and genetic 

characterization of transgenic plants for stable and efficient gene expression, transfer of genes to 

elite cultivars by conventional breeding methods if required, evaluation of transgenic plants for 

their effectiveness in alleviating the biotic and abiotic stresses in the field condition, biosafety 

assessments including health, food and environmental safety and deployment of genetically 

modified plants.  

A suitable system for selection of transgenic tissues and plants is one of the most important 

aspects of any transformation system. The utility of any particular gene construct as a 

transformation marker varies depending on the plant species and explant involved. Promoters are 

essential to control expression of the gene and also provide valuable insights about the 

overexpression or silencing of any gene in response to external stimuli. The most commonly 

developed transgenic plants use either the constitutive promoters like 35S of the Cauliflower 

Mosaic Virus (CaMV) or the maize ubiquitin or potato ubiquitin (Yang et. 2003; Joshi et al. 

2005) to drive expression of the gene of interest in their gene constructs. These promoters being 

constitutive in nature sometimes results in expression of the downstream transgenes in all organs 

and at all the developmental stages, which can be metabolically expensive leading to undesirable 

pleiotropic effects (Bhatnagar-Mathur et al. 2008). Hence, use of inducible or tissue-specific 

promoters is increasing in recent years for enhancing targeted gene expression, which also 
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safeguards against biosafety and regulatory concerns to a certain extent. Use of these tissue-

specific constructs is also important in RNAi technology to augment gene silencing strategies 

(Bhatnagar-Mathur et al. 2008).   

The transformation and regeneration protocols for peanut are now well-established. 

Transformation techniques and plant regeneration from in vitro cultured tissues have been 

described for many species (Lindsey and Jones 1989; Dale et al. 1993; Birch 1997). There are 

numerous reports of tissue culture and transformation of peanut from various explants (Kartha et 

al. 1981; Sastri and Moss 1982; Kanyand et al. 1994). Regeneration via somatic embryogenesis 

has also been reported as one of the promising methods for transformation studies in peanut 

(Ozias-Akins et al. 1993, Sellars et al. 1990, Baker and Wetzstein 1995, Chengalrayan et al. 1994, 

1997).  

9.4 Transfer of Genetic Material 

Different methods of DNA transfer have been developed for the production of transgenic 

peanut over the last few years. The most commonly used means of DNA delivery or transferring 

novel genes into either organogenic or embryogenic cultures of plant cells/ peanut are either 

biologically by Agrobacterium tumefaciens or by direct gene transfer using microprojectile/ 

particle bombardment or by electroporation (Table 9.2). Research is being carried out globally 

with single or multiple gene introductions to produce disease resistant, pest-resistant, healthier 

and high-quality peanuts. Peanut tissues are susceptible to infection by wild-type strains of A. 

tumefaciens (Lacorte et al. 1991). The choice between using microprojectile bombardment or 

Agrobacterium as the means by which to deliver DNA is determined by several factors including 

the laboratory facilities and technical skills available, the species and/or cultivar to be 

transformed (many monocots are still recalcitrant to transformation with Agrobacterium, although 

this is improving all the time), and the regeneration system.
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Table 9.2: Update on Genetic transformation in peanut 

Explant Gene delivery 

system  

Gene 

introduced  

Transformation 

frequency/status 

Strain/Plasmid Reference 

Cotyledon  Agrobacterium  

Agrobacterium 

Biolistic 

Biolistic 

 

Agrobacterium 

 

uidA, nptII 

uidA, hph 

uidA,hph 

 

gus, nptII 

3.30% 

47% 

1.6% 

168 hygomycin 

resistant lines 

T2 generation 

viable seeds 

 

LBA4404, pBI121 

pCAMBIA-1301 

pMOG617/ 

pxVGH 

Rohini and Rao 2000 

Venkatachalam et al. 2000 

Yang et al. 2001 

Wang et al. 1998 

 

ICRISAT 1994 

Leaf Agrobacterium Gus,nptII 0.2-0.3% pBI121 Cheng et al. 1997 

Embryonic axis Agrobacterium 

 

Agrobacterium 

 

 

Biolistic / 

Particle 

bombardment 

 

Biolistic 

uidA,nptII 

 

Bar and 

PSTV 

genome 

MerApe9, 

hph/MerApe9

,mercuric ion 

reductase 

9% 

 

Putative 

transformants 

 

 

 

 

 

0.9-1% 

EHA101/ 

pMON9793 

 

 

 

pAC2MR/ 

pACH2MR 

McKently et al. 1995 

 

Cassidy and Ponsamuel 1996 

 

 

Yang et al. 2003 

 

 

 

Brar et al. 1994 

Leaf, epicotyl Agrobacterium uidA 12-36% (leaves), 

15-42% 

(epicotyls) 

EHA 101 Egnin et al. 1998 

Leaf Discs Agrobacterium uidA, nptII 6.7% putative 

shoots;  

pBI121 Eapen and George 1994 

Embryonic axis, 

cotyledon, leaf, 

petiole explants, 

Mature 

cotyledons 

Agrobacterium 

Agrobacterium 

 

Agrobacterium 

uidA, nptII 

IPCV (coat 

protein) 

H protein 

gene 

 

55% 

pTiBo542/ pTiT37 

pBI121/pROKII: 

IPCVcp 

 

Lacorte et al. 1991 

Sharma and Anjaiah 2000 

 

Khandelwal et al. 2003 
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Seedling 

explants 

Agrobacterium Gus, nptII Second 

generation callus 

colonies 

 Li et al. 1996 

Protoplast Electroporation 

 

Electroporation 

PstV coat 

protein 

Gus, nptII 

Protoplast 

derived callus 

colonies 

 Li et al. 1996 

 

Li et al. 1996 

Embryonic 

leaflets 

Electroporation    Padua et al. 2000 

Epicotyl Biolistic uidA, hph  pKYLX80-N11 

pTRA140 

Magbanua et al. 2000 

Embryonic 

callus 

Biolistic 

 

Biolistic 

Luc, hph 

 

hph 

54 independent 

transgenic lines 

1% 

pDO432/pHygr/ 

pGIN 

Livingstone and Birch 1995 

 

Ozias- Akins et al. 1993 

Shoot meristem 

of embryonic 

axis 

ACCELL 

(biolistic) 

