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Bangladesh
Rice is the most consumed staple food in the world and a key crop for food security. Much of the world’s
rice is produced and consumed in Asia where cropping intensity is often greater than 100% (more than
one crop per year), yet this intensity is not sufficiently represented in many land use products.
Agricultural practices and investments vary by season due to the different challenges faced, such as
drought, salinity, or flooding, and the different requirements such as varietal choice, water source, inputs,
and crop establishment methods. Thus, spatial and temporal information on the seasonal extent of rice is
an important input to decision making related to increased agricultural productivity and the sustainable
use of limited natural resources. The goal of this study was to demonstrate that hyper temporal moder-
ate-resolution imaging spectroradiometer (MODIS) data can be used to map the spatial distribution of the
seasonal rice crop extent and area. The study was conducted in Bangladesh where rice can be cropped
once, twice, or three times a year.

MODIS normalized difference vegetation index (NDVI) maximum value composite (MVC) data at 500 m
resolution along with seasonal field-plot information from year 2010 were used to map rice crop extent
and area for three seasons, boro (December/January–April), aus (April/May–June/July), and aman (July/
August–November/December), in Bangladesh. A subset of the field-plot information was used to assess
the pixel-level accuracy of the MODIS-derived rice area. Seasonal district-level rice area statistics were
used to assess the accuracy of the rice area estimates. When compared to field-plot data, the maps of rice
versus non-rice exceeded 90% accuracy in all three seasons and the accuracy of the five rice classes varied
from 78% to 90% across the three seasons. On average, the MODIS-derived rice area estimates were 6%
higher than the sub-national statistics during boro, 7% higher during aus, and 3% higher during the aman
season. The MODIS-derived sub-national areas explained (R2 values) 96%, 93%, and 96% of the variability
at the district level for boro, aus, and aman seasons, respectively.

The results demonstrated that the methods we applied for analysing and interpreting moderate spatial
and high temporal resolution imagery can accurately capture the seasonal variability in rice crop extent
and area. We discuss the robustness of the approach and highlight issues that must be addressed before
similar methods are used across other areas of Asia where a mix of rainfed, irrigated, or supplemental
irrigation permits single, double, and triple cropping in a single calendar year.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
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1. Introduction

1.1. Background

Agriculture in Bangladesh is an important sector in the econ-
omy: it contributed about 20% of the gross domestic product
(GDP) in 2010 and employs 63% of the country’s population (BBS,
2010). Rice is the most important crop within the sector 58.1%,
of the total geographic area was covered by rice averaged across
2008–12 (FAO, 2013), especially in terms of livelihood, providing
food, employment, and income for much of the rural population.
The person–land ratio on cropland has increased by 42–43% in only
the last two decades (Asaduzzaman et al., 2010). The pressure to
convert agricultural land to other uses and the increase in the hu-
man population from 138 million in 2000 to 254.6 million in 2050
(Cohen, 2004) means that productivity per unit area must increase
by 97.4% (Idso, 2011) to meet this demand. This productivity gain
can be achieved through a combination of higher yields per crop
(better management or improved varieties), a reduction in losses
(such as post-harvest losses) and higher crop intensification (the
cultivation of more than one crop per year in the same location).
Here we focus on cropping intensity as one approach to increase
production sustainably in a well-managed cropping system (Biggs
et al., 2006; Frolking et al., 2006).

Seasonal maps of the cropped area could be combined with
other information on environmental and social factors to pinpoint
areas where productivity could be increased. Furthermore, they
could identify areas where second or third seasons could be con-
sidered. One example could be the development of new cropping
calendars that mitigate the risk of exposure to coastal salinity
intrusion, flooding, or drought. Another example could be the
introduction of shorter duration varieties allowing time for an
additional crop or varieties that can better tolerate biotic and abi-
otic stresses thus opening up land in seasons that were otherwise
left fallow. The premise in producing this type of spatial informa-
tion by season is to identify areas for intensification and to suggest
development pathways towards increasing production sustain-
ably. One such region is Rajshahi in Bangladesh, where cropping
intensity is limited to 115% because of restricted irrigation poten-
tial (Allard et al., 2005). Information on cropped area often comes
from nationally mandated agencies but may not fulfill the require-
ments for identifying opportunities to sustainably increase produc-
tion through higher intensity.

Statistical data on crop area collected by agricultural ministries
provide an overview of crop areas at varying levels of spatial and
temporal detail (Gaur et al., 2008; Gumma et al., 2011a). Some-
times these data are available only for the entire nation (level 0 de-
tail) but more are usually reported at state (level 1) or district
(level 2) granularity. Seasonal data for countries with more than
one cropping season are usually even more restricted in their avail-
ability and such aggregate data cannot be easily combined to esti-
mate cropping intensity. The spatial and temporal detail in
statistical data are insufficient for targeted policy making and there
is a need for other approaches such as validated maps derived from
remote sensing to deliver relevant and timely layers of information
for seasonal land use and resource planning. We argue that an
assessment of current cropping intensity is a first step towards
providing spatial information on intensification options and that
current information sources do not capture this sufficiently. Re-
mote sensing is one approach to fill this information gap.
1.2. Examples of remote-sensing approaches for rice mapping

Remote sensing has been demonstrated to provide an alterna-
tive, quick, and independent approach for the estimation of
cropping intensity, area, and changes in a country (Badhwar,
1984; Lobell et al., 2003; Thenkabail, 2010; Thenkabail et al.,
2009; Thiruvengadachari and Sakthivadivel, 1997). Several studies
have reported the use of multi-spectral and multi-temporal data
to map irrigated areas, land use, land cover, and crop type
(Dheeravath et al., 2010; Goetz et al., 2004; Knight et al., 2006;
Thenkabail et al., 2005; Varlyguin et al., 2001; Velpuri et al.,
2009) and in particular MODIS NDVI time-series data have been
used to map both agricultural area (Biggs et al., 2006; Gaur et al.,
2008; Gumma et al., 2011a) and seasonal crop area (Sakamoto
et al., 2005). These data cover a range of radiometric resolutions
(both radar and optical imagery have been used), spatial resolution
(sub-national to continental coverage), temporal resolution (single
season to multi-year analyses), and thematic resolution (from
maps of rice/non-rice to more nuanced assessments of rice agricul-
tural practices).

Synthetic Aperture Radar (SAR) has been used to identify rice
areas, and irrigated rice areas in particular. Le Toan et al. (1997)
used ERS-1 data for monitoring rice areas and as an input to crop
growth simulation models to estimate area and production for
study sites of Indonesia and Japan. Similarly, Shao et al. (2001)
mapped rice areas using temporal RADARSAT data (1996 and
1997) for production estimates in Zhaoqing in China. Bouvet and
Le Toan (2011) demonstrated how lower resolution wide-swath
images from advanced SAR (ASAR) data could be used to map rice
areas over larger areas. Rice mapping with SAR is advantageous be-
cause of pervasive cloud cover across Asia during the months in
which much of the rice is cultivated, but the high cost of SAR data
in a temporal series has limited its application on a larger scale.

