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ABSTRACT 

Adoptive cell therapy with chimeric antigen receptor (CAR) redirected T cells induces 

spectacular regressions of leukemia and lymphoma, but failed so far in the treatment of solid 

cancer. One of the causes is the repression of T cell activity, especially T cell proliferation 

through TGF- present in the tumor microenvironment. Here we show that T cells with a 

second generation CAR containing a CD28 signaling domain can overcome the suppression 

in T cell proliferation, in contrast to T cells with a 4-1BB-containing CAR. The resistance to 

TGF- activity depends on the secretion of IL-2, which is induced via CD28-mediated 

activation of the kinase LCK. Deletion in the LCK binding motif of the CD28 domain of the 

CAR (CD28LCK-) was able to abrogate CAR-induced IL-2 secretion and the resistance of 

T cell proliferation in the presence of TGF-. However, IL-2 secreted from activated CAR T 

cells also sustains suppressive Treg cells at the tumor site, thus impairing the anti-tumor 

response. To generate enhanced CAR T cells we sought to replace CD28-mediated IL-2 

secretion by an alternative cytokine, which mediates an IL-2-like signal in trans for providing 

TGF- resistance.  In this context, expression of IL-7 in CD28LCK- CAR T cells mediated 

TGF- resistance equivalent to IL-2. Since the IL-7 receptor is downregulated after T cell 

activation we further modified CD28LCK- CAR T cells with a hybrid cytokine receptor, 

which provides IL-2R -chain signaling upon binding of co-expressed transgenic IL-7. The 

strategy minimizes the detrimental effects of secreted IL-2 and at the same time improves the 

CAR T cell activity against TGF-
+
 tumors in vivo. Our data provide proof that editing the 

CD28 signaling capacities and establishing a CAR induced autocrine loop by synthetic 

biology can make CAR T cells more potent in the hostile environment of solid tumors. 

 



 

ZUSAMMENFASSUNG 

Die adoptive Zelltherapie mit einem chimären Antigen-Rezeptor (CAR)-modifizierten T-

Zellen hat spektakuläre Regressionen von Leukämie und Lymphom induziert, ist aber bisher 

bei der Behandlung von soliden Tumoren gescheitert. Eine der Ursachen ist die Repression 

der T-Zell-Aktivität, insbesondere T-Zell-Proliferation durch TGF- vorhanden in der 

Tumormikroumgebung. Hier zeigen wir, dass T-Zellen mit einem CAR der zweiten 

Generation, das eine CD28-Signaldomäne enthält, die Repression in dem Proliferation von T-

Zellen überwinden können, im Gegensatz zu T-Zellen mit einem 4-1BB enthaltenden CAR. 

Diese Resistenz gegen TGF- Aktivität hängt von der Sekretion von IL-2 ab, die durch 

CD28-vermittelte Aktivierung der Kinase LCK induziert wird. IL-2, das von aktivierten 

CAR-T-Zellen entstammen wird, unterstützt jedoch auch suppressive Treg-Zellen an der 

Tumorstelle und beeinträchtigt so die Antitumorantwort. Um verbesserte CAR-T-Zellen zu 

erschaffen, versuchten wir, die CD28-vermittelte IL-2-Sekretion zu eliminieren und ein 

zweites intrinsisches Signal in trans zu liefern, die TGF- Resistenz von T-Zell Proliferation 

vermittelt.  Die Mutation des LCK-Bindungsmotivs in der CD28-Domäne des CAR 

(CD28LCK-) konnte die CAR-induzierte IL-2-Sekretion und die Resistenz von T-Zell 

Proliferation in der Anwesenheit von TGF- aufheben. Darüber hinaus könnte die Expression 

des Zytokins IL-7 in CD28LCK- CAR T-Zellen die TGF- Resistenz vermitteln, der IL-2 

äquivalent. Da der IL-7-Rezeptor nach der Aktivierung der T-Zellen herunterreguliert wird, 

haben wir die CD28LCK- CAR-T-Zellen mit einem hybriden Zytokinrezeptor weiter 

modifiziert, der bei Bindung von co-exprimiertem transgenem IL-7 eine IL-2R 

-Kettensignalisierung bereitstellt. Diese Strategie minimiert die schädlichen Auswirkungen 

von sekretiertem IL-2 und verbessert gleichzeitig die CAR-T-Zellaktivität gegen TGF-
+
-

Tumore in vivo. Unsere Daten liefern den Beweis, dass die Veränderung der CD28-

Signalkapazitäten und die Etablierung einer CAR-induzierten autokrinen Schleife durch die 

synthetische Biologie die CAR-T-Zellen in der feindlichen Umgebung von soliden Tumoren 

verbessern können. 
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1 INTRODUCTION 

1.1 Cancer 

Cancer is still the one of the leading causes for death globally. In 2012 worldwide, 14.1 

million new cases of cancer and 8.2 million cancer caused deaths were registered according to 

GLOBOCAN (Torre et al., 2015). This compares to 18.1 million new cancer cases and 9.6 

million cancer related deaths in 2018 (World Health Organization). The reasons for the rising 

occurrences are diverse; among the causes there are increasing risk factors such as obesity, 

physical inactivity, smoking and environmental pollutants. The leading cause of cancer death 

among males is lung cancer, whilst among females it is breast cancer (Torre et al., 2015). 

Malignant diseases are a large and very diverse disease group, which can affect any part of the 

body. The malignances can originate either from the hematopoietic system to induce 

hematological cancer diseases such as leukemia or lymphoma or originates from other tissues 

to induce sarcoma or carcinoma. In the second case we talk about solid tumors 

(cancerresearchuk.org). In most cases genome alteration with a gain or loss of function 

mutation are the causes of cancer (Hanahan and Weinberg, 2000). Development of the disease 

is a multistep process towards the malignant phenotype which is characterized by six 

biological capabilities including to sustain proliferative signaling, evade growth suppressors, 

resist cell death, enable replicative immortality, induce angiogenesis, and activate invasion 

and metastasis (Hanahan and Weinberg, 2011). Metastasis is one of the major causes of death 

in cancer disease. Cancer is a heterogeneous system with a very complex network, which 

makes the treatment very difficult and requires multi-target therapies (Floor et al., 2012). 

Nonetheless, the majority of cancer deaths can be prevented by early diagnosis or through 

prevention, (Vineis and Wild, 2014) but in most cases cancer therapy is needed. The classical 

treatment options are surgery, chemotherapy and radiotherapy. These treatments remain the 

primary choices for cancer patients despite their known side effects. However, continued 

progress in medicine has made other beneficial therapies available nowadays. Immunotherapy 

is a novel therapy form, which has revolutionized the treatment of cancer patients and was 

named as Breakthrough of the Year 2013 (Couzin-Frankel, 2013). In a specific cancer 

immunotherapy the patient‟s own immune system is modified in such a way that can fight 

specifically against the targeted tumor cells, but there are more approaches within 

immunotherapy. Immunotherapy‟s strength compared to other cancer treatment therapies is 

it´s higher degree of cancer selectivity and specificity. 
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1.2 Immunotherapy  

Immunotherapy is a new principle in cancer treatment in which the immune system of the 

patient is used to achieve more effective responses in the cancer cells when attacked by the 

body‟s own immune cells. There are many different types of immunotherapy available in the 

treatment of cancer, such as monoclonal antibodies, cytokine therapy or adoptive cell transfer. 