Gus, bar, 

TSWV 

nucleocapsid 

protein 

Transgenic plants 

up to R2 

generation 

 Brar et al. 1994 

Somatic 

embryos 

Biolistic hph gene, 

nucleocapsid 

protein gene 

of TSWV 

52 hygromycin 

resistant cell line 

pCB13-N+ 

pCB13-N++ 

Yang et al. 1998 

Immature 

cotyledons 

Biolistic cry1AC   Singsit et al. 1997 

Mature Zygotic 

embryos  

Biolistic GFP  p524EGFP.1 Joshi et al. 2005 

Gus/uidA: gene encoding glucoronidase activity; hph: gene conferring resistance to hygromycin; nptII: gene conferring resistance to 

neomycin and kanamycin; TSWV: tomato spotted wilt virus; PStV: peanut stripe virus; PCV: peanut clump virus; bar: gene conferring 

resistance to herbicide resistance 
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9.4.1 Direct Gene Transfer 

Direct DNA transfer methods can circumvent the genotype dependence of Agrobacterium 

infection. Direct gene transfer has been accomplished by several methods such as microprojectile 

bombardment, electroporation of protoplasts and intact tissues, microinjection of protoplasts or 

meristems and polyethylene glycol-mediated transformation of protoplasts. Among these, 

microprojectile bombardment is the most commonly used method for genotype-independent 

genetic transformation (Sharma et al. 2005). 

Particle bombardment was developed by Sanford and  coworkers (Sanford et al. 1987; 

Klein et al. 1988; Sanford 1990) and  has been the most commonly used method for direct 

introduction of genes into a number of plant species including peanut. Transient expression (Li et 

al. 1995) was reported from cultures developed through bombardment of callus lines from 

immature peanut leaflet tissue (Clemente et al. 1992) and leaflets (Schnall and Weissinger 1995). 

However, bombardment of 1-2-year-old embryogenic callus derived from immature embryos 

followed by stepwise selection for resistance to hygromycin in semi-solid and liquid media 

produced transgenic shoots at a frequency of 1% (Ozias-Akins et al. 1993), while the shoot 

meristems of mature embryonic axis produced transgenic plants at a relatively low transformation 

frequency of 0.9-1.0% (Brar et al. 1994). Transgenic peanut plants using the somatic embryos 

were developed from immature cotyledons by transforming the cry1Ac gene for resistance to the 

cornstalk borer (Elasmopalpus lignosellus) (Singsit et al. 1997). Similarly, Livingstone and Birch 

(1995) obtained efficiently transformed Spanish and Virginia types of peanut by particle 

bombardment into embryogenic callus derived from mature seeds. More recently, 

cobombardment of embryogenic callus derived from mature seeds was used to develop peanut 

lines exhibiting high levels of resistance to Peanut Stripe Virus (PStV) (Higgins et al. 2004). 

Similarly, using particle bombardment transient expression of GUS and 2S albumin gene from 

Brazil nut was observed in peanut (Lacorte et al. 1997). 
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The advantages of particle bombardment system is that DNA may be transferred directly to 

cells by the introduction of multiple DNA fragments or multiple plasmids by cobombardment 

without using specialized or binary vectors, thus eliminating the necessity of constructing a single 

large plasmid containing multiple transforming sequences. However, the biolistic-based system is 

labor intensive since it requires bombardment of large number of explants for obtaining few 

stable transformation events. It may also result in the integration of multiple copies of the 

transgene, thereby leading to gene silencing which is the major drawback.  

9.4.2 Agrobacterium-Mediated Genetic Transformation 

The naturally-evolved unique system of Agrobacterium transfers the foreign DNA sequences 

precisely into plant cells using Ti plasmids. Agrobacterium-mediated transformation is the 

preferred method over microprojectile bombardment for gene delivery as it results in higher 

frequency of stable transformation with single or fewer integrated transgene copies, thus reducing 

the risk of gene silencing and transgene rearrangements. Moreover, when compared to direct 

DNA delivery system, A. tumefaciens infections are less complex and Agrobacterium-mediated 

transformation is generally precise in transferring and integration into the plant genome as it 

delivers long stretches of T-DNA between the right and left borders. 

Several reports have been published for transforming peanut using A. tumefaciens method 

using hypocotyl explants (Dong et al. 1990; Lacorte et al. 1991; Mansur et al. 1993), leaf explants 

(Eapen and George 1994), and embryonic axes from mature seeds of peanut (McKently et al. 

1995). High transformation frequency was reported by using precultured cotyledons as explants 

(Venkatachalam et al. 1998, 2000), or leaf segments with 0.3% frequency of fertile transgenic 

plants (Cheng et al. 1997), whereas stable 3% transformation frequency was reported using a 

nontissue-culture based Agrobacterium transformation involving direct cocultivation of cotyledon 

attached embryo axis supplemented with wounded tobacco leaf extract (Rohini and Rao 2000). 

Sharma and Anjaiah (2000) reported an efficient transformation system with >55% 



16 

 

transformation frequency using cotyledon explants. Recently, promoter tagged peanut transgenics 

using the cotyledonary nodes as explants and a promoter-less fusion gene nptII:gus were 

produced (Anuradha et al. 2006).  

9.5 Selection of Transformed Plants 

Uptake of DNA transferred by either method only occurs in a minority of cells and selection of 

those cells is crucial. Most vectors used for the genetic transformation of plants carry marker 

genes that allow selection and screening of the transformed cells.  More than 50 marker genes and 

molecular techniques were reported to screen for genetic transformation (Liang et al. 2010), 

which are divided into two categories: a) Selectable markers, and b) Screenable (scorable, 

reporter, visible) markers. Marker genes are usually co-introduced into a plant genome along with 

the transgenes in a single plasmid (Curtis et al. 1995), or as separate effector (for genetic 

transformation) and reporter (for screening) plasmids (Sakuma et al. 2006a). Protocols with 

selectable markers have yielded 10-fold higher frequency of recovered transgenic events 

compared to marker-free protocols (Birch 1997; de Vetten et al. 2003; Darbani et al. 2007) and so 

the use of marker genes is advantageous. Positive selectable marker genes promote the growth of 

transformed tissue whereas negative selectable marker genes inhibit growth or kill the 

nontransformed tissue (Liang et al. 2010).  

