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A B S T R A C T

There has been a considerable amount of research to conceptualize how cognition handle multitasking situa-
tions. Despite these efforts, it is still not clear how task parameters shape attentionnal resources allocation. For
instance, many research have suggested that difficulty levels could explain these conflicting observations and
very few have considered other factors such as task importance. In the present study, twenty participants had to
carry out two N-Back tasks simultaneously, each subtask having distinct difficulty (0,1 or 2-Back) and im-
portance (1 or 3 points) levels. Participants's cumulative dwell time were collected to assess their attentional
strategies. Results showed that depending on the global level of difficulty (combination of the two levels of
difficulty), attentional resources of people were driven either by the subtask difficulty (under low-global-diffi-
culty) or the subtask importance (under high-global-difficulty), in a non-compensatory way. We discussed these
results in terms of decision-making heuristics and metacognition.

1. Introduction

Multitasking refers to those situations where multiple tasks must be
simultaneously executed in a limited time window. It covers various
cases from routine activities like driving or preparing the venue of a
large number of guests, to more complex system management, like
space shuttle piloting, air traffic control or aircraft piloting. In these
situations, the simultaneous execution of the tasks is hardly possible
because of immutable bottlenecks in central processing (Pashler, 1994),
response competition (Eriksen, 1995), limited processing resources
(Kahneman, 1973) or overlaps in resource solicitation (Wickens, 2002).
Therefore, it compels people to build on executive processes (Baddeley,
2012) like task sequencing (Schumacher et al., 1999), plan re
membering (Burgess et al., 2000), task switching (Monsell, 2003;
Pashler, 2000) or attentional control (Baddeley, 2012; Norman and
Shallice, 1986), so as to maintain performance at an acceptable level.

There has been a great deal of effort to compile knowledge about
multitasking performance into formal models that predict the sequence
of operations, under various conditions of multitask structure, and with
a high degree of timing precision (Meyer and Kieras, 1997; Pashler and
Sutherland, 1998; Salvucci and Taatgen, 2008). However, as raised
recently by Wickens et al. (2015), these canonical models somewhat
ignore meta cognitive or strategical processes. Rather, they support that

performance mainly results from the correspondence between the
structure of the task and the availability of human resources. For in
stance, the Threaded Cognition theory (Salvucci and Taatgen, 2008)
posits that one primarily allocates resources in a “greedy and polite”
fashion: as soon as they are requested, resources are used if available
(greedy), and are immediately released once the operation is ended
(polite).

1.1. The prioritization process

Nonetheless, many studies have highlighted the strategic dimension
of resources allocation and the possibility to deliberately influence it,
depending on the respective importance (or priority) of the available
tasks, i.e. prioritization (Gopher and Brickner, 1982; Gopher and
Navon, 1980; Matton et al., 2016; Wang et al., 2009). Its role has been
shown in many applied fields like task management (Barabasi, 2005;
Freed, 1998), air traffic control (Ho et al., 2004; Loft et al., 2007),
aircraft piloting (Iani and Wickens, 2007; Raby and Wickens, 1994), car
driving (Brumby et al., 2009; Levy and Pashler, 2008) or simulated
office (Sauer et al., 2003). Each time, task importance, given either
explicitly or implicitly, is shown to significantly influence resources
allocation or task sequencing, especially under fatigue or increased
difficulty conditions, where it tends to preserve performance on the
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more important tasks. For instance Raby et al. (1990) showed that,
during a simulated flight, as difficulty increased (e.g., time constraint,
extra communications), proportion of time spent on high priority sub
tasks increased at the expense of other low priority subtasks.

