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a b s t r a c t

In future climates, rice could more frequently be subjected to simultaneous high temperature and water
stress during sensitive developmental stages such as flowering. In this study, five rice genotypes were
exposed to high temperature, water stress and combined high temperature and water stress during
flowering to quantify their response through spikelet fertility. Microscopic analyses revealed significant
differences in anther dehiscence between treatments and genotypes, with a moderately high association
with the number of germinated pollen grains on the stigma. There was a strong relationship between
spikelet fertility and the number of germinated pollen on stigmas. Although, all three stress treatments
igh temperature
ollen germination
ice
pikelet fertility
ater stress

resulted in spikelet sterility, high-temperature stress caused the highest sterility in all five genotypes. A
cumulative linear decline in spikelet fertility with increasing duration of independent high-temperature
stress and in combination with water stress was quantified. Better anther dehiscence, higher in vivo
pollen germination, and higher spikelet fertility were observed in both the N22 accessions compared
with IR64, Apo and Moroberekan under high temperature, water stress and combined stress, indicating

tiple a
its ability to tolerate mul

. Introduction

Rice is a major staple cereal grown in irrigated cropping sys-
ems of South and Southeast Asia, with maximum day temperatures
ither close to or higher than the critical threshold ranging between
3 ◦C (Nakagawa et al., 2002) and 35 ◦C (Yoshida, 1981). Recent
lobal climate models predict an increase in mean temperature by
–4.5 ◦C and the rice area affected by water stress to double by the
nd of this century (IPCC, 2007). Recently, hot spots for combined
igh temperature and water stress occurring at the sensitive flow-
ring and grain-filling stage of rice were identified using data from
he rice almanac and spatial analysis using geographical informa-
ion system (Wassmann et al., 2009). Hence, overcoming the effects
f high temperature and water stress on rice production is essential
or food security in the future.

High-temperature stress is defined as the rise in temperature
eyond a critical threshold for a period of time sufficient to cause
rreversible damage to plant growth and development (Wahid et
l., 2007). Rice responses to high temperature differ according to
he developmental stage, with the highest sensitivity recorded at
he reproductive stage. Temperatures >35 ◦C at anthesis and last-

∗ Corresponding author. Tel.: +63 2 580 5600 2512; fax: +63 2 580 5699/845 0606.
E-mail address: k.jagadish@cgiar.org (S.V.K. Jagadish).

098-8472/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.envexpbot.2010.08.009
biotic stresses.
© 2010 Elsevier B.V. All rights reserved.

ing for more than 1 h can lead to high sterility in rice (Jagadish et
al., 2007). A high-temperature stress-induced increase in spikelet
sterility was attributed to abnormal anther dehiscence (Matsui and
Omasa, 2002), impaired pollination (Matsui et al., 2005), and pollen
germination (Jagadish et al., 2010). Moreover, high temperature of
39 ◦C given a day before flowering resulted in poor anther dehis-
cence during subsequent anthesis (Matsui and Omasa, 2002).

Water limited condition (also referred to as drought), affecting
23 m ha of rice regularly (Pandey et al., 2007) is a condition related
to insufficient soil moisture available to support average crop pro-
duction. The response of plants to water stress depends on the
duration and severity of the stress (Araus et al., 2002; Bartels and
Souer, 2004) and the developmental stage (Zhu et al., 2005). Rice
is sensitive to drought stress particularly during flowering stage,
resulting in severe yield losses (Liu et al., 2006). The physiological
processes during the sensitive flowering stage, negatively affecting
spikelet fertility under water stress [anther dehiscence (Ekanayake
et al., 1989, 1990; Liu et al., 2006); pollen germination (Saini and
Westgate, 2000)] were similar to high-temperature stress (Yoshida,
1981; Jagadish et al., 2010). Additionally, panicle exsertion (O’Toole

and Namuco, 1983), and peduncle length (He et al., 2009) were
partly responsible for increased sterility under water stress.

