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SINTESIS, PENCIRIAN DAN PENGUBAHSUAIAN MEMBRAN ZEOLIT 

SAPO-34 UNTUK PEMISAHAN CO2 DARIPADA CAMPURAN-

CAMPURAN GAS PERDUAAN 

 

ABSTRAK 

Dalam kajian ini, membran zeolit silikoaluminofosfat – tiga puluh empat 

(SAPO-34) disintesis di atas penyokong  -alumina berbentuk cakera dengan 

menggunakan (1) penghabluran in-situ terus dan (2) pemanasan gelombang mikro 

(MW). Pemanasan MW membentuk membran SAPO-34 yang lebih nipis (ketebalan 

~ 1.6  m) dengan taburan saiz kristal zeolit (~ 0.6  m) yang lebih kecil dalam 

masa sintesis sebanyak 2 jam pada 200 oC, yang lebih pendek daripada 

penghabluran in-situ terus. Membran SAPO-34 yang disintesis dengan 

menggunakan pemanasan MW telah diubahsuai dengan proses pertukaran ion 

dengan menggunakan kation Mg2+, Ca2+, Sr2+ dan Ba2+. Sifat-sifat membran tersebut 

dicirikan dengan TEM, XRD, SEM, TGA, EDS, FT-IR dan penjerapan-

penyahjerapan nitrogen. Membran zeolit SAPO-34 yang diubahsuai dengan Ba2+ 

meningkatkan kememilihan pemisahan CO2/CH4, CO2/N2 dan CO2/H2 masing-

masing sebanyak 240, 217 dan 127 % dalam kajian penelapan dan pemisahan 

campuran gas sama molal. Membran zeolit SAPO-34 yang diubahsuai dengan Ba2+ 

diuji untuk penelapan satu gas CO2, CH4, N2 dan H2. Penelapan dan pemisahan gas 

perduaan CO2/CH4, CO2/N2 dan CO2/H2 juga dikaji. Kaedah permukaan gerak balas 

(RSM) digunakan untuk mengoptimumkan parameter proses untuk penelapan dan 

pemisahan gas perduaan CO2/CH4, CO2/N2 dan CO2/H2. Model matematik yang 

dibangunkan berdasarkan gabungan pendekatan perumusan Maxwell-Stefan dan 

garis sesuhu Langmuir, dapat mewakili penelapan satu gas, penelapan dan 

pemisahan gas perduaan dari segi telapan dan kememilihan pemisahan bagi gas 

melalui membran SAPO-34 yang diubahsuai dengan Ba2+ dengan ralat  10 %.   
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SYNTHESIS, CHARACTERIZATION AND MODIFICATION OF SAPO-34 

ZEOLITE MEMBRANE FOR SEPARATION OF CO2 FROM BINARY GAS 

MIXTURES 

 

ABSTRACT 

In the present research, silicoaluminophosphate – thirty four (SAPO-34) 

zeolite membranes were synthesized on  -alumina disc support using (1) direct in-

situ crystallization and (2) microwave (MW) heating. MW heating formed thinner 

SAPO-34 membrane (thickness of ~ 1.6  m) with narrower zeolite crystal size 

distribution (~ 0.6  m) in much shortened synthesis time of 2 hours at 200 oC 

compared to direct in-situ crystallization. The SAPO-34 membranes synthesized 

using MW heating were modified by ion-exchange process with Mg2+, Ca2+, Sr2+ 

and Ba2+cations. The membranes were characterized using TEM, XRD, SEM, TGA, 

EDS, FT-IR and nitrogen adsorption-desorption. The Ba2+-modified SAPO-34 

zeolite membrane increased the CO2/CH4, CO2/N2 and CO2/H2 separation selectivity 

by 240, 217 and 127 % respectively in the equimolar gas mixture permeation and 

separation. The Ba2+-modified SAPO-34 zeolite membrane was tested for single gas 

permeation of CO2, CH4, N2, H2. The binary gas permeation and separation of 

CO2/CH4, CO2/N2 and CO2/H2 was also studied. Response surface methodology 

(RSM) were used to optimize the process parameters for binary gas permeation and 

separation of CO2/CH4, CO2/N2 and CO2/H2. Mathematical models, developed based 

on combined approaches of Maxwell-Stefan formulation and Langmuir isotherm, 

were able to predict the single gas permeation, binary gas permeation and separation 

(in terms of permeance and selectivity) through the Ba2+-modified SAPO-34 

membrane within an error of  10 %.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Zeolite 

Zeolites are crystalline silicates or aluminosilicates, based on a three-

dimensional arrangement of TO4 tetrahedral (SiO4 or AlO4), where T is silicon (Si) 

or aluminium (Al) atom, connected through their oxygen atoms to form subunits and 

finally large lattices by repeating identical building blocks (unit cells). The structural 

formula of zeolite is y2x2x/n )(SiO)AlO(M  where n is the valence of cation M, x + y 

the total number of tetrahedral per unit cell and y/x the atomic Si/Al ratio varying 

from a minimal value of 1 to infinite (Guisnet and Gilson, 2002). 