Inclusion of  selectable marker genes encoding resistance to an antibiotic such as 

kanamycin or hygromycin or to a herbicide such as phosphinothricin, glyphosate, bialaphos and 

several other chemicals (Wilmink and Dons 1993) in addition to the gene(s) of interest, allows the 

selection of such cells, by addition of the compound to the nutrient medium. Cells that express the 

resistance gene can proliferate while the untransformed cells die. Judicious choice of antibiotic 

and concentration levels may be an important criterion for the recovery of transformed cells, 

because too high a level would be deleterious even to the transformed cells at initial stages of 

screening. For peanut, hygromycin B is the most appropriate compound for the selection of
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transformed cells whereas kanamycin was also reported to be an effective selection agent to select 

stably transformed callus tissue obtained from immature leaflets of peanut (Clemente et al. 1992). 

The herbicide Basta® (active ingredient phosphinothricin) has also been used to select transgenic 

peanut tissue (Brar et al. 1994).  

Screenable (reporter) genes have also been developed from bacterial genes, which encode 

proteins that are used for easy detection in a sensitive, specific, quantitative, reproducible and 

rapid manner, to measure transcriptional activity and are used to investigate promoters and 

enhancers of gene expression and their interactions. Some of the reporter genes reported include 

chloramphenicol acetyltransferase (CAT; Herrera-Estrella et al. 1983), a bacterial enzyme that 

transfers radioactive acetyl groups to chloramphenicol; Luciferase (LUC/ LUX; Olsson et al. 

1988), a firefly enzyme that oxidizes luciferin and emits photons; Green fluorescent protein 

(GFP; Reichel et al. 1996), an autofluorescent jellyfish protein; β-galactosidase (GAL), a 

bacterial enzyme that hydrolyzes colorless galactosides to yield colored products; β-

glucuronidase (GUS; Beason 2003) (an enzyme that hydrolyzes colorless glucuronides to yield 

insoluble colored products) and nopaline synthase, and octopine synthase (Herrera-Estrella et al., 

1988).  ß-glucuronidase or GUS (Jefferson 1987) is the most commonly used reporter gene in 

plant genetic transformation studies including peanut. Assays for screenable markers can be 

destructive or nondestructive, in terms of the need to sacrifice the test material. GFP in peanut 

was reported as a nondestructive gene which requires no exogenous substrate to fluoresce by 

Joshi et al. (2005).  

Identifying the small proportion of transformed cells in a large experimental cell 

population, using only screenable markers is tedious and time consuming. Hence, screenable 

markers are usually coupled with selectable markers in transformation systems as in almost all 

commercialized transgenic crops (Liang et al. 2010).   
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9.6 Future Roadmap for Transgenic Peanut 

Genes for transformation can be broadly divided into those that will be used to overcome 

agronomic limitations (high yield potential, resistance to biotic and abiotic stresses) and ones that 

could be used to enhance value-added traits (Schnall and Weissinger 1995). Although major 

emphasis is currently being placed on improving the primary constraints, the manipulation of 

value-added traits, such as flavor and nutrition will be of much concern for peanut improvement 

using transgenic technology. Transgenic technology could conceivably be used in peanut for the 

introduction of disease and pest resistance as well as value-added traits such as improved vitamin, 

protein and oil quality, enhancing the crop product value, quality and safety. The genus Arachis, 

which itself is a repository for most of the valuable pest and disease resistance genes, could be 

used to transform cultivated peanut varieties (Bhatnagar-Mathur et al. 2008). Current efforts 

include incorporating immunity or very high resistance to several viral and fungal diseases 

through transformation of peanut cultivars that have very high demand for which no adapted 

resistant peanut genotypes are available. Improved crop protection through the transfer and 

expression of disease resistance genes will decrease or eliminate the usage of pesticides, which 

are costly to the grower and may be harmful to the environment. 

9.6.1 Abiotic Stress Tolerance 

Drought is the major cause for low and erratic pod yield in peanut that contributes to over 6.7 

million t loss in annual world peanut production (Subbarao et al. 1995), resulting in estimated 

monetary losses of over US$ 520 million annually (Sharma and Lavanya 2002). Yield losses in 

peanut due to water deficits vary depending on timing, intensity and duration of the deficit, 

coupled with other location-specific environmental stress factors such as high irradiance and 

temperature (Nigam et al. 2001). Due to the scarcity of available water in semi-arid tropics 

regions, drought management strategies, whether agronomic or genetic, therefore need to focus 
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on maximizing extraction of available soil moisture and the efficiency of its use in crop 

establishment, growth, biomass and grain yield (Serraj et al. 2005). 

Many genes that display altered expression patterns in response to environmental stresses 

have been identified over the last 10 years (Bray 2004; Shinozaki and Yamaguchi-Shinozaki 

2007) and the functions of some of these genes have been studied in detail (Vinocur and Altman 

2005; Lemaux 2008, 2009; Mittler and Blumwald 2010). Several genes that confer drought 

tolerance have been tested in the field for many years (Yang et al. 2010) among which a few are 

waiting for the approval of commercial release at US federal regulatory agencies (Castiglioni et 

al. 2008; Yang et al. 2010).  

Transgenic research using transcription factors has been the most widely used technology 

in developing drought-tolerant varieties (Dubouzet et al. 2003; Pellegrineschi et al. 2004; Oh et 

al. 2005; Behnam et al. 2006; Xiao et al. 2006; Wang et al. 2008; Morran et. 2011). At ICRISAT, 

efforts for enhancing drought tolerance in peanut through genetic engineering was initiated as 

early as 2003 through Agrobacterium-mediated genetic transformation of drought sensitive 

cultivar of peanut, JL 24, using the transcription factor AtDREB1A driven by constitutive 

CaMV35S promoter as well as a drought-responsive promoter rd29A, which resulted into ~18 

35S:DREB1A and 50 rd29A: DREB1A T0 transformants. Fourteen transgenic events showing 

high levels of stress tolerance were screened under contained greenhouse (Bhatnagar-Mathur et 

al. 2004, 2006) and field conditions (Bhatnagar-Mathur et al. 2013). Substantial yield 

improvement of at least 17% was observed under drought-stress conditions in a field trial across a 

wide range of vapor pressure deficits, where one of these transgenic events showed 40% higher 

transpiration efficiency than the control plants under water-limiting conditions (Bhatnagar-

Mathur et al. 2007, 2009, 2013). 