If observable consequences of prioritization have been well ad
dressed, less effort has been dedicated to describe prioritization at a
cognitive level. For instance, when Meyer and Kieras (1997) stated that
task priorities are one main determinant of executive processes (p. 14),
they did not provide an explanation of how these priorities might be
computed. In the same vein, when Gopher and Brickner (1982) showed
the impact of priorities upon voluntary control of resources, they did so
to better understand the structure of human resources, not to under
stand prioritization itself. In their experiment, the authors manipulated
the priority of two subtasks by assigning them a level of desired per
formance. Doing so, they overlooked prioritization since it cannot be
reduced to one's ability to allocate resources according to a varying
performance target. Prioritization also includes the ability to compute
and store internally the respective priorities of the subtasks according to
their various attributes. The same comment can be made about Norman
and Bobrow (1975)'s work, who manipulated task priorities by as
signing “percentages of attention” (e.g., “task A must receive 80% of
your attention”). Hence, assigning performance is neglecting one es
sential stage of prioritization, that is priorities computation. There is a
need to distinguish the construct of “importance” from the construct of
“priority”. “Importance” refers to an objective task attribute that
characterizes the relationship of the task to the assigned goal, whereas
“priority” refers to an agent's internal representation resulting from
prioritization, and biasing resources allocation in a top down fashion.
Some other terminological choices have been observed elsewhere
(Wickens et al., 2016), but the crucial point here is to distinguish ex
ternal from internal priority constructs.

Actually, this perspective is close to that of Wickens et al. (2015,
2016), who have proposed that prioritization although not naming it
so is akin to a multi attribute decision process. According to their
model of Strategic Task Overload Management (STOM; Wickens et al.,
2015), in a multitask environment, people would continuously process
several attributes of each subtask, that are its salience, its priority (i.e.,
“the relative importance of a task”), its interest, the effort attached to it,
and its difficulty. Each of these attributes would influence the relative
attractiveness of the corresponding subtask, with a specific weight and a
specific polarity. For example, it was found that, given a cognitive effort
avoidance principle (Kool et al., 2010), the attractiveness of an easier
task will be positively biased, with a weight of 0.63. This weight means
that ceteris paribus the easier task will be chosen 63% of the time.
Seemingly, according to empirical findings, people tend to avoid the
effort attached to task switching (Arrington and Logan, 2005), with a
probability of 0.60. Nevertheless, in a recent paper Wickens et al.
(2016) pointed out that the polarity of the difficulty attribute could be
reversed under specific experimental conditions. They highlighted that
the attraction to an easier task was found in studies using simple tasks
or comparing easy and hard versions of the same task. On the contrary,
attraction to the more difficult task was found with more complex tasks,
which have been related to a longer “giving up time”, described by Kool
et al. (2010).

Moreover, there's a need to understand further how multiple attri
butes might interact in the process, especially if contradictory. For ex
ample, which task would be prioritized between a hard important one
and an easy unimportant one ? In a recent study, Wickens et al., 2016
clearly asked the question of “how [these attributes] would trade off
against one another” (p. 325). In their first experiment, people had to
execute multiple tasks at once using the revised Multi Attribute Task
Battery environment (MATB II; Santiago Espada et al., 2011). Two
groups of participants were told either to prioritize one particular task
(the tracking task) or to perform all tasks as best as possible. The dif
ficulty attribute of the tracking task was manipulated within groups by
changing the update rate. The authors found that the tracking task was

less switched to (12% less often) when it was more difficult, and no
effect of assigned priorities on switches was found. Moreover, when
subjects had to choose between two other alternative tasks (resources
management or communication), they chose twice as frequently the
easier and less important task (communication) than the more difficult
and more important task (resources management). It is noteworthy that
difficulty and importance attributes of these two tasks were rated
subjectively after the final experimental trial, i.e. they were not ma
nipulated. Moreover, as noted by the authors, the easier less important
task was also the most salient, so that multiple attributes manipulations
were confounded.

Even though marginal, these contradictory results call for new in
vestigations about the interactions that may exist between task attri
butes, to explain prioritization. More specifically there is a need for
more controlled experiments, embedding identical and simple subtasks
so as to avoid structural effects and concentrate the analysis on the
potential effects of the difficulty importance interaction. In the vein of
Raby and Wickens (1994), we propose that the effect of the importance
attribute over the resources allocation depends on the global difficulty
level. Under low global difficulty scenarios, individuals would tend to
allocate their resources as a function of subtasks difficulty, in a greedy
and polite fashion (Salvucci and Taatgen, 2008). Under high global
difficulty scenarios, they would invest in top down processes so as to
evaluate the respective priorities of the various available subtasks, and
allocate their resources accordingly. This could explain that under low
global difficulty circumstances, subtask importance does not have a
great influence over resources allocation, since a difficulty driven
strategy would be sufficient to attain a satisfying level of performance.

