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Adaptive Augmentation of an Optimal Baseline Controller for a
Hypersonic Vehicle

Manfredo Martinino1, Joel Bordeneuve-Guibé1 and Vincent Morio2

Abstract— The aim of this work is to design an adaptive
augmentation of an optimal baseline controller for the flight
dynamics of a HSV (HyperSonic Vehicle) using model-reference
adaptive control (MRAC). The baseline controller is able to
track a bounded input with a desired dynamic and with
zero steady state error. The adaptive augmentation is used
to compensate the uncertainties, due to a poor knowledge of
the physical system, that may degrade the baseline closed-
loop performances. The main contribution of this paper is the
combination of a MDZM and a projection operator together
with two modifications, proposed by the authors, to improve the
performances of the closed loop. The adaptive controller has
been implemented in Simulink and integrated to a NASA X-30
model. Simulation results are provided to show the effectiveness
of the augmented controller notably in presence of aerodynamic
uncertainties and control degradations.

I. INTRODUCTION

The objective of this study is to design an adaptive
augmentation of an already existing LQR-PI baseline
controller for a hypersonic vehicle. According to Eugene
Lavretsky [1], the adaptive controller would try to perform
an online estimation of the process uncertainty and then
produce a control input to anticipate, overcome, or minimize
undesirable deviations from the prescribed closed-loop plant
behavior.
Nowadays, adaptive control is widely used for systems
regulation both as the only source of control as well
as a support to a baseline controller. In particular, the
latter case consists in merging the adaptive contribution
with the one obtained from the baseline. On the other
hand, the idea of an adaptive augmentation of an existing
baseline controller turned out in many works such as
[2] or [3] to be the best way to ensure rejection of the
disturbances, to robustly cancel the model uncertainties
and to exploit an already existing optimized controller.
Actually, the rational for using an augmentation approach
(as opposed to all adaptive) stems from the fact that in most
realistic applications, a system may already have a baseline
controller, which is often designed to provide acceptable
level of performance and robustness over the flight envelope.

A serious and intrinsic problem of the adaptive laws, no
matter if they are used alone or mixed with pre-existing
baselines, is the influence the presence of unmatched
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disturbances may have on gains calculation. For example,
a bounded process noise may easily lead to parameters
drift. The adaptive parameters are actually calculated in
a chain of nonlinear integrators where a wind-up effect
can arise due to saturation. In order to make the adaptive
laws more robust, a certain numbers of methods have been
proposed. One of the most advanced, created by combining
a Modulated Dead-Zone Modification (MDZM) and a
projection operator, is proposed in [1] as well as in [3]. The
contribution of the MDZM is that of protecting the adaptive
parameters from drifting with noise, while the projection
operator bounds the overall adaptive process and prevents
the nonlinear integrators from winding-up.
The main task of an adaptive law is to estimate and manage
the system uncertainties. In order to do this, the idea is to
build an opportune set of functions to approximate these
uncertainties with a finite linear combination of known basis
functions and unknown constant parameters. In this study, a
Neural Network (NN) with 1 hidden layer, 30 neurons, and
RBFs (Radial Basis Functions) will be used to model the
system matched uncertainties.

This paper also presents simple but effective methods the
authors have used to solve two typical issues arising when
adaptive laws are used. The first one concerns how to obtain
the best matching between the regulated system and the
reference model, knowing that the connection between them
is the state tracking error. In this study, the components of the
error vector are weighted differently in order to achieve the
best tracking performance of a certain target variable. The
second issue concerns the evolution dynamics of the adaptive
gains. As presented in section II, in the classic theory the
adaptive gains are purely the result of the integration of their
derivatives. Differently, we will propose an improvement of
gain calculation using a derivative contribution. The latter
will lead to a greater readiness in gains dynamics ensuring
a better reference tracking.

