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ABSTRACT: Ferric iron (Fe+3) chelating compounds, including 

siderophores produced by microorganisms, help in the Fe nutri­

tion of plants. Dicotyledonous plants absorb Fe in the ferrous 

(Fe+2) form. The ability of siderophores produced by a B rady- 

rh iz o b iu m  strain, a rhizosphere bacterium of groundnut 

[Arachis hypogaea), to reduce Fe+3 was tested. Two Fe+3 (58Fe) 

binding fractions were separated from the culture supernatant 

of a Bradyrhizoblum  strain grown in an iron deficient medium. 

One of the fractions isolated reduced Fe+3 to Fe+2, unlike the 

synthetic chelator ethylenediaminetetraacetic acid (EDTA). It 

has been proposed that Fe-chelators supply Fe+3 to groundnut 

roots, and Fe+3 reduction to Fe*2 and its uptake occurs at the 

plasmalemma. Since siderophores can reduce Fe+++, they may 

help in Fe nutrition of groundnut plants better than chelators 

like EDTA. There is no evidence to indicated siderophore uptake
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by groundnut plants, but we have detected ethyl acetate insol­

uble Fe+3 reducing activity in the xylem sap of the plants.

INTRODUCTION 

Although Fe is abundant in soils (1-8%), it is often unavail­

able to plants because of its insolubility. Most soil Fe exists in 

the insoluble ferric (Fe+3) form in aerobic soils. Iron availabil­

ity to plant roots may be modified by pH and organic chelators 

(1,2). When grown under conditions of Fe deprivation, micro­

organisms secrete ferric-specific ligands called siderophores, 

small moleoular weight compounds which exhibit a strong af­

finity for Fe+3, and have a formation constant in the range of 

lO30 or higher (1). Most of the siderophores can be classified 

into two types, i) the catechol-like compounds found only in 

bacteria, and ii) the hydroxamate-Iike compounds found in 

fungi, yeasts and bacteria (1,2). ’

The importance of siderophores produced by microorganisms 

to supply Fe to plants has been suggested by many workers 

(2-6). Jurkevitch et al. (7) reported that bacterial sidero­

phores may help overcome lime-induced chlorosis in groundnut 

(Arachis hypogaea) grown in calcareous soils.. In most cases, 

the role of siderophores has been attributed to the Fe+3 bind­

ing function of siderophores (1,8,9)1 In some dicotyledonous 

plants, separation and absorption of Fe from Fe+3 chelates ap­

pears to require reduction of Fe+3 to Fe+2 before the uptake of 

Fe+2 by the plant (10,11). It is important to understand the 

mechanism of siderophore mediated Fe uptake by plants. We



describe a method for estimating the Fe+3 reducing ability of a 

siderophore produced by a Bradyrh izob ium  strain (NC 92) that 

nodulat'es groundnut, and we suggest that this function of 

siderophores could be important in the Fe uptake by groundnut.

MATERIALS AND METHODS 

Qfrains Culture Conditions and Isolation of Siderophore: Details 

of the test strain NC 92, and culture conditions and isolation of 

catechol type siderophores have been described previously (12). 

P artia l Purification of Siderophore and Estimation of Ferric 

imn Binding and Reducing : Activity: An ethyl acetate sidero­

phore extract prepared from a 2 L culture strain NC 92 was 

dissolved in 1 mL ethanol and loaded on a lipophilic Sephadex 

(LH-20-100, Sigma Chemical Co., St Louis, MO, USA) column (2 

cm diameter, 35 cm long, and equilibrated with ethanol). Two 

m l fractions were collected and assayed for Fe+3 binding'and  

reducing activities. Ferric binding activity was assayed using 

58Fe. Two jig 58Fe was mixed with 6 [ig cold Fe (as ferric 

chloride) in 0.5 mL dilute HCI (5x1 O'4 N). To this mixture, 0.1 

ml of the' fraction was added, stirred well and the mixture 

incubated for 1 h at room temperature (27±.2°C). At the end of 

the incubation period, the siderophore-Fe complex was extract­

ed in 2 mL ethyl acetate, and the 0.5 mL ethyl acetate layer 

was added to a vial containing Instagel scintillation fluid and 

counted in a Beckman (5801) counter. (12). Ferric reducing 

activity was assayed by adding 0.5 mL of the fraction to 0.5 mL 

freshly prepared ferric chloride (2 mM, pH 2.0) and incubating 2
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h at room temperature. Ferrous in the sample was estimated by 

adding 1 mL 1-10 o-phenanthroline [o-ph, 1.5%, pH 2.0, (12)]. 

Optical density (O.D.) at 510 nm was recorded 10 min after o-ph 

addition. To create a blank, siderophore was added to a mixture 

of o-ph and ferric chloride solution at the above concentrations 

just before recording O.D. Various concentrations of ferrous 

ammonium sulphate added to ferric chloride (2 mM) were used 

as standards. EDTA (ethylenediaminetetraacetic acid, 5 mL, pH 

2.0) was also used as a control instead of siderophore.