The objective of the present study is to test these hypotheses by
assessing prioritization strategies in a controlled situation, whereby two
attributes could present opposite polarities. In our experiment, parti
cipants had to handle two N Back subtasks simultaneously (“dual N
Back task”), which level of difficulty and importance levels were ma
nipulated. Importance was implemented through the use of two pos
sible payoff values. Complementary eye tracking data were collected to
assess attentional strategies through the proportion of cumulative dwell
time on the different areas of interest. Indeed, ocular movements are
functionally related to attentional movements, and studies have high
lighted the existence of a wide overlap between overt and covert at
tention phenomena (Hoffman and Subramaniam, 1995; Klein, 1980;
Peterson et al., 2004; Rafal et al., 1989; Sheliga et al., 1997; Shepherd
et al., 1986). These considerations have been reinforced by neuroana
tomical observations that showed that the brain regions specifically
involved in overt and covert attentional movements widely overlap
(Nobre et al., 2000; Perry and Zeki, 2000). To rephrase Shepherd et al.
(1986), while it is possible to move one's attention without realizing
ocular movement, it is not possible to make an ocular movement
without, at the same time, moving one's covert attention in the corre
sponding direction. Thus, we thought that ocular metrics would provide
us with relevant information about participants' attentional strategies,
regardless of the performance levels they would achieve.

At an operational level, we hypothesized that resources allocation
would be explained by an interaction of the two task attributes, and
that the impact of importance over the resources allocation would de
pend on the global difficulty level, the latter being defined as the
combination of the two levels of difficulty of the subtasks. Moreover,
the global difficulty level did not strictly correspond to the linear sum of
the subtask difficulty levels because of the concurrence costs inherent in
such dual task situations. More specifically, we thought that (H1) under
low global difficulty conditions, (H1a) subtask performance and (H1b)
visual resources allocation toward the two subtasks would be explained
by their respective level of difficulty, whatever their importance.
Conversely, we hypothesized that, (H2) under high global difficulty
conditions, (H2a) subtask performance and (H2b) visual resources al
location would be explained by the respective importance of the two
subtasks, whatever their level of difficulty.
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2. Method

2.1. Participants

Twenty participants were recruited (Mage=23.45, SD=3.9). All
were volunteers and were engineering students of the National Higher
School of Aeronautics and Space (ISAE SUPAERO). Before the experi
ment, all the participants read and signed a consent form. Their parti
cipation was not rewarded. The present method has been validated by
the French Ethics Committee on Non Interventional Research, and was
given the following code name: CERNI Université fédérale de Toulouse
2016 010.

2.2. Apparatus and materials

The experiment took place in an isolated experimental room. All the
tasks were run on a Dell computer attached to a 22″ monitor
(1680×1250 pixels). Participants sat approximately at 70 cm from the
screen. During the test phase, eye gazes were recorded using an SMI
RED 500 system (SensoMotoric Instruments). Responses were recorded
with a Cedrus RB 530 pad. Reaction time and stimuli presentation were
recorded with Python 2.7 and the PsychoPy 1.83 library (Peirce, 2009).
Participants successively passed through a single and a dual version of
the N Back task. For the single version, black digits were successively
presented at the center of the screen, within a white 5° square. The
instruction to apply (“N BACK”) was continuously displayed at the top
left of the screen. Responses were made using the center button of the
response pad. Participants had to press this button when the displayed
digit corresponded to the target.

In the dual version, the two digits sequences were presented within
two respective 5° squares, 2° below the center of the screen. The two
digit centers were horizontally separated by 12.2° (6.1° from the hor
izontal center). Each subtask was characterized by two attributes. The
subtask difficulty was indicated by a number corresponding to the N
back level of the task (0, 1 or 2), located 1.5° below the subtask's square.
The subtask importance was indicated by the quantity (1 vs 3) of yellow
circles, located 0.8° above the squares. A quantitative feedback was
displayed at the middle of the two subtasks between two trials: it was
green when points were won (e.g., +3) and red when lost (e.g., −1).
When the result was null, it was a black equal sign. The left and right
buttons of the response pad were respectively used to signal a target in
the left or the right subtasks. In any version of the task, errors were

signaled by a red circle displayed at the center of the corresponding
square area, during the inter trial interval (Fig. 1).