II. THEORETICAL BASIS
A. Adaptive augmentation

Let us suppose the MIMO system we would like to
control being described by the following open-loop state
space representation [1]:{

ẋp = Apxp +BpΛ(u+ f (xp))

y =Cpxp +Dpu
(1)

where np and m are the dimensions of the system state xp
and of the control u, respectively. Also, we assume that



Ap ∈Rnp×np and Bp ∈Rnp×m are known, while Λ∈Rm×m is
an unknown diagonal matrix with strictly positive diagonal
elements λi. The pair (Ap,BpΛ) is assumed controllable, and
the constant uncertainty Λ is introduced to model possible
imperfections in the system control channels. The unknown
nonlinear function f (x) : Rnp → Rm represents the system
matched uncertainty. This function can be written as f (x) =
ΘT Φ(xp), where Θ ∈ RN,m is the unknown constant matrix
of ideal parameters, and Φ(xp) ∈ RN represents the known
locally Lipschitz-continuous regressor vector.
By augmenting the system state with an output error feed-
back term eyI =

∫ t
0 (y− ycmd)dτ , we get:(

˙eyI

ẋp

)
︸ ︷︷ ︸

ẋ

=

(
0m,m Cp
0np,m Ap

)
︸ ︷︷ ︸

A

(
eyI
xp

)
︸ ︷︷ ︸

x

+

(
Dp
Bp

)
︸ ︷︷ ︸

B

Λ(u+ f (xp))

+

(
−Im,m
0np,m

)
︸ ︷︷ ︸

Bre f

ycmd

(2)

Having defined an augmented state x, an LQR controller with
integral action (LQR-PI) Klqr is designed in order to track
the closed-loop reference model defined by:{

ẋre f = Are f xre f +Bre f ycmd

yre f =Cre f xre f
(3)

where Are f = A− BKT
lqr and Cre f = C−DKT

lqr. Then, the
adaptive controller can be designed according to theoretical
results presented in [1]. The basic idea is to add an adaptive
control input to the one produced by the baseline controller
and then to inject the result in the system (see Fig. 1). Then,
one can write:

u = ubl +uad =−KT
lqrx+

[
−K̂T

u ubl− Θ̂
T

Φ(xp)
]

(4)

where, beyond the already mentioned quantities, ubl is the
baseline input and K̂u, Θ̂ are the two adaptive gains calculated
in order to enforce the state tracking error e = x− xre f to
become asymptotically zero:

˙̂Ku = ΓuubleT Pre f B
˙̂
Θ = ΓΘΦ(xp)eT Pre f B

(5)

The gain computation includes the two so called tuning

Fig. 1. Classic model-reference adaptive architecture.

knobs Γu and ΓΘ, whose choice is experience-based, and

the Pre f matrix. The latter is the unique symmetric positive-
definite solution of the algebraic Lyapunov equation:

AT
re f Pre f +Pre f Are f =−Qre f (6)

with some appropriately chosen matrix Qre f = QT
re f > 0.

B. Modifications for robustness enhancement

The adaptive process is actually extremely critical and the
gains values can be perturbed and spoilt by the presence
of unmatched uncertainties, as noise. In addition, it is not
recommended to let the gains evolve when the state tracking
error becomes very small. These considerations have led
to the introduction of designing some mechanisms able to
enhance the robustness of the overall adaptive process.

1) Modulated dead-zone modification: The dead-zone
modification (DZM) stops the adaptation process when the
norm of the tracking error becomes smaller than the pre-
scribed value e0. It is very powerful especially when the noise
disturbs the gain adaptation or when the adaptation does
not stop even with low values of state tracking error. The
modulated DZM (MDZM) is a small adjustment of the DZM
proposed by Slotine and Coetsee in [4] to accommodate the
shut-down of the adaptation process without discontinuities
that can lead to chattering (high-frequency oscillations). The
equation for gain derivative calculation is then:

˙̄̂
Θ = Γ

Θ̄
Φ̄(x)µ(||e||)eT Pre f B

µ(||e||) = max
(

0,min
(

1,
||e||−δe0

(1−δ )e0

)) (7)

where ˆ̄
Θ =

(
K̂T

u Θ̂T
)T , Γ

Θ̄
=
(
Γu

T
ΓΘ

T )T and Φ̄(x) =(
ubl

T Φ(xp)
T )T .

The Lipschitz-continuous modulation function µ(||e||) con-
tains two new variables to be tuned: the error boundary e0
and a constant, 0 < δ < 1, that defines the slope of the
modulation function.
Note that one can use Lyapunov-based arguments to prove
the bounded tracking and the uniform ultimate boundedness
(UUB) of all signals.