Optical approaches have been commonly used too. Shao et al.
(2001) used the Land Surface Water Index (LSWI), enhanced vege-
tation index (EVI), and normalized vegetation index (NDVI) derived
from temporal MODIS data to map rice areas across South and
Southeast Asia. Sakamoto et al. (2005) also used EVI derived from
MODIS to map rice areas in the Mekong Delta in 2002 and 2003
using wavelet-based filters to determine crop phenology. Nguyen
et al. (2012) used SPOT NDVI data with unsupervised classification
and field knowledge in the Mekong Delta during 1998–2008. Inoue
et al. (2012) used hyperspectral reflectance data by regional
assessment of canopy nitrogen content (CNC) at the critical growth
stage of the rice crop with various spectral indices, such as the nor-
malized difference spectral index (NDSI) and ratio spectral index
(RSI). In almost all the examples listed above, the accuracy assess-
ment of the resulting maps was conducted with limited ground
data information for small areas. Furthermore, they generated only
rice extent information without any information on differences in
rice ecosystems within that extent.

Several studies have used spectral matching technique and/or
decision tree algorithms on optical data to obtain information on
the different rice cropping systems. Sakamoto et al. (2005) mapped
rice areas in South Asia for 2000–01 using MODIS NDVI monthly
maximum value composite data with spectral matching tech-
niques (SMTs), but ground data were limited and from a different
year than the imagery. Biradar et al. (2009) mapped irrigated and
rainfed areas on a global scale at nominal 1 km using AVHRR
10 km, SPOT VGT 1 km, and a suite of secondary data for nominal
year 2000. Gumma et al. (2011b) mapped irrigated areas and par-
titioned between canal and groundwater irrigation areas in the
Krishna River basin using MODIS 250 m for 2000–01. However,
none of these studies mapped seasonal rice areas. Rice in Asia
can be cultivated once, twice, or three times a year, and in more
complex cycles such as five crops in two years and seven crops
in three years cycles in parts of Vietnam Thailand and Indonesia.
We argue that this information gap on cropping intensity and sea-
son rice areas can be addressed with existing data and suitable
techniques.
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1.3. Goal, objectives, and structure

The goal of this paper was to map rice crop extent and areas
during three distinct seasons: (boro (December/January–April),
aus (April/May–June/July), and aman (July/August–November/
December)), for the entire country of Bangladesh based on MODIS
500 m NDVI time-series data using spectral matching techniques,
phenological approaches, decision trees, and ground data. The spe-
cific objectives were to use MODIS time series data to:

1. Produce seasonal rice extent maps of Bangladesh for 2010.
2. Determine seasonal rice areas at the district level for all 64 dis-

tricts and for all three seasons in Bangladesh.
3. Establish the accuracies of (a) MODIS-derived rice crop extents

by comparing them with independent field data and (b) MODIS-
derived rice crop areas by comparing them with independent
sub-national statistics.

2. Study area and data

2.1. Study area

Bangladesh is one of the largest rice-growing countries in South
Asia. It extends from 20�440000 0 to 26�370510 0N latitude and from
88�00140 0 to 92�400080 0E longitude, and covered 148,450 km2

(Fig. 1). The country is relatively flat except for the Chittagong Hill
Tracts in the Southeast. Most of Bangladesh is covered by the flood-
plain deltas of three major rivers, the Ganges, Brahmaputra, and
Meghna, whose flows discharge into the Bay of Bengal with a com-
bined average of 35,000 m3 s�1 (Islam et al., 2010; WBP, 2012).
Fig. 1. The Bangladesh study area, showing major riv
Floods are a major problem during the monsoon season, and they
depend on the duration and magnitude of the rainfall in the upper
part of the three major river basins and much of this basin area lies
outside Bangladesh. Every year, 25–35% of the total geographic
area is inundated by the overflow of rivers during the monsoon
season (Islam et al., 2010). Drought and salinity are also major
problems especially in the first half of the year. Despite these lim-
itations, the agricultural systems in Bangladesh are complex and
take advantage of seasonal environmental variations to cultivate
crops throughout the year.

Bangladesh has 8.44 million ha of arable land and 7.81 mil-
lion ha of net cropped area (BBS, 2006). The total cropped area is
13.75 million ha due to a high cropping intensity of 176%. Rice ac-
counted for 75–76% of the total cropped area between 2003 and
2006; however, it is estimated that rice area had increased to about
84% of the total cropped area by 2008–09 (Asaduzzaman et al.,
2010). This suggests that much of the cropping intensity is due
to rice, which may be in the form of monoculture or multi-crop
systems.

The challenges of increasing productivity are different in each of
the three rice seasons that occur in Bangladesh. Boro rice
(December/January–April) accounts for 50% (5,650,000 ha) of the
annual rice production and is the lifeline of Bangladesh. It is culti-
vated after the previous year’s monsoon season, and is dependent
on irrigation and high fertilizer inputs to increase production. Aus
rice (April/May–June/July) accounts for 9% (1,040,000 ha) of the
annual rice production and is cultivated on a much smaller area
in a period of much higher temperatures. It is cultivated in early
monsoon season conditions, in which there is great uncertainly
about the onset of the rainy season and hence water availability
ers and state and district boundaries by location.
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is a critical limitation. Aman rice (July/August–November/
December) accounts for 41% (4,710,000 ha) of the annual rice
production and is cultivated in the monsoon season. This crop
can suffer from floods or excessive rains (during the early growth
period) followed by drought and cool temperatures (during flower-
ing and the reproductive stage).

Climate shocks and unsustainable agricultural practices in
Bangladesh have an adverse impact on production and the
environment. The land area affected by declining soil fertility,
soil erosion, and salinization is estimated at 5.6–8.7 million ha,
5.3 million ha, and 3.05 million ha, respectively (Asaduzzaman
et al., 2010). Projected crop areas from climate change models
suggest that climate change patterns may increase the negative
effect of existing climate variability (Asaduzzaman et al., 2010).
This is expected to further reduce rice production, primarily of boro
rice, by about 3.9% from 2005 to 2050 (Asaduzzaman et al., 2010).