2.3. Procedure

After they signed the consent form, participants sat in front of the
computer. Before each phase, participants were given written instruc
tions, yet they were allowed to ask the experimenter for clarifications.
In any phase, participants were told to initiate the incoming block by
pressing the bottom button (labeled “OK”) of the response pad.

Single condition. Participants saw a digit sequence, and were in
structed to judge whether each digit matched the digit presented N
times ago (N Back). If so, they had to press the center button of the pad.
For the 0 Back condition, they had to detect any 0 digit. There were two
successive blocks of 30 trials per difficulty level. Each block included
30% of target trials, randomly distributed. Each trial began with the
presentation of a digit for 800ms, during which participants could
signal it as a target. Then, a blank 1000ms inter trial interval (ITI) was
presented. Error feedback potentially appeared at the center of the
square throughout the ITI. Then the next digit appeared for 800ms and
so on.

This single condition phase always started with the 0 Back difficulty
level. Participants were informed that as long as they detected at least
50% of the targets for a given difficulty level, training would continue
with an increased difficulty level, and that the training would stop
otherwise. All the participants reached the 2 Back level, with at least
50% of target detected.

Dual condition. Participants were then instructed they would un
dergo two N Back subtasks simultaneously. They were asked to apply
the same rules as in the single N Back task, for each independent sub
task. They were informed that each subtask would have an independent
difficulty level (0, 1 or 2 back) and an independent importance level (1
or 3 points). They were told that for any hit, they would earn the
number of points (1 or 3) attached to the subtask, and that for any
mistake (miss or false alarm), they would lose it the initial score being
zero. Participants were instructed to achieve the highest overall score
possible, i.e., on the combined score of both subtasks. Importantly, they
were not biased towards any executive strategy. For instance, they were
free to abandon one subtask.

Each block consisted of 15 trials, that is two simultaneous sequences
of 15 digits. Within a block, each subtask included 4 targets (≈30%). A
trial began with the simultaneous presentation of two digits for

Fig. 1. The “dual N-Back task”. Left: the environment of the task. Each subtask is characterized by a difficulty attribute and an importance attribute. Dashed lines and
information outside of the screen are for illustrative purpose only. Right: four potential trials of the dual-task phase. Under a 0-back difficulty, participants had to
detect any 0 digit.
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1600ms, during which participants could press either the left or the
right button of the response pad, to signal a target in the left or the right
subtask respectively. Then, the digits disappeared for 1000ms while the
feedback was displayed and potential errors were signaled (red circle).
Then the next two digits appeared for 1600ms and so on (Fig. 1). Each
block was preceded by a pause screen which displayed the score for the
previous block. Importantly, the difficulty and importance attributes of
the incoming block were visible during the pause screen so that parti
cipants could process available information before they began.

Before the test phase, participants were given 8 training blocks of
various difficulty importance associations. As for the test phase, each
block consisted of 15 trials. This training lasted for 10min approxi
mately. Calibration of the eye tracker was then performed. The test
phase consisted in 36 blocks, resulting from the product of all the
possible combinations of difficulty (3 levels) and importance (2 levels)
between the two subtasks (3× 2×3×2=36). The test session al
ways began with two 0 Back subtasks of Low importance (1 point). The
following 35 conditions were presented in a random order. Each block
lasted 50 s.

