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RANGKA KERJA TEGUH UNTUK NYAHHINGAR DAN
NYAHKABUR IMEJ BERDIGIT

ABSTRAK

Pemulihan imej adalah pendekatan untuk meningkatkan visual kualiti imej yang ditangkap

agar kualitinya lebih baik daripada had kualiti kamera. Kemajuan dalam teknologi pengimejan

dan multimedia telah menonjolkan kepentingan pemulihan imej menggunakan perisian terma-

suk aplikasi-aplikasinya dalam pelbagai bidang fotografi pengguna serta industri. Walauba-

gaimanapun, imej yang ditangkap sering mengalami degradasi, seperti kabur, hingar, artifak-

artifak tidak diingini, dan sebagainya, akibat kekangan sistem pengimejan. Walaupun banyak

usaha telah dibuat untuk meningkatkan keupayaan kaedah-kaedah sedia ada, namun, kaedah-

kaedah ini masih perlahan dari segi pemprosesannya dan kebanyakannya hanya direkaben-

tuk untuk memproses model degradasi tertentu sahaja. Oleh itu, kaedah-kaedah yang sedia

ada biasanya gagal apabila diaplikasikan pada imej sebenar. Berdasarkan motivasi ini, satu

rangka kerja teguh telah dicadangkan untuk menangani isu-isu utama yang berkaitan den-

gan masalah merekabentuk kaedah-kaedah pemulihan imej yang praktikal, iaitu, isu pemuli-

han kualiti visual serta kerumitan pengiraan. Ciri-ciri yang menonjolkan kelebihan rang-

ka kerja ini adalah: (1) rangka kerja yang dicadangkan adalah teguh dalam menguruskan

kehadiran ketidakpastian dalam data, (2) ia mampu menyesuaikan keadaan ruang secara

setempat berdasarkan data radiometrik imej, dan (3) ia adalah sangat teguh dalam men-

guasai maklumat struktur setempat walaupun imej tersebut dicemari hingar. Berdasarkan

kelebihan rangka kerja teguh ini, tiga kaedah pemulihan imej baharu telah dilaksanakan

dalam penyelidikan ini. Kaedah pertama, yang digelar “Augmented Variational Series and

xxv



Histogram-based Clustering” (AVSHC), adalah penuras skim pensuisan yang mampu untuk

menapis hingar impuls dalam imej warna atau monokrom. Kemudian, dua variasi penuras

yang berdasarkan kaedah teguh “Locally Adaptive Bilateral Clustering” (LABC) telah dicadan-

gkan untuk nyahhingar, nyahkabur sederhana, dan menyerlahkan ketajaman imej. Variasi

pertama, iaitu penuras LABC-I, mampu untuk menapis hingar tambahan, impuls, dan campu-

ran kedua-dua jenis hingar; manakala variasi kedua, penuras LABC-II, mampu untuk meny-

ingkirkan artifak-artifak kabur dan hingar, serta pada masa yang sama, meningkatkan ketaja-

man imej yang telah dibaikpulih. Oleh kerana rangka kerja teguh ini tidak bergantung kepada

sebarang andaian spesifik mengenai model isyarat dan hingar, penuras-penuras yang be-

rasaskan rangka kerja ini boleh digunakan untuk pelbagai masalah pemulihan imej, seperti

nyahhingar, nyahkabur, meningkatkan ketajaman imej, dan sebagainya. Ini membuktikan

keteguhan rangka kerja yang telah dicadangkan. Tambahan pula, keputusan uji kaji yang

menggunakan imej-imej simulasi dan sebenar bagi ketiga-tiga kaedah yang dicadangkan me-

nunjukkan prestasi pemulihan yang baik dari segi visual mahupun kuantitatif. Kelebihan pada

"peak signal-to-noise ratio" (PSNR) dan "mean-absolute error" (MAE) menonjolkan kebolehan

penuras-penuras yang dicadangkan mengatasi beberapa kaedah terdahulu dalam kajian ilmi-

ah. PSNR yang lebih tinggi menunjukkan penindasan hingar yang lebih baik, manakala MAE

yang lebih rendah mendedahkan ciri pemeliharaan terperinci kaedah-kaedah yang dicadan-

gkan. Di samping itu, visual yang menarik bagi pemulihan imej-imej sebenar yang dicemari

turut menekankan kepentingan penuras-penuras yang dicadangkan untuk aplikasi sebenar.