 

Most of the zeolites can be classified into three categories (Guisnet and 

Gilson, 2002): 

 Small pore zeolites with 8 membered-ring pore apertures (8 tetrahedral 

atoms and 8 oxygen atoms) having free diameters of 0.30 – 0.45 nm. 

 Medium pore zeolites with 10 membered-ring apertures having free 

diameters of 0.45 – 0.60 nm. 

 Large pore zeolites with 12 membered-ring apertures having free diameters 

of 0.60 – 0.80 nm. 

 

Each framework structure of zeolites were identified by the International 

Zeolite Association Structure Commission (IZA-SC) using a code consisting three 

capital letters. More than 130 zeolite framework structures have been listed by the 

Atlas of Framework Types in year 2011 (Baerlocher et al., 2001). Table 1.1 presents 



2 

the examples of zeolite with their framework structure’ codes reported in the 

literature. Those framework structures include Aluminophosphate – five (AFI), 

MgAlPO4 - thirty-nine (ATN), Zeolite Beta (BEA), Chabazite (CHA),  

Decadodecasil-3R (DDR), Edingtonite (EDI), Faujasite (FAU), Zeolite Socony 

Mobil – thirty five (FER), Instituto de Tecnologia Quimica Valencia – thirty seven 

(ITV), Instituto de Tecnologia Quimica Valencia – fourty four (IRR), Linde A 

(LTA), Zeolite Socony Mobil – eleven (MEL), Zeolite Socony Mobil – five (MFI), 

Mordenite (MOR)< Offertite (OFF), Sodalite (SOD) and Institut Français du Pétrole 

and University of Mulhouse (UWY).  

 

Table 1.1:  Different zeolite framework structures reported in the literature (Bowen 

et al., 2004; Julbe, 2007; Payra and Dutta, 2003) 

Framework Structure 
Corresponding 

Zeolite 
Pore size (nm) 

SOD Sodalite 0.28 
EDI Edingtonite 0.28 x 0.38 and 0.8 
CHA SSZ-13, SAPO-34 0.38 
ATN MAPO-39 0.4 
LTA NaA 0.41 
DDR Decadodecasil 0.36 x 0.44 

OFF-FER Intergrowth T-type 0.36 x 0.51 
MEL ZSM-11 0.53 x 0.54 
FER ZSM-35 0.42 x 0.54 and 0.35 x 0.48 
MFI Silicalite-1, ZSM-5 0.53 x 0.56 and 0.51 x 0.55 
OFF Offertite 0.67 and 0.36 x 0.49 
MOR Mordenite 0.67 x 0.70 and 0.26 x 0.57 
AFI AlPO4-5 0.73 
FAU NaX, NaY 0.74 
BEA Beta 0.73 x 0.60 

 

Each framework structure displays distinctive pore structure and pore size. 

So far, the MFI framework structure is the most common zeolite used for various 

applications such as in catalysis and membrane separation. The MFI structure 

includes Silicalite-1 (pure silica zeolite) and ZSM-5 (alumino-silicate zeolite) 
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(Bowen et al., 2004). Lately, three new zeolite framework structures have been 

approved by the IZA Structure Commission in the year of 2011 and these zeolites 

are classified as Instituto de Tecnologia Quimica Valencia – thirty seven (ITV), 

Instituto de Tecnologia Quimica Valencia – fourty four (IRR) and Institut Français 

du Pétrole and University of Mulhouse – twenty (UWY) (IZA-SC, 2011). 

 

1.2 Zeolite Membrane 

Generally, zeolite materials are prepared in the form of fine particles and 

agglomerate with desired shapes and sizes. The zeolite micropores in molecular size 

enable them to be used widely in applications such as adsorption, catalysis and ion 

exchange (Coronas, 2010). However, the zeolite materials in bulk form are not 

efficient for some applications and the preparation of zeolite materials as a thin layer 

is needed (Valtchev and Mintova, 2001). Zeolite membranes, are getting increasing 

importance in number of emerging applications such as chemical sensors, insulating 

layers in microprocessors, ion exchange electrodes, corrosion protection coatings, 

catalytic membrane reactor and membrane separator (Snyder and Tsapatsis, 2007; 

Choi et al., 2009).  

 

Zeolite membranes are generally formed by depositing zeolite layers on 

porous supports. Figure 1.1 shows the schematic of a supported zeolite membrane. 

The zeolite membrane acts as a selective barrier between two phases of fluid (Ismail 

et al., 2002). When the fluid is fed to the supported zeolite membrane, the phase that 

passes through the zeolite membrane is called permeate while retentate is the phase 

that is unable to pass through the zeolite membrane. 
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Figure 1.1: Schematic of a supported zeolite membrane 
 

1.3 Gas Separation 

1.3.1 Issue of CO2 Gas Separation 

The emission of carbon dioxide (CO2) contributed to 80 % of current 

greenhouse gas emission to the atmosphere (Nair et al., 2009). The increasing CO2 

concentration in the atmosphere in recent years and its implication on global 

warming has drawn attention of many researchers around the globe, creating the 

need for extensive investigation of CO2 capture and separation (Li et al., 2011a). 