2.4. Measures and design

For each dual task condition, performance and visual resources al
location were assessed. For performance, hit rates were systematically
compared with their equivalent single condition. The resulting differ
ence (cost) allowed to distinguish the effect due to difficulty or im
portance manipulations, from those due to the concurrence in itself
(“concurrence cost”; see Navon and Gopher, 1979). The overall hit rate
was also computed, that consisted in the total proportion of targets
detected for both subtasks. Visual resources allocation was assessed
through measures of cumulative dwell time. There were three areas of
interest (AOI): one for each subtask that corresponded to its white
square, and one in the middle of both subtasks (Fig. 1). Cumulative
dwell time was computed as the total duration of eye fixations that fell
within a given AOI. Fixations had a minimum duration of 80ms and a
maximum dispersion of 2°. Cumulative dwell time was expressed as the
percentage of the overall cumulative dwell time for the three AOIs.

Data was analyzed according to two distinct plans. Data describing
the subtask level, like the hit rate cost and the dwell time proportion,
were submitted to a 3×3×3 within subject analysis of variance
(ANOVA), with the subtask difficulty (0 Back vs 1 Back vs 2 Back), the
concurrent subtask difficulty (0 Back vs 1 Back vs 2 Back) and the
subtask relative importance (less vs same vs more) as repeated mea
sures. On the other hand, general data like the overall hit rate and the
cumulative dwell time for the central AOI, were submitted to a 6× 3
within subject ANOVA, with the difficulty association (0− 0 vs 0 1 vs
0 2 vs 1− 1 vs 1 2 vs 2− 2) and the relative importance (A > B vs
A= B vs A < B) as repeated measures. This last plan was obtained by
flipping and merging data from symmetrical conditions.

Analyses were performed using R (version 3.2.1.). Unless otherwise
noted, means are reported with their standard deviation. The sig
nificance level was set at 0.05 and generalized eta squared (η2G) is re
ported. All p values were corrected for non sphericity (Greenhouse
Geisser correction). When appropriate, analyses were completed with
the Holm's multiple pairwise comparisons method. For reasons of space,
only the more relevant levels of the analysis are reported. Exhaustive
inferential statistics are available in Tables 1 and 2.

3. Results

3.1. Hit rate analysis

Overall hit rate. The ANOVA revealed that the overall proportion of
detected targetsmainly depended on the difficulty association [F (5,
95)= 86.62, p < .001, η2G=0.65]. Post hoc tests brought out two
main groups of difficulty association: 1 2 and 2 − 2 conditions were

considered as equivalents (p=1.0) and triggered a lower overall hit
rate (M=0.59 ± 0.04) than the four other demand associations
(M=0.94 ± 0.02; p < .001). Some slight differences were found
among these last four conditions (Fig. 2). No main effect of the priority
association [F (3, 57)= 1.40, p= .27] nor interactional effect [F (15,

Table 1
Inferential results for subtask specific metrics.

Metrics Effect F(df) p η2G

Hit rate costs Ongoing Difficulty (OD) (2, 38)= 11.16 < .001 0.09
Concurrent Difficulty (CD) (2, 38)= 39.23 < .001 0.14
Importance (I) (2, 38)= 60.21 < .001 0.21
OD:CD (4, 76)= 30.57 < .001 0.17
OD:I (4, 76)= 23.96 < .001 0.14
CD:I (4, 76)= 17.02 < .001 0.10
OD:CD:I (8, 152)= 9.58 < .001 0.08

Dwell time OD (2, 38)= 115.52 < .001 0.48
CD (2, 38)= 78.27 < .001 0.44
I (2, 38)= 66.90 < .001 0.27
OD:CD (4, 76)= 29.87 < .001 0.19
OD:I (4, 76)= 28.02 < .001 0.10
CD:I (4, 76)= 23.20 < .001 0.09
OD:CD:I (8, 152)= 9.08 < .001 0.06

Table 2
Inferential results for general metrics.

Metrics Effect F(df) p η2G

Overall hit rate Difficulties
association (DA)

(5, 95)= 86.63 < .001 0.65

Importances
association (IA)

(2, 38)= 1.40 0.26 0.01

DA:IA (10, 190)= 1.06 0.40 0.02

Central dwell time
proportion

DA (5, 95)= 29.75 < .001 0.41
IA (2, 38)= 5.14 0.01 0.01
DA:IA (10, 190)= 1.12 0.35 0.01

Fig. 2. Overall hit rate per difficulty association. Boxplot with whisker bold
band represents median values of hit rate. The upper and lower end of the boxes
represent 95% confidence intervals. Whiskers represent ranges. Points are
outliers. (n.s: not significant, * < 0.05, *** < 0.001).
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285)= 1.06, p= .38] were found. These results highlighted that the
1 2 and 2− 2 N Back associations induced higher global difficulty than
the other associations.