The simultaneous occurrence of multiple abiotic stresses rather
than one particular stress is commonly noticed under field con-
ditions (Mittler, 2006). The combination of high temperature and

dx.doi.org/10.1016/j.envexpbot.2010.08.009
http://www.sciencedirect.com/science/journal/00988472
http://www.elsevier.com/locate/envexpbot
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ater stress represents an excellent example of multiple abiotic
tresses occurring concomitantly in the field. It was found that com-
ined stress had a significantly greater detrimental effect on growth
nd productivity than exposure to a single stress in Hordeum vul-
are (Savin and Nicolas, 1996) and Poa pratensis (Wang and Huang,
004). Effects of this combination in Arabidopsis thaliana (Rizhsky et
l., 2004), Triticum aestivum (Shah and Paulsen, 2003) and Nicotiana
abacum (Rizhsky et al., 2002) have been documented. However,
elatively little information is available for rice in response to com-
ined high temperature and water stress in general and at the most
ensitive flowering stage in particular. Experiments were therefore
arried out with the following objectives to (1) study the effect
f high temperature (HT), water stress (WS) and combined high
emperature and water stress (HT + WS) on the flowering period,
eduncle elongation and panicle exsertion in rice; (2) record the

mpact on anther dehiscence, pollen count and germination on the
tigma and spikelet fertility when exposed to the above mentioned
tresses at flowering; and (3) test the hypothesis that “high tem-
erature a day before flowering affects fertility of spikelets opening
n the subsequent day”.

. Materials and methods

.1. Crop husbandry

Five rice (Oryza sativa L.) genotypes differing in their response
o either HT or WS at flowering were used for this study (Table 1).
eeds were sown in seeding trays with clay loam soil after breaking
ormancy (2 d, 50 ◦C). Fourteen-day-old seedlings were trans-
lanted into plastic pots with two holes at the bottom sealed with
toppers to facilitate water control. Each pot was filled with 6.0 kg of
he same clay loam soil with 2.0 g (NH4)2SO4 (urea), 1.0 g muriate of
otash (KCl) and 1.0 g single super phosphate (SSP). An additional
.5 g of (NH4)2SO4 was top dressed, 25–30 d after transplanting.
ypermethrin (Cymbush) 0.42 g L−1 was sprayed 30 d after trans-
lanting to control white flies (Bemisia spp.). There were no other
est or disease problems.

.2. Greenhouse

Plants were grown in a temperature-controlled greenhouse
aintained at 29/21 ◦C day/night temperature [actual: 28.8 ◦C (SD

standard deviation}= 0.84)/20.9 ◦C (SD = 0.27)] and day/night rel-
tive humidity (RH) of 75–85% [actual 75.2% (SD = 0.11)/86.7%

SD = 0.07)] under natural sunlight conditions at the International
ice Research Institute (IRRI), Philippines. Plants were placed on a
ench spaced at 30-cm to avoid shading effects. Ambient air tem-
erature and RH were measured using thermocouples (Chessell
92, USA) every 10 s and averaged over 10 min.

able 1
ive rice genotypes having differential response to either HT or WS at flowering. Numb
ystem) accessions.

Cultivar Origin Species

N22 (03911) India O. sativa aus

N22 (19379) India O. sativa aus

Apo (115128) Philippines O. sativa indica
IR64 (116793) Philippines O. sativa indica

Moroberekan (117272) Guinea O. sativa japonica
erimental Botany 70 (2011) 58–65 59

2.3. Growth chamber

Indoor growth chambers (Thermoline, Australia) were used
with temperatures automated to gradually increase from 29 ◦C to
38 ◦C starting from 0730 to 0830 (2.5 h after dawn) and maintained
at 38 ◦C (SD = 1.23) until 1430, with an RH of 75% (SD = 3.88) dur-
ing both Experiments 1 and 2. Both temperature (P > 0.97) and
RH (P > 0.73) were maintained consistently between the experi-
ments to avoid any chamber effects on plant observations recorded.
Plants were spaced at approximately 15–20 cm to avoid crowding.
A thermocouple placed above the canopy in the growth chamber
measured the ambient air temperature and RH every 10 s and aver-
aged them over 10 min (Chessell 392, USA). Photosynthetic photon
flux density was maintained at 640 �mol m−2 s−1. CO2 concentra-
tion was not measured.