Separation and recovery of CO2 from large emission sources remained a great 

challenge nowadays in restricting the emission of greenhouse gas into the 

atmosphere. The CO2 separation from methane (CH4), nitrogen (N2) and hydrogen 

(H2) from the natural gas streams, power plant flue gas streams and fuel gas streams 

(i.e. in water-gas shift reaction) respectively, are among the main concerns 

nowadays for carbon dioxide removal and recovery to minimize its effect on the 

environment in terms of green house gases effect. CO2 removal from these gas 

streams is also essential in the production of pure CH4, N2 and H2 as industrially 

important energy and chemical sources. In view of this issue, there are increasing 

number of articles published by the researchers with the aim of finding potential 

processes for CO2 capture, separation and CO2 enrichment from exhaust gases to 

reduce carbon emissions directly at the source through greenhouse grown plant 

Zeolite membraneSupport 

Retentate 

Permeate 

Feed 



5 

uptake (Habib et al., 2011; Scholes et al., 2010; D'Alessandro et al., 2010; Hasib-ur-

Rahman et al., 2010; Budd and McKeown, 2010; Mansourizadeh and Ismail, 2009; 

Krull et al., 2008; Dion et al., 2011; Jaffrin et al., 2003). 

 

1.3.2 Conventional Method for CO2 Gas Separation 

Figure 1.2 shows the common technologies available for separation of CO2. 

Conventional methods for CO2 separation include cryogenic distillation, absorption 

and adsorption processes. Cryogenic distillation enables CO2 separation from 

relatively high purity (> 90 %) sources on the basis of cooling and condensation. 

However, it is expensive and energy intensive due to it’s operation at very low 

temperature (lower than -73 oC for liquefaction of CO2) and at elevated pressure (Li 

et al., 2011a; Olajire, 2010; Leo et al., 2009). 

 
 

Figure 1.2: Common technologies for CO2 separation (Li et al., 2011a; Olajire, 
2010) 

  

Absorption, either chemical or physical, is another approach which is 

widely used for CO2 separation. In chemical absorption, CO2 is chemically captured 

through the acid-base neutralization reaction with caustic solvents such as 
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monoethanolamine (MEA) following by the driven-off of CO2 by heating the 

aqueous solution comtaining amine-bound CO2. The regeneration process required 

in the chemical absorption process is energy intensive (Bara et al., 2009). Physical 

absorption, is another category of absorption in which CO2 is bound selectively to 

the solvents (Fluor process, Rectisol process, ionic liquid etc) at high partial pressure 

and low temperature. However, physical absorption brings about drawback such as 

high capital cost of Fluor and Rectisol plant. In addition, the high viscosity of ionic 

liquid results in limited mass transfer and hence low absorption rates (D'Alessandro 

et al., 2010; Hasib-ur-Rahman et al., 2010; Olajire, 2010). 

 

Adsorption is another well established method for CO2 separation. 

Common solid adsorbents used include metal oxides, carbons, zeolites, ion exchange 

resins, activated alumina and metal-organic framework (MOF). The CO2 separation 

is achieved by CO2 adsorption to the solid adsorbents through physisorption (van der 

Waals) or chemisorption (covalent bonding), and followed by regeneration of the 

CO2-adsorbed solid adsorbent through processes such as temperature swing 

adsorption (TSA), vacuum and pressure swing adsorption (VSA). The high power 

requirement for the adsorbent regeneration led to high capital cost of these processes 

(Li et al., 2011a; D'Alessandro et al., 2010). 

 

1.3.3 Membrane-based CO2 Gas Separation Technology 

Membrane-based separation technology has attracted great deal of research 

interest for CO2 separation in views of the requirement for reduction in the 

environmental impact, operation cost, energy utilization and waste generation 

(Bernardo et al., 2009). Membrane offers advantages such as high energy efficiency 
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and operational simplicity compared to conventional CO2 separation units (Lin and 

Freeman, 2005). It is mechanical robust as it needs no moving part and hence can be 

used in remote locations (Ismail et al., 2009). Membrane enables continuous 

separation of gas by filtering one or more gases from the feed mixture based on the 

differences in physical and/or chemical interplays between the membrane and the 

gases (Olajire, 2010). Membrane can be categorized into organic (polymeric) and 

inorganic. Inorganic membranes include ceramic, carbon, oxides and different types 

of zeolites. 