2.2. Data sets

2.2.1. Description of MODIS products used in the study
Moderate-resolution imaging spectroradiometer (MODIS)

imagery was downloaded from the Land Processes Distributed Ac-
tive Archive Center (LP DAAC) (https://lpdaac.usgs.gov/lpdaac/
get_data/data_pool). MOD09A1.5 8-day composite, seven-band
data for all 46 composite dates (8-day interval) for 2010 were used
in this analysis. The spatial resolution of the data is approximately
500 m. Although the data have already undergone atmospheric
correction (Vermote and Vermeulen, 1999) and cloud screening,
each MODIS 8-day composite was further processed and cloud
contamination in each composite was removed (Gumma et al.,
2011a; Thenkabail et al., 2005). Cloud contamination can be severe
spanning several consecutive 8-day composites, especially during
the aus and aman seasons. We chose to address this by generating
monthly composites that would be used alongside the 8-day com-
posites in analysis and interpretation. Interpolation of the 8-day
data using gap filling and smoothing algorithms would have been
an alternative approach but we had good prior experience with
monthly composites and choose that approach instead of selecting
from a range of smoothing algorithms.

MODIS 8-day composites were used to calculate three indices:
(a) NDVI, (b) NDVI monthly maximum value composites (NDVI
MVC) and (c) Land Surface Water Index (LSWI), using surface
reflectance values from the red (620–670 nm) NIR1 (841–
875 nm) and SWIR1 (1628–1652 nm) bands with the following
equations:

NDVI ¼ ðkNIR � kredÞ
ðkNIR þ kredÞ

ð1Þ

NDVIMVCI ¼ MaxðNDVIi1;NDVIi2;NDVIi3;NDVIi4Þ ð2Þ

LSWI ¼ ðkNIR � kswirÞ
ðkNIR þ kswirÞ

ð3Þ

where MVCi is the monthly maximum value composite of the ith
month and i1, i2, i3, and i4 are every 8 days’ data in a month. Monthly
NDVI MVC were used for classification, NDVI 8-day data were used
for identifying and labeling seasonal rice classes and LSWI data
were used to help resolve mixed classes.

2.2.2. Sampled field-plot information for groundtruth
Sampled field-plot information was gathered from 605 loca-

tions during August 4–18, 2010. Local agricultural officers accom-
panied the lead author during the field visit and farmers were
interviewed and/or local experts provided inputs at each location.
The representativeness of the field samples is based on local expert
knowledge and our field observations. Some areas of the country
could not be visited due to time constraints and lack of access
due to monsoon rains.

The following data were collected at 191 out of the 605 loca-
tions: (a) geographic location using a handheld GPS unit, (b) crop
type, (c) cropping season (boro-rice, aus-rice, and aman-rice) based
on interviews with agricultural extension officers and farmers, (d)
cropping patterns, (e) land holding size, small (610 ha), medium
(10–15 ha), and large (P15 ha), (f) land cover categories, (g) source
of water by season and (h) digital photographs (Fig. 2). For the
remaining 414 points we recorded only the geographic coordi-
nates, cropping pattern/intensity, and digital photographs.

The 191 points that had detailed field data were used for class
identification and calculating rice fractions (a visual estimate of
the percentage area covered by rice from centre of a 500 m pixel
for a field observation point). Of those 191 points, 156 were dom-
inated by rice and 35 points had other land cover. Within the 156
rice points, 118 were used to generate 15 ideal temporal profiles of
distinct rice ecosystems while the remaining 38 were mixed rice
classes. Furthermore, within those same 156 rice points, we iden-
tified rice in 103 locations in the boro season, 12 locations in the
aus season, and 117 locations in the aman season, demonstrating
that our fieldwork captured areas where rice cropping intensity
was greater than 100%. The aus season is slightly under repre-
sented in the field observation data considering the reported rice
area per season. This reflects the fragmented aus distribution and
highlights the challenge of capturing such spatial patterns in a ra-
pid field campaign.

The 414 points with limited observations used for the
classification accuracy assessment (validations points). Again, we
sufficiently captured areas of high cropping intensity: 269 observa-
tions of boro, 99 of aus, and 303 of aman rice (the remaining points
were other land use/land cover).

Field-plot locations were selected based on the homogeneity of
locations and road access. The emphasis was on ‘‘representative-
ness’’ of the sample location in representing one of the classes to
ensure precise geo-location of the pixel. Class labels were assigned
in the field using a labeling protocol (see Thenkabail et al., 2009).
2.2.3. Sub-national rice area statistics – secondary data
Rice area statistics for 2010 were obtained from the Bangladesh

Bureau of Statistics (BBS, 2011) for 64 districts, the most detailed
sub-national administrative unit for which seasonal rice area esti-
mates were available for 2010. The BBS reports also contained use-
ful contextual information on changes in area and production from
past years and offered general comments on the reasons for those
changes, such as higher rainfall, adoption of improved varieties, or
rehabilitation of the irrigation system.
3. Methods

The seasonal rice mapping methodology (Fig. 3) involved the
following ten steps:

(3.1) Temporal series of reflectance data.
(3.2) Generating class spectra by performing an unsupervised

classification on NDVI MVC.
(3.3) Composing an ideal spectral data bank.
(3.4) Grouping classes with a decision tree algorithm.
(3.5) Grouping classes with spectral similarity values.
(3.6) Spectral matching techniques.
(3.7) Identifying and labeling classes.
(3.8) Resolving mixed classes.
(3.9) Sub pixel area estimation.

(3.10) Accuracy assessment.

https://www.lpdaac.usgs.gov/lpdaac/get_data/data_pool
https://www.lpdaac.usgs.gov/lpdaac/get_data/data_pool


Fig. 2. Field-plot data-point locations in Bangladesh. There are 605 field-plot locations where data on crop type, cropping intensity, water source (irrigated versus rainfed),
and a number of other parameters (e.g., crop planting dates and harvest dates) were collected with sample NDVI signatures of rice-growing areas (irrigated-GW-rice-rice-
rice-LS, irrigated-GW-rice-fallow-rice-LS, and deepwater-rice-water-fallow-LS).

Fig. 3. Overview of the methodology for mapping rice areas using the 8-day MODIS 500 m MOD09A1 data and other ancillary spatial data.
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3.1. Temporal reflectance data and NDVI data

A 315 layer stack of reflectance data for all seven bands for
across 46 weeks was generated using MODIS imagery (Thenkabail
et al., 2009). The 8-day NDVI images were prepared by using Eq.
(1)and monthly MVCs of NDVI for January through December (12
layer stack) was prepared using Eq. (2).

3.2. Generating class spectra by performing an unsupervised
classification on NDVI MVC

Class spectra (e.g., Fig. 4b1) were generated through an unsu-
pervised ISODATA cluster algorithm on the 12-band monthly
MVC NDVI. Unsupervised classification was used instead of super-
vised classification in order to capture the range of variability in
phenology over the study area, particularly in large study areas
where the NDVI signatures of most of the potential classes are un-
known. The unsupervised classification was set at a maximum of
100 iterations with a convergence threshold of 0.99 (Leica, 2010).
ISODATA classification using progressive generalization led to an
initial 100 classes (Cihlar et al., 1998). The MODIS NDVI time-series
spectra were then plotted for each of the 100 classes for labeling.