2) Projection operator: The projection operator bounds
the overall adaptive process and prevents the nonlinear inte-
grators from winding-up. It was introduced by Kreisselmeier
and Narendra in [5] and can be seen as a way to limit,
through a projection process, the values the adaptive gains
can assume. The idea is to associate a convex function
f j : Rn → R to each column (Θ j ∈ Rn×1) of the adaptive
gain matrix. The function is designed to give back, as result,
f (Θ j) ≤ 0 for acceptable gain values, and 0 < f (Θ j) < 1
in case of gains that are exceeding the imposed limits. The
adaptive gains are then calculated as:

˙̄̂
Θ = Pro j(Γ

Θ̄
Φ̄(x)µ(||e||)eT Pre f B) (8)

and the chosen convex function is:

f j = f (Θ̂ j)
(1+ ε j

Θ)||Θ̂||2− (Θ j
max)2

ε jΘ(Θ j
max)2 (9)



where the new parameters to be tuned are Θ j
max and ε j

Θ.
The first one is the pre-specified bound and the second one
represents the projection tolerance. This second parameter
plays quite the same role of the modulating function in
the MDZM. One can prove that the projection operator
contributes to the negative semi-definiteness of the Lyapunov
function thus ensuring the UUB property of all signals in the
corresponding closed-loop system.

C. Neural network

In this study, a Neural Network (NN) has been used
to model the system matched uncertainties. As activating
function, it has been decided to use the Gaussian Radial
Basis Function (RBF), expressed as:

φ(x,xc) = e−(x−xc)
T W (x−xc) = e−||x−xc||W 2

(10)

where, x ∈ Rn is the input, xc ∈ Rn is the center, and W =
W T > 0 is a diagonal positive-definite symmetric matrix of
weights with values:

Wi =
1

2σ2
i

(i = 1, ...,N) (11)

where σi represents the width of the ith Gaussian function,
thus obtaining:

φi(x) = e
−
||x−Ci||2

2σ2
i (12)

The RBFs functions have been chosen because they have
been shown to be capable of approximating generic classes
of functions on compact sets and within any pre-specified
tolerance. This result is known as Universal Approximation
Theorem [1].
Finally, the regressor vector will be composed of as many
RBFs as neurons in the network, plus a constant bias. The
latter, equal to 1, will model an always active neuron, which
corresponds to a pure bias on the control input. Thus, the
regressor vector is given by:

Φ(xP) =

(
φ1(xP), ...,φNn(xP),1

)T

(13)

where Nn represents the number of neurons in the network
(Nn = 30 here). This structure will make the adaptive aug-
mentation able to approximate the system uncertainties.
The modifications for robustness (the MDZM and the pro-
jection operator), will act differently on the regressor vector
produced by the NN. Following eq. (7), the MDZM will
actually scale the regressor vector by a factor µ(||e||), while
the projection operator acts on the whole adaptive gain Θ̂ as
showed in (8).

III. MODEL DESCRIPTION

The model used in this paper is a generic, horizontal take-
off, single-stage-to-orbit (SSTO) configuration, studied by
NASA in early 80’s in the frame of the National Aerospace
Plane (NASP) program, also known as X-30 (see Fig. 2).
Success of this project was theoretically possible through

development of advanced technologies in the areas of aero-
dynamics, materials, structures, flight control and propulsion.
In particular, two of these “enabling” technologies were
related to the propulsion system, which would consist of
an air-breathing supersonic combustion ramjet, or scramjet,
and also to the development of active cooling systems and
advanced heat-resistant materials able to maintain structural
integrity at very high temperatures. Despite cancellation of
the NASP program in 1995, hypersonic air-breathing vehicles
are still an active field of research, as evidenced by the large
number of countries interested in these technologies.

Fig. 2. Artist view of NASA X-30 concept.

From the flight control system design perspective, current
studies show that it is necessary to take into account a
certain number of physical phenomena specific to this type
of vehicle during early design stages:
• Model uncertainties that may take important values,
• Interactions between the propulsion system and aerody-

namics,
• Flexible modes of structure,
• Dispersions and measurement noises.

These various aspects, combined with drastic requirements
in terms of desired performance and severe operating
constraints related to the technologies employed, make the
autopilot particularly sensitive to the choices made in terms
of architecture and aeropropulsive design, and may call the
use of conventional control methods into question. As a
result, the implementation of an intelligent flight control
law, such as the one proposed in this paper, becomes critical
to guarantee the success of the mission.