Another study revealed that transgenic plants having AtNHX1 gene are more resistant to 

high concentration of salt and water deprivation than the wild type plants in which salt and 
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proline level in the leaves of the transgenic plants were also much higher than that of wild type 

plants (Asif et al. 2011). Similarly, regulated expression of isopentenyl transferase gene (IPT) in 

peanut significantly improved drought tolerance under both laboratory and field conditions (Qin 

et al. 2011). 

9.6.2 Resistance to Biotic Stresses  

Diseases attack by different pathogens which include primarily fungi, bacteria, viruses, mycoplasma, 

nematodes, insect pests and parasitic flowering plants are major constraints to peanut production 

throughout the world causing majority of economic losses of yield up to 40 to 60%. Although, 

many diseases infect the crop, only a few cause significant reduction in yields. Comparatively low 

annual yields have been reported in developing countries (~825 kg/ha) to developed countries (2,650 

kg/ha). The major biotic stresses for peanut include the foliar fungal diseases, leaf spot (early and 

late) and rust. Seed and soil-borne diseases like collar rot, stem rot and dry root rot have also been 

identified as important. Among viral diseases, bud necrosis (BND), peanut mottle (PMV) and peanut 

clump (PCV) are important. With regard to insect pests, a wide range of pests like leaf miner, tobacco 

caterpillar, white grub, jassids, thrips, aphids, red hairy caterpillar and termite are known to cause 

serious damage to peanut crop (Ghewande et.al. 1987; Basu 1995).  

However, crop improvement by conventional breeding lacks to meet the demands of 

increasing population, especially in seed quality improvement and developing virus and insect-

resistant varieties. Therefore, in peanut the Expressed Sequenced Tags (EST) would be a quick 

and economical approach to identify important peanut genes involved in defense response against 

fungal infections and also provide data on gene expression and regulation (Houde et al. 2006; 

Nelson and Shoemaker 2006). Utilizing genomic and proteomic tools, genes and proteins 

associated with A. parasiticus and drought stress were identified (Luo et al. 2005; Guo et al. 

2006, 2008). Identified genes could be used for enhanced fungal disease resistance in peanut 

through marker-assisted selection in breeding or by direct up or down regulation of the target 
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gene using genetic engineering. Identification of novel promoter and enhancer elements will also 

be critical to achieving efficacious expression of antifungal/anti-mycotoxin genes. The protocol 

for genetic modification is now standardized and available for routine applications (Sharma et al. 

2000; Bhatnagar-Mathur and Sharma 2006). Hence the major focus lies on developing transgenic 

peanut varieties for resistance to insect pests/fungal pathogens/important viruses. 

9.6.2.1. Fungal Diseases  

Poor realization of potential yields has been mainly attributed to diseases in peanut (Ghuge et al. 

1981, Chohan 1974). Fungal diseases in peanut are the most significant limiting factor causing 

more than 50% yield losses throughout the world. Among the foliar fungal diseases Early Leaf 

Spot (ELS) caused by Cercospora arachidicola S. Hori (Mycosphaerella arachidis Deighton), 

Late Leaf Spot (LLS) caused by Phaeoisariopsis personata Berk. & M.A. Curtis (M. berkeleyi), 

rust (Puccinia arachidis), crown rot (Aspergillus niger Teigh.), collar rot caused by Aspergillus 

spp., root rot caused by Macrophomina phaseolina, stem rot caused by Sclerotium  rolfsii and 

Yellow mold (Aspergillus flavus and A. parasiticus) causing aflatoxin contamination are the 

major fungal diseases affecting peanut crop. (Subrahmanyam et al. 1985; McDonald et al. 1985) 

(Table 9.3). Infection by these fungal pathogens results in severe yield losses and generates poor 

quality seeds (Pretorius 2005). The use of disease resistant peanut cultivars is the only means of 

controlling fungal diseases in peanut. Genetic enhancement in peanut through conventional 

breeding and chemical control has yielded only limited success (Nigam et al. 2012) and the 

narrow genetic base of the cultivated peanut Arachis hypogaea L. hampers the development of 

improved varieties through conventional breeding leaving with the development of transgenics as 

the only option.   

9.6.2.1.1 Leaf spots: The annual economic losses caused by LLS and rust account for over US$ 

599 m and US$ 467 m, respectively (FAO 2004) by causing yield loss of 50-70% (Gibbons 1980; 

Subrahmanyam et al. 1980a, b, 1984). These diseases damage the plant by reducing the green leaf  
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Table 9.3: Genetic Transformation of peanut against major fungal diseases/ pathogens.  

Disease/pathogen Gene Source Reference 

Late leaf spot by 

Phaeoisariopsis 

personatum   

Chitinase 

Chitinase 

Glucanase 

Tobacco 

Rice  

Alfa alfa 

Rohini and Rao 2001 

Chenault
 
et al. 2005 

Early Leaf spot by 

Cercospora 

arachidicola 

Glucanase  

 

Chitinase  

Chitinase 

Chitinase 

Tobacco 

 

Bacteria 

Rice  

Rice 

Sundaresha et al. 2010 

 

Iqbal et al. 2011 

Iqbal et al. 2012 

ICRISAT unpublished 

A. flavus Glucanase  

mod1, 

D5C,  

anionic peroxidase  

synthetic peptide 

D4E1
 

Tobacco 

Maize 

 

 

Tomato 

Sundaresha et al.2010 

Weissinger et al. 2003 

Weissinger et al. 1999 

 

Ozias-Akins et al. 2000 

Cercospora 

arachidicola Hori. 

and 

Phaeoisariopsis 

personata 

SniOLP   

 

Rs-AFP2  

 

Solanum 

nigrum  

Radish 

(Raphanus 

sativus) 

Vasavirama and Kirti 

2010 

 

defensin  mustard Anuradha et al. 2008 

Sclerotinia blight oxalate oxidase gene barley Livingstone et al. 2005 

Chitinase Tobacco Rohini and Rao 2001 

Chitinase 

Glucanase 

Rice  

Alfa alfa 

Chenault
 
et al. 2005 

A. flavus and 

aflatoxin 

biosynthesis 

Loxl Soybean Ozias-Akins et al. 2000 

Nonheme 

chloroperoxidase 

gene(cpo) 

Pseudomonas 

pyrrocinia 

 

Niu et al. 2009 

 

nonheme  

chloroperoxidase gene 

bacteria 

 

Ozias-Akins et al. 2003 

 

PnLOX3 Peanut ICRISAT Unpublished 
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area available for photosynthesis and by stimulating leaflet abscission leading to extensive 

defoliation (McDonald et al. 1985) which results in lower seed quality, reduced seed size and oil 

content besides affecting the haulm production and quality. 

