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K=1.93×10
-10

) 
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Figure 4.114 Liquid (Water)-wick region and wall temperature distribution 

along the heat pipe at Q=35 W at Q*=6.5 m
3
/h (wick 

thickness=0.5 mm Screen mesh K=1.93×10
-10

)   
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Figure 4.115 Wall temperature distribution along the heat pipe at Q=35 W at 

Q*=6.5 m3/h (wick thickness=0.5 mm with Screen mesh 

K=1.93×10
-10

 Water) 
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Figure 4.116 Liquid (water) pressure distribution of the heat pipe at Q=35 W at 

Q*=6.5 m
3
/h (wick thickness=0.75 mm with Screen mesh 

K=1.93×10
-10

) 
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Figure 4.117 Liquid (water) pressure distribution of the heat pipe at Q=35 W at 

Q*=6.5 m3/h (wick thickness=0.75 mm with Screen mesh 

K=1.93×10
-10

) 
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Figure4.118 Water-wick region and wall temperature distributions along the 

heat pipe at Q=35 W at Q*=6.5 m3/h (wick thickness=0.75 mm 

with Screen mesh K=1.93×10
-10

) 
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Figure 4.119 Wall temperature distribution along the heat pipe at Q=35 W at 

Q*=6.5 m3/h (wick thickness=0.75 mm with Screen mesh 

K=1.93×10
-10

 Water) 
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Figure 4.120 Liquid (methanol) pressure distribution of the heat pipe at Q=35 

W at Q*=6.5 m
3
/h (wick thickness=0.5 mm with Screen mesh 

K=1.93×10
-10

) 
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Figure 4.121 Liquid (Methanol) pressure distribution along heat pipe at Q=35 

W at Q*=6.5 m3/h (wick thickness=0.5 mm with Screen mesh 

K=1.93×10
-10

) 
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Figure 4.122 Liquid (Methanol)-wick region and wall temperature distribution 

of the heat pipe at Q=35 W at Q*=6.5 m3/h (wick thickness=0.5 

mm with Screen mesh K=1.93×10
-10

) 

 

 

 

214 



xxii 
 

Figure 4.123 Wall temperature distribution along heat pipe at Q=35 W at 

Q*=6.5m3/h (wick thickness=0.5 mm with Screen mesh 

K=1.93×10
-10

 Methanol) 
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Figure 4.124 Liquid (Methanol) pressure distribution of the heat pipe at Q=35 

W at Q*=6.5 m
3
/h (wick thickness=0.75 mm with Screen mesh 

K=1.93×10
-10

) 
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Figure 4.125 Liquid (Methanol) pressure distribution along heat pipe at Q=35 

W at Q*=6.5 m
3
/h (wick thickness=0.75 mm with Screen mesh 

K=1.93×10
-10

) 
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Figure 4.126 Methanol-wick region and wall temperature distributions of the 

heat pipe at Q=35 W at Q*=6.5 m
3
/h (wick thickness=0.75 mm 

with Screen mesh K=1.93×10
-10

 methanol) 
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Figure 4.127 Wall temperature distribution along heat pipe at Q=35 W at 

Q*=6.5m3/h (wick thickness=0.75 mm with Screen mesh 

K=1.93×10
-10

 Methanol) 
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Figure 4.128 Wall temperature distribution along the heat pipe at Q=35W and 

forced convection (Q*=6.5 m
3
/h) with various working fluid and 

wick types and thicknesses 
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Figure 4.129 Liquid pressure distribution along the heat pipe at Q=35W at 

Q*=6.5 m3/h with various working fluid and wick thickness at 

Screen mesh K=1.93x10
-10
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Figure 4.130 3D surface for temperature difference (ΔT) and pressure drop 

(ΔPl) as a function of  wick thickness and wick permeability for 

the; (a) water- ΔT, (b) water- ΔPl , (c) methanol- ΔT, (d) 

methanol- ΔPl 
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/s 
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KAJIAN EKSPERIMEN DAN BERANGKA KE ATAS ANALISA TERMA BAGI 

PAIP HABA UNTUK APLIKASI PENYEJUKAN KOMPUTER 

 