 

Polymeric membranes, are widely used for the membrane gas separation 

due to its low energy cost, ease in fabrication and scalability (Ismail et al., 2009; 

Basu et al., 2010). However, the application of polymeric membranes is limited to 

its loss in performance stability at high temperature, high pressure and in the highly 

acidic or alkaline environment (Koros and Mahajan, 2000).  In addition, polymeric 

membranes, specially the type of glassy polymers, encounter plasticization problem 

in the presence of CO2 even in low concentration. The swelling of polymer matrix 

occurs during plasticization resulted in permanent enlargement of interchain spacing 

in the polymer matrix. The matrix damage leads to reduced CO2 gas separation 

performance of polymeric membrane (Bernardo et al., 2009; Basu et al., 2010; 

Baker, 2002). 

 

Inorganic membranes are gaining increasing interest among the researchers 

for separation of CO2 in view of their higher thermal, chemical and mechanical 

stability compared to organic membranes (Ismail et al., 2009; Botias et al., 2010). 

The porous inorganic membranes available commercially include carbon, glass, 
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oxide and zeolite membranes. The pore size of these membranes vary from 

microporous to mesoporous (< 25 nm) for carbon, oxide, zeolite and from 

mesoporous to macroporous (> 1 nm) for glass materials (Phair and Badwal, 2006). 

Besides, these membranes also differ in properties such as surface area, thermal and 

chemical stability (Meinema et al., 2005).  Carbon molecular sieve (CMS) 

membranes, prepared from carbonization of polymer precursors, have been widely 

investigated for its gas separation ability. Despite higher production cost of CMS 

membranes, they offer advantages such as higher permeance and separation 

performance compared to polymeric membranes (Hagg and He, 2011). However, 

careful handling is essential for CMS membranes since they suffer from the problem 

of brittleness (Bernardo et al., 2009; Adhikari and Fernando, 2006; Ismail and David, 

2001; Salleh et al., 2011).  

 

The development of facilitated transport membranes (FTMs) and mixed 

matrix membranes (MMMs) is another trend that emerges in the membrane-based 

gas separation technology. FTMs are good candidates for CO2 separation on the 

basis of selective CO2 transport using a carrier molecule with affinity to CO2. 

Examples of FTMs are the immobilized liquids with facilitators such as amino 

species, polar polymers and ionic liquids, supported on polymeric or ceramic porous 

supports. However, FTMs face challenges with long-term stability and low tolerance 

in handling gas separation with high CO2 partial pressure. The phenomenon of 

carrier saturation leads to decline in CO2 separation performance of FTMs as the 

CO2 partial pressure increases (Scholes et al., 2010; Bernardo et al., 2009). On the 

other hand, MMMs are formed by homogeneously incorporating the discrete phase 

(typically inorganic solids) in a continuous polymer phase. The combined strength 
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of two different phases, such as high selectivity of inorganic phase and low cost of 

polymer phase, makes MMMs attractive for CO2 gas separation. However, MMMs 

encounter problems such as plasticization with CO2 and easy formation of non-

selective void spaces between polymer and inorganic phases (Li et al., 2011a; Ismail 

et al., 2009). 

 

1.3.4 Zeolite Membrane for CO2 Gas Separation 

Zeolite membranes are the microporous inorganic membranes which are 

highly potential candidates for CO2 gas separation. Besides possessing higher 

thermal, mechanical and chemical resistance compared to organic membranes, their 

well-defined, uniform and ordered molecular-sized pore structures make them 

attractive as shape-selective material for CO2 gas separation (Shekhawat et al., 2003; 

Sebastián et al., 2007; Li et al., 2006a; Jeong, 2010; Othman et al., 2009). Choosing 

the suitable zeolite membrane with desired pore structure allows high gas separation 

performance by significantly discriminating the components in the gas stream on the 

basis of difference in molecular sieving, adsorption and diffusion effects (Caro et al., 

2000).  

 

There have been extensive investigations on MFI and FAU zeolite 

membranes for the purpose of gas permeation and separation. MFI membrane with 

medium pore size (0.51-0.56 nm) and FAU membrane with large pore size (0.74 nm) 

enable satisfactory CO2 separation performance.  In recent years, the development of 

small-pore zeolite membrane (pore size < 0.45 nm) such as DDR and T-type, 

emerges as focus in research activities in exploring their ability in CO2 gas 

separation. Silicoaluminophosphate – thirty four (SAPO-34), with CHA framework 
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structure consists of small pore structure. Figure 1.3 shows the framework structure 

of CHA. The SAPO-34 zeolite framework includes eight-ring apertures with an 

effective diameter of about 0.38 nm (Li et al., 2004), which is close to the CO2 gas 

molecule’s kinetic diameter of 0.33 nm, make it potential candidate for CO2 gas 

separation. Therefore, present study focused on synthesis of SAPO-34 zeolite 

membrane using novel method, modification of SAPO-34 zeolite membrane and its 

performance studies for CO2 separation from CO2/CH4, CO2/N2 and CO2/H2 binary 

gas mixtures. 