Hit rate cost. At the subtask level, the magnitude of the hit rate cost
(Fig. 3) was influenced by a second order interaction involving the
ongoing difficulty, the concurrent difficulty, as well as the relative im
portance [F (8, 152)= 9.58, p < .001, η2G= 0.08]. Under each low
global difficulty condition (0− 0, 1− 1, 0 1, 0 2), the importance
level had no effect on costs (p≥ .84). Conversely, under high difficulty
scenarios (1 2 and 2− 2), costs were modulated by the importance
level, confirming the H2a hypothesis. Post hoc showed that less >
same and same > more differences were significant (p < .001). For
instance, when facing a 1 Back difficulty, costs for a 2 Back subtask
were greater when the latter was less important (M=0.50 ± 0.28),
compared to when it had the same importance (M=0.26 ± 0.32), or
when it was more important (M=−0.03 ± 0.27). There was one
exception though, with the 1 Back facing a 2 Back, triggering equiva
lent costs when it was either more or equally important (p= .34).

3.2. Resources allocation analysis

Proportion of cumulative dwell time. Proportion of cumulative
dwell time (Fig. 4) was affected by a second order interaction between
the ongoing difficulty, the concurrent difficulty, and the subtask re
lative importance [F (8, 152)= 9.08, p < .001, η2G=0.06]. Under low
global difficulty scenarios (0− 0, 1− 1, 0 1, 0 2), the relative im
portance had no impact over resources allocation (p=1.0 for 12

comparisons), which mainly depended on the difficulty association. In
particular, much more resources were allocated to a 2 Back
(M=0.77 ± 0.18) or a 1 Back (M=0.82 ± 0.16) facing a 0 Back,
than any other subtask (p < .001, for 4 comparisons). This confirmed
our H1b hypothesis.

Conversely under high global difficulty scenarios (1 2 and 2− 2),
the more important the subtask, the more it received visual resources
(more > same > less; p < .01; see Fig. 5), whatever its level of diffi
culty. For instance, when against a 2 Back, a more important 1 Back
received more resources (M=0.68 ± 0.27), compared to when it had
the same importance (M=0.44 ± 0.28), which was significantly
higher than under lower importance (M=0.13 ± 0.14). These results
confirmed our H2b hypothesis though we noted one exception: for a 2
Back against a 1 Back, less (M=0.15 ± 0.17) and same
(M=0.28 ± 0.09) importance levels triggered a difference that was
marginally significant (p= .058).

It cannot escape the attention that certain subtasks were allocated
only a small proportion of resources but resulted in a good level of
performance. This being the case of 0 − 0 and 1 − 1 difficulty asso
ciations. Suggesting that in these conditions participants may have
exhibit specific visual patterns, which are detailed below through
central dwell time measurements.

Central dwell time. The proportion of visual resources that was
allocated to the central AOI (Fig. 5) mainly depended on the difficulty
association [F (5, 95)= 29.75, p < .001, η2G=0.41]. The 0 − 0
(M=0.60 ± 0.53) and the 1− 1 (M=0.53 ± 0.31) associations
triggered equivalent (p= .15) and greater dwell times than all the other

Fig. 3. Hit rate costs as a function of ongoing and concurrent difficulty levels, as well as subtask relative importance. Bars are dual-task conditions and red lines are
single condition. Error bars and red shaded areas are the confidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 4. Dwell time proportion as a function of ongoing and concurrent difficulty levels, as well as the ongoing task relative importance. Error bars are the confidence
intervals.
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associations (p < .001). In turn, the 2 − 2 association triggered more
central dwell time (M=0.28 ± 0.33) than the 0 1
(M=0.10 ± 0.09; p < .001) or the 0 2 (M=0.11 ± 0.11;
p < .001) conditions. Moreover it triggered only a marginally sig
nificant difference with the 1 2 association (p= .07). From these re
sults it is clear that when response rules were identical participants
favored peripheral processing of both subtasks, especially under low
global difficulty conditions (0− 0 and 1− 1).