ABSTRAK 

Dalam industri komputer, peningkatan pembangunan dan permintaan bagi kuasa 

pemprosesan memerlukan reka bentuk yang cekap untuk pemproses menjalankan 

operasi dengan pantas; justeru teknik penyejukan diperlukan bagi menyelerakkan haba 

yang terlibat adalah penting. Oleh itu, kajian amat diperlukan bagi menyelidik peranti 

penyejukan berpotensi tinggi terutamanya penyejukan CPU. Dalam kajian ini, paip haba 

berbentuk pelbagai dan berkembar-U, dan paip haba mengufuk berbentuk-L telah dikaji 

secara eksperimen dan berangka. Analisa terma dijalankan pada kedua-dua mod 

perolakan tabie dan paksa. Simulasi telah dijalankan dengan dua model; pertama model 

3D berdasarkan pemindahan haba secara konduksi yang mana paip haba secara 

keseluruhannya dimodelkan dengan anggapan sebuah media berkonduksi, tanpa 

mengambil kira keadaan yang berlaku di dalam paip haba. Kedua adalah model 2D bagi 

mencirikan bendalir bekerja di dalam paip haba. Sebuah pengalatan terbaik bagi reka 

bentuk eksperimen (DOE) digunakan untuk mengoptimum halaju penyejuk dan haba 

masukan bagi menghasilkan prestasi terbaik bagi paip haba. Keputusan menunjukkan 

halaju udara dan kuasa masukan mempunyai kesan ketara ke atas prestasi paip haba 

yang bersirip. Jumlah rintangan terma menurun dengan peningkatan haba masukan dan 

halaju penyejuk. Nilai terendah bagi jumlah rintangan terma untuk paip haba pelbagai 

bentuk U bersirip, paip haba berkembar dan bentuk L tunggal masing-masing adalah 

0.181 °C/W, 0.125°C/W and 0.533 °C/W. Dalam simulasi berangka, air dan metanol 
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telah digunakan sebagai bendalir bekerja, dan air yang digunakan sebagai bendali 

bekerja menghasilkan perubahan kecil pada suhu dan kejatuhan tekanan berbanding 

dengan methanol sebagai bendalir bekerja. Kedua-dua bendalir bekerja; air dan 

methanol, ketelapan bahagian berliang dan tebal bahagian berliang memberikan kesan 

penting ke atas perbezaan suhu dan kejatuhan tekanan. Keputusan pengoptimuman 

dengan menggunakan D-optimal bagi perisian RSM menunjukkan prestasi paip haba 

berbentuk-L telah meningkat. 
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EXPERIMENTAL AND NUMERICAL STUDIES ON THERMAL ANALYSIS 

OF HEAT PIPES FOR COMPUTER COOLING APPLICATIONS 

 

ABSTRACT 

In computer industry, the growing development and demand for processing power 

necessitate efficient design of processors to conduct operations faster; consequently, the 

need for cooling techniques to dissipate the associated heat is quite obvious. Hence, it is 

highly desirable to explore high-performance cooling devices, especially for CPU 

cooling. In the present study, multi and twin U-shape vertical heat pipes, and single L-

shape horizontal heat pipe, were investigated experimentally and numerically. Thermal 

analysis was performed under both natural and forced convection modes. The 

simulations were carried out in two models; the first was 3D model based on the heat 

transfer by conduction where the heat pipe as a whole was modeled by assuming it as a 

conducting medium, without taking into account the events occurring inside the heat 

pipe. The second was 2D model to characterize the working fluid inside the heat pipe. 

As an excellent tool for experimental design and optimization, design of experiment 

(DOE) was employed to optimize the coolant velocity and the heat input to get the best 

performance of the heat pipe. The results show that the air velocity and power input 

have important effect on the performance of finned heat pipes. The total thermal 

resistance decreases with increase in heat input and coolant velocity. The lowest value 

of the total thermal resistances for finned U-shape multi heat pipe, twin heat pipe and 

single L-shape heat pipe are 0.181 °C/W, 0.125°C/W and 0.533 °C/W respectively.  In 
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the numerical simulation, water and methanol were used as working fluids, and the use 

of water as working fluid resulted in small temperature difference and pressure drop 

compared to that with methanol as working fluid. For both working fluids; water and 

methanol, the wick permeabilty and wick thickness have major effects on temperature 

difference and pressure drop. The result of the optimization using D-optimal of RSM 

software reveals that the performance of L-shape heat pipe is improved. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Effective cooling of electronic components is important for the successful 

functioning and high reliability of the electronic devices. The rapid developments in 

microprocessors necessitate enhanced processing power to ensure faster operations; 

consequently, the need for cooling techniques to dissipate the associated heat is quite 

obvious. Moreover, the present standard metallic heat sinks are obsolete in many ways 

and are not sufficient to address the increased cooling needs that are sought by many of 

today’s electronic devices. Hence, it is highly desirable to explore high-performance 

cooling devices, especially for CPU cooling. Heat pipe has been identified and proved 

as one of the viable and promising options to achieved this purpose, due to its simple 

structure, flexibility and in particular, high efficiency.  