3.3. Composing an ideal spectral data bank

Ideal spectral signatures were generated using time-series data
that were extracted from 118 observation points (see Fig. 2 and
Section 2.2.2). Each of the points chosen to generate the ideal spec-
tral signatures (e.g., Fig. 4b2) represents a definitive crop type and/
or cropping system such as ‘‘irrigated-groundwater-rice-rice-rice’’
(meaning the rice field is irrigated by groundwater and is rice dur-
ing all three seasons), ‘‘irrigated-groundwater-rice-fallow-rice’’, or
‘‘deepwater-rice-fallow-water’’. Multiple points with the same
crop type/system, even though distributed spatially in discrete
patches were combined to create a single ideal spectral signature
(e.g., Fig. 4b2), for that cropping system (between 5 and 17 points
per spectra) resulting in 15 ideal rice signatures and a 9 ideal sig-
natures for other classes.

3.4. Grouping classes with a decision tree algorithm

A decision tree was applied to the 100 NDVI signatures (Fig. 4a)
obtained from 100 classes that resulted from the unsupervised
classification to obtain twelve distinct groups. The decision tree
is based on monthly NDVI thresholds at different crop growth
stages in the season. The months and threshold values were chosen
based on knowledge of the crop calendar from local experts, field
observations as well as published rice crop development stages
(Fig. 4a).

3.5. Subsequent grouping of classes using spectral similarity values

There are several spectral matching techniques (SMTs) (Then-
kabail et al., 2007) to reduce the grouping into similar land use
classes, and in this case we selected spectral similarity value
(SSV) (Homayouni and Roux, 2003) that has previously performed
well in analyzing spectral signatures for agricultural crops such as
rice (Thenkabail et al., 2007). SSV was calculated for each class
combination,

SSV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED2 þ ð1� qÞ

q
ð4Þ

where ED is the Euclidian distance and q is the correlation coeffi-
cient between the ideal and class temporal signatures. The lower
the SSV value the higher the similarity between the two classes.
3.6. Spectral matching technique

Classes with similar SSVs were grouped and then matched
against ideal spectra (Fig. 4b). The 100 classes obtained from the
unsupervised classification include crop and non-crop lands. Each
of those classes was investigated and grouped into similar or
near-similar broad classes. We use an example to illustrate the
process base on nine similar cropland classes obtained by the DT
algorithm in Fig. 4b1, Section 3.4. The nine classes (class numbers
24, 40, 41, 45, 47, 50, 52, 54, and 59) have similar or near-similar
signatures as determined by their SSVs. The nine classes are then
matched with the nearest ideal signature (Fig. 4b2). This resulted
in three class spectra (classes 41, 45, 47) matching perfectly with
ideal spectra ‘‘4’’, which is labeled as ‘‘irrigated-surface water –
double crop – rice in boro season – fallow in aus season – rice in
aman season – large scale’’ (Fig. 4b3). The same process is followed
for all cropland classes until all class spectra are matched to ideal
spectra.

3.7. Identifying and labeling classes

The combination of decision trees and spectral matching allows
for rapid and accurate identification and labeling of classes as illus-
trated in Fig. 4a. However, further affirmation of the class labeling
requires steps B through D especially in cases where we did not
have a sufficiently rich ideal spectral data bank. Whenever there
was ambiguity in the class matching we used various sources of
information to increase our confidence in the matching decision.
We performed visual interpretation of the phenology from the
8-day NDVI and LSWI time-series to distinguish between irrigated
and rainfed systems or to confirm deepwater systems for example.
We also relied on visual interpretation of high resolution imagery
from Google Earth (where available) to confirm the presence of
any rice bunds or irrigation structures. Finally we referred back
to relevant information from our field plot data to correctly class
match the class. These steps are illustrated in Fig. 4c.

3.8. Resolving mixed classes

When a study area contains many distinct land cover classes
over a large spatial extent, there is a risk that some of the classes
from the unsupervised classification may contain several
sub-classes or mixed classes. These mixed classes were resolved
by extracting them from the stack, reclassifying them, and
applying the methodology above on these new classes in order to
separate them.

3.9. Sub-pixel area estimation

With the use of moderate spatial resolution imagery in areas
where land use patterns change over sub-pixel distances, it is inev-
itable that many MODIS pixels will contain more than one land
cover class. The labeling of classified land cover maps at this reso-
lution suggests that each pixel in that class is 100% pure, when this
is certainly not always the case. One approach is to use higher res-
olution imagery with spectral and spatial resolutions capable of
accurate rice area estimation. This requires a sample of imagery
across the study site that captures representative rice classes in
each season. Since this was beyond the scope of this study we esti-
mated the sub-pixel rice area for each rice class from the 191 de-
tailed ground data observations following previous methods
(Thenkabail et al., 2007).

The ground data observations include a visual estimate of the
proportion of the 500 m � 500 m area that surrounds the observa-
tion point under different land use (water, built-up area, cropland,
etc.). If our ground data observations are representative of the rice



Fig. 4a. Decision tree algorithm to group and identify classes. MODIS monthly NDVI MVC classes are plotted and grouped.

Fig. 4b. Spectral matching techniques (SMTs) illustrated. The MODIS NDVI MVC images were classified to obtain class spectra. Of the 100 initial classes, we illustrate here
MODIS monthly NDVI MVC class spectra for nine classes (e.g., Fig. 4a1). The four ideal spectral signatures (Fig. 4a2) are illustrated from the ideal spectral data bank generated
based on exact knowledge from field-plot data (Fig. 2) and MODIS monthly NDVI signatures from these locations. The class spectra (e.g., Fig. 4a1) are then matched (e.g.,
Fig. 4a3) with ideal spectra (e.g., Fig. 4a2) to identify and label classes. Fig. 4a3 shows a simple qualitative match between ideal spectra number 4 with class spectra classes 41,
45, and 47. So, class spectra classes 41, 45, and 47 take the same name as ideal spectra number 4 (‘‘Irrigated-SW-DC-rice-fallow-rice-LS’’).
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Fig. 4c. Use of MODIS 8-day phenology and very high resolution (sub-meter to 5-m) imagery in class identification and labeling.
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systems and we have sufficient observation points per class, then
we can estimate a reliable rice area fraction (sub pixel area, or
SPA) for each class based on the average rice area across all obser-
vation points in that class. The SPA information is applied to each
class to estimate the actual rice area for that class. This SPA rice
area estimate is compared with the published sub-national rice
area rather than the MODIS pixel rice area. As seen in Section 3.2,
the number of field points per rice season is not proportional to the
published rice area statistics. If we assume that the statistics are an
accurate assessment at district level – an important assumption for
our area accuracy assessment – then care must be taken when
interpreting the SPA for those under represented classes.
3.10. Rice classification accuracy assessment