One example is in the use of monoclonal antibodies against CTLA-4 (cytotoxic T 

lymphocyte-associated protein 4) or PD-1 (programmed cell death protein 1). By binding the 

antibodies to regulatory molecules, the inhibitory signal on T cells is turned off and cytotoxic 

T lymphocytes (CTLs) can destroy the cancer cells successfully. Monoclonal antibody against 

CTLA-4 was approved by FDA (Food and Drug Administration, USA) in 2011 as one of the 

first immune system targeted therapy. For the discovery of both the protein receptor and it is 

role in cancer therapy, James P. Allison and Tasuku Honjo were awarded the Nobel Prize in 

Physiology or Medicine in 2018 (nobelprize.org).  

A further very promising therapy form is adoptive T cell therapy, where the patient‟s own T 

cells are utilized in the fight against the cancer cells (Rosenberg, 1984). 

1.2.1 Adoptive T cell immunotherapy 

T cells from the tumor lesion are able to recognize and eliminate cancer cells, but not in a 

very effective manner. To achieve an improved anti-tumor response, the patient‟s own T cells 

are collected, expanded and/or modified ex vivo and transferred back into the host patient. 

The main advantage of this type of therapy is, that the transferred cells are specific to destroy 

cancer cells with minimal attacking of normal tissue.  

A major limitation of the therapy is the resting state of most isolated T cells. In order to 

activate isolated T cells prior re-infusion, lymphokine-activated killer cells (LAKs) were used 

(Fagan and Eddleston, 1987). These cells are generated in vitro from patient lymphocytes by 

stimulation with interleukin-2 (IL-2) in vitro. Those activated cells are able to recognize and 

eliminate cancer cells while do not lyse normal cells. The therapy was successful in vitro and 

in vivo in mice as well as with human patient (Mazumder, 1984). Adoptive transfer of LAK 

cells to mice with repeated administration of IL-2 was highly effective in the reduction of the 

number and size of tumor lesions (Mule et al., 1984; Mulé et al., 1986). LAK cells were 

efficient in cytolytic activity in human patient (Rosenberg et al., 1985). However, this therapy 

is not specific enough and almost every patient suffered from some toxic side effect - 
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especially when used in conjunction with the systemic administration of IL-2 (Glassman, 

1989). 

Another approach of adoptive transfer of T cells is the use of tumor-infiltrating lymphocytes 

(TILs) (Fagan and Eddleston, 1987). TIL cells are isolated from human tumors of the patients 

and expanded ex vivo with high doses of IL-2. TILs are more effective in their therapeutic 

potency than LAK cells (Rosenberg, 1988), although this effectiveness is only achieved when 

used in conjunction with IL-2. With the combination of prior lymphodepletion by 

cyclophosphamide and simultaneous administration of IL-2 with TIL transfer, almost all mice 

with colon adenocarcinoma and metastasis were cured (Rosenberg et al., 1986). However, the 

administration of high-doses of IL-2 to cancer patients has contributed to toxic side effects 

(Rosenberg et al., 1989). Further, TILs have an unknown specificity, which is a potential risk 

for autoreactivity with normal, non-malignant tissue. Nevertheless, improvements in TILs 

therapy are still being developed (Dudley et al., 2013; Sim et al., 2014). 

In order to equip T cells with known specificity for targeting tumor antigen, a new approach 

in adoptive immunotherapy was established and so the personalized immunotherapy was 

created. Human T cells are engineered to express the artificial receptor, either a Chimeric 

Antigen Receptor (CAR) or T cell receptor (TCR) with defined specificity. These 

modified T cells are re-infused into the patient. Both approaches have advantages and 

disadvantages but above all both are potential treatment options for patients suffering from 

cancer. There are more comparative studies where the two approaches are examined, however 

it is hard to compare them because of many different parameters such as affinity, ligand 

structure or ligand density (Barrett et al., 2015; Harris and Kranz, 2016). Recently, more 

clinical trials related to both therapies have been reported (Holzinger et al., 2016; Kunert et 

al., 2013). Many promising results have been observed by using CARs especially against 

hematological cancer but not against solid tumors. The most successful CAR in clinical use is 

the CD19 specific CAR targeting B cell malignancies (Brentjens et al., 2013; Grupp et al., 

2013; Lee et al., 2015; Porter et al., 2011); FDA approval was granted in 2018. Kymriah
TM 

is 

approved for the treatment of pediatric and young adult patients with acute lymphoblastic 

leukemia (ALL). Yescerta
TM 

is approved for the treatment of adult patients with large B cell 

lymphoma (Zheng et al., 2018). In addition, Kymriah
TM

 has recently achieved EMA 

(European Medicines Agency) approval for use in Europa. Recombinant TCRs used in the 

clinic have shown some promising results with both hematological and solid tumors, although 

severe side effects were also experienced. For example, targeting the MAGE-A3 tumor 
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antigen in myeloma and melanoma induced off-target toxicity, destruction of non-cancerous 

tissue and even led to the death of the patient (Linette et al., 2013; Morgan et al., 2013). 

Nonetheless, by targeting cancer testis antigen NY-ESO-1, no off-target toxicity has been 

reported (Robbins et al., 2015, 2011). A general limitation of this approach is that each 

artificial TCR is specific for a certain MHC-peptide complex (major histocompatibility 

complex) and therefore is only suitable for MHC-matched tumor patients (Cartellieri et al., 

2010). Moreover, further limitation is the downregulation of different components of MHC 

class I antigen presenting machinery (Sadelain et al., 2003). The benefit for TCR T cell 

therapy is the targeting of intracellular proteins as long as they are sufficiently presented on 

the MHC (Figure 1). 

1.2.2 Adoptive CAR T cell immunotherapy 

Adoptive transfer of CAR engineered T cells is a very promising field of immunotherapy. 

Chimeric Antigen Receptor is an artificial receptor, which consists of different units (Harris 

and Kranz, 2016). A classical CAR comprises an antigen-binding domain, a hinge domain, a 

transmembrane domain and one or more signaling domains (Figure 2).  

Figure 1 Demonstration of adoptive cell therapy for cancer 
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In the first CAR the antigen-binding single chain was directly connected with CD3 signaling 

domain and it was published by Eshhar Z et al. in 1993 (Eshhar et al., 1993). A direct ancestor 

of the first CAR was the hybrid T cell receptor, which was expressed in T cells and 

recognized the appropriate antigens as well (Gross et al., 1989; Kuwana et al., 1987). 

In the prototype CAR, the antigen-binding domain is a single chain fragment of variable 

region (scFv) of an antibody and is responsible for the recognition of tumor-associated 

antigen (TAA) on the target cells. The scFv consists of the variable region of the 

immunoglobulin heavy chain (VH) and the variable region of the immunoglobulin light chain 

(VL) connected by a short flexible (Gly4Ser)3 peptide linker and thereby represents the 

complete antigen-binding site of the antibody. The sensitivity and binding affinity of a CAR is 

determined by the scFV, which impacts the functionality of the CAR T cells. To target an 

antigen expressing in low level on target cells, an increase of scFv binding affinity is needed. 