9.6.2.1.1.1 Early Leaf Spot:   

Early Leaf Spot, caused by Cercospora arachidicola  was first reported from Japan in 1919 

(Hemingway 1955). Interestingly, transgenic approaches using bacterial and rice chitinase genes 

for resistance to early leaf spot in peanut showed fairly good positive correlation between 

chitinase activity and fungal pathogen resistance (Iqbal et al. 2011, 2012) in which two lines 

transformed with bacterial chitinase gene showed 56-62% suppression of disease over the 

nontransgenic controls. Similarly, use of tobacco chitinase gene (Sundaresha et al. 2010) for 

developing transgenic peanuts against Cercospora arachidicola resulted in 16 plants which 

performed well against infection in the in vitro leaf bioassay against Cercospora, seven 

transgenic plants that showed the lowest percent disease index (i.e. 0-25% of leaf area was 

covered by spots) and delay in the onset of disease were considered to be resistant and were 

selected for analysis for further generations (Sundaresha et al. 2010). 

9.6.2.1.1.2 Late Leaf Spot: 

Late Leaf Spot, caused by Phaeoisariopsis personatum was first described in the USA in 1885 

(Jenkins 1938; Kolte 1985). Transgenic peanuts expressing tobacco chitinase gene (Rohini and 

Rao 2001), rice chitinase and an alfalfa glucanase gene (Chenault
 
et al. 2005) have been shown to 

possess enhanced resistance to the late leaf spot. More recently, transgenic peanut plants carrying 

mustard defensin gene showed variable increased disease resistance to Cercospora arachidicola 

and Phaeoisariopsis personata in detached leaf assays and greenhouse evaluations using conidial 

suspensions (Anuradha et al. 2008). Similarly, over expression of SniOLP (osmotin like protein 

cloned from Solanum nigrum) and Rs-AFP2 (defensin gene from Radish (Raphanus sativus)) in a 

double construct resulted in enhanced resistance against Cercospora arachidicola and 
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Phaeoisariopsis personata in transgenic peanut (Vasavirama and Kirti 2010). At ICRISAT efforts 

are carried out for developing peanut transgenics using rice chitinase gene which resulted at about 

>50% decrease in disease incidence (Prasad et al. 2012).  

9.6.2.1.2 Rust:  Rust, caused by Puccinia arachidis is another potential peanut disease of 

economic importance not only in India but also in Africa, Asia, Oceania and Australia (Hammons 

1977, Mayee 1982, 1986, 1987a, 1989, Mayee et al. 1977). At ICRISAT efforts have been made 

to develop peanut transgenics using rice chitinase gene that resulted in over 50% decrease in 

disease incidence (Prasad et al. 2012). 

9.6.2.1.3 Sclerotinia blight:  Blight disease is caused by soil borne fungus Sclerotinia minor and 

Sclerotinia sclerotiorum. Transgenic peanut expressing a tobacco chitinase gene (Rohini and Rao 

2001), rice chitinase and an alfalfa glucanase gene (Chenault
 
et al. 2005) has been shown to 

possess enhanced resistance to Sclerotinia blight, respectively. Transgenic events developed using 

somatic embryos of the Okrun cultivar (Chenault et al. 2002, 2005) were tested over a 3 year 

period (2000-2002) under field conditions where 14 transgenic lines showed up to 43 to 100% 

reduction in disease incidence compared to their parent line Okrun showing increased resistance 

to Sclerotinia blight. Similarly, overexpression of barley oxalate oxidase gene in transgenic 

peanut developed from embryogenic cultures of Virginia peanut cultivars, showed enhanced 

resistance to oxalic acid producing fungi, Sclerotinia minor (Livingstone et al. 2005). Detached 

leaflet bioassays carried out under laboratory conditions indicated reduction in the lesion area 

ranging from 75 to 97% in these transformed plants when compared to their respective 

nontransformed control cultivars. These transgenic peanut lines identified with partial resistance 

to Sclerotinia blight might be useful in traditional breeding programs for fungal resistance. 

9.6.2.1.4 Aflatoxin:  Peanuts are susceptible to aflatoxin contaminations which are toxic, 

carcinogenic substances produced by fungi Aspergillus flavus and Aspergillus parasiticus. Since 

conventional breeding methods for controlling aflatoxin are only partially effective, novel 

http://en.wikipedia.org/wiki/Sclerotinia_minor
http://en.wikipedia.org/wiki/Sclerotinia_sclerotiorum
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biotechnological methods for enhancing host plant resistance to preharvest A. flavus invasion and 

aflatoxin contamination is considered to be the most cost-effective control measure. Besides, a 

complete knowledge of the resistance associated proteins/genes and their contribution to host 

plant resistance (comparative proteomics) is critical to harness their cumulative or 

complementary benefits in peanut for A. flavus infection and aflatoxin contamination. 

Peanut produces stilbene phytoalexins in response to fungal infection. Organ-specific 

expression of multiple copies of a gene for stilbene synthesis (Stilbene synthase) has proven to 

inhibit fungal growth and spore germination of Aspergillus species and aflatoxin contamination. 

Hydrolytic enzymes such as chitinases and glucanases, which degrade the fungal cell wall, also 

pose as attractive candidates for development of disease-resistant peanut plants (Eapen 2003). 

Similarly, glucanase gene from tobacco introduced into peanut (PR protein from heterologous 

source) showed enhanced disease resistance to in vitro seed colonization (IVSC) and no 

accumulating aflatoxin (detected by HPLC) (Sundaresha et al. 2010). Maize and peanut 

transgenic expressing synthetic version of maize ribosome inhibiting protein gene, mod1, showed 

enhanced resistance to A. flavus and reduced aflatoxin contamination (Weissinger et al. 2003).  