Selaras dengan reka bentuk peralatan pengimejan moden, penuras-penuras yang telah di-

cadangkan mempunyai implementasi yang mudah dan pelaksanaannya adalah laju secara

relatif.
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ROBUST FRAMEWORK FOR DIGITAL IMAGE
DENOISING AND DEBLURRING

ABSTRACT

Image restoration concerns improving visual quality of a captured image that goes beyond the

achievable limit of camera. Recent advancement in imaging and multimedia technology has

advocated the interests of image restoration through software, of which applications perme-

ate consumer photography as well as different industries. Unfortunately, the captured images

often suffer from degradations, such as blurring, noise, unpleasant artifacts, and more, due

to limitations of the imaging system. Despite considerable efforts have been channeled to

advance the state-of-the-art methods, surprisingly, these methods are often slow and only

designed for handling specific degradation model. As such, the existing methods usually fail

when applied to degraded real images. Based on this motivation, a robust framework is pro-

posed to address the main issues related to designing practical image restoration methods,

namely, visual restoration quality and computational complexity. The robust framework has

several advantageous properties: (1) the proposed framework is robust towards the pres-

ence of data uncertainties, (2) it is spatially adaptive to the radiometric structures of the im-

age data, and (3) it is exceedingly robust in capturing the local structural information even

in noise-ridden images. By capitalizing on the advantages of this robust framework, three

novel image restoration methods have been developed in this work. The first method, termed

as Augmented Variational Series and Histogram-based Clustering (AVSHC), is a switching-

scheme filter that is capable to remove any kind of impulsive noise on color or monochrome

images. Then, two variants based on a robust method, called Locally Adaptive Bilateral Clus-
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tering (LABC), are proposed for image denoising, mild deblurring, and sharpness enhance-

ment. The first variant, i.e., the LABC-I filter, eliminates additive, impulsive, and mixed noise;

whereas the second variant, LABC-II filter, removes blur and noise artifacts, at the same time,

increases the sharpness of the restored image. Because the robust framework does not rely

upon any specific assumptions about the signal and noise models, the filters derived from the

framework are applicable to a wide variety of image restoration problems, such as denoising,

deblurring, sharpness enhancement, and more. This demonstrates the robustness of the pro-

posed framework. Furthermore, extensive experimental results from real and simulated im-

age data show the proposed filters are capable to achieve excellent restoration performance,

both quantitatively and visually. Their excellent peak signal-to-noise ratio (PSNR) and mean

absolute error (MAE) beckons the superiority of the proposed filters over some well-known

methods in the literature. The higher PSNR manifests their good noise suppression strength

while the lower MAE reveals their detail preservation characteristic. On another front, attrac-

tive visual appeal in the restoration of degraded real images further underlines the importance

of the proposed filters for real applications. In line with the design of modern image-capturing

devices, the proposed filters have simple and straightforward implementation that results in

relatively fast runtime.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

With recent advancement in imaging technology, image restoration has found renewed inter-

est among image capturing device manufacturers and researchers. The past few years have

witnessed an explosion in the availability of photographic data from multiple image capturing

devices. For example, cell-phone cameras and commercial digital cameras are the common

sources for imagery data which rapidly gaining consumer acceptance. To keep up with ris-

ing demands for high resolution imaging devices, more image sensors are packed on a chip.

Unfortunately, image capturing devices become increasingly sensitive towards the exposure

of noise as the number of pixels per unit area grows. Higher pixel densities embedded in

image capturing devices and faster shutter speeds result in blur and noise in the captured

image [1]. As a cost effective and economical alternative, the captured image is processed

by image restoration (e.g., deblurring, denoising, sharpening, etc.) algorithms to recover the

high quality original image [2].

Generally, noise characteristics in an image depend on many factors including sensor

type, temperature, and various camera settings (e.g., aperture size, exposure time, and the

International Organization for Standardization (ISO) speed) [3]. In real applications, partic-

ularly consumer digital imaging, it is common to record weakly blurred and relatively noisy

images. Simpler image capturing devices, e.g., camera phone, tend to produce noisier image

due to physical limitations such as fixed-focus lenses and smaller image sensors. In addition,
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limited accuracy of auto-focusing systems and photon-limited low-light condition may add ex-

tra blur and noise into the image. Besides, other probable causes of image noise include

faulty memory units, external disturbances in noisy environments, and compression errors.

In digital imaging, the captured noisy image is preprocessed and restored in the early

pipeline of image formation before subsequent image processing tasks are carried out. Apart

from the obvious visual improvement in the restored image, image restoration is imperative,

and even indispensable, because the accuracy of subsequent operations (such as image

classification, segmentation, parameter estimation, etc.) is largely affected by the quality

of the restored image. Furthermore, the application of image restoration technology vastly

stretch over, but are not limited to:

• Consumer electronics and industrial applications: Designing economical digital cam-

eras, scanners, and image-based instruments.

• Scientific imaging: Enhancing images from telescopes (astronomy), electronic or opti-

cal microscopes (biology), medical imaging equipments (medicine), and spectroscopy

(remote sensing).

• Information forensics and security: Enhancing images from surveillance cameras and

biometric systems.