 

1.2 Heat Pipe 

Heat pipe is one of the most efficient heat transport devices; it makes use of phase 

change of the working fluid inside, in order to facilitate the heat transport. The heat 

pipes are best for cooling electronic devices as their thermal conductivity is several 

hundreds more than that of a copper rod. Heat pipe which was proposed by Gaugler in 

1942 as a cooling strategy for electronic apparatus, is a promising alternative compared 

to the conventional cooling schemes. As shown in the Figure 1.1, the main perception of 

a heat pipe involves passive two-phase heat transfer device that facilitate minimum drop 
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in temperature by transferring large quantity of heat. By employing such devices, higher 

local heat removal is possible and uniform heat dissipation can be attained.   

Several day-to-day gadgets such as heat exchangers, air-conditioners, refrigerators, 

transistors and capacitors employ heat pipes. Heat pipes are also used in desktops and 

laptops to decrease the operating temperature for better performance. Heat pipes are 

commercially presented since the mid 1960’s. Electronic cooling has just embraced heat 

pipe as a dependable and cost-effective solution for sophisticated cooling application. 

 

 

Figure 1.1: Heat pipe operation (http://www.electronics-cooling.com). 

 

 

 

http://www.electronics-cooling.com/
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1.2.1 Historical background 

Perkins tube can be historically traced as the first evolved concept of the heat 

pipe, and the thermosyphon, also named as Perkins pipes, was invented by Perkins in 

1897 (Peterson, 1994). The thermosyphon was the precursor of the heat pipe. It operates 

without wick conductor; the heat transfer is achieved through the latent heat of 

evaporation and the liquid return to the evaporator due to gravity. Unwicked pipes were 

used long before the appearance of heat pipes in the construction industry; the important 

milestone in their development was the use of capillary forces in vapor-liquid heat 

conductors.  

 

The idea of constructor in which the heat transfer was achieved using the 

evaporation and condensation of a working medium was proposed by Gaugler in 1942 

(Dunn and Reay, 1982). In this device, there was a porous wick container in which the 

liquid was returned to the evaporator through it by capillary flow. This concept was re-

invented by Grover and his co-workers at Los Alamos in 1963 (Ivanovskii, 1982). In 

that case, the working fluid return was by the capillary force. Grover verified the 

efficiency of heat pipes as a high performance heat transmission device and developed 

several applications. This development has brought about the rebirth of a high-

performance device called the heat pipe.  

 

1.2.2 Construction of heat pipe 

There are three basic components of a heat pipe: container, working fluid and wick or 

capillary structure: 
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1.2.2.1 Container 

Container is a metal seal, which is capable of transferring heat through it to the 

working fluid. This metal has good heat conductivity. Many factors affect the selection 

of material of the container. Among them wettability, strength to weight ratio, 

machinability and ductility,  compatibility with external environment and working fluid, 

thermal conductivity , including weldability and porosity are very important. The 

container material must possess high strength to weight ratio, it must be non-porous in 

order to avoid any diffusion of vapor particles, and at the same time should ensure 

minimum temperature difference between the wick and the heat source owing to its 

higher thermal conductivity.  

1.2.2.2 Working fluid 

Selection of the working fluid depends primarily on the operating vapor temperature 

range. This is because the basis in the operation of the heat pipe is the process of 

evaporation and condensation of the working fluid. The selection of appropriate 

working fluid must be done carefully, taking into account the following factors: 

 Must have very high surface tension 

 Should demonstrate good thermal stability 

 Wettability of wall materials and wick  

 Should have high latent heat 

 Should possess high thermal conductivity 

 Should have low liquid and vapor viscosities, and 

 it must be compatible with both wall materials and wick  
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The most important property of the working fluid is high surface tension so that the heat 

pipe works against gravity as it generates high force of the capillarity characteristic. 

Table 1 summarizes the properties of some working fluids with their useful ranges of 

temperature (Dunn and Reay, 1982). 