2.4. Stress treatments

Two experiments were carried out with slightly different con-
ditions. Five and seven replicate plants were used for each of
the four treatments (control, HT, WS and HT + WS) in Experiment
1 and 2, respectively. Plants of all five genotypes were grown
in temperature-controlled greenhouse conditions at 29/21 ◦C and
used as absolute controls for the experiments.

For Experiment 1, plants were exposed to HT for 6 h
(0830–1430), on the first day of anthesis (i.e. the appearance of
anthers) and then moved back to the control conditions (29/21 ◦C).
Similarly, transfer between the control and HT conditions were con-
tinued for five consecutive flowering days. For WS, main tillers at
5 d before heading (DBH) were selected and tagged. Stoppers at
the bottom of these pots were unplugged for overnight draining to
reach maximum water holding capacity by the following morning.
The main-tiller flag leaf in all five genotypes began to roll after 5 suc-
cessive non-watering days before heading. Following main-tiller
flag-leaf rolling and based on the average water lost (pot weight
at leaf rolling-weight at subsequent weighing), across genotypes,
a constant volume (500 mL) of water was added back daily until
the main-tiller completed anthesis followed by complete flooding.
A different set of plants as identified at 5 DBH for HT + WS treat-
ment and exposed to WS as described earlier. These selected plants
were exposed to both WS and two days of high-temperature (38 ◦C)
starting on the first day of anthesis.

For Experiment 2, high-temperature stress was imposed as
described in Experiment 1 for four consecutive flowering days. Sim-
ilarly, for WS, main tillers at 5 DBH were identified as described in
Experiment 1 and WS was initiated. WS was continuously mon-

itored by recording flag-leaf relative water content (RWC) using
the following formula of RWC (%) = [(W − DW)/(TW − DW)] × 100
(Liu et al., 2006), where W: fresh weight, TW: turgid weight, and
DW: dry weight. Unlike the first experiment, the volume of water
added back was determined based on individual pot weight. The

ers in parenthesis are IRGCIS (International Rice Genebank Collection Information

Expected stress tolerance References

Heat and drought Prasad et al., 2006; Jagadish et
al., 2008, 2010; Selote and
Chopra, 2004

Heat and drought Prasad et al., 2006; Jagadish et
al., 2008, 2010; Selote and
Chopra, 2004

Drought Kumar et al., 2008
Moderately heat and drought Jagadish et al., 2008; Liu et al.,

2006
Heat sensitive and drought tolerant Jagadish et al., 2008, 2010; Liu

et al., 2006
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ig. 1. Pictorial illustration of high temperature (HT), water stress (WS) and combin
olerant N22 and the drought tolerant and heat sensitive Moroberekan.

T + WS was imposed as in Experiment 1 except that the HT was
iven for four consecutive flowering days starting from the first day
f anthesis.

.5. Observations

.5.1. Peduncle length and panicle exsertion
Peduncle length (PeL) starting from the panicle node to the

mmediately preceding node was measured. Since panicles were
ot completely exserted because of WS or HT + WS, portions of
he panicle outside (exserted) and inside (trapped) were measured
ith the flag-leaf collar as the reference. Peduncle and panicle

ength (PaL) were measured in both the experiments.