Roughly speaking, image restoration is a very basic problem that is computationally complex

and mathematically ill-posed. All this makes image restoration an interesting research avenue

for the image processing and computer vision communities to pursue.
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1.2 Image Restoration: Direct Model and Inverse Problem

Figure 1.1: A block diagram representation of a typical digital imaging system. The direct
model is a mathematical description of the image formation pipeline. The inverse problem is
the process of recovering the original scene from the noisy observed image.

Image restoration attempts to recover the original, high-frequency image which is subjected

to the degradation of an imaging system. Such problem is an example of inverse problem,

wherein the information (original image) is estimated from the observed data (noisy image)

using image restoration algorithms. However, solving the inverse problem requires first formu-

lating the direct model [4]. Undoubtedly, the most common direct model representing image

degradation process can be interpreted as that of computing the noisy observation pixel in-

tensity yi from the noise-free pixel intensity ỹi at the position i where

yi = [(ỹi⊗bi)+ ai]Ii. (1.1)

Here, ⊗ is the convolution operator, whereas ai, bi, and Ii represent the additive, blurring,

and impulsive degradation processes, respectively, as illustrated in Figure 1.1. In conjunction
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with image restoration, these degradation processes allow image restoration algorithms to be

flexibly formulated. However, before the development of these algorithms can be performed, it

is crucial to understand the characteristics of the corrupting noise. To do so, the next section

is dedicated to study the properties and sources for ai, bi, and Ii.

1.3 Image Noise and Degradation Processes

Figure 1.2: A canonical image formation model with the various noise sources (adapted from
[5]). These noise sources are categorized as additive, impulsive, or convolutive (blurring).

In the simple image formation pipeline shown in Figure 1.2, incident light rays from the scene

entering the lens of the camera are unevenly focused on the camera sensors regardless of

the sensor type, be it the kind with charge-coupled device (CCD) or complimentary metal-

oxide semiconductor (CMOS) technology. The geometrically distorted light rays then undergo

various processing stages. A color filter array (CFA), in which each sensor element responds

to a distinct range of light wavelengths, accumulates and converts the reaching light rays, or

photons, to electrical signal that is then read and stored as digital information. Subsequently,

demosaicing is performed to interpolate incomplete color information at each pixel location

in the CFA. Towards the end of the image capturing process, further image enhancement
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adjustments (e.g., color-tone mapping, gamma correction, and white balancing) are carried

out before the final image is produced [5].

Noise corrupting the final image is introduced in various stages during image acquisi-

tion (see Figure 1.2). The distortion caused by lens due to its non-uniform response to light

rays generates the fixed pattern noise. Simultaneously, dark current noise appears due to

anomalous charges present at the image sensors even without any incident photon [6]. Then,

thermal noise develops due to the heating of electronic circuitry of the camera in use [7]. By

far, this noise increases with the duration of use. During the signal analog-to-digital conver-

sion, quantization noise may arise as a result of insufficient number of bits to hold the pixel

information [5]. Unlike the aforementioned noise, the origin of the corrupting shot noise is

independent of any physical limitation in the imaging system. In fact, shot noise is caused by

the photonic nature of light itself and, hence, the captured image always appears noisy. Be-

sides, external disturbances, such as atmospheric disturbances, camera or object motions,

etc., cause the image to appear blurry.

For a given camera, these noise sources can be effectively modeled and, thus, controlled.

For instance, quantization noise can be alleviated by adequately choosing sufficient number

of bits to avoid truncating the image signals. With respect to the linear direct model in (1.1),

fixed pattern noise and dark current noise are modeled as impulsive noise Ii in the resultant

image. On the other hand, shot noise and quantization noise are modeled as additive noise ai,

while blurring is modeled as a shift-invariant, convolutive point spread function bi. Therefore,

the direct model in (1.1) is also referred as the linear, shift-invariant degradation model [8].

In the following subsections, an attempt to study and understand the characteristics of ai, bi,

and Ii is pursued in great depth.
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1.3.1 Impulsive Noise and its Properties

Consider an image of size M1×M2 stored as 8-bit grayscale pixel resolution, pixel intensi-

ties lie in the dynamic range [Imin, Imax], where Imin and Imax represent the lowest and highest

intensities, respectively. Regardless of its origin, impulse noise randomly misfire a certain

percentage of pixels with intensity values significantly different from the uncorrupted neigh-

borhood. Based on this fact, an image contaminated with impulse noise of probability1 ρ can

be modeled as:

Ii = f (yi) =





yi,n : with probability ρ ,

yi,o : with probability 1−ρ ,

(1.2)

where yi,n and yi,o represent i-th pixel intensity of the noisy and original images, respectively.