Table 1.1: Heat pipe working fluids properties (Dunn and Reay, 1982) 

Medium  Melting Point (° C )  Boiling Point (°C) Useful Range (°C) 

Helium 

Nitrogen 

Ammonia 

Acetone 

Methanol 

Flutec PP2 

Ethanol 

Water 

Toluene 

Mercury 

Sodium 

Lithium 

Silver  

- 271 

- 210 

- 78 

- 95 

- 98 

- 50 

- 112 

0 

- 95 

- 39 

98 

179 

960 

- 261 

- 196 

- 33 

57 

64 

76 

78 

100 

110 

361 

892 

1340 

2212 

-271 to -269 

-203 to -160 

-60 to 100 

0 to 120  

10 to 130 

10 to 160 

0 to 130 

30 to 200 

50 to 200 

250 to 650 

600 to 1200 

1000 to 1800 

1800 to 2300 

 

1.2.2.3 Wick or Capillary Structure 

The wick develops the necessary capillary pressure which in turn facilitates the 

return of the working fluid from the condenser section to the evaporator section. The 

decrease in the pore size of the wick structure produces decreased wick permeability, 

which leads to increase the maximum capillary head generated by the wick. The thermal 

resistance at the evaporator section depends on the conductivity of the working fluid 
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through the wick.  The common wick types in the electronics industry are explained as 

follows: 

  Metal sintered Powder wick 

As shown in the Figure 1.2 this type of the wick has a small pore size, resulting in 

low wick permeability, leading to the generation of high capillary forces for anti-gravity 

applications. The heat pipe that carries this type of wick gives small differences in 

temperature between evaporator and condenser section. This reduces the thermal 

resistance and increases the effective thermal conductivity of the heat pipe. 

 

Figure 1.2: Metal sintered Powder wick (http://www.frostytech.com) 

 

 Grooved wick 

Grooved wick is shown in Figure 1.3; this type of wick generates a small capillary 

driving force, but is appropriate or sufficient for low power heat pipes which operate 

horizontally or with the direction of gravity. 

http://www.frostytech.com/
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Figure 1.3: Grooved wick (http://www.frostytech.com) 

 

 Screen Mesh wick 

Figure 1.4 shows the screen mesh wick, which is used in many of the products, and 

they have demonstrated useful characteristics with respect to power transport and 

orientation sensitivity. 

 

 

Figure 1.4: Screen Mesh wick (http://www.frostytech.com) 

 

http://www.frostytech.com/
http://www.frostytech.com/
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1.2.3 Heat pipe theory and operation 

In order for heat pipe to operate, the maximum capillary pressure must be greater 

than the sum of all pressure drops inside the heat pipe to overcome them thus the prime 

criterion for the operation of a heat pipe is: 

                                               (1.1) 

where,      is the maximum capillary force inside the wick structure;     is pressure 

drop required to return the liquid from the condenser to the evaporation section;     is 

the pressure drop to move the vapor flow from the evaporation to the condenser section; 

and     is the pressure drop caused due to the difference in gravitational potential 

energy (may be positive, negative or zero, depend on the heat pipe orientation and a 

direction). 

The basic steps of heat pipe operation are summarized as follows, with reference to 

Figure 1.1. 

1 – The heat added at the evaporator section by conduction through the wall of heat 

pipe, enables the evaporation of working fluid. 

2- The vapor moves from the evaporator section to the condenser section under the 

influence of vapor pressure drop resulted by evaporation of the working fluid. 

3- The vapor condenses in the condenser section releasing its latent heat of evaporation. 

4- The liquid returns from the condenser section to the evaporator section through the 

wick under the influence of capillary force and the liquid pressure drop. 
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1.2.4 Effective thermal resistance (or thermal conductivity) of heat pipe 

Thermal resistance is the most important parameter of the heat pipe; many 

variables affect the value of effective thermal resistance, such as the shape of heat pipe, 

lengths of evaporator and condenser sections, working fluid and wick structure.  The 

thermal resistance of the heat pipe is very small compared to the thermal resistance of 

solid metals due to the small difference between the evaporator and condenser 

temperatures, and hence the effective thermal conductivity of the heat pipe is too large 

and reaches up to 500 times more than solid copper rod (El-Nasr and El-Haggar, 1996).  

 

1.2.5 Advantages of heat pipe 

The heat pipe has many advantages compared with other cooling devices; few of 

them are listed below: 

 As the heat pipes operate on a closed two-phase cycle, the effective thermal 

conductivity is very high which can transport large quantity of heat with very small 

temperature difference between evaporator and condenser sections.  

