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Abstract—This paper describes the conception of a 2.45
GHz rectenna for energy harvesting application. Electromagnetic
simulations have been carried out using Computer Simulation
Technology software. The enhancement of the simulated output
DC voltage is obtained with resonant circuit and Cockroft
Walton boost (containing four zero bias diodes) for a sinusoidal
input voltage. The simulated proposed rectenna with single zero-
bias diode and RF-DC boosting circuit have been realized and
measured inside an anechoic chamber. The behavior of measured
plots is in accordance with the simulated ones. The simulated RF-
DC boosting rectenna enhanced the output DC voltage up to 140
mV for 1 µW/cm2 power density.

Index Terms—WI-FI; RF energy harvesting; Rectenna; Wire-
less Sensor Networks.

I. INTRODUCTION

In recent years, Wireless Sensor Networks (WSNs) push
harvester development to provide almost infinite lifetime to
sensor from environmental energy. Further- more, the use
of wireless electronic devices has become relevant in many
fields (military, medical) and especially in unsafe places where
common power supply remains restrictive. Among different
renewable ambient power sources such as solar, vibration, or
electromagnetic waves, radio frequency (RF) energy presents
ubiquitous availability with low power density (around 1
µW/cm2 at 2.45 GHz indoors) in comparison with the energy
sources (up to 15 mW/cm2 outdoors and 10100 µW/cm2

indoors for solar energy) [1], [2].
This work addresses the issue of energy harvesting with the

development of COTS based RF harvesters for urban areas
with the ultimate goal of using the large transparent surfaces
of the urban environment as a support for implementation. The
RF energy harvester, commonly named rectenna, is dedicated
to transform electromagnetic waves into an electrical signal by
combining an antenna and an RF-DC conversion circuit, [3].
The rectifier is usually realized with Schottky diodes because
of their low threshold voltage in RF harvesting applications.

While a RF-DC rectifier provides 0.3 V with 20 dBm [4],
the voltage requirement for transistor switching operation is
at least 0.5 V. To overcome low rectified voltage, DC-DC
converter or RF-DC boost have been studied [5-11]. Finally,
to improve the input voltage of the rectifier, and so increase
the efficiency of the RF-DC conversion, a resonator is added
between the antenna and the rectifier [7].

This paper focuses on the design and implementation of a
rectenna in the unlicensed ISM Bands at 2.45 GHz on FR4
printed circuit boards (PCB) with off-the-shelf components.
Each part of the schematic bloc is studied; in section 2, with
electromagnetic software for the antenna de- sign and with
electrical software for boost structure in harmonic balance to
take into account the non- linearity of the diodes. In section
3, co-simulation of the antenna, matching network, resonant
circuit and Cockroft Walton circuit have been carried out under
CST (Computer Simulation Technology) and compared with
measurement in anechoic room.

II. RECTENNA BUILDING BLOCKS

The basic architecture of an RF energy harvester is pre-
sented in Fig. 1. It is composed of antenna to receive the
electric field, L-matching circuit to optimize impedance match-
ing between the antenna and the boosting circuit, a resonant
circuit to improve the RF signal and a RF-DC boost to
convert the RF signal in DC output voltage. The power density
of the electromagnetic source varies from 1 to 30 W/cm2

corresponding to ambient (E ≈1.94 V/m) and transferred
energy (E ≈10.63 V/m).

Fig. 1: Block diagram of rectenna

The different blocks have been designed and realised on 1.6
mm thickness FR4 substrate to obtain a cheap prototype by
microetching.

A. Antenna

The first bloc of the rectenna is a strip-loop antenna
designed on a 1.6mm thickness FR4 substrate [3] whose
electrical characteristics are (εr = 4.4 and tan δ = 0.025). The
design of the antenna is illustrated in Fig.2. A capacitor of
100 pF is placed in the gap on the side W1.



Fig. 2: Antenna dimensions in mm : L1 = 37, L2 = 100, W1

= 49, W2 = 100, W3 = 2, S = 1

The antenna impedance has been simulated in the measure-
ment plan mentioned in Fig.2 and reported in Fig.3 with the
value of Zin = 343 Ω at 2.72 GHz.

Fig. 3: Simulated antenna impedance

B. Matching circuit

An L-matching circuit was designed to achieve impedance
matching with the Cockroft Walton impedance at the working
frequency. These values have been fixed at L = 14.56 nH and
C = 0.6 pF, (Fig.4).