The 414 field-plot points were used to assess the accuracy of the
classification results, based on a theoretical description given by
Jensen (2004), to generate an error matrix and accuracy measures
for each seasonal rice map.
4. Results

4.1. MODIS derived seasonal rice maps and area statistics

For each season – boro, aus and aman – we identified, labeled
(Fig. 5) and estimated the area of up to five rice classes (Table 1).
Class one is rainfed, classes two to four are irrigated, while class
five is rice with a long period of flooding prior to rice emergence
that could be termed deepwater rice. Of the three irrigated classes,
class two is groundwater irrigated, class three is a combination of
groundwater and surface-water irrigation and class four is surface-
water irrigated. The final class name or label (Fig. 5 and Table 1) is
based on the predominance of a particular land cover (e.g., trees,
grasses, shrubs, other crops) within the rice class. The rice area,
including season-wise area and percentage of total geographic
area, is shown in Table 1.

The total net rice area (SPA), for the year 2010 based on MODIS
data, from the three seasons combined is 8,004,961 ha (Fig. 5 and
Table 1) whereas the annualized rice area (from all three seasons
combined) is 11,931,708 ha, resulting in a rice cropping intensity
of 1.49. Although from a different year our area estimate is 15%
lower and our cropping intensity is 0.27 lower than those by
Asaduzzaman et al. (2010).

4.2. Temporal MODIS signatures for seasonal rice classes

Boro, aus, and aman rice-growing areas have shown very good
separation in the classification (Fig. 6a–c). In Fig. 6a, the class
‘‘01. Rainfed-rice’’ signature extends from January to May, with
high NDVI values between February and March, indicating boro
rice, followed by aus rice. In Fig. 6b, the class signatures extend
from May to July, with high NDVI values between June and July,
indicating aus rice, and, later in the season, very low NDVI. In
Fig. 6c, the class ‘‘05. Deepwater-rice’’ signature extends from
mid-June to August, with significantly low NDVI values, which
indicates submergence during the start of the aman season, fol-
lowed by rice crop growth from September to December.

4.3. Accuracies, errors, and uncertainties

Table 2 shows the error matrices for each season. In the
boro season, for class one, only three of the five points matched
perfectly and the other two points matched with irrigated-
groundwater-rice, where as for class two, 213 out of 238 points
matched with the same class with the main error was related to



Fig. 5. Spatial distribution of rice cultivation with season and irrigation source. (a) Spatial distribution of boro, (b) aus, (c) aman rice, and (d) net rice with other land use/land
cover.
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misclassified non-rice areas. The same assessment can be made for
each class and season. The overall accuracy for the boro season was
82.13% with a Kappa value of 0.66. For aus the same figures were
90% and 0.70 whilst for aman they were 78% and 0.64.
4.4. Comparison with sub-national statistics and other published rice
area estimates

The final classified maps of seasonal rice areas were compared
against district-level rice area (Table 3). On average, the MODIS-
derived rice area had slightly higher estimates: higher by 7% during
boro, 6% in aus and by 3% during aman. This overestimation is clear
in the scatterplots of district level area estimates (Fig. 7) and the
root mean squared error between the two area estimates
(9556 ha for boro, 3754 ha for aus, and 11,349 ha for aman).
5. Discussion and conclusions

5.1. Discussion on results: seasonal rice maps and area estimates

Rice is grown extensively during the aman season, resulting in a
total rice area for the season of 5,816,240 ha from MODIS or
5,645,640 ha from the published national statistics, which is nearly
40% of the total geographic area of the country. Not only are the
rains abundant during the monsoon, but also flooding from the
Ganges and Brahmaputra is extensive. This results in groundwater
recharge and saturation of soils, making water available for rice in
abundance.

A unique feature during the aman season is deepwater rice
(35,565 ha during 2010; Fig. 5 and Table 1). These rice fields
remain completely under water for anywhere from 1 to 2 months
because of heavy flooding from the two great rivers.

The aman season is followed by the dry boro season
(5,011,631 ha, from MODIS or 4,706,874 ha from published
national statistics), when rains are infrequent but soil moisture is
still high and there is abundant or adequate shallow ground water
throughout large parts of the country. This results in a high per-
centage of groundwater irrigated rice area during this season
(4,143,590 ha out of 5,011,631 ha from MODIS). Boro rice areas
are spatially located in the Bogra, Comilla, Jamalpur, Mymensingh,
and Ranpur regions.

Aus (dry season) cultivation of rice is smaller than boro or aman
(1,103,738 ha from MODIS and 1,035,578 ha from published na-
tional statistics) and occurs only in areas where there is sufficient
water from irrigation to establish a crop. Although the latter part of



Table 1
Rice classes during the three seasons in a year. The actual rice area shown in the last column is obtained by multiplying the full-pixel areas of each class by the rice area fraction of
that class.

Rice classes Full-pixel
area (ha)

Rice
fraction (%)

Sample
size

Land cover areas within the classes (ha)

Trees Grasses Water Shrubs Other
crops

Actual rice area
(= sub-pixel area)

Boro(December/January–April)
01. Rainfed-rice 502,291 100 10 – – – 1507 – 500,723
02. Irrigated-GW-rice 4,428,126 94 75 146,060 53,138 26,312 29,859 27,485 4,143,590
03. Irrigated-GW/SW-rice 137,642 99 7 688 138 – 275 413 136,185
04. Irrigated-SW-rice 241,977 96 11 2819 3213 4027 726 – 231,133
05. Deepwater-rice 0 0 0 0 0 0 0 0 0

Aus (April/May–June/July)
01. Rainfed-rice 168,837 97 4 1266 422 844 0 1688 164,616
02. Irrigated-GW-rice 781,847 90 5 688 138 40,268 32,352 413 707,989
03. Irrigated-GW/SW-rice 241,594 96 3 2819 3213 4027 403 0 231,133
04. Irrigated-SW-rice 0 0 0 0 0 0 0 0 0
05. Deepwater-rice 0 0 0 0 0 0 0 0 0

Aman (July/August–November/December)
01. Rainfed-rice 2,431,102 83 4 99,675 55,915 100,822 29,173 19,449 2,126,068
02. Irrigated-GW-rice 3,171,026 84 56 31,711 34,881 157,102 44,394 34,564 2,868,373
03. Irrigated-GW/SW-rice 646,563 79 41 19,461 16,228 32,351 4849 14,225 559,449
04. Irrigated-SW-rice 243,140 85 11 3404 2188 7286 1775 1702 226,785
05. Deepwater-rice 46,090 89 5 4102 1106 4027 876 415 35,565

Boro rice 5,011,631

Aus rice 1,103,738

Aman rice 5,816,240

Total rice area (boro + aus + aman) or annualized rice area (see Fig. 5) 11,931,608

Net rice area (see Fig. 5d) 8,004,961
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the season can also be irrigated in the limited areas that have suf-
ficient water, the majority of aus rice relies on early monsoon rains
for the remainder of the season, making this a drought prone crop.
This reliance on post boro season irrigation and higher risk of
drought are two reasons why aus has a limited extent and a spa-
tially fragmented pattern across Patuakhali, Rajshahi, and Noakhali
regions.