 It can transfer the heat without any moving parts so that the heat pipe is calm, noise-

free, maintenance-free, and is highly dependable.  

 As the heat pipe size and weight are relatively small, it can be used in cooling 

electronic devices.  

 Heat pipe is a simple device that can work in any orientation, and can transfer heat 

from a place where there is no opportunity and possibility to accommodate a 

conventional fan; for instance, in notebooks.  
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 Heat pipes demonstrate precise isothermal control because of which the input heat 

fluxes can be varied without having to make significant changes in the operating 

temperature (Yeh and Chu, 2002). 

  The evaporator and condenser work independently, and it needs only common 

liquid and vapor so that the size and shape of the region of heat addition is different 

from the region of heat dissipation, provided that the rate of evaporation of the fluid 

does not exceed the rate of condensation of the vapor. Thus, the heat fluxes 

generated over smaller areas can be dissipated over larger areas with lower heat 

fluxes. 

 

1.3 Heat pipe for electronic cooling 

Due to the high effective thermal conductivity of heat pipes compared to that of 

traditional heat sinks, heat pipes have been proposed and selected for electronic cooling. 

(Groll et al., 1998) reported a meticulous review of the history and developments up to 

the year 1998, of the application of heat pipe technology for electronic cooling. Later 

on, (Vasiliev, 2005) provided an outline of miniature and micro heat pipes, conventional 

heat pipes, spaghetti heat pipes, loop heat pipes, pulsating heat pipes and some similar 

applications. (Maydanik, 2005) reported an exclusive review on developments in loop 

heat pipes and their applications. Few recent experimental works on the use of heat 

pipes in electronic cooling include those of (Naphon et al., 2009),  (Wang et al., 2009),  

(Yong et al., 2010), and (Liu and Zhu, 2011). Cooling fins equipped with heat pipes for 

high power and high temperature electronic circuits and devices were simulated by 

(Legierski and Wiecek, 2001), and the superiority of the proposed system over the 
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traditional devices was demonstrated. (Kim et al., 2003) developed a cooling module in 

the form of remote heat exchanger using heat pipe for Pentium-IV CPU as a means to 

ensure enhanced cooling and reduced noise level compared to the fan-assisted ordinary 

heat sinks. (Saengchandr and Afzulpurkar, 2009) proposed a system that combined the 

advantages of heat pipe and thermoelectric modules, for desktop PCs. 

Recently, (Liang and Hung, 2010) introduced heat sink with finned U-shape heat pipes 

were compatible for a wide range of high-frequency microprocessors and evaluated their 

thermal performance characteristics.  

The present study focuses on various configurations of finned single, twin and multi 

heat pipes for desktop and notebooks PC-CPU and other electronic devices, in vertical 

and horizontal orientations. 

 

1.4 Problem Statement 

The growing development and demand for processing power in the computer 

industry necessitate efficient design of processors to conduct operations faster; 

consequently, the need for cooling techniques to dissipate the associated heat is quite 

obvious. Hence, it is highly desirable to explore high-performance cooling devices, 

especially for CPU cooling. The conventional way to dissipate heat from desktop 

computers was forced convection using a fan with a heat sink directly. However, with 

the smaller CPU size and increased power as encountered in modern computers, the heat 

flux at the CPU has significantly increased. At the same time, restrictions have been 

imposed on the size of heat sinks and fans, and on the noise level associated with the 
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increased fan speed. Consequently, there has been a growing concern for improved 

cooling techniques that suit the modern CPU requirements. As alternatives to the 

traditional heat sinks, two-phase cooling devices such as heat pipe and thermosyphon, 

have  emerged as promising heat transfer devices; the effective thermal conductivity of a 

heat pipe can be 10 to 200 times more that of a solid copper rod of the same diameter 

(Chang et al., 2008).  

In notebook computers, the processor’s surface where most heat is generated is 

usually small, approximately 10 mm × 10 mm. For useful cooling, the heat must spread 

over a larger surface area away from the processor, as the space available near the 

processor is limited. Therefore heat must be drawn from the processor and conveyed to 

a place from where it can be dissipated by conventional means. This task is successfully 

achieved by a heat pipe as it can be accommodated in a highly constrained space in such 

a way that its evaporator section communicates with the heat source while the finned 

condenser section is exposed to the sink. Thus heat pipe is regarded as a promising way 

for cooling electronic equipments. 