.5.2. Microscopic analysis
Fifteen to 20 spikelets were randomly sampled between 1030

nd 1200, from the four treatments and five genotypes. For
his, spikelets about to flower on the main tiller were marked
sing acrylic paint, and, after pollination (around 30 min after the
pikelet closed) marked spikelets were collected into vials filled
ith FAA (50% absolute ethanol, 5% acetic acid, 27% formalde-
yde and 18% sterilized water) fixative following the protocol
y Jagadish et al. (2010). Anthers separated from the fixed
pikelets were used to record percent anther dehiscence. Spikelets
ere washed in de-ionized water before dissecting under a

tereo-microscope (Olympus SZX7, Olympus Corp., Japan). Isolated
tigmas were cleared in 8 N NaOH for 3–5 h at room temper-
ture and stained with aniline blue dissolved in 0.1 M K2HPO4
or 5–10 min and number and germinated pollen on the stigma
ere recorded. Images were taken with a DP70 digital camera

ttached to an Axioplane 2 microscope (Carl Zeiss, Germany) at
00× (Fig. 1).

.5.3. Flowering period and anther dehiscence
The number of days taken by the main tiller to complete flower-

ng was recorded as flowering period (FP) from four treatments and
ll five genotypes. Anthers from the spikelets collected to record the
ollen count and germination with either basal and/or apical pore
pen were recorded as dehisced and the remaining as un-dehisced
sing a stereo-microscope (Olympus SZX7, Olympus Corp., Japan).
nther dehiscence was calculated as the ratio of the number of
ehisced anthers to the total number of anthers (dehisced + un-

ehisced).

.5.4. Spikelet fertility
Spikelet fertility (SF) from both experiments was estimated

rom the main-tiller panicle using the procedures of Prasad et al.
ss (HT + WS) affecting pollen count and pollen germination in the heat and drought

(2006) and Mohammed and Tarpley (2009). Fifteen to twenty days
after the completion of anthesis, spikelet fertility was estimated by
pressing the spikelet between the thumb and forefinger to deter-
mine whether it was filled or not. Both partially and fully filled
spikelets were categorized as filled spikelets. Spikelet fertility was
calculated as the ratio of filled spikelets to total number of spikelets.
Additionally, in the second experiment, spikelets opening on four
consecutive flowering days were identified using different-colored
acrylic paint following the protocol of Jagadish et al. (2007, 2008).
Tillers used for collecting spikelets for microscopic analysis were
not including for fertility analysis.

2.6. Statistical analysis

Data on flowering period, peduncle length, panicle length, pan-
icle exsertion (PE), anther dehiscence, and spikelet fertility were
analyzed as a two way completely randomized design using SPSS
13.0 (Version 13, LEAD Technologies Inc.) with 5 and 7 replications
in Experiment 1 and 2, respectively. Tukey’s least significant differ-
ence (LSD) at a probability level of 5% and 1% was used to compare
the differences between treatments and genotypes.

3. Results

3.1. Phenology at flowering

Managed WS resulted in flag-leaf RWC being maintained around
50–60% throughout the stress period, which coincided with flag-
leaf rolling in all five genotypes, and this provided evidence
that plants in Experiment 1 were at similar water content as in
Experiment 2 (Fig. 2). In all five genotypes, flowering period was sig-
nificantly extended (P < 0.05) when exposed to HT, WS and HT + WS
in both the experiments compared with control plants (Table 2).
The effect between WS and HT + WS treatment was non-significant
(P > 0.05). Across treatments, the FP between genotypes varied
significantly, ranging between 5.5 and 7.6 d, with Moroberekan
recording the longest FP in both Experiment 1 and 2. Similarly,
Peduncle length was significantly (P < 0.05) reduced by HT (8%), WS
(24%) and HT + WS (27%) in all genotypes and in both experiments
compared with the control (Table 2). The genotypes responded
consistently to PeL under stress, with Moroberekan having the
longest peduncle while both the N22 accessions having the short-
est peduncles. Although, there was no difference in panicle length