Bangladesh has a predominance of groundwater irrigation as is
evident from the large area of class two (Fig. 5 and Table 1) in all
three seasons; 4,143,590 ha in boro, 707,989 ha in aus, and
2,868,373 ha in aman and this deserves further discussion. The
aus crop often relies on irrigation to establish the crop and then
on early monsoon rains for the remainder of the season. Aman is
essentially a rainfed crop, but when there is a shortfall in rain then
groundwater may be used as supplemental irrigation. However,
irrigation use in aman is very small compared to boro and aus
and the presence of a large area of class two in the aman season
map should not be interpreted as areas of aman rice that rely en-
tirely on irrigation. What is clear is that many parts of Bangladesh
become flooded during the monsoon, resulting in recharge of
groundwater. This has resulted in many shallow groundwater
wells from which water is used to irrigate rice fields. The heavy
use of this recharge water takes place in the months immediately
after the monsoon during the boro season (from December/January
to April) and is the reason why class two area is highest during boro.

The district-wise rice area derived from our study was com-
pared with national statistics (BBS, 2011) and there was a very
good correlation between the two (boro: R2 = 0.962, aus:
R2 = 0.934, aman R2 = 0.963 , and no. of districts = 64). The main
advantage of the remote sensing based area estimates is the avail-
ability of area data at finer granularity than the published statistics
such that we can interpret them at a pseudo field level to generate
cropping intensity information within each district.

The three rice seasons per year can be combined in seven pos-
sible rice cropping patterns across those seasons (boro, aus, aman,
boro-aus, boro-aman, aus-aman, and boro-aus-aman). Such seasonal
mapping will have huge implication in determining water use by
crops with greater accuracies. Given Asia’s importance in agricul-
tural output, and the high cropping intensity, mapping croplands
by season is a key component in modeling resource use and land
use intensity, especially water. Rice crop productivity and water
productivity vary by season and capturing these dynamics and
capturing the intra annual spatial and temporal patterns of crop
extent aids our understanding of seasonal cropland and water
use dynamics.

Our study has successfully mapped rice areas and season-wise
rice areas and adequately classified rainfed and irrigated environ-
ments mainly in the northern, western, and central regions of the
study area, where a clear difference between rainfed and irrigated
rice temporal signatures was detected. However, there were some
areas where correct classification was challenging. Rice areas with
high rainfall were mixed with irrigated rice areas, particularly in
the aman season. Separating the spectral signatures from irrigated
rice areas and favorable rainfed rice areas is difficult without aux-
iliary information on irrigation infrastructure. Also the landscape
in three coastal divisions Khulna, Barisal and Patuakhali is chal-
lenging to map accurately with MODIS and exacerbated by the lack
of field data in many of the coastal districts. It is a poor region with
small landholdings and much of the agriculture takes place within
polders that aim to control water flow. There are large areas of
aquaculture and shrimp cultivation in the highly saline dry season,
and homesteads, villages and dense, tree lined canal and river net-
works contribute to a highly mixed pixel environment at MODIS
resolution. Any MODIS based classification of this area is
challenging.

5.2. Discussion on methods

Classification of remote sensing imagery requires several deci-
sions on the most appropriate methods and thresholds used in
those methods. In the case of supervised methods, they also rely
on subjective operator interventions to derive the best result. Here



Fig. 6. Temporal mean MODIS 500 m NDVI signatures of the five rice classes for the three seasons for 2010. These NDVI signatures are for the classes in Fig. 5. Note: when a
particular class does not exist in a season, then naturally that class will not have an NDVI signature.
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Table 2
Accuracy assessment using field-plot data.

Rice classes Reference data (field-plot data) Reference
totals

Classified
totals

Number
correct

Producers’
accuracy

Users’
accuracy

Kappa

01. Rainfed-
rice

02. Irrigated-GW-
rice

03. Irrigated-GW/
SW-rice

04. Irrigated-
SW-rice

05.
Deepwater-
rice

06.
Nonrice
area

Row
total

Boro
01. Rainfed-rice 3 0 0 0 0 0 3 5 3 3 60% 100% 1.0
02. Irrigated-GW-rice 2 213 8 2 3 25 253 238 253 213 90% 84% 0.6
03. Irrigated-GW/SW-rice 0 2 3 3 0 1 9 13 9 3 23% 33% 0.3
04. Irrigated-SW-rice 0 1 0 2 0 0 3 10 3 2 20% 67% 0.7
05. Deepwater-rice 0 0 0 0 0 0 0 3 0 0 – – 0.0
06. Non-rice area 0 22 2 3 0 119 146 145 146 119 82% 82% 0.7

Column total 5 238 13 10 3 145 414 414 414 340
Overall classification accuracy = 82% Overall Kappa statistics = 0.6590

Aus
01. Rainfed-rice 2 0 0 0 0 0 2 10 2 2 20% 100% 1.0
02. Irrigated-GW-rice 0 13 2 0 0 2 17 28 17 13 46% 76% 0.7
03. Irrigated-GW/SW-rice 2 1 44 0 0 1 48 54 48 44 81% 92% 0.9
04. Irrigated-SW-rice 0 0 0 0 0 0 0 7 0 0 – – 0.0
05. Deepwater-rice 0 0 0 0 0 0 0 0 0 0 – – 0.0
06. Non-rice area 6 14 8 7 0 312 347 315 347 312 99% 90% 0.6

Column total 10 28 54 7 0 315 414 414 414 371
Overall classification accuracy = 90% Overall Kappa statistics = 0.7017

Aman
01. Rainfed-rice 56 10 1 0 0 9 76 86 76 56 65% 74% 0.7
02. Irrigated-GW-rice 20 172 2 6 1 13 214 199 214 172 86% 80% 0.6
03. Irrigated-GW/SW-rice 0 0 0 0 0 0 0 3 0 0 – – 0.0
04. Irrigated-SW-rice 0 1 0 2 0 0 3 11 3 2 18% 67% 0.7
05. Deepwater-rice 0 0 0 0 3 0 3 4 3 3 75% 100% 1.0
06. Non-rice area 10 16 0 3 0 89 118 111 118 89 80% 75% 0.7

Column total 86 199 3 11 4 111 414 414 414 322
Overall classification accuracy = 78% Overall Kappa statistics = 0.6383

Figures in bold are column totals and the diagonals in the confusion matrices.
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Table 3
Comparison of MODIS rice area estimates with sub-national statistics by district and season.