A six degree-of-freedom Matlab-Simulink implementation
of the X-30 has been considered in this study using aerody-
namic, propulsion and mass data borrowed from [6]. The
atmosphere model follows the US 1976 standard and the
flight dynamics model considers a rotating, spherical Earth.
No flexible modes are included. The system is described by
the state vector X ∈ R12×1:

X = (ϕ λ r VT α β p q r φ θ ψ)T (14)

where ϕ is the geodetic latitude, λ the longitude, r the vector-
radius, VT the total velocity, α the angle-of-attack, β the
sideslip angle, φ , θ , ψ Euler angles, and p, q, r are the
absolute angular velocities around roll, pitch and yaw axis
respectively. The system is controlled by the input vector
U ∈ R4×1 such that:

U = (δe δa δr ϕst)
T (15)



where δe, δa and δr represent respectively the deflection of
elevator, ailerons and rudder, and ϕst is the fuel equivalent
ratio (FER). The model also includes actuators dynamics
and saturations, thought these are not considered in the
linearized state space representation of the vehicle, as well
as simplified sensor models. The underlying model can be
expressed compactly as a nonlinear model given by:

Ẋ = f (X ,U) (16)

In order to facilitate the control design, a trimming routine is
used to linearize (16) at a given flight point defined in terms
of altitude, Mach number and mass:

ẋp = Apxp +Bpu+ ε(t) (17)

where ε is the linearization error, which is assumed to
be small, xp = X − X0 and u = U −U0 are respectively
the perturbations from the trim state X0 and trim input U0
satisfying f (X0,U0) = 0, and

Ap =
∂ f (X ,U)

∂X

∣∣∣∣X=X0
U=U0

, Bp =
∂ f (X ,U)

∂U

∣∣∣∣X=X0
U=U0

(18)

A modal analysis of (17) shows a strong decoupling among
the longitudinal, lateral and speed dynamics, thus allowing
three different controllers to be synthesized independently. In
this study, only the longitudinal dynamics will be considered.
Therefore, the state, integral error state and input will be
chosen as:

xp = (α q)T , eyI =
∫ t

0
(α−αcmd)dτ, u = δe (19)

IV. MODIFICATIONS FOR PERFORMANCE
ENHANCEMENT

In this section, two modifications are introduced in the
adaptation process in order to get a better tracking perfor-
mance. The first one consists in weighting differently the
components of the state tracking error, while the second one
adds a derivative term, in parallel with the integrator, in the
calculation of the adaptive gains.

A. Modulation of the state tracking error components

Considering only the longitudinal dynamics, the state
tracking error e ∈ R3×1 can be expressed as:

e = x− xre f =
(
eyI − eyI re f , α−αre f , q−qre f

)T (20)

Although every term in e has the same weight, one could be
more interested in a better tracking of a certain variable rather
than another. In our case, an accurate tracking of the angle-
of-attack is essential: this is why we propose a modification
of the error vector such that:

e =
(

GI(eyI − eyI re f ) GP(α−αre f ) GD(q−qre f )

)T

(21)

where GI , GP and GD ∈R+ are 3 weights that allow to tune
the decrease rate of every component of e. In this study, more
importance has been granted to the α −αre f (proportional)
component with a 1.5 gain, while less influence has been
given to the q−qre f (derivative) component with a 0.5 gain.

Finally, the integral member of the error has conserved its
weight with a unitary gain.
Notice that the results obtained with this modulation of the
error vector could also be achieved by an adequate tuning
of the Qre f matrix in (6). However, this method would have
a poor physical meaning and would not allow to influence
the MDZM, while the proposed method directly targets the
behavior of variables of interest.
Finally, we can prove that the introduced gains do not
interfere with Lyapunov proof of stability. As shown in
the demonstration below, only the norm of the error vector
(always positive for any choice of gains) matters for stability.
In fact, considering the derivative of the Lyapunov function,
one can write:

V̇ (e,∆Θ̄) =−eT Qre f e+2tr(∆Θ̄
T [Γ−1

Θ̄

˙̄̂
Θ− Φ̄eT Pre f B]Λ)

(22)
and if the adaptive laws are selected in the form:

˙̄̂
Θ = Γ

Θ̄
Φ̄(ubl ,xp)eT Pre f B (23)

then,

V̇ (e,∆Θ̄) =−eT Qre f e < 0 (24)

which states the UUB of (e,∆Θ̄). With some considerations
presented in [1] (not influenced by our modification), one
can demonstrate that the tracking error tends to zero asymp-
totically as t→ ∞.