 
 

Figure 1.3: Framework structure of CHA (Li et al., 2004; IZA-SC, 2008) 
 

1.4 Problem Statement 

Preparation of uniform and thin zeolite membrane is a very challenging 

work. There are number of factors and its combined effect influences the quality of 

the membrane produced. The choice of the right preparation method, suitability of 

the synthesis condition and dust free clean environment are essential for formation 

of high quality zeolite membrane. Mostly zeolite membranes were synthesized 

through direct in-situ crystallization. The preparation method reported so far in the 

literature for the synthesis of SAPO-34 membranes is direct in-situ crystallization 

and secondary growth method. Owing to non-uniformity in SAPO-34 zeolite 

0.38 nm 
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crystals (sized 0.1-4  m) synthesized through the syntheses reported in previous 

studies, the SAPO-34 membranes have been formed with thickness of 5-25  m (Li 

et al., 2004; Poshusta et al., 2000; Li et al., 2005a; Li et al., 2008). A good 

membrane should posses both high gas flux and separation selectivity for a gaseous 

component from the gaseous mixture. High gas flux is required for permeation and 

high separation selectivity is essential in confirming the high efficiency of the 

membrane separation system under low driving force, thus reducing the capital cost 

of the separation system (Lu et al., 2007). However, membrane performance appears 

to be tradeoff between gas flux and separation selectivity. The increase in the 

thickness of the membrane layer generally increases the gas separation selectivity, 

but at the same time it attributed to the low flux of gaseous component. The 

preparation of a uniform and thin zeolite membrane with fewer defects, is desirable 

for both high gas flux and separation selectivity.  This is one of the critical issue as 

well as challenge to the researchers nowadays to synthesize the membrane with the 

desired properties and characteristics. 

 

The direct in-situ crystallization for SAPO-34 zeolite membranes brings 

about number of drawbacks and these include requirement of long synthesis time in 

addition to the problem of formation of non-uniform SAPO-34 zeolite crystals. The 

development of zeolite membrane for gas separation is still a subject of intensive 

research in the laboratory scale nowadays due to its high capital cost. In addition, 

another challenging task is the reproducibility of the synthesis method for the 

formation of zeolite membrane with desired thickness. Therefore, alternative 

methodology for synthesis of zeolite membrane with much shortened time is 

required in order to reduce the capital cost. The method need to be highly 
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reproducible and time-effective for the formation of SAPO-34 zeolite membrane 

with high quality (high gas flux and high separation selectivity). This will be the 

first step in the development of the zeolite membrane separation technology toward 

commercialization. In the present research, microwave (MW) heating appears to be 

potential technology for the synthesis of SAPO-34 zeolite membrane. The MW 

heating was reported to offer number of advantages such as rapid synthesis time of 

zeolite membrane and formation of zeolite crystals with higher uniformity compared 

to direct in-situ crystallization (Li and Yang, 2008). 

 

Most of the CO2 gas permeation and separation studies using zeolite 

membranes, including SAPO-34 zeolite membranes, were performed for equimolar 

binary gas mixtures which contains 50 % of CO2 (Li et al., 2004; Poshusta et al., 

2000; Li and Fan, 2010; Tian et al., 2009; Hong et al., 2008). Favre (2007) reported 

that in general the CO2 concentration varies between 5-30 % in natural gas 

processing streams with mainly CH4 gas and is 4-30 % in post combustion 

processing streams with mainly N2. As for the concern of separation of CO2 from H2, 

the CO2 concentration in the fuel gas streams (i.e. from steam reforming and 

gasification processes) may go as low as 4 % (Jeon et al., 2008; Rajvanshi, 1986). 

The fuel gas compositions vary greatly depending on the process conditions and the 

feedstock compositions. This indicates that the CO2 permeation and separation 

studies reported for SAPO-34 zeolite membranes so far did not reflect the real 

operation requirement in industrial separation systems. Therefore, it is highly 

desirable to study the performance of the SAPO-34 zeolite membranes for the 

separation of CO2 from the feed gas mixtures with wide range of CO2 concentration 

(as low as 5 %) in order to make the process more feasible for industrial application. 
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So far, high separation selectivities were achieved for gas mixtures 

CO2/CH4 and CO2/N2 using the reported SAPO-34 zeolite membranes. However, the 

SAPO-34 zeolite membranes showed very low separation selectivity, especially for 

gas mixture CO2/H2 at high temperature. Hong et al. (2008) reported CO2/H2 

separation selectivity of more than 100 using SAPO-34 membrane at -20 oC. Such 

temperature was not applicable for the real industrial separation systems which are 

operated at temperature higher than room temperature. The SAPO-34 membrane 

separation performance dropped drastically with increase in temperature and it 

turned to be H2-selective with H2/CO2 separation selectivity of only 2 at 200 oC 

(Hong et al., 2008). Therefore, modification on the SAPO-34 zeolite membrane is 

required to further enhance its affinity toward CO2, aims at improving the ability of 

the membrane for the separation of CO2 from CO2/CH4, CO2/N2 and CO2/H2 gas 

mixtures, even at high temperature. Ion-exchange with different cations is among the 

methods that can be used to modify the SAPO-34 surface properties. There have 

been several studies reported for ion-exhange of SAPO-34 molecular sieve in the 

literature. Li et al. (2009) has studied the ion-exhange of SAPO-34 molecular sieve 

using cations Mg2+, Ca2+, Sr2+ and Ba2+ aimed at improving the methanol conversion 

to light olefin. On the other hand, ion-exchange of SAPO-34 molecular sieve with 

cations such as Ce3+, Ti2+, Mg2+, Ca2+, Ag+, Na+ amd Sr2+ was found to change the 

properties of the molecular sieve including its pore width, surface area and light 

gases adsorption capability (Rivera-Ramos and Hernández-Maldonado, 2007; 