The differences in the shape of heat pipe affect its performance as the behaviors of 

the fluid and the wick structure inside the heat pipe play important role in the 

transmission of heat. However, few works on numerical characterization by taking into 

account the behavior of the working fluid considered only single horizontal heat pipe, 

and complex configurations such as multi and twin U-shape vertical heat pipes, and 

single L-shape horizontal heat pipe, have not been explored so far. Therefore, the 

present study is unique in solving this problem.  
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The decrease in the pore size of the wick causes low wick permeability, which 

increases the maximum capillary pumping head generated by the wick to overcome the 

total pressure drop within heat pipe;  on the other hand, the permeability should be large 

in order to have small liquid pressure drop and therefore higher heat transport capability. 

Furthermore, the effective thermal conductivity in the liquid-wick region also plays 

important role on the heat pipe performance as the high value of this parameter gives a 

small temperature drop across the wick, which increases the thermal performance of the 

heat pipe. The effective thermal conductivity in the liquid-wick region depends on the 

material of the wick structure, the working fluid properties, thickness of the wick and 

the type of wick structure. These parameters present conflicting properties in most wick 

designs. Accordingly, an optimal wick design requires harmonization between these 

contradictory features. To resolve this issue D-Optimal approach of DOE Software is 

used to obtain the optimal solution to align the competing parameters.    

 

Additionally, the increase of fan speed to cool the fins associated with the heat pipe, 

could lead to a sensation or noise, and such high velocities may not be required to 

achieve the cooling for a given heat input. This situation calls for the optimal conditions 

of fan speed and heat input, with the objective of maximizing the heat removal. Hence 

in the present study also aim to optimize the coolant velocity and heat input to get the 

best performance of the heat pipe. 

 

 



14 
 

1.5 Research Objectives 

The objectives of this research are:  

1. To study the thermal resistance (thermal performance) of vertical finned twin and 

multi U-shape and horizontal L-shape heat pipes under natural and forced 

convections at various heat inputs. 

2. To perform numerical simulation of working fluid behavior inside the heat pipe in 

order to predict the velocity and pressure for liquid and vapor and the wall 

temperature, using FEM based ANSYS software and to validate by experimental 

results. 

3. To study numerically the effect of thickness and permeability of wick structure at 

different working fluids on heat pipe performance. 

4. To perform the optimization using Design-Expert Software (DOE) to get the best 

performance of the heat pipe. 

 

1.6 Thesis Outline 

This dissertation is organized in five main chapters. Chapter 1 addresses the 

fundamentals and the application of heat pipe for electronic cooling, the problem 

statement and research objectives. In Chapter 2, a comprehensive review of 

experimental and numerical studies on various types of heat pipes used for cooling the 

electronic devices and studies on the heat pipe components such as wick structure, 

working fluids and vapor flow are presented. Chapter 3 gives a detailed account of the 

materials and methods used in the current research. Deep analysis and discussion on the 



15 
 

results from experiments and numerical simulations are presented in Chapter 4 followed 

by the conclusion and suggestions for future work in Chapter 5. The dissertation ends up 

with references. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Cooling methods of electronic equipments 

The air-cooling is the most important technology that contribute to the cooling of 

electronic devices (Ledezma and Bejan, 1996). In the past, there were three main ways 

to cool the electronic equipment; 1) passive air cooling that dissipates heat using the 

airflow generated by differences in temperature, 2) forced air cooling that dissipates heat 

by forcing air to flow by using fans, and 3) forced liquid cooling that dissipates heat by 

forcing coolants like water to pass (Suzuki and Hirano, 1998). 

The conventional way to dissipate heat from desktop computers was forced convection 

using a fan with a heat sink directly.  The advantages such as simple machining, simple 

structure and lower cost has made heat sinks with plate fins very useful in cooling of 

electronic devices (Ismail et al., 2008). However, with the smaller CPU size and 

increased power as encountered in modern computers, the heat flux at the CPU has 

significantly increased (Webb, 2005). At the same time, restrictions have been imposed 

on the size of heat sinks and fans, and on the noise level associated with the increased 

fan speed. Consequently, there has been a growing concern for improved cooling 

techniques that suit the modern CPU requirements. As alternatives to the conventional 

heat sinks, two-phase cooling devices such as heat pipe and thermosyphon, have  

emerged as promising heat transfer devices with effective thermal conductivity over 200 

times higher than that of copper (Chang et al., 2008).  
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2.2 Thermal Design Power (TDP)  