under HT, WS and a HT + WS in the five genotypes (data not show),
panicle exsertion showed significant differences with WS related
treatments. Under WS and HT + WS, PE was significantly hindered
(P < 0.05) compared with the control, whereas HT stress had no
effect (P > 0.05) (Table 2). IR64 and Moroberekan has significantly
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Fig. 2. Flag-leaf relative water content (RWC) under WS (a) and HT + WS (b) (solid lines) compared to controls (dotted lines). 50–60% RWC was used as a criterion for imposing
WS and HT + WS starting from the initiation of flowering till the main tiller completed anthesis. ST indicates start of treatment; D1, D2, D3 and D4 the first, second, third and
fourth day of stress; WSR (water stress recovery) three days after re-watering. The duration to reach D1 was different among genotypes and the 3 d water stress recovery
phases are indicated by two parallel line breaks. Bars indicate ±SD.

Table 2
Effect of control, HT, WS and HT + WS on flowering period (days), peduncle length (cm) and panicle exsertion (%) in five rice genotypes.

Experiment 1
Trait Genotypes Control HT WS HT + WS Mean 5% LSD

Flowering
period

N22-03911 5.4 5.8 7.8 8.0 6.8

0.5

N22-19379 5.2 5.2 6.4 6.6 5.9
Apo 3.4 5.8 6.4 6.4 5.5
IR64 3.6 5.6 6.4 7.0 5.7
Moroberekan 4.0 5.6 7.6 7.8 6.3
Mean 4.3 5.6 6.9 7.2
5% LSD 0.45

Peduncle
length

N22-03911 38.0 34.7 26.9 23.8 30.9

2.1

N22-19379 39.0 33.7 25.1 26.4 31.1
Apo 44.1 42.2 30.8 29.7 36.7
IR64 36.7 34.1 33.3 32.3 34.1
Moroberekan 47.1 42.2 38.2 34.6 40.5
Mean 41.0 37.4 30.9 29.4
5% LSD 1.9

Panicle
exser-
tion

N22-03911 97.1 88.5 36.1 24.4 61.5

10.6

N22-19379 87.0 93.3 40.5 36.0 64.2
Apo 94.2 93.2 56.9 48.4 73.2
IR64 100 100 89.1 84.2 93.3
Moroberekan 100 98.9 76.8 66.2 85.5
Mean 95.7 94.8 59.9 51.8
5% LSD 9.5

Experiment 2

Flowering
period

N22-03911 5.1 5.4 8.1 8.0 6.7

0.32

N22-19379 5.0 6.1 7.9 8.3 6.8
Apo 5.3 6.3 8.3 8.5 7.1
IR64 4.9 5.6 8.1 8.3 6.7
Moroberekan 5.4 6.6 9.3 9.1 7.6
Mean 5.1 6.0 8.3 8.4
5% LSD 0.29

Peduncle
length

N22-03911 33.8 31.3 24.9 23.3 28.3

2.0

N22-19379 32.9 31.8 24.4 22.7 28.0
Apo 40.1 36.1 25.1 25.4 31.7
IR64 30.5 28.5 31.1 29.6 29.9
Moroberekan 38.8 37.4 31.1 29.6 34.2
Mean 35.2 33.0 27.3 26.1
5% LSD 1.8

Panicle
exser-
tion

N22-03911 96.9 87.5 40.5 29.4 63.6

10.9

N22-19379 91.4 91.2 28.7 24.7 59.0
Apo 96.4 88.6 34.5 30.4 62.5
IR64 99.1 91.3 80.2 64.0 83.7
Moroberekan 100 94.1 67.1 55.9 79.3
Mean 96.8 90.5 50.2 40.9
5% LSD 9.7
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ig. 3. Anther dehiscence affected by control (C), high temperature (HT), water
tress (WS) and combined stress (HT + WS) in five rice genotypes (n > 60 anthers).
ars indicate ±SE.

uperior panicle exsertion % (P < 0.05) compared to the other three
enotypes.