RESULTS AND DISCUSSION

O-Ph reacts with both Fe+2 and Fe+3 (14), but Fe+2 can be 

determined spectrophotometrically in the presence of Fe+3 

under the assay conditions described in materials and methods 

(13). Fractions 30 to 38 and 72 to 75 from the Sephadex col­

umn showed Fe+3 binding activity, but Fe+3 reducing activity 

was associated with the fractions 72 to 75 only (Fig. 1). 

Fractions exhibiting the Fe+3 reducing activity were pooled and 

used for other experiments. The Fe+3 reducing activity was 

linear for about 2 h before leveling off (Fig. 2). No change in 

the absorption spectrum of the EDTA-Fe+3 complexes was noted 

with the addition of o-ph (Fig. 3).

The importance of siderophore, production by strain NC 82 

has been suggested earlier (12,15). Inoculation with strain NC 

82 increased the yield of a few groundnut cultivars in India, 

China and Cameroon (16), while inoculation with other strains 

(which produced lesser amounts of siderophores) did not, de-
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Figure 1. Elution profile of siderophore from Sephadex (LH-20- 
100) column. Fe*3 binding (— ; CPM/mL siderophore/ 
h) and Fe+3 reduction (--- , ug Fe+2 formed/mL siders- 
ophore/h) was estimated as describe in materials and 
methods.
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Figure 2. The course of Fe+3 reduction by siderophore.
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Figure 3. Spectra of reaction products of siderophore-Fe+3 {— ) 
or EDTA-Fe*3 (-^-) with o-ph.

spite some of the strains being equally efficient in N fixation 

in pot experiments and competitive in nodule formation in the 

field (16). However, there is no direct evidence to demonstrate 

the effect of B radyrh izob ium  siderophore on groundnut growth 

and yield in the field. O’Hara et al. (15) suggested that the abil­

ity of strain NC 82 to form nodules on groundnut under condi­

tions of Fe stress may be related to the ability of the strain to 

produce catechol type siderophores. A siderophore produced by 

a Pseudomona  strain was reported to correct Fe chlorosis of 

Arachis hypogaea  (5,7) and enhance plant growth of Solanum  

tuberosum  (4). The effects of siderophores on plant nutrition
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and growth have been discussed only from the standpoints of 

Fe+3 binding ability of siderophores and siderophore-mediated 

Fe+3 transport (1,3,4,9). The function of siderophores has been 

compared to that of synthetic chelators such as EDTA and 

EDDHA [ethylenediamine-di(o-hydroxyphenyiacetic acid] (5,11).

Reduction of Fe+3 is an obligatory step for higher uptake 

rate of Fe in plant species like Glycine max and A rach is  h y p o - 

aea grown under conditions of Fe deficiency (10,11). Romheld 

and Marschner (11) suggested that chelators supply Fe+3 to the 

plant and binding of Fe chelates would occur at the outer sur­

face of the plasmalemma of root ceils where Fe+3 is reduced by 

plant enzymes. They further suggested that the reduction of the 

Fe+3 chelate by roots is probably preceded by a chelate binding 

and weakening of chelate bonds which in turn leads to a facil­

itated electron transfer in the subsequent reduction process 

(11).

Chaney et aL (10) suggested that reduction of Fe*3 chelates  

could occur at the plasmalemma, and a cytochrome or flavin on 

the ceil membrane could transfer electrons inside the cell 

after Fe reduction. Since microbial siderophores are present in 

soils, we suggest that Fe+3 reducing ability of these chelating 

compounds should be considered in models describing Fe uptake 

by groundnut (and possibly other plants) roots from soils. Since 

siderophores can reduce Fe+3, they may help in Fe nutrition of 

groundnut plants better than chelators tike EDTA. Direct uptake 

of Fe+2 by plant cells could occur at the outer surface of the



piasmelemma of root cells. Alternatively, the Fe+2 siderophore 

could be taken up directly. To test this possibility, we assayed 

the xylem sap of groundnut, plants inoculated with B ra d y - 

rh iz o b iu m  (strain NC 92). for the presence, of siderophore. 

Although we could detect a Fe+3 reducing activity in the-xylem  

sap, we could not detect, any Fe+3 reducing activity in the- ethyl 

acetate extract of xylem sap (xylem sap adjusted to pH 2.0 

with 0.1 N HCI,, and then, extracted with an. equal amount of ethyl 

acetate). This indicates that perhaps the ethyl acetate soluble 

siderophore is - not taken up by the plants-. Romheld and 

Marschner (11) also observed that-increases in .reduction and 

uptake of Fe from Fe-chelates by roots of A rachis hypogaea 

was not associated with a corresponding increase in chelator 

uptake. The role of ethyl acetate insoluble Fe+3 reducing activ­

ity in the xylem sap of the plants is not clear.

Howell (17) recently reported that groundnut inoculated 

with different Bradyrhizobium  strains contained different ^con­

centrations of mineral nutrients, including Fe. Since B ra d y ­

rh izo b ium  strains differ in siderophore production (12),;jt--may 

be possible that the differences in. metal-ion uptake with dif­

ferent strains are influenced by siderophores. Extraction of the 

culture filtrate into ethyl acetate is an effective purification 

step for catechol siderophores (1), and our results indicate that 

different types of catechol Fe+3 binding compounds are pro­

duced by Bradyrhizobium  strains.
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