Region National statistics MODIS rice areas

Boroa Ausb Amanc Total Boro Aus Aman Total

Bandarban 3161 6230 8191 17,582 1577 8284 12,612 22,474
Barisal 91,013 84,572 242,685 418,270 121,383 69,930 250,789 442,103
Bogra 258,367 18,078 251,603 528,048 283,833 28,260 252,674 564,767
Chittagong 119,405 43,630 260,251 423,286 127,491 43,156 271,491 442,138
Comilla 341,171 81,119 262,429 684,719 347,357 74,824 260,985 683,165
Dhaka 280,739 4784 170,707 456,230 298,290 11,688 177,808 487,787
Dinajpur 286,916 4415 445,946 737,277 313,737 15,846 440,779 770,362
Faridpur 212,326 31,546 182,595 426,467 214,161 52,205 182,605 448,970
Jamalpur 217,265 8636 193,574 419,475 201,596 10,025 237,353 448,974
Jessore 326,230 85,954 314,443 726,627 345,243 78,035 346,177 769,454
Khagrachari 10,064 2457 30,611 43,132 10,225 3084 30,534 43,843
Khulna 161,202 23,637 273,432 458,271 151,090 23,330 266,163 440,584
Kishoreganj 312,969 23,041 214,623 550,633 187,652 16,802 83,323 287,777
Kushtia 99,382 54,730 146,770 300,882 109,970 61,414 178,985 350,369
Mymensingh 257,926 51,051 273,270 582,247 441,591 63,943 425,341 930,875
Noakhali 118,820 86,560 269,434 474,814 129,746 92,929 258,696 481,371
Pabna 202,830 26,597 174,687 404,114 196,410 28,144 192,773 417,326
Patuakhali 59,672 179,194 476,977 715,843 61,714 169,916 427,236 658,867
Rajshahi 372,370 122,892 384,316 879,578 369,386 126,544 406,323 902,252
Rangamati 7359 5768 9541 22,668 7720 4799 18,210 30,729
Ranpur 464,189 355 546,979 1,011,523 475,030 2611 571,896 1,049,537
Sylhet 339,074 89,347 370,009 798,430 445,919 115,521 373,499 934,939
Tangali 164,424 985 142,567 307,976 170,508 2449 149989 322,946

Total rice area 4,706,874 1,035,578 5,645,640 11,388,092 5,011,631 1,103,738 5,816,240 11,931,608

RMSE 9596 46,079 98,982 258,747
NRMSE 2% 26% 18% 26%

Note: we tabulate the areas using the older and larger 23 districts of Bangladesh for reasons of space. The scatterplots in Fig. 7 show the results for the 64 districts.
Source:

a www.bbs.gov.bd/webtestapplication/userfiles/image/AgricultureCensus/Boro-2010-11.pdf.
b www.bbs.gov.bd/webtestapplication/userfiles/images/AgricultureCensus/Aus10_11pdf.
c www.bbs.gov.bd/webtestapplication/userfiles/image/AgricultureCensus/Aman-%202010-11.pdf.
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we discuss the different choices that were made in the develop-
ment of the methodology, the advantages and disadvantages,
and, some indications of how the approach can be improved.

The decision to use hyper temporal MODIS imagery is based on
the need to capture three distinct seasons of a crop which is known
to cover a large proportion of the study area in a region with per-
vasive cloud cover. The 8-day and monthly composites provide a
good basis for capturing the seasonal variability in vegetation phe-
nology whilst reducing the effect of cloud contamination in the
classification and interpretation of temporal signatures. The global
scope of MODIS and the 13 years of available data to date is an-
other strong justification for its use in national and regional level
land cover mapping.

Smoothing and gap filling 8-day data could also be considered
instead of MVC as a way to reduce cloud contamination and to in-
crease the classification detail through better detection of key rice
crop growth stages, but this would be more time consuming and
require several further choices in terms of algorithms and thresh-
olds. Our previous good experience with MVC was the basis for
our decision to not use smoothing and gap filling. New sensors
such as the RISAT-1 C band Synthetic Aperture Radar (SAR) sensor
with 25 days repeat coverage in the same geometry, and multiband
optical sensors such as PROBA-V and Sentinel-2 offer new possibil-
ities for crop mapping with high temporal coverage, better spatial
resolution and overcoming cloud effect in the case of SAR. Whether
these new data sources can be used reliably with more automated
mapping approaches remains to be seen.

The unsupervised classification of the NDVI time series provides
a transparent approach to land cover mapping that can be repro-
duced and replicated in most situations. The challenge is to select
a method which can identify rice classes from other classes consis-
tently and with minimal subjective user interventions. A large set
of field data that adequately samples the range of known cropping
systems is one suitable way to relate the classes to observed land
use and land cover. In this study, the distribution of field data
points did not precisely follow the distribution of cropping sys-
tems, partially because of time and resource constraints but also
because of gaps in knowledge of the cropping system locations.
Indeed, if such precise information existed a priori, it would negate
the need for studies like this!

Spectral matching and decision trees were used as operator
guides for grouping similar classes. There will always be a degree
of subjectivity in this grouping process, but extensive field infor-
mation, local knowledge and ancillary information were all drawn
upon to maximize the accuracy of the classification. Some areas of
the country were not included in the field data campaign, partially
due to time constraints, but also due to remoteness and flooding
that limited access. We have provided the distribution of our
ground truth points and suggest that remote sensing results in
areas with little or no field data should naturally be treated with
caution. Despite this, we observed that the spatial coverage was
sufficient to allow most land cover classes to mapped with ade-
quate accuracy in most cases and we believe the approach is a
valuable contribution to rice mapping methodologies, especially
in areas of high cropping intensity.

Field data collection is expensive, time consuming and chal-
lenging. There are several ways to reduce the burden including fas-
ter and less error prone field data capture using smart phones, the
use of sensor webs and automated stations and crowd sourcing of
voluntary geographic information to name a few. Still, field data
collection can be the most expensive part of any remote sensing
analysis and hence unsupervised and automated mapping ap-
proaches that do not rely heavily on field data have also been used
to map rice areas over large geographic areas.