However, an increase of binding affinity above a specific threshold does not mean increased 

activation of T cell (Chmielewski et al., 2004). If the target antigen is expressed in a 

significant level on normal tissue as well, then the use of lower affinity of antigen-binding 

fragment is recommended (Caruso et al., 2015; Liu et al., 2015). In this way it is possible to 

discriminate between different target tumor antigen densities on the cell surface (Alvarez-

Vallina and Russell, 1999; Westwood et al., 2009). 

Figure 2 Illustration of a classical CAR 
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The hinge or spacer domain of the CAR is located between the antigen-binding domain and 

the transmembrane domain and originated from the immunoglobulin CH2-CH3 (Fc) domain 

from the constant region of immunoglobulin G (IgG) or from the spacer domain of the CD4 

or CD8 (Harris and Kranz, 2016). Incorporation of a spacer domain is required for a stable 

CAR expression on T cells, more stability and flexibility as well as higher accessibility to 

TAA (Guest et al., 2005). The necessity of a spacer domain is determined by the position of 

the epitope in the relevant antigen. If the epitope located at the membrane-distal position 

extracellular spacer element is not needed, then for the membrane-proximal epitope a hinge 

region is recommended (James et al., 2008). The optimal length of the spacer domain can be 

decisive for the effector function of the CAR depending on the targeted surface antigen 

(Hudecek et al., 2015, 2013). The presence of different spacer regions can result in significant 

differences in CAR modified T cell function including cytokine secretion and specific 

cytotoxicity (Patel et al., 1999). Moreover, CAR modified T cells could be activated through 

the Fc spacer domain by IgG Fc gamma receptor (FcRs) binding resulting in unwanted T cell 

function including cytokine secretion or cytotoxicity. To avoid this off-target activation and to 

reduce FcR binding, modification in the spacer domain is needed (Hombach et al., 2010). 

The transmembrane domain can be derived from various components of T cell surface 

receptor from homo- or heterodimeric type I membrane proteins such as CD3, CD4, CD8, 

CD28, OX40 or FcRI (Shi et al., 2013) and can also impact on T cell function of the CAR 

modified T cells. For example CD28 derived transmembran region is related with higher CAR 

expression level on T cell surface (Pulè et al., 2005). 

All parts of the CAR receptor have an important role and effect on the modified T cell 

function, which is also valid for the case of intracellular domains. Moreover, the attention the 

intracellular signaling domains receive is dependant on the impact on T cell persistence, 

activity and efficacy (Harris and Kranz, 2016). A first generation CAR (Figure 3) has only 

one signaling domain in the intracellular part, which is mostly derived from the CD3 or 

FcRIchain,but CD3 receptor have shown better efficacy in tumor eradication (Ren-

Heidenreich et al., 2002). Nevertheless, first generation CARs provided some promising 

results in vitro as well as in vivo (Gong et al., 1999; Parker et al., 2000), although the 

engineered T cells achieved minimal anti-tumor efficacy and a short term persistence in vivo 

(Kershaw et al., 2006; Till et al., 2008). In addition, it soon became obvious, that one signal is 

not enough for a prolonged activation of T cells. Co-stimulatory signal is also needed for the 

complete T cell function with optimal proliferative ability and cytokine secretion. For this 



  INTRODUCTION 

 
7 

reason the first generation CAR was equipped with an additional co-stimulatory signal 

domain which is mostly the CD28, 4-1BB or rarely OX40 or other domain (Hombach and 

Abken, 2007) and thereby the so-called second generation CARs (Figure 3) have been created 

(Finney et al., 1998; Hombach et al., 2001b; Maher et al., 2002). By adding co-stimulatory 

domain, enhanced T cell function was observed with stronger signaling, improved 

proliferative ability and cytokine secretion. Furthermore, better persistance and anti-tumor 

activity were observed (Imai et al., 2004; Kowolik et al., 2006; Milone et al., 2009; Song et 

al., 2011). The different co-stimulatory domains modulate differently the T cell effector 

function, CD28 domain has a role rather in primary activation while 4-1BB or OX40 sustain 

T cell activation (Finney et al., 2004; Hombach and Abken, 2011). However, CD28 co-

stimulatory domain with CD3 signaling domain appear to be the best combination (Brentjens 

et al., 2007). Nonetheless, CD28 is an important component for T cell because of the abilty of 

IL-2 secretion. IL-2 as well as IFN- secretion is significantly better than CD3 alone or with 

other co-stimulatory domain combinations (Hombach et al., 2001a). Moreover, the T cell 

proliferation is enchanced in the presence of CD28 co-stimulatory domain (Beecham et al., 

2000). The position of the CD28 domain is also not negligible since the CAR with CD28 

proximal and CD3 distal positon to the membrane and not in opposite orientation have 

shown better expression in Jurkat cells (Finney et al., 1998). For further development two 

different co-stimulatory domains were combined and so three different signaling moieties 

were located in the intracellular part. They are the 3rd generation of CARs (Figure 3) 

(Tammana et al., 2010; Zhong et al., 2010). In this way, the CAR engineered T cell functions 

with enchanced proliferation activity, increased expression of antiapoptitic protein as well as 

better survival were completed (Carpenito et al., 2009; Hombach et al., 2013; Redmond et al., 

2009). 

By taking CD28 in combination with CD3 could be effective in tumor eradication and show 

appropriate persistence similar to cytokine production, with further co-stimulation the T cell 

function is augmented. However, with three signal domain the T cell could be more sensitive 

and activation could occur in antigen independent manner (Cartellieri et al., 2010). 

Recently, the 4th generation of CARs (Figure 3) have also appeared and named as T cells re-

directed for universal cytokine-mediated killing (TRUCKs) (Chmielewski and Abken, 2015). 

With this improvement the T cells are equipped with the abilty to produce a cytokine in an 

inducible fashion in order to activate other T cells and innate immune cells to eliminate 

antigen negative tumor cells (Chmielewski et al., 2011). This new approach is opened the way 
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for a treatment of solid tumors, since in contrast to the successful treatment of hematological 

cancer by CARs, targeting solid tumors are more difficult because of the immunosuppressive 

tumor microenvironment in which the function of immune cells are inhibited.  

CAR takes advantages over artificial TCR by combining the antibody specificity with T cell 

signaling. In addition, in the CAR concept the antigen recognition works independently from 

MHC peptide complex in contrast to TCRs. In this way, CAR therapy overtakes TCR therapy 

since the major immune escape strategy by many tumors is the downregulation of the 

expression of the MHC class I molecule (Cartellieri et al., 2010). 

Once modified T cell become activated by the engagement of tumor antigen with the CAR 

receptor, T cells start to produce pro-inflammatory cytokines such as IFN-, TNF- and IL-2, 

which are the results of downstream activation of the signaling pathways. Furthermore, the 

activation initiates T cell mediated cytotoxicity either by the granzyme/perforin pathway 

(Hombach et al., 2006) or due to the Fas/Fas-L mediated pathway (Shresta et al., 1998; 

Yasukawa et al., 2000). However, the answer given for an antigen engagement depends on 

many factors, such as: the location of the epitope, the antigen binding domain, its affinity, the 

length and kind of spacer and transmembrane domain and the number and choice of 

intracellular signaling domains. Moreover, the option between different T cell subset can also 

influence the outcome of the treatment given to the cancer patient (Riddell et al., 2014). 