There was also a main effect of the relative importance [F (3,
57)= 5.15, p < .01, η2G=0.01], that did not result in any pairwise
significant difference (p≥ .47). Finally, there was no difficulty im
portance interaction [F (10, 190)= 1.12, p= .35].

4. Discussion

The main objective of the present study was to test the hypothesis
that resources allocation is modulated by task importance and difficulty
when facing multitasking situations. More precisely, we hypothesized
that subtasks attributes would not systematically bias the allocation of
visual resources and that individuals would rely on the importance
attribute as long as the global difficulty would be high. The present
results are consistent with our starting hypothesis: under low global
difficulty, proportion of cumulative dwell times was mainly explained
by the subtask difficulty, whereas under high global difficulty, pro
portion of cumulative dwell times was explained by the subtask relative
importance. Moreover, the various attributes defining the two subtasks
did not linearly bias the resources allocation but rather, the participants
switched from a difficulty driven strategy to an importance driven
strategy, depending on the difficulty level. Finally, under low global
difficulty conditions, two types of ocular behaviors were observed.
When response rules were identical (0− 0 and 1− 1), peripheral
processing of both subtasks was favored, which resulted in an increase
of dwell time proportion in the central AOI. On the other hand, when
rules were incompatible (0 1 and 0 2), they visually favored the most
difficult subtask. Thus, depending on the difficulty level, the two sub
task attributes did not systematically contribute to visual resources al
location. In other words, the importance attribute did not direct their
attentional strategy when a greedy and polite policy (Salvucci and
Taatgen, 2008) led to optimal levels of performance.

These results are in line with a significant body of work demon
strating the importance of prioritization to drive attentional strategy
(Anderson, 2013; Chelazzi et al., 2014; Gopher et al., 2000; Gopher and
Brickner, 1982; Janssen and Brumby, 2015; Kurzban et al., 2013;
Matton et al., 2016; Schumacher et al., 2001), and more generally in
human regulation (Loft et al., 2007). More particularly, it shows that

resources allocation is prone to top down modulations, which may take
precedence over a “greedy and polite” resources allocation policy.
Consistently with other works in learning or problem solving, we pro
pose that these modulations are supported by a meta cognitive level
that monitors the current state of performance, and makes decisions
about resources allocation accordingly (Nelson, 1990). In these fields, it
has been shown that resources allocation was influenced by task pro
cessing fluency (data driven) when the task was simple but was more
sensitive to goal related information (e.g., task importance), when more
complex (Ackerman, 2014; Koriat et al., 2014). Although this type of
modulation is not in the scope of the STOM model (Wickens et al.,
2016; see the Introduction, p. 5), our results could help to enrich it. For
instance, we showed that the interaction of task attributes is not linear
but instead might be mediated by voluntary adaptations, in order to
“protect” the achievement of the assigned goal.

In terms of the STOM model, it could be that attributes weights or
polarities are modified, depending on dynamical factors such as per
ceived performance, with the possibility, for instance, to increase the
weight of the importance attribute in case the assigned objective can
not be optimally satisfied.

4.1. Decision making heuristics and prioritization

The present experiment is one illustration of how decision making
processes and executive control are entangled (Coutlee and Huettel,
2012). Once one is facing the “simultaneity problem” (Kurzban et al.,
2013), executive control partly relies on the evaluation of the tasks
involved and their scheduling. But what is the criterion of the decision ?
And can the evaluation process be described ? Our findings advocate in
favor of the implementation of decision making heuristics, as the two
attributes have alternately driven visual resources allocation.