The aflatoxin biosynthetic pathway in vitro has been shown to be suppressed by enzyme 

encoded by soybean loxl gene that catalyzes the formation of a specific lipoxygenase metabolite 

of linoleic acid, (13S)-hydroperoxyoctadecadienoic acid ((13S)-HPODE).
 
Transgenic peanut 

expressing soybean loxl gene under the control of carrot embryo specific promoter (DC3) (Ozias-

Akins et al. 2000) resulted in reduction in the aflatoxin content. Efforts are being carried out at 

ICRISAT for generation of peanut transgenics with the rice chitinase gene (Prasad et al. 2012) 

and peanut lipoxygenase gene (PnLOX3). Work is being carried out at ICRISAT in developing 

construct for use in RNAi approach to suppress 9-hydroperoxide fatty acid producing 

lipoxygenases since incorporation of plant antisense genes for the 9-hydroperoxide fatty acid 

producing lipoxygenases also reduces mycotoxin contamination. Other antifungal genes such as 
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D5C (Weissinger et al. 1999), tomato anionic peroxidase (tap 1), and synthetic peptide D4E  

(Ozias-Akins et al. 2000) are transformed into peanut and evaluated for antifungal activity against 

A. flavus. However, pure D5C showed strong activity against A. flavus in vitro, due to 

phytotoxicity of D5C, transgenic peanut callus showed poor recovery of plants. Expression of 

cry1A(c) (Ozias-Akins et al. 2002) in transgenic peanut lines could also be an effective means of 

inhibiting A. flavus infection by reducing the damage into peanut pods by lesser cornstalk borer 

(LCB) Elasmopalpus lignosellus, since it has been clearly reported that aflatoxin contamination 

can increase with insect damage (Lynch and Wilson 1991). Similarly, Ozias-Akins et al. (2003) 

reported 60-70% reduction in A. flavus colony growth in transgenic peanut lines expressing the 

bacterial chloroperoxidase gene (Rajasekaran et al. 2000). Niu et al. 2009 reported antifungal 

activity in transgenic peanut by transforming with a non-heme chloroperoxidase gene from 

Pseudomonas pyrrocinia. 

9.6.2.2 Viral Diseases 

Viruses pose a great threat to peanut production throughout the world. Viruses such as the Indian 

Peanut Clump Virus (IPCV), Peanut Bud Necrosis Virus (PBNV), Groundnut Rosette Assistor 

Virus (GRAV), Peanut Mottle Virus (PMV), Peanut Stripe Virus (PStV), Tobacco Streak Virus 

(TSV), and Tomato Spotted Wilt Virus (TSWV) cause considerable damage to the crop. The 

concept of pathogen-derived resistance (Sanford and Johnston 1985) has stimulated research on 

obtaining virus resistance through genetic engineering. Since, the insertion of genetic material 

from the virus had been shown to confer resistance to infection by preventing virus replication 

and spread in several crop species. Genetic transformation has been used to develop peanut 

varieties with total resistance and not just tolerance to these viral diseases. The development of 

new viral control strategies depends on the molecular mechanisms underlying the roles of both 

dominant and recessive resistance genes (Ritzenthaler 2005). In general, protein-mediated 

resistance provides moderate protection against a broad range of related viruses while RNA-
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mediated resistance has been shown to offer high levels of protection only against closely related 

strains of a virus (Pang et al. 1993, Lomonossoff 1995, Baulcombe 1996, Dawson 1996). Recent 

research indicates that pathogen-derived resistance to viruses is mediated, in most cases, by 

RNA-based Post-Transcriptional Gene Silencing (PTGS) mechanism (Baulcombe 2004) resulting 

in the degradation of mRNA produced both by the transgene and the virus. RNAi technology 

(RNA silencing or cosuppression of homologous genes) provides a significant tool for 

development of virus resistant peanut genotypes (Wang et al. 2000; Colbere-Garapin et al. 2005). 

The development of genetically transformed peanut cultivars with resistance to viruses and other 

biotic constraints potentially have tremendous impact on crop productivity, especially in the 

resource-poor agricultural systems of the semi arid tropics. 

9.6.2.2.1 Groundnut rosette disease:  Groundnut rosette disease is also one of the major 

destructive viral disease in sub-Saharan Africa (SSA) resulting in devastating losses to peanut 

production in Africa. The disease is caused by a complex of three casual agents such as 

Groundnut Rosette Assistor Virus (GRAV), Groundnut Rosette Virus (GRV) and a satellite RNA 

(satRNA) and is transmitted by an Aphid, Aphis craccivora (Naidu et al. 1998).  

At ICRISAT Pathogen-Derived Resistance (PDR) for Groundnut Rosette Disease (GRD) 

by using GRAVcp gene has been exploited to induce host plant resistance to GRD for controlling 

GRD. Peanut transgenics for resistance to GRAV are being produced in ICRISAT (KK Sharma, 

unpubl. results) and the molecular characterized transgenic events have been transferred to South 

Africa for phenotyping under greenhouse conditions. Introduction of GRAV or GRV genomic 

sequences or genes, or SatRNA–derived sequences that down regulate GRV replication 

(Taliansky et al. 1996) into suitable peanut cultivars is an ideal RNA-mediated/ gene silencing 

approach.  

9.6.2.2.2 Peanut Stem Necrosis Disease. PSND caused by Tobacco Streak Virus (TSV) was 

reported in India in 2000 (Reddy et al. 2002). TSV was reported as a frequent occurrence on 
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peanuts in Brazil (Costa and Carvalho 1961), but it was first noticed on peanut in 1999 in South 

Africa (Cook et al. 1999).  

At ICRISAT, work is being carried out on engineering TSV resistance through A. 

tumefaciens-mediated transformation of popular peanut variety JL 24 (Spanish type) with TSV 

coat protein gene (TSV cp gene), and recovery of transgenic plants that block systemic movement 

of TSV spread. The resistant transgenic events identified under greenhouse conditions will be 

evaluated under restricted field conditions in the TSV hot-spots in the near future. Similarly, 

transgenic peanut lines containing sense and antisense coat protein gene of TSV transformed 

through Agrobacterium-mediated transformation of de-embryonated cotyledons of cultivar JL 24 

are under evaluation for their reaction to TSV (Bag et al. 2007). 