The Thermal Design Power (TDP) has attracted the topmost interest of thermal 

solution designers and it refers to the maximum power dissipated by a processor across 

a variety of applications (Mahajan et al., 2006). The purpose of TDP is to introduce 

thermal solutions which can inform manufacturers of how much heat their solution 

should dissipate. Typically, TDP is estimated as 20% - 30% lower than the CPU 

maximum power dissipation. Maximum power dissipation is the maximum power a 

CPU can dissipate under the worst conditions such as the maximum temperature, 

maximum core voltage, and maximum signal loading conditions. Whereas the minimum 

power dissipation refers to the power dissipated by the processor when it is switched 

into one of low-power modes. As shown in Table 2.1, the maximum TDP ranges from 

35 W to 77 W for modern processors such as Intel® Core™ i5-3400 Desktop Processor 

Series. While the maximum TDP for modern notebook computers ranges from 17 W to 

35 W as shown in Table 2.2. 

 

Table (2.1): Maximum TDP for modern desktop computer 

(http://ark.intel.com/products/series/64902) 

 

http://ark.intel.com/products/series/64902
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Table 2.2: Maximum TDP for modern notebook computers 

(www.makeuseof.com/tag/thermal-design-power-technology-explained) 

 

 

2.3 Experimental studies of the heat pipe 

Substantial amount of experimental works have been conducted on the heat pipe to 

identify its thermal performance through calculations of thermal resistance of the heat 

pipe. Most of the experiments proved that heat pipe is the best tool for cooling the 

electronic devices.  

 (El-Nasr and El-Haggar, 1996) investigated experimentally the effects of the 

number of wick layers, container materials, and working fluids on the effective thermal 

conductivities of several heat pipes. The results indicated that, increasing the number of 

wick layers inside the heat pipe improved the effective thermal conductivity of the heat 

pipe, and increased the heat flux transferred, with low temperature drop between the 

evaporator section and the condenser section. In addition, the working fluid at the 

operating temperature range of (313-373 K) has strongly affected the heat pipe effective 

http://www.makeuseof.com/tag/thermal-design-power-technology-explained
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thermal conductivity at steady state while the container material had faintly affected the 

effective thermal conductivity of the heat pipe.  

 (Seok-Hwan et al., 2001) studied experimentally a new woven-wire-type wick 

for Miniature Heat Pipes (MHP), which had a high productivity and a large capillary 

limit. They used MHP with diameters of 3 mm or 4 mm which could be used for 

notebook- CPU cooling. The design factors discussed were evaporator length and 

condenser length, heat pipe length, fill ratio of working fluid, number of wick strand, 

inclination angle of installation and thermal load. The results showed that the minimum 

thermal resistance was achieved when the fill ratios were 29.3% and 31% respectively, 

for MHPs of 3 mm and 4mm, provided with woven-wire wicks.  

A novel dynamic test method in order to quantify the thermal performances of 

heat pipes was introduced by (Tsai et al., 2010). This method was compared with the 

traditional steady-state methods. As shown in the Figure 2.1a, in the steady state test, 

DC power supply powered the heater. The cooling jacket connected to a constant 

temperature circulator with a 700 W heat dissipation capacity provides the necessary 

cooling effect to condensation section and the heat pipe was horizontally oriented. In the 

Dynamic test, the evaporator section was immersed in hot water working as power 

supply and the heat dissipated by using fans at condenser section with the heat pipe 

vertically oriented as shown in Fig. 2.1b.  Some of the parameters affecting the thermal 

performance of heat pipes, such as fill ratio, bending angle, and shape of heat pipe under 

both dynamic and steady state tests were investigated. Experimental results 

demonstrated that the operation limitations were increased when the fill ratio was 

increased, leading to less temperature responses of heat pipes.  The effects of parameters 



20 
 

in both the dynamic test and the steady-state test were almost analogical. Therefore, 

when high efficiency is of prime importance then dynamic test would take precedence 

over the steady state test. 

 

Figure 2.1: Experimental set-ups. (a) Steady-state test. (b) Dynamic test (Tsai et al., 

2010). 

 

Abundance of experiments have been performed on the heat pipes and further reviews 

will be carried out by studying the types of heat pipes.  
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2.4 Types of heat pipes 

2.4.1 Cylindrical heat pipe 

Cylindrical heat pipe with closed-ends is a common and conventional type of 

heat pipe. It involves circulation of working fluid and a wick to return the liquid. 

