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PEMBANGUNAN SISTEM PENGECAMAN PINGGIR MOIRÉ DENGAN 

MENGGUNAKAN RANGKAIAN NEURAL TIRUAN UNTUK 

PENGUKURAN ANJAKAN 2-D 

ABSTRAK 

 Pelbagai kaedah telah dicadangkan untuk mendapatkan maklumat anjakan 

dalam analisis corak moiré. Kaedah-kaedah ini boleh dikategorikan kepada analisis 

manual oleh inspektor manusia, kaedah komputasi dan kaadah analisis berasaskan 

imej. Analisa manual terdedah kepada ralat manusia kerana ia bergantung kepada 

keputusan manusia dalam analisa corak moiré. Penggunaan kaedah pengiraan dalam 

analisa corak moiré adalah terhad kepada corak moiré yang dihasil daripada parutan 

berfrekuensi tinggi yang sinusoid. Dalam kaedah berasaskan analisis imej, Algoritma 

yang kompleks menyebabkan butir-butir halus dalam corak moiré terhilang dalam 

operasi pra-proses imej. Situasi ini menyebabkan ketidakpastian dalam analisa corak 

moiré. Untuk mengatasi kelemahan yang disebut di atas, kaedah rangkaian saraf 

buatan (ANN) dicadangkan untuk sistem pengenalan corak moiré dalam pengukuran 

anjakan 2-D. Sistem pengenalan corak moiré terdiri daripada dua ANN dengan dua 

tugas yang berbeza iaitu (i) penentuan pusat pinggiran moiré dan (ii) penentuan 

kesipian berdasarkan corak moiré. Kaedah ANN dibandingkan dengan kaedah analisa 

grafik (GAM), sejenis kaedah analisa berasaskan imej, dari segi ketepatan dan masa 

pengiraan untuk pengukuran anjakan 2-D pola moiré. The experiments prove that 

ANN approach has a higher accuracy to GAM with mean errors with 95% confidence 

of  0.068  ± 0.013 mm for eccentric magnitudes and 1.85 ±  0.465º. An improvement 

of 66.18% in the computation time is also reported in the comparison. A 

straightforward solution for the moire fringe recognition system of circular grating 

moire pattern is achieved using ANN approach.   
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DEVELOPMENT OF MOIRÉ FRINGE RECOGNITION SYSTEM USING 

ARTIFICIAL NEURAL NETWORK FOR 2-D DISPLACEMENT 

MEASUREMENT 

ABSTRACT 

 Various methods have been proposed in the analysis of moiré pattern. These 

methods can be categorized into manual inspection by human inspector, computational 

methods and image analysis based methods. Manual interpretation of moiré patterns 

is prone to human errors as it is highly dependent on the decision of the human 

inspector. The computational methods are lack of flexibility as they are limited to high 

frequency gratings which are sinusoidal in the transmittance of grating. As for the 

image analysis based methods, complex algorithms can unintentionally remove the 

fine details in the moiré patterns and cause uncertainty in the analysis. To overcome 

the above mentioned drawbacks, an artificial neural network (ANN) approach is 

proposed for a moiré fringe recognition system in 2-D displacement measurement. The 

moiré fringe recognition system consists of two ANNs with two different tasks : (i) 

the determination of moiré fringe centers of the circular grating moiré patterns and (ii) 

the determination of eccentricity magnitudes and eccentricity directions of the circular 

grating moiré patterns. The ANN approach is compared to graphical analysis method 

(GAM), an image analysis based method, in terms of accuracy and computational time 

for 2-D displacement measurement of circular grating moiré patterns. The experiments 

prove that ANN approach has a higher accuracy to GAM with mean errors with 95% 

confidence of  0.068  ± 0.013 mm for eccentric magnitudes and 1.85 ±  0.465º. An 

improvement of 66.18% in the computation time is also reported in the comparison. A 

straightforward solution for the moire fringe recognition system of circular grating 

moire pattern is achieved using ANN approach.  
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CHAPTER ONE 

INTRODUCTION 

1.1  Background of research 

 Moiré pattern is a complex map of intersections of lines comprising of two 

overlapped gratings. The broad dark lines that are observed after the overlapping of 

two gratings are called moiré fringes. The advantage of moiré pattern is the 

amplification effect of displacement change between two gratings. A small change in 

displacement between two fine gratings will cause the moiré pattern to change. 

Displacement components of two gratings can be determined by analyzing the changes 

in moiré pattern (Sciammarella & Piroozan, 2007). Besides that, the moiré patterns 

can be reproduced using the same gratings set and with the same in-plane or out-of-

plane displacement. The reproducibility of the moiré pattern enables it to become a 

useful tool in metrology (Chiang, 1979; Sciammarella, 1982).  

 The application of moiré patterns can be found in many fields of engineering 

metrology which includes full field displacement measurements, positioning and 

alignment systems, strain analysis, surface topography etc. The utilization of the moiré 

patterns to measure displacements is known as the moiré methods. The moiré methods 

can be categorized into geometric moiré, shadow moiré, projection moiré and moiré 

interferometry. These moiré methods provide full contour maps of in-plane 

displacement fields and out of plane displacement fields with high sensitivity and high 

spatial resolution (Post & Han, 2008).  