Rivera-Ramos et al., 2008). Hence, the effect of modification (ion-exchange) 

towards CO2 separation performance of the SAPO-34 zeolite membrane needs to be 

investigated in the present study. 
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There is no optimization study reported in the literature related with the 

process variables for gas permeation and separation using SAPO-34 zeolite 

membrane. The conventional approaches in the gas permeation and separation 

studies were conducted by running large number of experiments with only one 

process variable varied at a time. It is difficult to evaluate the possible interactions 

between the process variables by performing this one-factor-at-a-time approach 

(Montgomery, 2009). It is highly desirable to apply the statistical approach to 

determine the optimum conditions in permeation and separation studies of different 

gas mixtures containing CO2, by performing minimum numbers of experiment runs. 

Design of experiment (DOE) is a useful statistical tool with it ability to evaluate the 

interactions between process variables, in addition to identification of optimum 

conditions for the membrane separation processes in order to maximize the flux and 

separation selectivity.  

 

Mathematical models help in the better understanding of the transport 

phenomenon of different gas molecules through SAPO-34 zeolite membrane. The 

models should be able to predict the CO2 permeation and separation performance of 

SAPO-34 membrane, in terms of gas fluxes, permeances and separation selectivity, 

for different gas mixtures. Determination of constants (i.e. adsorption constants and 

diffusivities) significantly helps in better understanding toward mechanisms of CO2 

permeation and separation in different gas mixtures. These models can be simulated 

and the simulated results could be compared with the experimental data in order to 

validate the models. The predictive models for CO2 gas permeation and separation 

performance over wide range of process variables will be a useful tool in developing 

scalable membrane-based CO2 separation technology. 
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1.5 Objectives 

The present research aims at achieving the following objectives: 

1. To synthesize SAPO-34 zeolite membrane through direct in-situ 

crystallization and MW heating. 

2. To investigate the effect of MW heating time towards the formation of 

uniform and thin SAPO-34 membrane. 

3. To modify the synthesized membrane using ion-exchange process with 

different cations and characterize the SAPO-34 zeolite membranes 

synthesized.  

4. To study the performance of SAPO-34 membrane for the permeation and 

separation of CO2 from CO2/CH4, CO2/N2 and CO2/H2 binary gaseous 

mixtures over wide range of process conditions (temperature, pressure 

difference across the membrane and CO2 concentration in the feed). 

5. To propose mathematical models for the prediction of gas fluxes, 

permeances and separation selectivities through SAPO-34 zeolite membrane 

in single gas permeation, binary gas mixture permeation and separation at 

different operating conditions. To compare the simulated results with the 

experimental data to verify the validity of the model. 
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1.6 Scope of the Study 

1.6.1 Synthesis of SAPO-34 Zeolite Membranes  

The SAPO-34 zeolite membrane was synthesized through direct in-situ 

crystallization following the procedures reported by Li et al. (2004). MW heating 

was adapted for the formation of SAPO-34 zeolite membranes. The effect of MW 

heating time (varied within 0.5-3 hours) was investigated towards quality of SAPO-

34 zeolite membranes formed. Comparisons, in terms of properties and CO2 

separation performance, were made between the SAPO-34 zeolite membranes 

synthesized by direct in-situ crystallization and MW heating. 

  

1.6.2 Modification of SAPO-34 Zeolite Membranes 

Selected SAPO-34 zeolite membrane was subjected to modification (ion-

exchange) with cations Ca2+, Mg2+, Sr2+ and Ba2+. The modified SAPO-34 zeolite 

membranes were compared for their properties and CO2 gas separation from 

CO2/CH4, CO2/N2 and CO2/H2 gas mixtures. 

 

1.6.3 Characterization of Unmodified and Modified SAPO-34 Zeolite 

Membranes 

Various techniques were used to characterize the unmodified and modified 

SAPO-34 zeolites, either in the form of powder or membrane, as presented in Table 

1.2. Single nitrogen permeation measurement at 30 oC and 3 bar pressure difference 

was performed for each coating of SAPO-34 zeolite layer before calcination process 

to determine the presence of defects in the membrane. 
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Table 1.2: Characterization techniques of SAPO-34 zeolite membrane 

Method Properties 
Transmission Electron Microscopy 
(TEM) 
 

Surface morphology and zeolite pore 
channel 
 

Selected Area Electron Diffraction 
(SAED) 
 

Presence of crystalline phase 
 

X-ray Diffraction (XRD) 
 

Crystallinity, structure and orientation 
 

Scanning Electron Microscopy (SEM) 
 

Microstructure, crystal size and 
membrane thickness. 
 