Fig. 4: L-matching circuit

C. Cockroft-Walton Voltage multiplier circuit

In order to increase DC output voltage a resonant circuit
followed by a Cockroft Walton circuit, have been added at the
end of the antenna to enhance the RF voltage amplitude by
the resonant circuit L = 1.5 nH, Cc = 5.6 pF and C1 = 15
pF. The Cockroft Walton circuit is composed of four Schottky
diodes from Avago (SMS 7630) and four capacitors (C2 = 100

pF). A 10 MΩ load resistance is connected in the output to
measure DC output voltage.

Fig. 5: Cockroft Walton voltage multiplier circuit

Fig.6 and Fig.7 report respectively the simulated reflexion
and transmission parameters of the resonant circuit versus
frequency with the Cockroft-Walton circuit. A well matching
and transmission up to - 0.3 dB at the working frequency
are obtained. The -16 dBm input power corresponds to 60mV
input voltage (Vin).
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Fig. 6: Simulated S11 parameter of resonant circuit
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Fig. 7: Simulated S12 parameter of resonant circuit

Fig.8 presents the output voltage (V1) after the first stage
of the Cockroft Walton circuit and the output (VDC) after the
second stage. DC output voltage is two times greater than the
input voltage.

The first stage acts as a DC offset voltage for the second
stage: the voltage (VDC) is approximately twice the voltage
(V1).
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Fig. 8: Transient simulation ADS

III. RF-DC BOOSTING RECTENNA

The proposed rectenna have been realized by mi- croetching
and measured inside an anechoic chamber. The measurement
setup contains a 9 dB transmitting antenna, RF generator
(Agilent 864D) and a gain power amplifier (Amplifier research
15S1G3), Fig.9. The final dimensions of the rectenna are
7×7.6 cm2.

Fig. 9: Rectenna measurement setup

The distance between the emitting and receiving antennas
is 2 m to be in far field conditions. A voltage meter (Voltcraft
VC150) is connected in parallel with the output load to mea-
sure DC output voltage. A RF probe (RF Survey Meter, EMR-
300 Broadband) is placed next to the receiving antenna to
measure the power density. In simulation a wave plane linearly
polarized is applied on the rectenna (antenna + circuit). DC
output voltage is obtained on the resistive load. On Fig.10, DC
output voltage is reported versus frequency from 1 to 4 GHz.

Fig. 10: Simulated and measured DC-output voltage

The behavior of the measured and simulated plots presents
three voltage peaks. The discrepancies between simulation
and measurement are twofold. First, the measured working
frequency is lower than the simulated ones. Secondly, the level
of DC voltage is weaker experimentally.
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Fig. 11: Simulated and measured DC-output voltage

DC output voltage is shown when the power density varies
from 0.5 µW/cm2 to 21 µW/cm2. While the measured DC
output voltage is lower for some power density values in
comparison with the simulation, the evolution versus power
density is such as expected. Each bloc of the rectenna is
measured experimentally and confirms the matching between
the antenna with LC matching circuit and the Cockroft Walton
associated to the resonant circuit. A frequency shift is observed
for the antenna resonance while the reflection parameter is
less than 15 dB from 1 to 4 GHz for the RF-DC boosting
circuit: the antenna with LC matching circuit is matched at
1.81 GHz (S11 = -15 dB). The discrepancy between measured
and simulated results is attributed to the weak measured power
efficiency of the RF-DC boosting circuit. The RF-DC boosting
circuit has to be realized again and the system shifted to the
Wifi working frequency, 2.45 GHz.

IV. CONCLUSION

A compact RF-DC boosting rectenna has been developed
with components (capacitors, inductors and diodes) inside the
receiving part of the structure. Co-simulation and measurement
have been compared: DC output level is observed versus
frequency and power density, while RF-DC boost has been
highlighted in transient simulation. The rectenna prototype has



to be improved experimentally, especially the power efficiency
of the RF-DC boosting circuit: to discuss the RF-DC boosting
circuit, the power conversion efficiency η (%) and DC voltage
- RF power transfer function (mV/mW) could be reported for
variable input power. In the following study, the FR4 dielectric
could be replaced by Plexiglas substrate, not only to reduce the
dielectric losses, but also to realize prototypes on transparent
substrates, such as building glasses with invisible conductors.
Others stages of voltage doublers can be added to obtain the
required DC voltage, or array of rectennas to improve the RF
power.
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