 In the early development of moiré methods, the analysis of the moiré patterns 

was performed manually by a human inspector using fringe sign determination, fringe 

ordering, fringe counting and fringe interpolation (Han et al., 2001; Lay & Chen, 1998; 

Lee et al., 1988). These methods required human inspectors to have the knowledge of 
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moiré pattern for the measurement of displacement. The accuracy of the manual 

inspection was limited by the human errors. The method was ineffective due to low 

repeatability and slow processing speed in the procedures of analyzing the moiré 

patterns by human inspectors. 

 Computational methods, such as Fourier transformation methods (de Oliveira 

et al., 2012; Nicola & Ferraro, 2000; Park & Kim, 1994; Wang et al., 1999) and phase 

shifting methods (Poon et al., 1993; Cordero & Lira, 2004; Du et al., 2014; Liu & Chen, 

2005; Trivedi et al., 2013; Zhu et al. , 2014) had been proposed to address the issue of 

ineffectiveness in manual inspection methods. Fast computational algorithms were 

used to automate the analysis of moiré patterns.  The displacement information was 

extracted mathematically from the moiré patterns. These computational methods give 

a fast and accurate measurement by eliminating the laborious and subjective 

procedures in manual inspections methods. However, the application of computational 

methods is limited to the moiré patterns with sinusoidal intensity distribution.  

 Image analysis based methods had also been proposed for the automated 

analysis of moiré pattern. Image processing techniques were applied to the images of 

moiré patterns to extract the moiré fringes from the moiré patterns (Agarwal & 

Shakher, 2015; Lay et al., 2012; Yen & Ratnam, 2011, 2012a). The displacement of 

the moiré patterns could be obtained graphically from the information of moiré fringes 

such as the profile of moiré fringes and the intensity distribution of the moiré fringes. 

The drawback of the image analysis based methods is the uncertainty that is caused by 

the preprocessing operations to remove the residual gratings in the background.  

 Artificial neural networks (ANN), which have been proposed as tools for 

solving image processing and pattern recognition tasks (Egmont-Petersen et al., 2002; 

Mah & Chakravarthy, 1992), constitute a typical soft computing approach that is 
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capable of learning and classifying patterns using a set of learning algorithms that are 

tolerant of uncertainty and approximation (Cristea, 2009; Mah & Chakravarthy, 1992; 

Senthilkumaran & Rajesh, 2009). ANNs mimic the human-like decision making and 

have a consistent and repeatable machine-like performance. ANN approach has the 

potential to replace the conventional image processing techniques that can cause 

uncertainty in the 2-D displacement measurement of moiré pattern. With proper 

feature selection and training, an ANN can determine the displacement of moiré 

patterns regardless of the background residual gratings and unevenness of the images 

of moiré patterns. However, no study has reported the use of this ANN approach for 

moiré fringe recognition to obtain the displacement of moiré pattern for measurement 

purposes. The current applications of ANN approach in moiré pattern analyses are 

limited to classification problems based on the features of moiré patterns (Chiang et 

al., 2014; Sciammarella & Piroozan, 2007).   

 This work proposes an ANN approach for moiré fringe recognition system in 

2-D displacement measurement of circular grating moiré patterns.  In this study, two 

ANNs were developed for the moiré fringe recognition system in 2-D displacement 

measurement of circular grating moiré pattern. The ANNs were designed for two 

different tasks which are (i) to determine the centers of the moiré fringes and (ii) to 

determine the displacement components (eccentricity magnitude and eccentricity 

direction) of the moiré patterns. The advantages of using two ANNs for different tasks 

instead of single ANN with two outputs are the simplification of the feature selection 

and training stage of the ANN as well as reduce the requirement of computational 

power by using simple ANN architectures for the training. The input of ANN1 (moire 

fringe center determination) is the column pixel value of the the polar transformed 

circular grating moire pattern. The inputs of ANN2 (2-D displacement determination) 
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are number of discontinuities in fitted curve from ANN 1 and the peak value at the 

gradient change of the fitted curve. The accuracy of the ANN approach was compared 

with the theoretical results from mathematically generated moiré patterns and the 

results of graphical analysis method (GAM) which is one of the conventional image 

analysis based methods. The mean errors with confidence interval of 90% was 

measured for the determination of 2-D displacement measurement. The plot of graphs 

on outputs of ANN approach and GAM are presented by comparing to the targets of 

2-D displacement components that were recorded on micrometer readings. The 

correlation factor of outputs and targets were calculated for ANN approach and GAM 

to show the accuracy of respective methods. 

 

1.2  Problem statement 

 The accuracy of manual interpretation techniques is strongly dependent on the 

decisions of the human inspectors who perform moiré fringe recognition. Therefore, 

such techniques are prone to human error, resulting in uncertainty in moiré pattern 

analyses. Manual interpretation techniques have poor repeatability and reproducibility. 

It is ineffective for human inspector to monitor the change in the moiré patterns 

repeatedly in a large number of samples. 

 Computational methods are limited by moiré patterns with sinusoidal intensity 

distribution. High frequency gratings with sinusoidal intensity variation are used in the 

generation of moiré patterns for the applications of computational methods. 

Computational methods are not readily applied to low frequency gratings with grating 

pit. Low frequency gratings are more favorable than high frequency gratings in the 

applications of measurement due to the simplicity and the cost of producing low 

frequency gratings (Piro & Grediac, 2004). The intensity of moiré fringes formed by 
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