Figure 3 Generation of CARs 
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1.3 Solid tumor and the suppressive tumor microenvironment 

CAR T cell therapy has achieved remarkable success in the treatment of hematologic 

malignances such as lymphoma or leukemia and has already reached clinical application as 

well. This success is not so apparent in the treatment of solid tumor (Newick et al., 2017). In 

contrast to hematological cancer, in the case of solid tumor the T cells have to reach and find 

the tumor cells and infiltrate the stromal elements in order to recognize the targeted antigen, 

which is mostly downregulated on the tumor cells. To find a tumor antigen, which is 

exclusively expressed on the tumor cell and not on non-malignant tissue, is difficult anyway. 

There are approximately 30 solid tumor antigens targeted by CAR T cell therapy. Up to now, 

none of them has been ideal and as a result the occurrence of “on target-off tumor” toxicity is 

a possibility (Morgan et al., 2010). 

 If T cells get through and find the tumor cells successfully they rapidly turn into 

dysfunctional T cells. There are three significant reasons for this. Firstly, the dominated 

milieu, which is presented around the tumor cells with hypoxia, acidic pH and oxidative stress 

(Hatfield et al., 2015) as well as with low level of nutrient (Fischer et al., 2007; Jacobs et al., 

2008). Secondly, the presence of the tumor resident suppressive immune cells, such as 

regulatory T cells (Tregs) (Nishikawa and Sakaguchi, 2010), myeloid-derived suppressor cells 

(MDSCs) (Gabrilovich and Nagaraj, 2009), tumor-associated macrophages (TAMs) or tumor-

associated neutrophils (TANs). These suppressive cells are responsible (beside the tumor 

cells) for the production of inhibitory soluble factors (Goodwin et al., 1977) and inhibitory 

cytokines. One of the most important inhibitory cytokines, which is mostly responsible for the 

unsuccessful tumor targeting, is the Transforming Growth Factor- (TGF-) produced by 

tumor cells, Tregs, MDSCs, M2 TAMs and N2 TANs (Massagué, 2008; Pickup et al., 2013). 

Thirdly, the induced regulatory mechanisms including upregulation of cytoplasmic and 

surface inhibitory receptors such as PD-1 or CTLA-4 (John et al., 2013). (Newick et al., 2017)  

1.4 Targeting Transforming Growth Factor-(TGF-) 

Transforming Growth Factor- is a multifunctional polypeptide that has an important role in 

proliferation, differentiation, embryonic development, angiogenesis, wound healing, and other 

functions in many cell types (Nagaraj and Datta, 2010). TGF- belongs to a large superfamily 

with 33 known human family participants including bone morphogenetic proteins (BMPs), 

activins and inhibins, growth and differentiation factors (GDFs) and three isoforms of TGF- 
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(TGF-1, TGF-2, TGF-3) (Morikawa et al., 2016). The members of the family are 

evolutionary conserved proteins and there is 70% - 80% homology among the TGF- 

isoforms. Among the three isoforms, TGF-1 has the largest role in the regulation of immune 

cells. TGF- is expressed in epithelial, endothelial, hematopoietic and connective tissue cells 

(Achyut and Yang, 2011). Many cancer cells are able to produce a vast amount of TGF- as 

well and so to form the suppressive tumor microenvironment. TGF- promotes tumor 

formation, progression and metastasis in many human tumors, therefore tremendous effort 

was given to develop strategies in order to target TGF-, TGF- receptor or TGF- signaling 

(Yingling et al., 2004). 

There are many approaches to block TGF- including monoclonal antibodies, antisense 

oligonucleotides, small molecule inhibitors, soluble TGF- receptor or dominant-negative 

TGF- receptor. It is important to note, that a systemic block of TGF- can lead to serious 

consequences; the lack of TGF-1 in TGF-1 KO mice causes multifocal inflammatory 

disease and embryonic lethality (more than 50%) (Kulkarni and Karlsson, 1993; Shull et al., 

1992) whilst the lack of TGF-2 or TGF-3 results in 100% embryonic lethality (Kaartinen et 

al., 1995; Sanford et al., 1997). 

The first treatment option was the development of antisense oligonucleotides that inhibit the 

production of protein at molecular level. Antisense oligonucleotide against TGF-2 (AP 

12009) was applied in clinical trial I/II and the results have shown that this is a promising 

therapeutic approach for tumor therapy (Hau et al., 2007; Schlingensiepen et al., 2008). 

Application of monoclonal antibodies was well tolerated in the mouse model; nonetheless the 

treatment alone was not sufficient to induce tumor reduction (Takaku et al., 2010; Terabe et 

al., 2009). Other treatment options are the targeting of specific TGF- signaling components 

by small molecule inhibitors (Vogt et al., 2011). Soluble TGF- receptor II could bind with 

TGF-1 and therefore inhibited the TGF--dependent transcription in target cells. This 

approach was successfully applied in human breast cancer therapy (Hu et al., 2011; Seth et al., 

2006).  

One more option to target TGF- signaling is the expression of the dominant-negative TGF- 

receptor II. In the early 2000s, two groups developed transgenic mice with overexpression of 

a dominant-negative TGF- receptor, where TGF- signaling was selectively blocked in T 

cells. They found a similar impact, the mice developed autoimmune disease, Gorelik et al. 
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described about spontaneously T cell differentiation into Type1/Type2 cytokine secreting cell, 

while Lucas et al. wrote about CD8
+
 T cell lymphoproliferative disorder (Gorelik and Flavell, 

2000; Lucas et al., 2000). In addition, in a dominant-negative TGF- II (DNTGF  

transgenic mice have shown better anti-tumor effects, due to the enhanced generation of 

tumor specific CD8
+
 CTLs in the absence of TGF- signaling (Gorelik and Flavell, 2001). 

Dominant-negative TGF- II receptor modified EBV specific CTLs were used against EBV 

positive Hodgkin lymphoma, where they reached almost complete resistance to TGF- 

without impact on CTL function in the long term in vitro (Bollard et al., 2002). Lacuesta et al. 

demonstrated the safe usage of DNTGF II receptor modified E7 specific CTLs in vivo 

(Lacuesta et al., 2006). Targeting solid tumor with the help of DNTGF II receptor 

engineered T cells had benefit in an in vivo B16 melanoma model, while soluble TGF- 

receptor in the same model had no improvement (Zhang et al., 2013). Recently, the first 

clinical trial with DNTGF II receptor was published. Eight patients with EBV-positive 

Hodgkin lymphoma received DNTGF II receptor modified T cells. Four patients achieved 

clinical responses, including one with complete response. No toxicity, no uncontrolled T cell 

proliferation was detected during the 4 years observation time (Bollard et al., 2018). DNTGF 

II receptor combined with CAR modified T cells have shown promising results against 

prostate cancer (Kloss et al., 2018; Zhang et al., 2018). 