Thermal Gravimetric Analysis (TGA) 
 

Water content, template content and 
thermal stability. 
 

Nitrogen Adsorption-Desorption 
Measurement 

 

Surface area, pore width, micropore and 
mesopore volume and isotherm. 

 

Fourier Transformed Infra Red (FTIR) 

 

Characteristic framework vibration 
bands. 

 

Energy Dispersive X-ray Spectroscopy  

(EDS) 

Elemental composition. 

 

 

1.6.4 Single Gas Permeation, Binary Gas Mixtures Permeation and 

Separation using SAPO-34 Zeolite Membranes 

All the unmodified and modified SAPO-34 zeolite membranes were 

subjected to preliminary gas permeation and separation of equimolar CO2/CH4, 

CO2/N2 and CO2/H2 binary gas mixtures at 30 oC and 100 kPa. The modified SAPO-

34 zeolite membrane with the highest preliminary CO2 separation performance, was 

selected for single gas permeation studies of CO2, CH4, N2 and H2 over temperature 

of 30-180 oC and pressure difference of 100-500 kPa across the membrane. 

Thorough permeation and separation studies for the CO2/CH4, CO2/N2 and CO2/H2 

binary gas mixtures were carried out using the selected modified SAPO-34 zeolite 

membrane over temperature of 30-180 oC, pressure difference of 100-500 kPa across 
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the membrane and 5-50 % CO2 concentration in the feed. Determination of the 

ranges of process variables was based on the literature search and on the limitation 

of experimental membrane separator rig. The ability of the selected modified SAPO-

34 zeolite membrane for separating CO2 from the CO2/CH4, CO2/N2 and CO2/H2 

binary gas mixtures containing CO2 concentration in the feed as low as 5 %, was 

explored. 

 

1.6.5 Optimization for Binary Gas Mixtures Permeation and Separation of 

Modified SAPO-34 Zeolite Membrane using DOE 

DOE was selected for the permeation and separation studies of CO2/CH4, 

CO2/N2 and CO2/H2 binary gas mixtures using Design Expert software version 6.0.6 

(STAT-EASE inc., Mineapolis, USA). In this statistical method, all variables were 

varied simultaneously in according to a set of experimental runs generated by 

Design Expert software. Response surface methodology (RSM) coupled with central 

composite design (CCD) was used to optimize the process variables for the CO2 

permeation and separation performance. Model equations were determined using 

quantitative data from the set of experimental runs. The effect of interaction between 

the process variables toward the responses was analyzed and the responses were 

optimized. 

 

1.6.6 Modeling for Single Gas Permeation, Binary Gas Mixture Permeation 

and Separation of Modified SAPO-34 Zeolite Membrane 

The single gas permeation, binary gas mixture permeation and separation 

of selected modified SAPO-34 zeolite membrane were modeled on the basis of 

combined effect of adsorption and diffusion. The adsorption and diffusion constants 

determined from the gas permeation data, were incorporated into the models. Single 
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gas fluxes, single gas permeances of different gas molecules (CO2, CH4, N2, H2) and 

the ideal selectivities (determined for single gas permeations) were modeled for 

temperature of 30-180 oC and 100-500 kPa pressure difference across the membrane. 

Models were also built to represent the gas fluxes, gas permeances and separation 

selectivities for equimolar CO2/CH4, CO2/N2, CO2/H2 binary gas mixture 

permeation and separation through selected modified SAPO-34 zeolite membrane at 

30-180 oC and 100 kPa pressure difference across the membrane.  

 

1.7 Organization of Thesis 

In the first chapter (Introduction), the definition of zeolite membrane is 

introduced. Current issue of CO2 and the approaches, including the membrane-based 

technologies, available for CO2 separation are presented. The problem statements 

are elaborated, followed by determination of objectives and scope of study for 

present research project. 

 

In the second chapter (literature review), reviews on the methods for 

synthesis of zeolite membranes, in addition to the modification approach for zeolite 

membranes, are presented. Characterization techniques used for analysis of chemical 

and physical properties of the zeolite membranes are elaborated. The gas permeation 

and separation studies reported for different zeolite membranes are discussed. At the 

end of this chapter, reviews of modeling and simulation process study for zeolite 

membranes are presented.  

 

 Chapter three (materials and methods) presents the list of all materials and 

chemicals used in present research project. Detailed procedures for the synthesis and 

modification of SAPO-34 zeolite membranes are presented. This chapter presents 
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the preparation of SAPO-34 zeolite sample for various characterization techniques. 