.2. Anther dehiscence

Anther dehiscence was highly affected by HT and clear geno-
ypic differences were observed (Fig. 3). Both N22 accessions
howed significantly higher anther dehiscence in all treatments
P < 0.05), whereas HT-sensitive genotype Moroberekan recorded
he least anther dehiscence. Under WS, a significant difference was
bserved only with Moroberekan among the five genotypes. With
T + WS, anther dehiscence was affected similar to HT, indicat-

ng that the reduction in anther dehiscence was largely influenced
y HT. Comparatively, one accession of N22 (19379) had lower
nther dehiscence with HT + WS compared to HT, whereas Apo
nd Moroberekan were the most significantly affected genotypes
P < 0.01).

.3. Germinated pollen on the stigma and spikelet fertility

The number of pollen on the stigma was significantly (P < 0.01)
educed by HT (72%), WS (31%), and HT + WS (71%), across both
he experiments. HT (P < 0.01) and HT + WS (P < 0.05) significantly
educed the pollen count with N22 accessions having the highest
ollen count (52 to 70) compared with the other three genotypes
<21%). The number of germinated pollen on stigma decreased sig-
ificantly (P < 0.01) when plants were exposed to HT (81%), WS
59%), and HT + WS (84%) averaged over both experiments, com-
ared with the control (Fig. 4). In both experiments, IR64 had
he highest number of germinated pollen under control condi-
ions. Among the stress treatments, WS had significantly higher
P < 0.01) pollen germination than HT and HT + WS, while no signif-
cant differences (P > 0.05) were noticed between HT and HT + WS.
he HT + WS in Experiment 1 with 2 d of HT resulted in higher pollen
ermination% among N22 accessions while the difference disap-
eared when increasing duration to 4 d in Experiment 2 (Fig. 4).
omparatively, pollen germination was less sensitive to WS with
5% and 62% higher germination compared to HT and HT + WS,

espectively. Under HT stress, the number of germinated pollen on
he stigma was significantly higher in both N22 accessions (P < 0.05)
ompared to the other three genotypes.

Spikelet fertility was significantly (P < 0.01) reduced by HT, WS
nd HT + WS treatments (P < 0.01) (Fig. 4). Five days of HT reduced
rimental Botany 70 (2011) 58–65

spikelet fertility by 81% in Experiment 1 and by 72% with four days
of exposure in Experiment 2. On the other hand, a shorter (2 d) HT
with WS had a decline of 63% and 80% with a longer (4 d) exposure
of HT + WS. Spikelet fertility had the least decline (21%) under WS
in both experiments. Two accessions of N22 showed significantly
higher spikelet fertility (P < 0.05) under HT and HT + WS than the
other three genotypes across both experiments.

Spikelet fertility on consecutive flowering days declined signif-
icantly with the duration of exposure to HT and HT + WS in both
N22 accessions and Moroberekan. N22, however, had a significantly
higher fertility on all four days in both HT and HT + WS (Fig. 5).
Spikelet fertility decrease under HT was lower in N22-03911
(−0.047) and N22-19379 (−0.098) compared to Moroberekan
(−0.189). On the other hand, spikelet fertility declined by 0.053
and 0.124 with both the accessions of N22 and Moroberekan,
respectively, under HT + WS. Spikelet fertility in Moroberekan was
reduced to 0% from the 2nd flowering day under both HT and
HT + WS stress.

4. Discussion

In rainfed rice ecosystems, plants are often subjected to a
combination of abiotic stresses, among which the simultaneous
occurrence of HT and WS is more frequent (Mittler et al., 2001).
Increasing the tolerance of rice during the most sensitive flow-
ering stage to these stresses is an ideal adaptation strategy for
highly variable future climates (Horie et al., 1996). Tolerance clas-
sically comprises elements of escape, that is rice genotypes can
either escape or avoid HT during anthesis, by heading during the
cooler periods of the season (macro-escape), by anthesing during
cooler hours of early morning (micro-escape) (Jagadish et al., 2008),
or by efficient transpiration cooling of canopy (Weerakoon et al.,
2008). Absolute tolerance of stress is the ability of rice to carry out
key physiological processes, such as anther dehiscence, pollination,
pollen germination, and fertilization, under stress but still maintain
high seed-set (Jagadish et al., 2008, 2010).