B. Derivative contribution in adaptive gains calculation

According to (5), adaptation gains are computed thanks to
the integration of the following expression (MDZM and pro-
jection operator have been discarded for sake of simplicity):

C(Φ̄,e) = Γ
Θ̄

Φ̄(x)eT Pre f B (25)

However, computing gains this way leads to a drawback:
changes in the error vector will be transmitted to the gains
updating with a certain delay. During our simulation cam-
paign, we have observed that, specifically for periodical
commands, the slowness of gains evolution can profoundly
affect performances of the closed-loop system. In order to fix
this issue, we propose a slight change in gains calculation,
by adding new terms. This addition, similar to a derivative
effect, will modify (5) to:

ˆ̄
Θ =

∫
C(Φ̄,e) ·dt + kD ·C(Φ̄,e) (26)

where kD is the new derivative gain and C(Φ̄,e) is given
by (25). Although a formal proof of stability has not been
provided so far based on Lyapunov theory, simulations have
shown that this modification boosts the evolution of the
adaptation process and allows a significant enhancement of
closed-loop performances. .



V. SIMULATION RESULTS

A. Simulation conditions

Simulations have been performed using the complete
six degree-of-freedom model of the NASA X-30 vehicle
described in section III, including actuator saturations and
nonlinearities. Although the adaptation has been developed
only for the longitudinal dynamics, coupling effects between
longitudinal and lateral axes have not been inhibited. How-
ever, the commanded input will only concern the longitudinal
dynamics (angle-of-attack αre f ). Simulations are carried out
for 140 s (long enough to exhibit the long term stability of the
control) for a characteristic flight condition, i.e. h = 20000 m
and M = 6, where the trimming values are:

α = 0.92442 ◦ q = 0 ◦/s δe = 4.2647 ◦

The first simulations are performed without system degra-
dations or uncertainties, i.e. in nominal conditions. Then,
system uncertainties will be added to the model in order to
evaluate the benefits of the adaptive augmentation.
The following results have been achieved thanks to a fine
tuning of the numerous simulation parameters, e.g. Γu, ΓΘ

and Qre f for the adaptive laws; δ and e0 for the MDZM;
Θ j

max and e j
Θ for the projection operator; Nnumber, Ci and

σi for the NN; GP, GI and GD for the error gains; kD for the
derivative contribution.

B. Normal functioning

The commanded input is a square signal centered around
the trimmed value (α = 0.92442 ◦). The results are shown
in Fig. 3. The new adaptive augmented controller (purple)
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Fig. 3. Square input, αtrim±0.5 ◦, nominal conditions.

is able to track the reference model (red), resulting always
faster than the baseline control (orange). To demonstrate the
last sentence, let us compute the mean-square error between
the adaptive and baseline controller such that:

∆e2 = e2
LQR+Ad p− e2

LQR

= (αLQR+Ad p−αcmd)
2− (αLQR−αcmd)

2 (27)

As shown in Fig. 4, the error function values are less than
zero, meaning that the baseline controller produce a bigger
tracking error than the augmented controller.

The evolution of the adaptation gains is shown in Fig.
5. On the top is traced the product of the adaptive gains
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Fig. 4. Error function in nominal conditions.

with the regressor vector, i.e. Θ̂T Φ(xP) (see sec. II), while
on the bottom is traced the product of the gains with the
baseline control input K̂u

T ubl . In particular, the colored
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Fig. 5. Adaptive gains evolution through simulation, nominal conditions.

curves on the top figure stand for the gains of the neural
nonlinear functions, while the curve with bigger variations
represents the gain that multiplies the constant component
of the regressor vector. Finally, observing the regressor gains
and the baseline gain, we point out that they remain bounded
during the simulation.

C. Degraded control condition

The benefits of the adaptive control arises when the
behavior of the regulated system deviates from the pre-
dicted one. In this section, we will simulate a degradation
of the actuators behaviour in order to prove the adaptive
augmentation effectiveness. This degradation is simulated via
the diagonal matrix Λ ∈ R4×4 introduced in the Simulink
model. It consists in an ensemble of constant gains, each



corresponding to a control variable: λelevright , λelevle f t , λrud ,
λthrust . In this simulation, we will impose a loss of 30%
on elevators effectiveness, thus reducing the maneuverability
of the aircraft. The gains are chosen as λelevright = 0.7,
λelevle f t = 0.7, λrud = 1 and λthrust = 1. The advantage of
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Fig. 6. Square input, αtrim±0.5 ◦, controls degradation.

using an adaptive augmentation is clearly demonstrated in
Fig. 6, where the baseline controller is not able to reach the
commanded value of the angle-of-attack while the adaptive
augmented controller provides a good tracking of the square
wave. It is important to point out that the capacity of the
adaptive controller in tracking the reference model has also
to be attributed to the modulation of the state tracking
error as introduced in (21). The evolution of adaptive gains
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Fig. 7. Adaptive gains evolution through simulation, controls degradation.

shows that they remain bounded in time (see Fig. 7). Both
the graphs clearly demonstrate the continuous work of the
MDZM visible in the constant sections of the gains evolution.
In fact, when the regulated system is sufficiently close to the
reference model (in terms of the modulated components of

the state tracking error), the adaptation process is stopped
and the gains frozen until the state error rises again.