All of these approaches targeted either the secreted form of TGF- or the signaling pathway 

and therefore block the TGF- mediated regulation, although the role of TGF- in immune 

homeostasis is essential. The regulation by TGF- is needed to impede the immune response 

and to prevent unpredictable immune cell growth, cytokine storm or autoimmune responses. 

Unfortunately, cancer cells have the capacity to avoid the suppressive influence of TGF- and 

thus contribute to the tumor growth, to invasion and evasion of immune surveillance as well 

as to cancer cell dissemination and metastasis (Massagué, 2008). 

1.5 Role of cytokines 

Cytokines are a very diverse group and mostly responsible for intracellular communication 

either in autocrine or in paracrine manner. They play an important role in immunity and 

inflammation as well as in functions related to cellular proliferation, differentiation and 

survival. The group of type I cytokines involve many interleukins (IL) and some growth and 

hematopoietic factors; their common feature is the four -helical bundle structures. One 
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member of this group is the common cytokine-receptor -chain (c) family, which consists of 

IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. All of these cytokines share a -chain in their 

receptor. Among these participants IL-2, IL-7 and IL-15 have particular interest because of 

the roles in T cell (or other immune cell) development as well as immune regulation 

(Rochman et al., 2009). Mutation in the -chain leads to X-linked severe combined 

immunodeficiency (XSCID) in the human patient. This disease is characterized by complete 

or profound T cell defect, which indicates the important role of these cytokines in the 

regulation of immune homeostasis (Noguchi et al., 1993; Sugamura et al., 1996). 

IL-2 is the prototypic member of the family, its functions include as T cells growth factor, 

regulate the expansion and apoptosis of activated T cells. In addition, IL-2 contributes to 

generation and function along with the development of Tregs. The main sources of IL-2 are 

the activated effector T cells. The IL-2 receptor consists of three polypeptide chains, which 

are the IL-2R (CD25), IL-2R (CD122) and -chain (c or CD132). These three components 

form the high affinity IL-2 receptor; for an intermediate affinity receptor the - and the -

chain are needed, while -chain alone is just a low-affinity IL-2 receptor (Kim et al., 2006). 

IL-15 and IL-2 share not only the -chain in their receptor but they use the same -chain as 

well. However, the high-affinity IL-15 receptor composes of a third IL-15R -chain (CD215). 

In spite of the two common subunits, both cytokines have the individual role in adaptive 

immune response. For instance, IL-15 is necessary for NK cell development and supports the 

survival of CD8
+
 memory T cells. The main IL-15 produced cells are dendritic cells and 

monocytes (Waldmann, 2006). IL-7 has a central role in immune regulation and it is 

indispensable for T cell development in humans. IL-7 is a tissue-derived cytokine; primary 

sources of it are stromal and epithelial cells. IL-7 receptor is heterodimer and consists of the 

IL-7R (CD127) and the common -chain. Mutation in the IL-7R -chain causes severe 

combined immunodeficiency (SCID) disease (Fry and Mackall, 2002). All -cytokines lead 

the signal through the JAK-STAT pathway and IL-2, IL-7 and IL-15 activate mainly STAT5 

protein. Besides, all three cytokines have essential roles in T cell proliferation (Rochman et 

al., 2009). 

Optimal T cell activation requires at least 3 signals: TCR/CAR engagement, co-stimulatory 

signal and cytokine engagement (Kershaw et al., 2013). The first two signals are gratified by a 

second generation CAR, while the feasibility of stimulatory cytokine engagement is limited in 

the suppressive tumor microenvironment. Inhibitory cytokine signal can be turned into 

stimulatory signal by the use of chimeric cytokine receptor. Wilkie et al. published a hybrid 
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receptor consists of the IL-4R -chain as ectodomain and the IL-2/IL-15 receptor -chain as 

intracellular domain. This receptor was co-expressed with a MUC1 specific CAR and 

successfully destroyed MUC1 positive tumor cells in vitro (Wilkie et al., 2010). In another 

publication the IL-4 receptor ectodomain was fused with the IL-7 receptor endodomain and 

the hybrid receptor was co-expressed with the PSCA (prostate stem cell antigen) specific 

CAR. This combined approach enhanced the anti-tumor activity in prostate cancer 

(Mohammed et al., 2017). 
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1.6 Aims  

Beside the successful treatment of hematological cancer by CAR T cell therapy there are no 

promising results in the CAR T cell treatment of solid tumors. The suppressive tumor 

microenvironment prevents the CAR T cells from executing their effector functions. For 

instance, the T cells do not enter the tumor lesion and do not stay active and effective against 

tumor cells in the presence of repressive signals. TGF- is one of the dominant suppressive 

cytokine, which is used by tumor cells in order to escape immune surveillance. Ongoing 

research focuses on the modulation of the tumor tissue to provide a more supportive 

microenvironment for effector T cells for a successful anti-tumor attack. 

Previous work of our group showed that the suppressive effect of TGF- is conquerable by 

CD28 signaling through a second generation CAR. We here wanted to answer how CD28 

compensates the suppressive effect of TGF- and how the suppression can be circumvented to 

engineer more effective CAR T cells. 

We addressed the following questions: 

 Is other costimulation, beside CD28, such as 4-1BB also able to overcome the 

suppressive effect of TGF-? 

 Which part of CD28 signaling domain is responsible for the resistance to TGF-? 

CD28 costimulation induces IL-2 release and the accumulation of IL-2 in the tumor site can 

lead to the enhanced activation of Tregs. This raises the question whether another -cytokines 

can replace IL-2 to compensate the suppressive effect of TGF- in T cell proliferation. We 

identified IL-7 and IL-15 as promising candidates since both of them are able to stimulate T 

cell proliferation. IL-7 is more suitable, since IL-7 does not activate Tregs because of the lack 

of IL-7 receptor on Treg cells. 

In this part, we addressed the following questions: 

 Is IL-7 or IL-15, similar to IL-2 able to overcome the repressive TGF- in T cell 

proliferation? 

 Is IL-7 or IL-15 TRUCK engineered T cells able to produce an appropriate level of 

cytokine to compensate the suppressive effect of TGF- in T cell proliferation? 

 Can we overcome the activation-mediated downregulation of the IL-7 receptor by a 

chimeric cytokine IL7/IL2 receptor? 

 Does IL-7 autocrine loop make T cells resistant to TGF-? 
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 How do such engineered CAR T cells perform in the attack against TGF- positive 

tumors? 