Phenological conditions at flowering under different abiotic
stresses to a certain extent determine subsequent spikelet fertil-
ity. The plant water status under WS is commonly monitored using
relative water content (Lafitte et al., 2006; Lafitte, 2002; Liu et al.,
2006). The time taken to reach the target flag-leaf RWC of 50–60%
was significantly different among genotypes (data not show), sim-
ilar to Srinivasan et al., 2008. Imposing WS by reducing the RWC to
50–60% resulted in a significant decrease in spikelet fertility among
the five genotypes compared with control conditions, but overall
fertility was higher in response to WS. For example, IR64 recorded
66% spikelet fertility with 50–60% RWC in our studies while the
same genotype had 33% fertility when exposed to 40–50% flag-leaf
RWC (Liu et al., 2006). This indicates that the plants experienced a
moderate terminal WS and the major factor reducing the fertility
was HT.

Panicle exsertion has been suggested to be an important trait
that ultimately reflects on the grain yield of rice plants when
they encounter WS or combined HT + WS. PE is primarily influ-
enced by peduncle elongation. The panicles partially exserted with
both WS and HT + WS, had 29% and 37% of spikelets trapped in
the leaf sheath, respectively, mainly due to shortened peduncle.
There were strong positive relationship between panicle exsertion
and peduncle length (R2 = 0.84 and R2 = 0.74 in Experiment 1 and
2, respectively). The negative effect of WS on panicle exsertion
during anthesis and subsequently on yield was reported earlier

(Jearakongman, 2005). Similarly, we found that spikelets inside
the flag-leaf sheath showed complete sterility with both WS and
HT + WS, which was partly responsible for the overall reduction in
the spikelet fertility. Spikelets trapped within the leaf sheath result
in an absence of anthesis and fertilization (Cruz and O’Toole, 1984;



Z.W. Rang et al. / Environmental and Experimental Botany 70 (2011) 58–65 63

F (n = 5
a d), re
s iment
i

O
t
r

(
t
r
2
r
W
a

F
m

ig. 4. Germinated pollen number on stigmas (n > 15 spikelets) and spikelet fertility
nd combined stress (HT + WS) in Experiment 1 (a and c) and Experiment 2 (b and
tress and HT + WS, respectively, while HT stress was held uniform for 4 d in Exper
ndicate ±SE.

’Toole and Namuco, 1983) and, moreover, with HT + WS, the addi-
ional heat trapped within the leaf sheath, devoid of free air flow
esulted in a much higher sterility.

The reproductive stage in rice is effected irreversibly by HT
Prasad et al., 2006) and WS (Liu et al., 2006) than the vegeta-
ive stage. Water deficit during reproductive stage significantly

educes pollen viability (Liu, 2003), spikelet fertility (Praba et al.,
009) and grain yield (Boonjung and Fukai, 1996). Similarly, we
ecorded a significant reduction in spikelet fertility under HT,

S and HT + WS. Independent HT and HT + WS induced abnormal
nther dehiscence, resulting in a reduced number of germinated

ig. 5. Spikelet fertility on four consecutive flowering days in two N22 accessions and M
arked with 4 different-colored acrylic paints and fertility was recorded. Bars indicate ±
, 7) of five rice varieties under control (C), high temperature (HT), water stress (WS),
spectively. The HT stress in Experiment 1 was for 5 d and 2 d for independent HT
2. Capital letters indicate significance level at 1% and lowercase letters at 5%. Bars

pollen on the stigma, consequently reducing fertilization, leading
to spikelet sterility. Generally, higher anther dehiscence resulted
in significantly more pollen on the stigma but, in highly sensitive
genotypes like Moroberekan, even with higher anther dehiscence
the pollen count (Fig. 6) decreased as noticed by Jagadish et al.,
2010. This could be attributed to the asynchrony between the