In the decision field, considerable evidence has shown that when
facing several alternatives, individuals rely on heuristics rather than on
a rational “weight and sum” policy (Gigerenzer and Gaissmaier, 2011;
Payne et al., 1993). For instance, according to the take the best heur
istics (Brandstätter et al., 2006), one firstly determines the most im
portant attribute (e.g., the price) and sees if the alternative values of
that attribute allow for a decision. If not, the second most important
attribute is considered and so on, until a decision can be made. Not only
do these kinds of heuristics often give equivalent (if not more) accuracy
as more rational models, but it is also more plausible as it yields to less
computation cost and protects agent from resources depletion
(Brandstätter et al., 2006).

In this study, such heuristics may have been at work, as the im
portance attribute did not exert any significant influence when a

Fig. 5. Dwell time proportion along the three AOIs. Each column represents an association of difficulties, and each row an association of importance levels. The size
of each circle is proportional to the amount of visual resources allocated. The gray shaded area stands for the standard deviation. As can be seen, relative importance
had an effect over visual resources allocation only under 1–2 and 2 2 difficulty associations (surrounded by a red dashed line). (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)
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difficulty driven strategy was satisfying. Therefore it can be accounted
that complex task management can rely on decision making heuristics,
and more particularly that not all the task attributes are considered
before an executive decision is made. In a multi attribute environment,
one could firstly rely on the most relevant attribute of each task to
select an appropriate executive strategy, and switch to the second most
relevant feature in cases the first attribute does not allow to select a
satisfying executive strategy.

However, we would not argue that difficulty driven and im
portance driven strategies are mutually exclusive, as the structure of
the task never ceases to influence activity. Rather, we focus on the
strategic level of execution, and on the choice of the criterion that
globally biases the strategies employed in the context of multitasking.

If this is correct, this heuristic hypothesis could provide a funda
mental explanation of how the operator can cope with the informa
tional complexity of the task or work environments despite his or her
limited resources (Kahneman, 1973; Norman and Bobrow, 1975;
Sperandio, 1971). Moreover, it would be consistent with an emerging
view that people tend to avoid costly mental operations (Kool et al.,
2010) and favor “fast and frugal” heuristics (Gigerenzer and
Gaissmaier, 2011). From a computational point of view, it corresponds
to the idea that human agents favor strategies that come along with a
minimal number of control stages (if→then operations, see the minimal
control principle, Taatgen, 2007). It would also provide a potential ex
planation for how one can prioritize between competing tasks when
they present multiple and potentially contradictory attributes. In that
case, instead of assuming a rational and continuous integration between
two or more attributes, our study suggests that the various attributes
are first ordered and browsed accordingly until one or few of them can
reliably leads to a satisfactory strategy. How these attributes are pre
cisely ordered, and why, is a question of a great interest in need for
further investigations.

4.2. Practical implications

Our task, albeit basic, manipulated working memory an executive
function that is highly sollicited in complex environments like cockpits
(Gateau et al., 2018; Sohn and Doane, 2004), ATC (Morrow et al., 2003;
Taylor et al., 2005) or surgical operating rooms (Hedman et al., 2007).
Our results suggest that in such operational situations, operators might
not only consider task difficulty but also other attibutes such as task
importance attributes. This contribution is all the more valuable as
modern work environments are increasingly integrating automation, a
technology that generates a decorrelation between difficulty and im
portance. For instance, in the cockpit, an automated device like the
autopilot reduces the difficulty of the aviating task, but does not reduce
its importance. Therefore, the difficulty/importance dissociation re
presents a relevant insight into the fundamental understanding of op
erators strategic behavior, in such environments.

This reinforces the idea that, in any partially or fully automated
system, operators should dispose of prioritization rules taking task
importance into account, like the “Aviate
Navigate > Communicate > manage Systems” (ANCS) rule, in the
aviation domain. As a matter of fact, violations of such rule have been
found to lead to inappropriate monitoring patterns (i.e., prioritization
errors; Jonsson and Ricks, 1995; Wilson, 1998), and to be involved in
numerous aviation incidents or accidents (Colvin et al., 2005; Funk,
1991; see Rosvall and Karlsson, 2010 for a recent case). Therefore, ef
forts should be made to ensure that operators have a correct re
presentation of the relative importance of the different tasks that make
up their environment, especially when these are likely to change over
time (e.g., in a cockpit, the relative importance of each instrument
depends mainly on the flight phase).
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