 

In this thesis we provide a novel concept to demonstrate how to make CAR engineered T cells 

more efficient against tumor cells in the suppressive TGF- signals enriched tumor 

environment.  
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2 MATERIALS 

2.1 Chemicals and reagents 

chemical, reagents company 

ABTS Roche Diagnostics, Rotkreuz, Switzerland 

ABTS buffer Roche Diagnostics, Rotkreuz, Switzerland 

Aceton Carl Roth GmbH, Karlsruhe, Germany 

Agarose Invitrogen GmbH, Darmstadt, Germany 

Ampicillin Merck/Calbiochem, Darmstadt, Germany 

Background Buster Innovex biosciences, Richmond, CA, USA 

Bacto tryptone 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Bacto Agar 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Blasticidin-Agar InvivoGen, San Diego, CA, USA 

Brij®97 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

BSA (Albumin) 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

dGTP Promega, Mannheim, Germany 

DMSO (dimethylesulfoxid) Carl Roth GmbH, Karlsruhe, Germany 

DNA ladder Gene Ruler
TM

 1kb #SM0313 Fermentas, St. Leon-Rot, Germany 

DNA loading dye 6x Fermentas, St. Leon-Rot, Germany 

EDTA (ethylenediaminetetraacetic acid) Carl Roth GmbH, Karlsruhe, Germany 

Ethanol Carl Roth GmbH, Karlsruhe, Germany 

Ethidium bromide Bio-Rad Laboratories, München, Germany 

Fc Receptor Block Innovex biosciences, Richmond, CA, USA 

gBlocks fragments IDT, Skokie, Illinois, USA 

Glycerin Merck/Calbiochem, Darmstadt, Germany 
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chemical, reagents company 

HEPES GIBCO/Invitrogen GmbH, Darmstadt, Germany 

Isopropanol Carl Roth GmbH, Karlsruhe, Germany 

IS Mounting medium +/- DAPI dianova, Hamburg, Germany 

Lymphoprep
TM

 Axis-Shield Poc AS, Oslo, Norway 

Methanol Carl Roth GmbH, Karlsruhe, Germany 

PEIpro
®
 Transfection Reagent Polyplus transfection, Illkirch, France 

PenStrep GIBCO/Invitrogen GmbH, Darmstadt, Germany 

Peptone 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

PMS (N-Methylphenazonium methyl 

sulfate) 
Biomol GmbH, Hamburg, Germany 

Reddot2 Biotium, Fermont, CA, USA 

Streptavidine-Peroxidase conjugate Roche Diagnostics, Rotkreuz, Switzerland 

Tissue-Tek® O.C.T.™ Compound Sakura, Torrance, CA, USA 

Tris Carl Roth GmbH, Karlsruhe, Germany 

Trizol Invitrogen, Carlsbad, CA, USA 

Trypan Blue 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Trypsin/EDTA 10x PAN-Biotech GmbH, Aidenbach, Germany 

Tween
®
 20 Merck, Darmstadt, Germany 

Yeast extract Carl Roth GmbH, Karlsruhe, Germany 

7AAD (7-Amino-Actinomycin D) BD Biosciences, San Jose ,CA, USA 

Table 1 List of chemicals and reagents used in this study 
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2.2 Kits 

KIT company 

APC-Annexin V Apoptosis Detection Kit BD Pharmingen
TM

, Hamburg, Germany 

BigDye
®
 Terminator v3.1 Cycle Sequencing Kit 

Applied Biosystems GmbH, Darmstadt, 

Germany 

CellTrace CFSE Proliferation Kit Invitrogen GmbH, Darmstadt, Germany 

Cytofix/Cytoperm Kit BD Bioscience, San Jose, CA, USA 

IC Fixation  Kit 
eBioscience/ThermoFisher Scientific, 

Waltham, MA, USA 

Intrasure Kit BD Bioscience, San Jose, CA, USA 

NucleBond
® 

Xtra Midi Kit  Macherey Nagel GmbH, Düren, Germany 

PureLink
®
 Quick Gel Extraction Kit Invitrogen GmbH, Darmstadt,Germany 

PureLink
®
 Quick Plasmid Miniprep Kit Invitrogen GmbH, Darmstadt,Germany 

XTT Cell Proliferation Kit AppliChem, Darmstadt, Germany 

mouse IL-7 DuoSet ELISA, (DY407) R&D System, Minneapolis, MN, USA 

human IL-15 DuoSet ELISA, (DY247) R&D System, Minneapolis, MN, USA 

Table 2 List of Kits used in this study 

2.3 Medium for cell culture 

Medium company 

D-MEM, „High Glucose“, #61965-026 
GIBCO/Invitrogen GmbH, Darmstadt, 

Germany 

RPMI1640-GlutaMAX
TM

, #61870-010 
GIBCO/Invitrogen GmbH, Darmstadt, 

Germany 

FCS (Fetal calf serum) PAN-Biotech GmbH, Aidenbach, Germany 

Heat-Inactivated (HI) FCS (56°C;30 min) PAN-Biotech GmbH, Aidenbach, Germany 

X-vivo
TM

 15  Lonza, Basel, Switzerland  

Table 3 List of Medias used in this study 



  MATERIALS 

 
19 

2.4 Buffers and gels 

Buffers and gels composition 

Agarose gel 
1%: boil up 1g / 100 ml TAE buffer 1x, after cooling 

down add 100 ng/ml ethidium bromide 

Blocking buffer (ELISA) 1% BSA (w/v), PBS 1x 

CaCl2 buffer (for chemically 

competent bacteria) 

60mM CaCl2 dihydrate, 10mM PIPES, 15 % (w/v) 

Glycerin, H2Odd; pH 7 (3M NaOH) 

Coating buffer (ELISA) 0.1M Na2HPO4, pH 9 

(Intracellular) staining buffer 1% (v/v) HI-FCS in PBS 

LB agar 1l LB medium, 15 g Bacto Agar 

LB medium 10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl 

PBS 10x 
1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 20 mM 

KH2PO4, H2Odd; pH 7.4   

PBS/Tween (PBS-T) 1x PBS, 0.1% (v/v) Tween®-20 

TAE buffer 50x 
2M Tris, 1M pure acetic acid, 50 mM EDTA pH 8.0, 

H2Odd; pH 7.6 – 7.8 

TE buffer 1x 10 mM Tris-HCl pH 8, 1 mM EDTA, H2Odd 

Tris-HCl 10 mM Tris, H2Odd; pH 6.8- 9 (HCl) 

XTT reagent solution 
per well: 50 µl 1 mg/ml XTT in RPMI1640 + 50 µl 

RPMI1640  

Table 4 List of buffers and gels used in this study 

2.5 Antibodies 

2.5.1 unconjugated antibodies 

antibody species/isotype company/source 

anti-human IL-2, clone 5344-111 mouse IgG1 
BD Pharmingen

TM
, Hamburg, 

Germany 

anti-human IFN-γ, clone NIB42 mouse IgG1 
BD Pharmingen

TM
, Hamburg, 

Germany 

IgG1 isotype control, clone 15H6 mouse IgG1 
Southern Biotechnology, AL, 

USA 

anti-human CD3, clone OKT3 mouse IgG2a 
hybridoma cell line; CRL-8001, 

ATCC 

anti-human CD28, clone 15E8 mouse IgG1 
hybridoma cell line, (van Lier et 

al., 1988) 
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antibody species/isotype company/source 

anti-human BW431/26scFv, clone 

BW2064/36 
mouse IgG1 

hybridoma cell line, (Bosslet et 

al., 1985) 