male (pollination) and female (stigma receptivity) reproductive
organ mechanisms during anthesis, as seen in maize (Herrero and
Johnson, 1981). Further, spikelets with at least 10 or >20 ger-
minated pollen recorded high fertility, giving confidence to the
previously identified critical number equated to seed-set (Jagadish

oroberekan in Experiment 2. Individual spikelets flowering on different days were
SE.
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Fig. 6. Relationship between anther dehiscence (%) with pollen count on stigma (a:
R
t
n

e
c
c
o
r

2 = 0.43, y = 0.3025x + 55.039, n = 40, P < 0.001) and number of germinated pollen on
he stigma (b: R2 = 0.46, y = 14.40 Ln(x) + 39.37, n = 40, P < 0.001); spikelet fertility and
umber of pollen germinated (c: R2 = 0.77, y = 27.65 Ln(x) − 14.77, n = 40, P < 0.001).

t al., 2010). N22s in our present study showed higher anther dehis-

ence and thus more pollen and germinated pollen on the stigma
ompared with the other three genotypes, indicating true tolerance
f HT and to HT + WS. Similar results were obtained from earlier
eports of Mackill et al., 1982 and Satake and Yoshida, 1978 and
rimental Botany 70 (2011) 58–65

more recently it was clearly shown that N22 had a significantly
higher pollen count and pollen germination on the stigma com-
pared to the most sensitive Moroberekan. Further in comparison,
N22 had a normal rate of pollen tube growth compared to signifi-
cantly slower pollen tube growth rate with the moderate tolerant
IR64 (Jagadish et al., 2010) demonstrating the higher level of heat
tolerance during anthesis.

Although an extended flowering period in response to the
imposed stress treatments could be a potential alternative escape
mechanism, plants encountering independent HT and in combina-
tion with WS did not have higher spikelet fertility even with the
extended flowering period. Therefore, apart from the direct neg-
ative effect of HT coinciding with anthesis, resulting in spikelet
sterility, the carry over effect on un-anthesised spikelets even after
removal of stress also resulted in sterility. Following the spikelet
marking approach the cumulative negative effect of prolonged
HT stress on consecutive flowering days was tested. The linear
decrease in spikelet fertility on consecutive flowering days either
in HT- tolerant N22 or in sensitive genotype Moroberekan indi-
cated a cumulative effect of HT stress. This further confirmed that
HT stress given a day prior to anthesis affected the normal func-
tioning of the pollen sac (anther) dehiscence and pollen viability
(Matsui and Omasa, 2002). Therefore, the hypothesis that HT coin-
ciding exactly at anthesis and not earlier would have an effect on
fertility (Yoshida, 1981) is questionable. Moreover, Sato and Yokoya
(2007) showed increased tolerance of rice seedlings of water deficit
after prior exposure to HT at 42 ◦C for 24 h; over-expression of heat
shock proteins increased tolerance to subsequent water deficit in
Nicotiana tabacum (Cho and Hong, 2006) and water deficit and salt
stress in Arabidopsis thaliana (Sun et al., 2001). Similarly, a higher
spikelet fertility percentage in the HT + WS compared to indepen-
dent HT was due to the acquired tolerance possibly due to increased
heat shock proteins during the preceding WS resulting in higher
thermo tolerance to subsequent HT stress. Physiological and molec-
ular mechanisms resulting in this novel phenomenon in rice is
presently being investigated.

In conclusion, the study has confirmed the true HT tolerance
of N22 and its ability to withstand a combination of HT and WS.
Hence, it is a potential candidate for breeding rice varieties capable
of adapting to a range of abiotic stresses during flowering. We have
demonstrated that the extended duration of HT or HT + WS had a
negative cumulative effect on spikelet fertility and that this aspect
has to be considered during germplasm screening for tolerance.
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