Fundamentally, there are two types of impulse noise models widely used in image pro-

cessing literature: the random-valued impulse noise (RIN) model and the fixed-valued impulse

noise (FIN) model. The former is also known as the uniform impulse (UNIF) noise and noise

pixels can take any intensity values within the image dynamic range, i.e., funi f (yi)∈ [Imin, Imax].

Alternatively, the FIN model assumes a limited number of impulsive intensities that appear in

certain percentages, for examples, see [9, 10]. On a related note, the simplest and most fre-

quently used FIN model in contemporary literature is the salt-and-pepper (SNP) noise. Under

the assumption of the SNP noise model, impulsive pixels are assumed to take the minimal

and maximal intensities, i.e., fsnp(yi) ∈ (Imin, Imax).

In reality, a priori knowledge on the impulsive amplitudes and the impulse noise densi-

ties are neither known in advance nor can be precisely estimated. In fact, impulse noise is

resulted from interference of noise signals with arbitrary amplitudes. Consequently, the im-

1Impulse noise probability is also known as impulse noise density. Both refer to the percentage of corrupted
pixels, and these two terms are used interchangeably in literature.
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pulsive amplitudes could either fall inside or outside of the image dynamic range. When the

impulsive amplitude lies within the image dynamic range, the corresponding pixel appears as

UNIF noise in the noisy image. On the other hand, if the impulsive amplitude falls outside of

the image dynamic range, the corresponding pixel is saturated and flipped to the maximal or

minimal intensity and emerges as SNP noise. Under these circumstances, it is appropriate to

consider a more general impulse noise model.

Apparently, real impulse noise is some mixture between the SNP and UNIF noise models.

For this reason, the authors in [11] have proposed a simplified but realistic impulse noise

model that contains both the SNP and UNIF noise models. The general impulse noise model,

called the mixed impulse (MIX) noise, is given here as:

Ii,MIX = fmix(yi) =





funi f (yi) : with probability 0.5ρ ,

fsnp(yi) : with probability 0.5ρ ,

yi,o : with probability 1−ρ .

(1.3)

In this way, half of the impulsive pixels are modeled as SNP noise while the remaining half

as UNIF noise. If impulse noise in image degradation is thought of as a combination of two

independent processes of injecting the image with fsnp and funi f , the question of choosing an

appropriate impulse noise model boils down to the selection of the MIX noise model. As a

result, this work advocates the use of MIX noise model in (1.3) because it is deemed more

suitable and reasonable when testing the performance of impulse noise filter. To show the

severity of impulse noise corrupting images, Figure 1.3 illustrates the test image added with

the SNP, UNIF, and MIX impulse noise.
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Figure 1.3: (a) The original test image and its histogram. Images corrupted by (b) SNP, (c)
UNIF, and (d) MIX impulse noise, and their respective histograms.
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1.3.2 Additive Noise and its Properties

Additive noise in the captured image is typically modeled as Gaussian distributed probability

density function (PDF), although the noise source normally gives rise to Poisson PDF. As

for the case of shot noise, photons do not necessarily hit the image sensors evenly despite

the scene is homogeneous.2 This photon counting process, which can be described by the

Poisson distribution with mean and variance λ

fPoisson(yi;λ ) =
λ yi exp(−λ )

yi!
, (1.4)

is signal-dependent and causes the resultant image to appear “grainy.” Under low-light con-

dition, the noise has significant dominance in the captured image when limited photons are

available to the image sensors. Conversely, when a large number of photons present in the

image sensors, i.e., the image is well-exposed, the Poisson PDF closely resembles the Gaus-

sian PDF. Moreover, variance stabilization methods, such as Anscombe root transformation

[12], can be used to approximate a Gaussian distributed PDF for any given image signal

with Poisson PDF. Furthermore, the photons reaching each image sensor are accumulated

independent of the neighboring sensor elements and they can be assumed to be spatially

uncorrelated [7]. For this reason, shot noise in image is popularly modeled as independent

and identically distributed (IID) and zero-mean additive white Gaussian noise (AWGN), given

as [13]

ai,Gaussian = fg(yi;µg,σ2
g ) =

1√
2πσ2

g

exp

[
−(yi−µg)

2

2σ2
g

]
, (1.5)

where µg and σ2
g are the mean and variance, respectively, of the Gaussian distribution.

2It is worth noting that a single noise in the captured image could have numerous names under different
circumstances. For example, shot noise in the imaging system is mathematically represented by Gaussian (or
Poisson) distribution in image restoration. Since the mathematical modeling of Gaussian noise is characteristically
additive in nature (referring to (1.1)); thus, shot noise modeled as Gaussian noise also falls under the category of
additive noise.
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Figure 1.4: The resultant test images added with (a) Gaussian and (b) uniform noise. The
histograms indicate the characteristics of the corresponding noisy images.