Operating procedures of the gas permeation and separation test rig in measuring the 

gas permeation and separation, gas sample collection and analysis are elaborated.  

 

In the fourth chapter (results and discussion), the experimental results are 

presented and discussed. Firstly, the characterizations of unmodified and modified 

SAPO-34 zeolite membranes are presented. This is followed by preliminary 

equimolar binary gas mixture permeation and separation through SAPO-34 zeolite 

membranes. The selected modified SAPO-34 zeolite membrane was subjected to 

thorough single gas permeation of CO2, CH4, N2 and H2, followed by permeation 

and separation studies of CO2/CH4, CO2/N2 and CO2/H2 binary gas mixtures. In the 

next section, DOE approach was used to determine the effect of interaction between 

process variables towards the responses and optimization of the responses. At the 

last section, modeling studies for the single gas permeation (CO2, CH4, N2 and H2), 

binary gas mixture (CO2/CH4, CO2/N2 and CO2/H2) permeation and separation are 

presented. The models were built to predict the gas fluxes, gas permeances and 

separation selectivities through selected modified SAPO-34 zeolite membrane. The 

validity of the models was determined by performing comparison between simulated 

and experimental results. 

 

Chapter 5 (conclusions and recommendations) presents the conclusive 

attainment of the major findings in the present study. Suggestions and 

recommendations are presented as improvement for the present study in the future. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Synthesis of Zeolite Membrane 

The formation and properties of the zeolite products depend on large 

number of parameters, such as the synthesis conditions (i.e. temperature, pressure, 

stirring) and the compositions of the precursor solution required for synthesis (i.e. 

ratio between elements for framework formation, pH, content of the structure 

directing agent, water concentration) (Cubillas and Anderson, 2010). Figure 2.1 

presents the phenomenon occurrence from nutrients to formation of zeolite crystals. 

The synthesis of zeolite starts with preparation of precursor solution consisting of 

required nutrients such as element for framework formation (Si, Al, P, O) and 

structure directing agent (SDA). By heating the precursor solution to desired 

temperature at autogenic pressure in an autoclave, entities with different size are 

formed through hydrolysis, oligomerization and condensation reactions catalyzed by 

hydroxyl ions. The amorphous phase is formed and is at pseudo-equilibrium with 

solution phase. After a period, breaking and remaking Si,Al-Si,Al bonds by the 

hydroxyl ions, results in formation of nuclei and followed by zeolite crystals (Cundy 

and Cox, 2005). Simultaneously, transformation of the amorphous phase into 

crystalline phase or dissolution of the amorphous phase into more stable product 

could happen. The zeolite crystals formed then grow with time in the autoclave 

(Coronas, 2010; Cubillas and Anderson, 2010). 
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Figure 2.1:  Phenomenon occurrence for transformation of nutrients into zeolite 
crystals (Coronas, 2010) 

 
 
2.1.1 Methods of Zeolite Membrane Synthesis 

There are numbers of report in the literature for the preparation of different 

types of zeolite membranes. These zeolite membranes includes MFI (ZSM-5 and 

silicalite-1), FAU (NaX and NaY), DDR, T-type, SAPO-34 and medernite 

membranes (Snyder and Tsapatsis, 2007). Figure 2.2 shows the common strategies 

being reported for the preparation of zeolite membranes in the literature. The thin 

zeolite membrane can be formed on top of a selected porous support using different 

techniques: (1) Liquid phase synthesis (direct in-situ crystallization and secondary 

(seeded) growth method) and (2) vapor phase synthesis (vapor phase transformation 

and steam-assisted crystallization). 

 

Nutrients 

Hydrolysis, oligomerization and condensation 

Nuclei  Amorphous 

Zeolite crystals 

Dissolution 
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Figure 2.2: General methods for synthesis of zeolite membranes (Caro et al., 2000) 
 

The differences in the preparation of zeolite membranes following different 

methods are illustrated in Figure 2.3. In direct in-situ crystallization, the support is 

immersed in a precursor solution with known concentration under hydrothermal 

condition at given temperature. In secondary (seeded) growth method, a closely 

packed layer of zeolite crystal seeds is deposited onto the surface of a support before 

crystallization. Different techniques for the deposition of zeolite seeds on the 

support surface are reported in the literature such as rubbing, dip coating, slip 

casting and vacuum seeding. Subsequent hydrothermal synthesis is carried out to 

decouple the nucleation step and crystal growth (Pina et al., 2004). Vapor phase 

synthesis is another method for the synthesis of zeolite membrane. The precursor is 

coated on the support via dipping technique, followed by drying. The dry, 

amorphous precursor is converted to crystalline material via contact with the vapor 

phase of an organic-water mixture (Parvelescu et al., 2007). 
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Figure 2.3:  Steps in the preparation of zeolite membranes on double side of disc-
shaped support for different methods: (a) direct in-situ crystallization 
hydrothermal synthesis, (b) secondary growth (seeded) hydrothermal 
synthesis and (c) vapor phase synthesis  
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