anti-TGF-, mouse monoclonal, clone 

3C11 
IgG1 

Santa Cruz Biotecnology, TX, 

USA 

Table 5 List of unconjugated antibodies used in this study 

2.5.2 conjugated antibodies 

antibody species/isotype conjugate company 

anti-human IL-2, clone B33.2 mouse IgG1 Biotin 
BD Pharmingen

TM
, 

Hamburg, Germany 

anti-human IFN-γ, clone 4S.B3 mouse IgG1 Biotin 
BD Pharmingen

TM
, 

Hamburg, Germany 

anti-human CD3, clone 

BW264/56 
mouse IgG2aκ  FITC 

Miltenyi Biotec, Bergisch 

Gladbach, Germany 

anti-human CD3, clone 

BW264/56 
mouse IgG2aκ  APC 

Miltenyi Biotec, Bergisch 

Gladbach, Germany 

anti-human CD66a/c/e (anti-

CEA), clone ASL-32 
mouse IgG2b 

AlexaFluor 

488 
BioLegend®, CA, USA 

anti-human IgG, mouse ads, 

polyclonal 

goat F(ab´)2 

IgG 
PE 

Southern Biotechnology, 

AL, USA 

anti-human IgG 
goat F(ab´)2 

IgG 

AlexaFluor 

555 

Southern Biotechnology, 

AL, USA 

mouse anti-human Lck pY505 

(Phosflow, clone:4/LCK-Y505) 
Mouse IgG1 PE 

BD Biosciences, San Jose 

,CA, USA 

mouse anti-human Granzyme B 

(clone:GB11) 

Mouse BALB/c 

IgG1, κ 
FITC 

BD Biosciences, San Jose 

,CA, USA 

anti-Hu/Mo pSTAT5 (Tyr694), 

clone:SRBCZX 

Mouse / IgG1, 

kappa  
PE 

eBioscience/ThermoFisher 

Scientific, Waltham, MA 

USA 

anti-human CD127 

(clone:MB15-18C9) 
mouse IgG2aκ APC 

Miltenyi Biotec, Bergisch 

Gladbach, Germany 

anti-human LAP (TGF-1), 

clone:TW4-2F8 
Mouse IgG1, κ PE BioLegend®, CA, USA 

Table 6 List of conjugated antibodies used in this study 

2.5.3 conjugated secunder antibody 

antibody species/isotype conjugate company 

goat anti-mouse IgG (H+L), 

polyclonal 
goat/IgG 

AlexaFluor 

555 

Invitrogen, Carlsbad, CA, 

USA 

Table 7 Conjugated seconder antibody used in this study 
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2.6 Cytokines 

Cytokine company 

recombinat IL-7 

Miltenyi Biotec, Bergish Gladbach, Germany recombinat IL-15 

recombinant TGF-  

Imukin
®
 (IFN-γ standard) Boehringer Ingelheim, Ingelheim, Germany 

Proleukin
®
 (IL-2 standard) Novartis Pharma GmbH, Basel, Switzerland 

Table 8 List of cytokines used in this study 

2.7 Synthetic oligonucleotides 

2.7.1 Oligonucleotides used for plasmid generation 

ID name direction 5´- 3´sequence 

#1257 OL1 for sense GTGGATCCCGCCGAGCCCAAATC 

#1269 OL1-P2A rev neu antisense 

CTGCTTGCTTTAACAGAGAGAAGTTCGTGGC

TCCAGATCCGCGAGGGGGCAGGGCCTGCAT

G 

#1018 P2A-IL7s sense 

ACGAACTTCTCTCTGTTAAAGCAAGCAGGAG

ACGTGGAAGAAAACCCCGGTCCTATGTTCCA

TGTTTCTTTTAGATAT 

#1261 OL2 rev neu antisense 
CGCTCGAGTTATATACTGCCCTTCAAAATTT

TATTCCAACAAG 

Table 9 List of primers used for plasmid generation 

2.7.2 Oligonucleotides used for sequencing 

ID name direction 5´- 3´sequence 

#933 - sense 
AAAATGAATATCAGTGAAGAGTTCAATGTC

CACTTACTAAC 

#934 - antisense 
GTTAGTAAGTGGACATTGAACTCTTCACTGA

TATTCATTTT 

#1071 - antisense AGCCGCGGGAGGAGCAGTAC 

#1098 - antisense TTTAATGTGGCACTCAGATGA 

#1152 - sense TCGGCCAAGGGACCAAGG 

#1166 - sense 
AAGCATTACCAGGCCTATGCCGCCGCACGC

GACTTCGCAGCCTAT 
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ID name direction 5´- 3´sequence 

#1238 pJet for sense AACTTGGAGCAGGTTCCATTC 

#1239 pJet rev antisense CCTGATGAGGTGGTTAGCATAG 

#1272 - sense GCAGTACAACAGCACG 

#1299 - antisense GAGCCTGGACCACTGATATCC 

#1448 - sense TGCACGATGTAGCTTACCGCCAGG 

#1449 - antisense CCACCGAGGAGACTGGGGGAGAAG 

Table 10 List of primers used for sequencing 

2.7.3 gBlocks ordered from IDT 

gBlock description 

ApaI-P2A-IL2-XhoI DNA fragment, part of  #1746 vector 

ApaI-P2A-IL15-XhoI DNA fragment, part of  #1764 vector  

SanDI-CD3-T2A-BspEI DNA fragment, part of  #1941 vector 

KpnI-IL7R/IL2R-BspEI DNA fragment, part of  #1908 and  #1941 vector 

BclI-IL7-T2A-IL7R-KpnI DNA fragment, part of  #1908 vector 

Table 11 List of gBlocks ordered from IDT 

2.8 Plasmid vectors 

ID plasmid characteristics and references 

#392 pCOLT-GALV 

retroviral vector containing the expression cassette 

of the gibbon ape leukemia virus envelope (GALV 

env) protein (Weijtens et al., 1998) 

#393 pHIT 60 

retroviral vector containing the expression cassette 

of the Moloney murine leukemia virus (M-MulV) 

proteins gag and pol (Weijtens et al., 1998) 

#422 pBullet pBullet empty vector (Weijtens et al., 1998) 

#607 
pBullet-Lk-BW431/26scFv-

Fc-CD28-CD3 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28-CD3 (Hombach et al., 2001a) 

#908 
pBullet-Lk-BW431/26scFv-

Fc-4-1BB-CD3 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-4-

1BB-CD3 (Hombach and Abken, 2011) 
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ID plasmid characteristics and references 

#946 
pBullet-Lk-BW431/26scFv-

Fc-CD28LCK-CD3 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28LCK-CD3 (Kofler et al., 2011) 

#947 
pBullet-Lk-BW431/26scFv-

Fc-CD28PI3K-CD3 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28PI3K-CD3 (Golumba-Nagy et al., 2018) 

#958 
pBullet-Lk-BW431/26scFv-

Fc-CD28LCKPI3K-CD3 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28LCKPI3K-CD3 (Golumba-Nagy et al., 

2018) 

#1024 pJR-mIL7 contains the mouse IL-7 cDNA (Hock et al., 1991) 

#1610 pJET 
pJET empty vector (CloneJet KIT, Thermo 

Scientific) 

#1645 
pBullet-Lk-BW431/26scFv-

Fc-CD28LCK-CD3-IL7 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28LCK-CD3-IL7 with transgenic mouse 