There is little dispute that rice mapping, as well as our knowl-
edge of reflectance and vegetation indices over rice growing areas

http://www.bbs.gov.bd/webtestapplication/userfiles/image/AgricultureCensus/Boro-2010-11.pdf
http://www.bbs.gov.bd/webtestapplication/userfiles/images/AgricultureCensus/Aus10_11pdf
http://www.bbs.gov.bd/webtestapplication/userfiles/image/AgricultureCensus/Aman-%202010-11.pdf


Fig. 7. District rice area by season from MODIS classification compared with national statistics (64 districts across study area) for (a) boro, (b) aus, and (c) aman rice.
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would benefit from the generation of a library of temporal and
spectral signatures that covered the wide range of environments
and management practices of rice agriculture. The field data,
MODIS signatures and local-knowledge-based interpretation in
this paper are a contribution to such a library which would be a
valuable global public good to refine, calibrate and validate both
supervised and unsupervised approaches.

The field data were also used to address the low spatial resolu-
tion problem when data like MODIS are used to map and charac-
terize ground features that are smaller than the pixel area and
when multiple features occupy the same pixel. By generating sub
pixel area estimates for each class we converted the MODIS pixel
areas into rice class areas that were then compared to published
rice area statistics. This sub pixel area approach depends on a field
data set that fully captures the range of environments in which rice
is cultivated.

The gaps in the field data and the challenges in collecting a
comprehensive dataset are documented above. Further to this we
need to add the subjective nature of the ‘‘eyeball’’ land cover
proportion estimate that is conducted at each point. Despite these
drawbacks, this approach is valid in the absence of cloud free high
resolution imagery over the same number of environments and
season. If only a small number of suitable high resolution images
are available then the approach could be further validated by com-
paring the field operators land cover estimates to those from a land
cover classification of the high resolution image (a general classifi-
cation of crops, soil, water, forest and urban would suffice). If the
areas are comparable then we can proceed with the percentage
area estimates with greater confidence. Any discrepancies could
be addressed by splitting the field data to account for cases where
the sub pixel area of a class varies from one region to another.
Naturally, if a greater number of high resolution scenes are avail-
able across the range of environments and seasons then the sub
pixel area for each class could be computed directly without the
need for field area estimates.

Getting the right area from the remote sensing data is one half
of an equation that also depends on an independent and reliable
source of area data with comparable spatial detail. If very high
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resolution imagery or cadastral maps or field boundary data exist
in sufficient quantities over the area then these can be used to esti-
mate the accuracy of the moderate resolution classification (using
sub pixel areas rather than pixel areas). Failing this, the most com-
mon approach is to use published statistical data from yearbooks,
census’ or other official sources. One major challenge here is that
unless the statistical data rely on high resolution imagery as their
main source of information then we will be comparing two very
different ways of estimating area and this comparison may not
be a fair one. For example, surveys may be based on a stratified
sample of households and farm holdings extrapolated to give re-
gional area estimates. These in turn rely on the accuracy of the
farm level area estimates and the continuing validity of the strati-
fication from year to year. In some cases the statistics are only pub-
lished years after the event and the area estimates from previously
published statistics may even be adjusted retroactively if the
methodology is improved.

Furthermore, there are concerns in many countries that the sta-
tistics may be adjusted for political or other reasons such that they
no longer reflect the original survey results. Evidence of this is hard
to come by, often anecdotal and usually cannot be cited, but there
are sufficient reports that make this issue impossible to ignore. In
short, how can we be sure that the published statistics are reliable?
If there is little information on their reliability how should we
interpret any comparison between them and remotely sensed
areas? This is not an easy issue to address and placing remote sens-
ing as a better alternative to traditional area estimates (‘‘our meth-
od is better than your method’’) may not be the most equitable
resolution to the debate. One option could be to use remote sens-
ing based area estimates and field campaigns to improve tradi-
tional estimates by identifying problem areas and adjusting the
sampling or stratification accordingly. This backstopping of annual
statistics could be the first step towards the acceptance of remote
sensing as a valid tool in crop area estimation, particularly in
emerging economies that contain much of the world’s croplands.
In the case of Bangladesh, we have no evidence to doubt the reli-
ability of the published statistics and no other recourse.

5.3. Summary

This study applied unsupervised classification, spectral match-
ing decision trees and supervised class labeling to map seasonal
rice areas using hyper-temporal 500 m MODIS NDVI time-series
data and intensive field-plot information. The accuracies of the
rice area for each crop season [(boro (December/January–April),
aus (April/May–June/July), and aman (July/August–November/
December)] were determined by correlating the MODIS-derived
sub-national (district-level) seasonal rice area statistics with the
Bangladesh Bureau of Statistics sub-national statistics. The R2

values were 0.96 for boro rice, 0.93 for aus rice, and 0.96 for aman
rice. These statistical results also showed that the MODIS data
overestimated rice area by 6% for boro, by 7% for aus, and by 3%
for aman relative to the sub-national statistics. The overall accura-
cies of the five rice classes, during the three seasons, varied from
78% to 90%. However, rice versus non-rice accuracies exceeded
90%. Almost all intermixing was only between rice classes. The
remote sensing based cropping intensity of rice determined in this
study for Bangladesh was 149% across the country and was found
to be 26% lower than previous non-remote sensing estimates.

Mapping seasonal rice areas is the first step in characterizing
important rice-growing environments for sustainable develop-
ment and livelihoods. Precise up-to-date seasonal rice maps and
statistics such as these are important inputs for assessing the im-
pact of abiotic stresses such as droughts and floods, which regu-
larly affect the region and are predicted to increase in frequency
and intensity in a changing climate. This approach was appropriate
for accurate identification rice systems, rice cropping intensity and
rice area estimates in most rice growing environments and seasons
in Bangladesh. We documented the problem areas and discussed
the possible shortcomings of the method as well as suggesting
adjustments to the methodology in light of the findings of this
study and forthcoming sensors. We suggest that this methodology
can be improved and adapted for mapping rice in other countries
where cropping intensity is high and where rice cultivation is
extensive, including much of South, South East and East Asia where
much of the world’s rice is grown. The research makes a broad con-
tribution to the methods and products of the Group on Earth
Observations (GEO) for monitoring agriculture areas, Agriculture
and Water Societal Beneficial Areas (GEO Agriculture and Water
SBAs), the GEO Global Agricultural Monitoring Initiative (GEO
GLAM), the global cropland area database using Earth observation
data, and studies pertaining to global croplands, their water use,
and food security in the 21st century.
Description

The spatial distribution of rice crop extent and area were de-
rived for each of the three rice-growing seasons (boro, aus, and
aman), in a 12-month period, of Bangladesh using MODIS 500 m
8-day time-series data, spectral matching techniques, decision tree
algorithms, phenological approaches, and field-plot information.
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