9.6.2.2.3 Peanut Bud Necrosis:  Peanut Bud Necrosis Disease (PBND) is caused by PBNV - 

transmitted by Thrips palmi. Strategies to combat peanut bud necrosis disease (PBND) include 

development of transgenic peanut plants expressing PBNV nucleocapsid gene at ICRISAT, which 

showed a modest tolerance to PBND (Chander Rao et al. 2006). Three selected transgenic peanut 

events of T1 and T2 generation showed a 40 to 67% decrease in disease incidence under 

greenhouse virus challenging experiments. However, under field conditions in a contained on-

station trial only one event showed less than 25% disease incidence. The expression of symptoms 

in some plants was delayed by 40-60 days and 14-21 days under greenhouse conditions and 

contained on-station trial respectively as compared to the control plants. Because of the 

unexpected lower frequency of virus resistant events throughout the challenging experiments, an 

alternate strategy based on RNA interference (antisense and hairpin-RNA) mediated gene 

silencing is being used as a potential tool to address a complex constraint like PBNV. Currently,, 

RNAi-mediated resistance approach to counter the effect of NSs gene in the PBNV genome is 

being pursued.   
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9.6.2.2.4 Tomato spotted wilt virus:  Tomato spotted wilt virus (TSWV), first reported in Brazil 

(Costa 1941) is transmitted by thrips Scirthothrips dorsalis Hood (Mali and Patil 1979) and 

Frankliniella schultzei (Trybom) (Ghanekar et al. 1979). 

Due to lack of availability of considerable levels of resistance in germplasm, development 

of transgenic plants through genetic engineering is the only effective approach for protection 

against TSWV which is carried over by both RNA and protein-mediated control (Pang et al. 

1993). These approaches include using both sense and antisense TSWV nucleocapsid protein 

gene (N gene) expression. Nucleocapsid protein gene (N gene) was introduced into a runner and a 

Valencia type variety (Brar et al. 1994; Chenault and Payton 2003) whereas the N gene, was 

inserted into New Mexico Valencia A peanut, by Li et al. (1997). The field ratings from the study 

of Yang et al. (1998) indicated that there was a potential to combine nucleoprotein-mediated 

resistance in transgenic peanut with host-plant resistance that already had been identified in the 

peanut germplasm. Variety AT 120 transgenics with antisense nucleocapsid gene (Magbanua et 

al. 2000) and Marc 1 transgenics transformed with coat protein gene of TSWV (Ozias-Akins et 

al. 2002) showed lower disease incidence than respective nontransformed cultivar or than in 

moderately resistant cultivar Georgia Green. Transgenic progeny of Marc 1 peanut cultivar also 

showed lower incidence of spotted wilt in comparison to the nontransgenic controls in field 

evaluations and under controlled environmental conditions in the USA over years and locations 

(Yang et al. 2004), indicating its potential use in conventional breeding programs. Use of stable 

pathogen-derived resistance based on homology dependent RNA silencing for durable TSWV 

resistance was suggested by Bucher et al. (2003).  

9.6.2.2.5 Peanut stripe virus (PStV):  PStV is transmitted by seed and also by aphids (Aphis 

craccivora, A. gossypii and Myzus persicae). Transgenic plants of peanut varieties with high 

levels of RNA-mediated resistance to peanut stripe potyvirus (PStV) were obtained following 

cobombardment of embryogenic callus derived from mature seeds of the commercial cultivars, 
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Gajah and NC 7, which were transformed with one of the two forms of PStV coat protein (cp) 

gene (an untranslatable, full-length sequence (cp 2) or a translatable gene encoding a cp with an 

N-terminal truncation (cp 4)) (Higgins et al. 2004). Resistance to PStV was stably inherited over 

at least five generations in these transgenic plants of Gajah variety (Dietzgen et al. 2004). From 

the study of Hapsoro et al. 2005, 2007, three different kinds of response to PStV infection were 

identified-resistant, recovery and susceptible, the transgenic peanut lines cv. Gajah proved stable 

up to seven generations of selfing and some pure lines were identified. Franklin et al. (1993) 

reported transformed callus expressing the PStV coat protein gene through Agrobacterium-

mediated genetic transformation. 

9.6.2.2.6 Peanut Clump Virus (PCV):  The disease is soil borne and is caused by peanut clump 

virus (PCV) that is transmitted by a fungus, Polymyxa sp. living in the soil. ICRISAT has 

developed the first-ever transgenic peanut, resistant to the dreaded Indian Peanut Clump Virus 

(IPCV) by the introduction of coat protein (cp) gene and replicase (rep) genes of the target virus 

IPCV by using Agrobacterium-mediated transformation (Sharma and Anjaiah 2000). Field 

evaluations were carried out twice against IPCV under controlled conditions during the rainy 

season of 2002-2004 in an on-station sick plot at ICRISAT, Patancheru, India with 10 transgenic 

lines carrying single gene inserts ( five each with IPCVcp and IPCVrep genes) of which four 

transgenic events ( three with IPCVcp and  one with IPCVrep) showed complete resistance to 

IPCV. 

9.6.2.2.7 Bacterial wilt: It is a soil-borne disease caused by Ralstonia solanacearum. A novel 

approach of introducing microbial toxins (phytotoxins) such as tabtotoxin acetyl transferase and 

glucose oxidase into the plant has emerged as an efficient way to develop resistance in a wide 

range of host species (Eapen 2003). This approach can be conveniently used to impart resistance 

against bacterial wilt of peanut caused by Burkholderia solanacearum, formerly known as 

Pseudomonas solanacearum.  
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9.6.2.3 Insect resistance  

Among the insect pests Spodoptera litura, Aproaerema modicella, Amsacta spp., Heliothis spp., 

aphids, jassids, thrips and termites cause major yield losses. Though, a moderate level of 

resistance against specific pests was observed in wild relatives of peanut cultivars (Stalker and 