D. Aerodynamic coefficient uncertainties

The hypersonic flight is characterized by some very com-
plex phenomena that make it very difficult to calculate with a
sufficient precision the aerodynamic coefficients using CFD
tools. In addition, the wind tunnel experiments, performed
to measure the unknown quantities, are very expensive to
set up and in any case not sufficient to reproduce the exact
conditions encountered during the flight of an HSV. Thus it
is crucial to design a controller able to guide the system, even
when it is affected by important discrepancies with respect
to the expected conditions.
We will now test both the baseline and the adaptive con-
trollers in the presence of altered aerodynamic coefficients,
by assuming that the pitching coefficients are now defined
by Cmα

= −1.5Cbl
mα

and Cmq = 0.2Cbl
mq , where the apex bl

stands for the nominal quantity. The first one is a strong
destabilizing coefficient, while the second one reduces the
damping of the aircraft rotation around the y-axis. Simulation
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Fig. 8. Square input, αtrim±0.5 ◦, aerodynamic uncertainties.

results are shown in Fig. 8. The adaptive controller is able to
track the command slightly losing in rapidity. On the other
hand, the baseline controller produces many overshoots that
are not admissible for a HSV. Concerning gains, one can note
in Fig. 9 a more important activation of the neural network
and the boundedness of all signals.

E. Nonlinear pitching moment

Up to now we have tested the effects of constant aerody-
namic uncertainties on the baseline and on the augmented
controller. In this section, we will consider that the pitching
moment evolves nonlinearly, as it has been proposed by
Lavretsky in [7]:

Cmα
(α) =−1.5 ·Cbl

mα
+ e
−

(
α− π

180
)2

0.01162 ·Cbl
mα

(28)

where Cbl
mα

is the nominal aerodynamic coefficient and −1.5
is a coefficient added to produce instability. The exponential
function adds a variable, nonlinear quantity centered in
αcentre = 1◦ to throw in the disturbance in the middle of
the simulated range of angles-of-attack.
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Fig. 9. Adaptive gains evolution, aerodynamic uncertainties.
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Fig. 10. Square input, αtrim±0.5 ◦, nonlinear pitching moment.

The results in Fig. 10 are very encouraging. The baseline
controller is really stressed by the nonlinear aerodynamic
coefficient and produces huge overshoots. On the contrary,
the augmented controller remains close to the reference
model, thus ensuring a good tracking. The evolutions of gains
(Fig. 11), are very similar to those observed in the previously,
when an unstable but constant Cmα

was proposed. This
reaffirms once again the relation between the uncertainties
introduced in the system and the gains trend.

VI. CONCLUSION

This work aimed at designing an adaptive augmentation
of a baseline controller for the longitudinal dynamics of a
hypersonic vehicle using MRAC. Due to the complexity and
the vulnerability of the adaptation process, two modifications
have been added to the controller: a modified dead-zone
to stop the adaptation process and freeze the gains, and a
projection operator allowing to bound the whole adaptation
process. In order to obtain better performances in terms
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Fig. 11. Adaptive gains evolution, nonlinear pitching moment.

of reference model tracking, two additional modifications
have been proposed by the authors. These modifications are
dedicated to modulate the state tracking error components
and to boost the dynamic of the adaptive gains. Robustness
and performances of the newly-designed adaptive controller
have been assessed by performing numerical simulations in
nominal conditions, degraded control conditions (with a loss
of 30% of elevator effectiveness), and also by considering
aerodynamic uncertainties and non-linearities on pitching
moment coefficients. Simulation results have shown that the
augmented adaptation process provided better performances
than the baseline controller for the considered cases.
In this first work, the modifications proposed by the authors
have been proved effective in a qualitative way; currently,
other simulations are in progress to quantify the performance
enhancement deriving from them.
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