Another form of additive noise commonly addressed in image processing literature is the

uniform noise. As illustrated in Figure 1.2, quantization noise in imaging system can be ap-

proximately modeled as uniform noise. The intensity truncation of the sensed image signals

into a number of discrete levels caused the PDF to appear being “clipped." Basically, the pro-

cess is stochastic and signal dependent, unless the presence of other noise sources that are

strong enough to cause dithering will turn it to become signal independent. The uniform PDF

with mean µu and variance σ2
u is given in parametric form by [13]

ai,Uni f orm = fu(yi;µu,σ2
u ) =





1√
12σ2

u

: µu−
√

3σ2
u ≤ yi ≤ µu +

√
3σ2

u ,

0 : otherwise.

(1.6)

As an example, Figure 1.4 illustrates the two types of additive noise, i.e., Gaussian and uni-

form noise, corrupting the test image.
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1.3.3 Mixed Noise and its Relevance in Real Image Degradation Proces s

Having seen the noise degradation sources in an imaging system, it is apparent that the

corrupting noise within the internal imaging pipeline will result in a final image degraded with

a mixture of both additive and impulsive noise. Considering this fact, a practical way for

simulating real image noise is to blend together both additive and impulsive noise, for example,

the Gaussian or uniform noise is fused with the MIX impulse noise. In this way, noise filter can

be reasonably tested and the results obtained speak volume of its performance when brought

to real-world applications. Figure 1.5 shows examples of mixed noise corruption in scathing

the appearance of the test image.
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Figure 1.5: Examples on mixed noise corruption. (a) Gaussian noise plus MIX impulse noise.
(b) Uniform noise plus MIX impulse noise.
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1.3.4 Image Blurring

Blurring of digital image is a problem caused by some imperfections encountered outside of

the imaging system during image acquisition. For example, the blurring in aerial photographs

is due to atmospheric turbulence and relative motions between the camera and the ground

[14]. In consumer digital photography, the digital single-lens reflex (DSLR) camera setting

plays an important role that strongly affect the sharpness of the captured image [15]. On the

other-hand, limited accuracy and error under auto-focus camera setting may add extra blur

into the captured image.

Specifically for digital camera, given a fixed exposure time, a large aperture size will re-

sult in image with higher signal-to-noise ratio (SNR), i.e., the captured image is less noisy.

However, the depth-of-field (DOF) will be lowered and, thus, introducing the out-of-focus blur.

Conversely, a small aperture size will mitigate the blur but, at the same time, increases the

noise level as well. On the contrary, using longer exposure time may relieve both noise and

out-of-focus blur; nevertheless, such setting may cause camera or object motions blur, which

is even more difficult to eradicate [15].

In general, image blur can be effectively modeled by mathematically convolving a shift-

invariant point spread function (PSF), bi, with the noiseless image signal ỹi. The PSF acts as

a low-pass filter to smooth image details. As an example, the version of the blurred test image

is shown in Figure 1.6. Interestingly, while image deblurring remains as an active research

domain for the image processing community, image blurring is also used as a powerful tool

in various graphics and image editing software, typically for improving image aesthetic quality

by emphasizing on the artistic bokeh effect.
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Figure 1.6: (a) The sharp test image and its edge profile from the horizontal cross-section of
the image through its center point. (b) The blurred test image smoothed by a circular PSF.
Note that nearby pixels along sharp edges are redistributed and formed ramp slopes in the
edge profile of the blurred image.

1.4 Problems and Motivation

An inherent complication with inverse problems, as the name suggests, is the difficulty in

inverting the direct model without amplifying the noise in the observed image. This point is

illustrated by a practically clean but naive deconvolution estimate [16]

ỹi = ξ−1yi = [yi +(aib
−1
i )]I−1

i , (1.7)

where ξ−1 is the inverse operator of the imaging system in Figure 1.1, assumed to be lin-

ear and time-invariant. Unfortunately, the variance of the aib
−1
i noise term is large and ill-

conditioned. As a consequence, the solution is neither unique (singular) nor it exists for ar-

bitrary data; thus, making ỹi an unsatisfactory estimate for yi. Moreover, the challenge of

inverting the direct model is exacerbated by the fact that the solution is highly sensitive to the
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I−1
i impulsive noise term, which is random in nature.

By looking at a broader picture, the problems plaguing image restoration methods share

the same root as those of the inverse problems. In filter design, these problems are mainly

rooted in the solution that uses linear combination of local data as an approximate for the orig-

inal scene. This estimate is no doubt elegant, relatively easy to analyze, and have attractive

asymptotic properties; however, such estimation is also prone to error due to the nonlinear

behavior of noise. At best, the restored image would contain a minimal amount of undesir-

able noise effects. At worst, the integrity of the information represented by minute details and

sharp edges are either damaged or missing. This research acknowledges such flaw and the

design of the proposed methods takes into account this limitation. For instance, this problem

can be remedied by introducing an adaptive clustering approach for selectively choosing the

“useful" photometric (intensity) and spatial data for restoration.