Moss 1987), but is often accompanied by undesirable agronomic features (low shelling and 

undesirable pod and kernel traits), interspecific reproduction barriers and linkage drag which 

impedes development of resistant cultivars using traditional breeding approaches. Hence the 

development of transgenic peanut for resistance to insects is gaining importance. The first 

transgenic peanut expressing cry1EC gene resistance to S. litura using de-embryonated cotyledon 

explants were developed by Tiwari et al. (2008). Leaf feeding bioassay was carried out twice 

under laboratory conditions on highly expressing transgenic lines, which showed 100% death of 

larvae at the 2
nd

 instar stage of S. litura. Since, besides spodoptera, Helicoverpa armigera 

(Hubner) occasionally occurs on the peanut crop causing defoliation to a limited extent resulting 

in major crop loss, development of the peanut transgenics cv. TMV-2 expressing a chimeric Bt 

gene, cry1X, was reported (Entoori et al. 2008). In vitro detached leaf bioassays under laboratory 

conditions led to more than 50% mortality in 27 transgenic plants, showing not more than 10% 

damage against H. armigera and S. litura. Among the insect-pests, Lesser Cornstalk Borer 

(LCB), Elasmopalpus lignosellus (Zeller), is another major pest of peanut in the southern United 

States causing severe reduction in crop quality. Peanut transgenics against LCB using cry1Ac 

gene (Singsit et al. 1997) showed complete larval mortality to a 66% reduction in larval weight in 

insect feeding bioassay of transformed plants indicating various levels of resistance. 

9.6.3 Biofortification and enhancing quality traits 

Besides lysine, threonine and isoleucine, peanut is deficient in the essential amino acid 

methionine.  The dietary and nutritional value of peanut can be improved by either raising the 
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level of sulfur-containing amino acids of storage proteins or by changing the proportion of 

methionine-rich proteins already present in the peanut seed. Genetic transformation is an effective 

and an alternative approach for developing methionine-rich peanuts.  

Efforts have been made to identify genes that play an important role in controlling the 

crucial and important regulatory biochemical steps whose constituents play a major role in 

determining the quality of peanuts. Attempts have been made to produce transgenic peanut plants 

with improved protein quality by transferring genes like the Brazil nut 2S albumin gene (Lacorte 

et al. 1997). Malnutrition due to vitamin A, zinc (Zn) and iron (Fe) deficiencies is a significant 

public health issue in most of the developing and undeveloped world involving one-third of the 

world’s population (~1.02 billion people) (FAO 2009). Hence providing biofortified staple food 

with essential amino acids, vitamins and trace elements without imposing any additional cost to 

the consumer is an alternative and best solution to overcome the problem of vitamin and trace 

element deficiency for the poor in the population. The success in peanut transformation 

technology enabled researchers to address more complex and important aspects of biofortification 

in peanut for enhanced levels of beta-carotene (provitamin A). Work has been initiated at 

ICRISAT to develop genetically engineered groundnut having enhanced levels of ß-carotene 

(pro-vitamin A) to combat vitamin A deficiency. Owing to the high oil content >50% in peanut, 

targeting -carotene to the oil bodies for enhanced bioavailability was thought to be critical. This 

has been achieved by using oleosin promoters for driving the carotenoid biosynthetic genes for 

targeting these to the oil bodies (Bhatnagar et al. 2010, Bhatnagar-Panwar et al. 2013), as has 

been previously reported in Arabidopsis and Brassica napus (Siloto et al. 2006; Hu et al. 2009). 

Over 200 primary transgenic events of groundnut have been developed by introducing the 

phytoene synthase gene (psy1) from maize that resulted in increased ß-carotone levels, in seed oil 

bodies to an extent of 20-25-folds when compared to the untransformed controls.  
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9.6.4 Improvement in Quality of Oil 

For peanut, oil content, oil quality and storage protein composition are major issues for quality 

improvement, and genes controlling these important agronomic traits have been the focus of 

peanut gene cloning. Currently efforts are carried over to increase stability and quality of peanut 

oil by hydrogenation to reduce the level of polyunsaturated fatty acids, which also has 

undesirable health and food quality consequences. Peanut’s oils contain high levels of 

monounsaturated fatty acids that are prone to oxidation as compared to other oils with high levels 

of polyunsaturated fatty acids. Different genes for improving quality of oil have been proposed 

(Wang et al. 2011) that can be used for developing transgenic peanuts. For enhancing the shelf-

life of peanut products, a higher oleic/linoleic (O/L) ratio is considered desirable. The 

introduction of the double bonds in the plant fatty acids occurs by the action of enzyme delta-12 

fatty acid desaturase. Engineering a gene encoding for delta-12 fatty acid desaturase in peanut by 

antisense or RNAi strategies may help to reduce activity of this enzyme and hence produce oil 

with higher O/L ratio. Expression of additional copies of the gene for this enzyme may enhance 

the content of oleic acid and hence the O/L ratio. Several other reported genes which can be used 

for developing peanut transgenics for improving nutritional quality are listed in Table 9.4.  
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Table 9.4: Genes proposed for genetic transformation of peanut for nutritional enhancement  

Reason for 

modifications 

Gene/ activity  engineered Modifications 

required 

Success status of  transgenic 

research 

Reference 

Reduction in the risk 

for artherosclerosis 

Antisense of stearoyl- 

CoA- -ketoeicosanoyl 

CoA syhthetase 

Reduction in long 

chain saturated fatty 

acids 

Transgenic Brassica by 

antisense expression of 

stearoyl-ACP-desaturase gene 

Knutzon et al. 1992 

Reduction in aflatoxin 

load 

Stilbene synthase Increase in stilbenes Transgenic tobacco Hain et al. 1990 

Improvement in 

nutritive value of 

protein 

Gene encoding Brazil nut 

methionine-rich protein 

Increase in 

polypeptides rich in S-

containing amino 

acids 

Transgenic tobacco Altenbach et al. 1989 

Reduction in flatus 

properties 

Galactinol:sucrose-6-

galactosyl transferase 

Reduction in raffinose 

and stachyose 

Not yet attempted - 

Prolongation of shelf-

life 

Stearoyl desaturase Increase in oleic acid Transgenic tobacco with yeast 

and rat genes 

Polashock 1992, Garyburn 

1992 

Improve protein quality  Brazil nut 2S albumin gene - Transgenic peanut Lacorte et al. 1997 

Enhancement in 

carotenoid content 

Maize psy gene, maize 

lycopene cyclase gene, 

bacterial crtB 

Increase in -carotene 

content 

Transgenic peanut Sharma K.K. Unpublished  
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