Basically, it consists of three sections, namely, evaporator, adiabatic and condenser.  

 (El-Genk and Lianmin, 1993) reported an experimental investigation of the 

transient response of cylindrical copper heat pipe with water as working fluid. The 

copper heat pipe with copper screen wick consisted of two layers of 150 meshes. The 

results showed that the temperature of the vapor was uniform along the heat pipe while 

the wall temperature drop was very small (maximum variation less than 5 K) between 

the evaporator section and the condenser section. When the heat input was increased or 

the cooling water flow rate was decreased, the steady-state value of the vapor 

temperature increased.   

 (Said and Akash, 1999) had studied experimentally the performance of 

cylindrical heat pipe using two types of heat pipes with and without wick, and water as 

the working fluid. They also studied the impact of inclined angle on the performance of 

heat pipe at different angles 30°, 60° and 90° with the horizontal. The results showed 

that the performance of the heat pipe with wick was better than the heat pipe without 

wick. The overall heat transfer coefficient was the best at the angle of 90 °.  

 (Mistry et al., 2010) carried out two-dimensional transient and steady-state 

numerical analysis to study the characteristics of a cylindrical copper-water wicked (80 

mesh SS-304 screen) heat pipe with water as a coolant at a constant heat input. Finite 
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difference and Euler’s explicit method (marching scheme) was utilized to solve the 

governing equations. As shown in Figure 2.2, a two-dimensional computational study 

utilizing the concept of a growing thermal layer in the wall and the wick region was 

carried out. The transient axial temperatures were experimentally determined and results 

of all the three sections of the heat pipe were then compared with that of 2D numerical 

solution. The time required to reach steady state was obtained. The transient and steady 

state predictions of temperatures from the two-dimensional model were in close 

agreement with the experimentally obtained temperature profiles.  

 

Figure 2.2: Coordinate system of the heat pipe (Mistry et al., 2010). 

 

Further reviews of the cylindrical heat pipe will be elaborated in the numerical studies. 
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2.4.2 Flat heat pipes 

    (Wang and Vafai, 2000) presented an experimental investigation of the thermal 

performance of asymmetric flat plate heat pipe. As shown in the figure 2.3, the flat heat 

pipe consists of four sections which are the evaporation in the middle and three 

condenser sections. The heat transfer coefficient and the temperature distribution were 

obtained. The results indicated that the temperature was uniform along the wall surfaces 

of the heat pipe, and the porous wick of the evaporator section had significant effect on 

the thermal resistance. It was also showed that the heat transfer coefficient was 12.4 

W/m
2
 °C at the range of input heat flux 425-1780 W/m

2
. 

 

Figure 2.3: Schematic of the flat plate heat pipe: (a) geometry of the heat pipe and (b) 

cross-sectional view of the heat pipe (Wang and Vafai, 2000). 



24 
 

 (Maziuk et al., 2001) modeled a flat miniature heat-pipe to determinate the 

thermal resistance and heat transfer coefficient. The wick structure of the heat pipe was 

copper sintered powder. They verified the model by comparing with the experimental 

results. The results indicated that the wick with copper sintered powder has strong effect 

to enhance the performance of the flat miniature heat pipe.  

Thermal performance of a flat heat pipe thermal spreader was investigated by 

(Carbajal et al., 2007). They carried out quasi-3D numerical analysis in order to 

determine the field variable distributions and the effects of parametric variations in the 

flat heat pipe system. The flat heat pipe which operated as a thermal spreader was able 

to uniformly distribute the temperature at the condenser end, in contrast to a system 

having a solid aluminum plate subjected to similar boundary conditions and heat input. 

 

2.4.3 Micro heat pipes 

One of the characteristic features of micro-heat pipes which makes it different 

from the conventional heat pipes is that the sharp-angled corners replace the wick 

structure which provides the necessary capillary pressure for driving the liquid phase. 

A substantial body of literature conceptualized micro-heat pipe as a key tool in 

electronics cooling since it was first proposed by (Cotter, 1984). Thus, one dimensional 

analytical models that analyze the liquid and vapor flow along micro-heat pipe were 

developed by (Babin et al., 1990), (Khrustalev and Faghri, 1994), (Longtin et al., 1994), 

(Peterson and Ma, 1996),  (Ha and Peterson, 1998),  (Ma and Peterson, 1998),  (Sobhan 