Aside from the inheritance problems, nonadaptive data kernel, be it the kernel support size

or shape, leads to a more pronounced restoration problem. Image restoration methods should

not rely on only the pixel photometric properties and noise densities, but also on the sample

location. In any case, breaking the bilateral photometric and spatial relation limits the degrees

of freedom since the correlation between pixel spatial position and its photometric intensity

is ignored. Clearly, this weakens the performance of the filter. In other words, the effective

kernel size and shape should be locally adapted to image features such as fine details, edges,

and textures. In what follows, a solution is proposed to overcome this drawback by using a

“soft" approach. The restoration term is computed based on the combination of bilateral

(photometric and spatial) weights in order to have a more effective and nonlinear action on

the data. The outcome is an equivalent steerable kernel adapted to the local image features.
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Ultimately, the grand challenge in image restoration is in designing a robust framework

capable for filtering various noise types. Over the years, a great number of methods targeting

only a particular noise have been proposed, leading to a cacophony of filters including some

well-known approaches in image restoration. At large, competent filters for impulsive denois-

ing would fail completely when used for additive noise removal, and vice versa; leave alone

the more complicated scenario involving image deblurring. Moreover, some of the existing

methods are impractical for real-world application in the sense that they are computationally

expensive. The runtime consumption ranges from a mere fraction of second and up to few

hours long, with the latter being considered as extremely slow under the modern standard of

consumer-based image applications [17].

Owing to the abovementioned drawbacks, this research is motivated to develop a “univer-

sal" framework for fast and robust image restoration. In this research, many image restoration

problems frequently encountered in real imaging systems, such as additive and/or impulsive

denoising, image deblurring, and sharpness enhancement, are all addressed within a com-

mon framework. The main idea behind the proposed approach is based on adaptive clustering

of locally augmented signal with the aid of soft-computing techniques.

1.5 Research Objectives

The content of this research reflects the goals it intends to accomplish. The specific objectives

envisioned for this work are as follows:

• To propose a robust framework for restoration of linear, shift-invariant degraded images.

• To devise a high accuracy impulse detector and an adaptive filter for impulse detection

and reduction.
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• To develop a fast and robust technique for additive and mixed noise filtering.

• To design an integrated algorithm for mild image deblurring and sharpness enhance-

ment.

As opposed to the multitude of methods in literature that only manifest themselves in

a particular noise distribution, this research proposes a common framework to address the

different types of noise introduced in various stages within or outside of the canonical image

formation pipeline (q.v. Figures 1.1 and 1.2). Primarily, this research is made up of three main

parts. The first part is dedicated to impulsive noise filtering, in which a filter is devised for color

and grayscale image denoising. The second part is centered on developing a fast and robust

method based on bilateral clustering for additive and mixed noise reduction. In the third part,

the research extends the bilateral clustering approach to propose an algorithm for mild image

deblurring and sharpness enhancement. In general, these three parts stand on a common

groundwork, which is the adaptive clustering of locally augmented image signal.

Concisely, the proposed common framework is robust and universal in the sense that it

can be easily manipulated to flexibly suit the type of restoration desired with minimal compu-

tation. Such ability is achievable through the design that assumes the types of noise it seeks

to remove are IID and zero-mean noise. This assumption points to the worthiness that al-

lows image restoration algorithms to be freely designed and formulated without restriction. As

mentioned earlier, the proposed approach based on adaptive clustering has the advantage to

segregate local image features and noise into separate clusters. As such, useful information

provided by the dominant cluster can be selectively utilized for computing the estimate of noisy

data. Additionally, the signal augmentation process indulges in soft-computing in an attempt

to ease the difficulties encountered when dealing with uncertainties in noisy image data. To

sum things up, the outcome is a framework with excellent local signal adaptation and great

16



immunity towards noise.

With the ever increasing demand for fast and versatile filtering techniques, this work is

in parallel with the new design requirements for multipurpose image restoration (e.g., “on-

the-spot" image editing software) algorithms in image capturing devices. Furthermore, the

increasing number of image sensors coupled with the shrinking sensor size render a noisier

captured image due to limited photons present at each sensor element. Hence, this work,

which specializes in image restoration, has become even more relevant and worthwhile.

1.6 Research Scope

The scope of this research is confined to the design and development of image restoration

algorithms. It begins with a meticulous literature review on various image restoration meth-

ods in an effort to understand the advantages and limitations that exist in those methods.

Successively, the research then proposes image restoration algorithms that are capable to

overcome the identified limitations. These proposed methods are ideal for suppressing noise

and improving detail appearance, with heavy emphasis given to their practical applications.

Particular attention is placed on denoising of additive (Gaussian and uniform distributions),

impulsive (SNP, UNIF, and MIX models), and mixed (e.g., Gaussian plus MIX, etc.) noise. In

addition, this research also focuses on mild image deblurring and sharpness enhancement.

In this respect, the proposed methods only deal with images that are appropriate for digital

photography; thus, images that are severely degraded are beyond the scope of this research

and will not be considered.

While optics and hardware-based research are also bent on improving the visual ap-

pearance of image, this research concentrates on software-based restoration approaches,

which is more popular, device-independent, and widely applicable [18]. The proposed al-
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gorithms, alongside with numerous image restoration algorithms, are coded in C/C++ us-

ing Code::Blocks v8.02 integrated design environment (IDE) software, and compiled using

Borland C++ v5.5 code compiler. Additional image analysis are carried out using the MAT-

LAB® R2008a v7.6 software package. Finally, the feasibility of the proposed algorithms are

demonstrated through a series of experiments. The effectiveness and applicability of the pro-

posed methods are tested qualitatively and quantitatively using both real and synthetic image

data. Simulations results obtained are visually compared and numerically evaluated using

some well-known image quality metrics.

1.7 Thesis Outline

The outline of this thesis is structured as follows:

• Chapter 2 - Literature Review

In this chapter, a coherent and comprehensive state-of-the-art account on recent image

restoration techniques is presented. It offers an in-depth treatment of prevalent subject

matters popularly discussed in image processing literature. The advantages and limita-

tions of these methods are reviewed to gain a deeper understanding on their conceptual

successes and shortcomings. In addition, image clustering is briefly reviewed for an in-

sight into its theoretical and methodological fundamentals.

• Chapter 3 - Clustering-Based Impulse Detection and Denoisi ng

This chapter deals with impulse noise detection and reduction. Initially, a detailed de-

scription on the importance and usefulness of signal augmentation is given. Signal

augmentation incorporating soft-computing is shown to alleviate the problem in thresh-

olding and, hence, improves the accuracy in impulse detection. Consecutively, impulse

detectors founded on locally augmented signal clustering and histogram-based clus-
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tering are introduced. Based on the switching concept, a novel impulse filter, which

is applicable to both grayscale and color images, is proposed. Additionally, a fast and

accurate stopping criteria for iterative impulse denoising is developed. Experimental

results are then analyzed, compared, and discussed.

• Chapter 4 - Bilateral Clustering for Image Denoising

Here, a new denoising method is introduced for the removal of mutually any type of

noise. Upon clustering, the clustered pixels are mapped onto a higher dimensional

space with respect to the bilateral similarity kernel functions. That is to say, each pixel

carries the photometric and spatial similarity measures on top of their intensity and po-

sitional values. This clustering approach is also used to demonstrate the effectiveness

in providing a platform that is resilient against the effects of outliers and noise. A string

of experiments is then performed by testing the proposed method with simulated and

real image data. Simulation results obtained are compared with those from the state-

of-the-art methods. Some implementation aspects and ways to accelerate its runtime

are also briefly discussed.

• Chapter 5 - Bilateral Clustering for Integrated Image Enhan cement

Extending the knowledge on bilateral clustering, a robust method is formulated for joint

image deblurring and sharpness enhancement in this chapter. Since the formulation

is established from the key ideas in the proposed clustering approach, this method

is found to be resistant to noise effects. The deblurred and/or enhanced image does

not contain undesirable noise artifacts. At the end of Chapter 5, a comparative study

on the performance of each method is conducted based on their simulation results.

The simulation includes degraded real image data, such as out-of-focus blurred images

acquired from consumer camera and blurry scanned text images.
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• Chapter 6 - Conclusion and Future Work

Finally, the last chapter draws the conclusions and highlights the contributions of this

research. A number of interesting directions to be pursued are detailed as future works.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Image restoration has been a convergence of powerful ideas across a number of different dis-

ciplines such as applied mathematics, computational photography, graphics, machine learning

and vision, non-parametric statistics, and signal processing. A demanding yet stimulating un-

dertaking of image restoration algorithms is to suppress noise staining while preserving and,

if possible, enhancing finer details and textures in the image. These contradictory goals have

led to many different methods being proposed, with the earliest publications on the subject

dated as far back as 1960s [19, 20]. Over the years, there still exists a need for the advance-

ment of image restoration algorithms, either via proposing new approaches or by improving

the computational efficiencies of the existing ones. In this survey of image restoration litera-

ture, different methods are categorized based on the noise domain these methods are entitled

to access. The remainder of this chapter briefly delineate the main features in some of the

most popular image restoration approaches.

2.2 Impulsive Noise Filters

Among the different types of noise models, impulse denoising has been one of the most

well-studied problems. A quick browse on IEEE Xplore with a simple query “impulse filtering”

returns more than 10,000 hits for papers published after year 2000. One gets slightly less than

8000 hits with a similar search on Science Direct. Broadly, these figures reveal the dynamic

progress in impulse denoising, besides offering an impression on the knowledge wealth in this
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Figure 2.1: An illustration on the concept of search window N(i) with the pixel of interest i
centered around the neighboring pixels j. The pair of augmented variables (x,y) represents
the pixel’s spatial position x and photometric intensity y. The search window has a (2L+1)×
(2L+1) odd dimension, whereas the image of size M1×M2 sits on a two-dimensional space
defined by the axes D1 and D2.

area. However, these methods vary widely in their approaches. In [21], Yuksel provides an

excellent overview of modern as well as classical impulse denoising techniques.

Before venturing forth, some notations to be used throughout the rest of this presentation

are first defined. Here, a rectangular search window N(i) is denoted as the (2L +1)× (2L +

1) neighborhood centered at the pixel of interest i. Meanwhile, the neighboring pixels are

denoted as j. Each pixel inside N(i) carries a pair of pertinent values, namely, its spatial

position x and its photometric intensity y. This concept is illustrated in Figure 2.1. As will be

seen later in this chapter, most of the image restoration algorithms are designed to compute

the value for pixel i by using some pixels j within a specified vicinity of N(i). Below, some of

the well-known impulse detectors and filters in literature are succinctly outlined based on their

category.

2.2.1 Median Filter and Its Switching Variants

Specifically for the removal of impulse noise, nonlinear techniques can be considered as the

state-of-the-art methods. Of them, the median filter [22, 23], which exploits the rank-order
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Figure 2.2: A general block diagram representation of switching scheme impulse filters
(adapted from [26]).

information within the window N(i), appears as a popular choice for suppressing impulse

noise. The median filtering operation can be described by

ỹi = mi = median{y j}. (2.1)

Gallagher et al. [24, 25] provide a theoretical analysis on the properties of median filter. By

and large, median filtering is employed in a similar fashion as window-based filtering algo-

rithms. It is applied in a raster-scan order and treats all pixels equally regardless of whether

the pixels are corrupted or noise-free. Local information made up of image details and edges

comprising of noise-free pixels are subjects to be filtered. Hence, ignoring such local informa-

tion often renders desirable image details at best blurred and at worst missing upon filtering.

Nonetheless, this drawback has been overcome with the inception of switching filters frame-

work.

The pivotal role of switching filters is to discriminate noise pixels from the noise-free ones

prior to applying nonlinear filtering. This role can be accomplished by incorporating the con-

ventional median filtering framework with an impulse detector, which acts as a “switch.” Fig-

ure 2.2 shows the general concept of switching filters. It is observed that switching filters that

utilize such additional information can enjoy performance improvement over their nonswitch-

ing counterparts. In this survey, existing switching filters are classified into three categories:

non-adaptive, adaptive, and iterative. Within each category, more advanced techniques are
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integrated as part of the switching framework to obtain additional information about the im-

age, e.g., local statistics and thresholds [27]. These sophisticated techniques include various

order-statistics (e.g., median of absolute deviation (MAD) [28], pixel-wise MAD (PWMAD) [29],

rank-order absolute difference (ROAD) [30], and rank-order logarithmic difference (ROLD)

[31]), rank-order criterion [32, 33], variational-regularization [31, 34, 35], mathematical mor-

phology [36, 37], threshold Boolean [38], logical representation [39, 40], and soft-computing

[41, 42]. Technically, the high-complexity techniques are effective for switching filters because

of their adaptive functionalities and advanced features to approximate nonstationary statistical

characteristics of impulse noise.

The fundamental switching concept is first introduced by Sun and Neuvo [43] in 1994. As

a modification to the median filter, the idea of impulse detector can be represented by

αi =





1 : |yi−mi|> Ts,

0 : |yi−mi| ≤ Ts,

(2.2)

where Ts is a predefined threshold. In essence, αi = 1 indicates yi is a corrupted pixel and the

impulse filter is switched on. Otherwise, yi is considered as noise-free and the impulse filter

is switched off. The restoration term is then computed as

ỹi = αimi +(1−αi)yi. (2.3)

Obviously, using the photometric distance measure |yi−mi| in (2.2) cannot distinguish im-

pulses present along thin lines. This is because thin lines are erred as impulsive pixels since

the presence of thin lines is characterized by the significant difference between pixel intensities

forming the thin lines with those of homogeneous neighborhood. In an immediate response,

the impulse detector employing four Laplacian kernels Kp is used, each of which is sensitive

to edges in a different orientation [44]. These Laplacian kernels are shown in Figure 2.3, while
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