IL-7 (Golumba-Nagy et al., 2018) 

#1746 
pBullet-Lk-BW431/26scFv-

Fc-CD28LCK-CD3-IL2 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28LCK-CD3-IL2 with transgenic human 

IL-2 (Golumba-Nagy et al., 2018) 

#1764 
pBullet-Lk-BW431/26scFv-

Fc-CD28LCK-CD3-IL15 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28LCK-CD3-IL15 with transgenic human 

IL-15 (Golumba-Nagy et al., 2018) 

#1908 

pBullet-Lk-BW431/26scFv-

Fc-CD28LCK-CD3-IL7-

IL7R/IL2R 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28LCK-CD3-IL7-IL7R/IL2R with 

transgenic mouse IL-7 and the chimeric IL7/IL2 

cytokine receptor (Golumba-Nagy et al., 2018) 

#1941 

pBullet-Lk-BW431/26scFv-

Fc-CD28LCK-CD3-

IL7R/IL2R 

contains the mammalian expression cassette of the 

CEA-specific scFv CAR BW431/26scFv-Fc-

CD28LCK-CD3-IL7R/IL2R with the 

chimeric IL7/IL2 cytokine receptor (Golumba-

Nagy et al., 2018) 

Table 12 List of plasmids used in this study 

2.9 Restrictions enzymes 

Enzyme Buffer company 

ApaI B 

ThermoFisher Scientific, Waltham, MA 

USA 

BamHI BamHI 

BclI G 

BglII O 
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Enzyme Buffer company 

BspEI/Kpn2I Tango 

ThermoFisher Scientific, Waltham, MA 

USA 

KpnI KpnI 

FastDigest SanDI/KflI FastDigest 

SpeI/BcuI Tango 

XhoI R 

FastAP every type of buffers 

T4 DNA Ligase  T4 DNA Ligase Buffer Fermentas, St. Leon-Rot, Germany 

Table 13 List of restrictions enzyme used for cloning 

2.10 Bacterial strains 

Bacterial strains description 

E.coli DH5: 
F-, end A1, hsd R17 (rκ-, mκ-) sup E44, thi-1, lambda-, recA1, gyrA96, 

Φ 80 d lacZ δ M15  

XL10-Gold 
Tet

r
(mcrA)183 (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lac Hte [F   proAB lacI
q
ZM15 Tn10(Tet

r
) Amy Cam

r
] 

Table 14 List of bacterial strains 

2.11 Cell lines 

cell line characteristics reference 

HEK293T 

human embryonic kidney 293 cell line (ATCC CRL-

3216™) stably expressing the SV40 large T antigen; 

neomycin resistant 

(DuBridge et al., 

1987) 

C15A3 

MC38 cell line stably expressing CEA; neomycin 

resistant (kindly provided by Dr. M. Neumaier, 

Universität Heidelberg-Mannheim) 

(Robbins et al., 

1991) 

LS174T 
human CEA-positive colorectal adenocarcinoma cell 

line 
ATCC: CL-188™ 

OKT3 

mouse hybridoma cell line, (ATCC CRL 8001) secretes 

monoclonal antibody OKT3 directed against human 

CD3 

(Kung et al., 1979) 

15E8 

mouse hybridoma cell line, secretes monoclonal 

antibody 15E8 directed against human CD28 (kindly 

provided by Dr. Van Lier, NCB Amsterdam, 

Netherlands) 

(Lier et al., 1988) 

BW2064/36 

mouse hybridoma cell line, secretes monoclonal anti 

BW431/26 idiotypic antibody BW2064/36 (kindly 

provided by K Bosslet, Behring-Werke, Marburg, 

Germany) 

(Kaulen et al., 1993) 

Table 15 List of cell lines used in this study 
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2.12 Primary cells 

Human peripheral blood mononuclear cells (PBMC) were isolated from fresh blood or buffy 

coats (platelet and leukocyte fraction from blood donations) of healthy donors. Buffy coats 

were obtained from Transfusionsmedizin der Uniklinik Köln. All studies involving human 

blood cells were approved by the Institutional Review Board of the University Hospital of 

Cologne (reference no. 01-090 and 11-319). 

2.13 Mouse model 

Rag2
-/-
c

-/-
 mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). All 

animal experiments were performed according to the Animal Experiments Committee 

regulations and approved by the Landesamt für Natur, Umwelt und Verbraucherschutz, 

Recklinghausen, Germany (K17/35-05).  

2.14 Software 

Software company 

Adobe Illustrator Adobe Systems 

ContingExpress - 

FACSDiva BD Bioscience 

FlowJo FlowJo LLC 

GraphPad Prism GraphPad Software, Inc 

Microsoft Excel Microsoft 

Microsoft Word Microsoft 

Olympus Fluoview (FV1000) Olympus 

SkanIt
TM

 ThermoFisher Scientific 

Vector NTI ThermoFisher Scientific 

Table 16 List of software used for data analysis  
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3 METHODS 

3.1 Bacteria  

Bacterial cells were handled in gene technology labs of security level S1. 

3.1.1 Bacteria culture 

Bacterial cells Escherichia coli (E. coli) DH5 and XL10-Gold were cultured overnight at 

37°C and shaking at 200 rpm in liquid LB medium or –alternatively- on LB plates. The 

medium was supplemented with 100 µg/ml ampicillin (Amp) to select for grow of genetically 

modified bacteria, with Amp-resistance gene. In case of the long-term storage, 700 µl bacteria 

cultures were mixed with 300 µl of 87% (v/v) glycerol and stored at -80°C. 

3.1.2 Generation of chemically competent E.coli DH5α or XL10-Gold bacteria  

Bacteria clones were cultured in 400 ml of LB medium without antibiotic at 37°C with 200 

rpm shaking until the suspension reached an OD590nm of 0.4 (optical density). The suspension 

was cooled down on ice for 10 minutes, and the cells were centrifuged without brakes for 10 

minutes (1600 x g, 4°C), the pellet was immediately resuspended in 80 ml of ice-cold CaCl2 

buffer and centrifuged again for 7 minutes (1100 x g, 4°C). After the resuspension of the 

pellet in 80 ml of ice-cold CaCl2 buffer the cells were incubated on ice for 30 minutes. Then, 

the suspension was centrifuged for 7 minutes (1100 x g, 4°C) and resuspended in 16 ml ice-

cold CaCl2 buffer. Finally, the suspension was split into 100 µl aliquots, which were directly 

put into liquid nitrogen for freezing and were then stored at -80 °C. 

3.1.3 Heat-shock transformation of bacteria 

Competent bacteria (stored at -80°C) were defrosted on ice and 1-100 ng plasmid DNA was 

added. The mixed bacteria were heat-pulsed for 90 seconds at 42°C and subsequently cooled 

down on ice for 1-2 minutes. To gain antibiotic resistance, the bacteria were incubated in 900 

µl bacterial growth medium (without antibiotic) at 37°C and 200 rpm for 60 minutes. Finally, 

the suspension was centrifuged for 5 minutes (1100 x g), resuspended in 100 µl LB medium 

and spread out on agar plates containing antibiotics using a Drigalski spatula for overnight 

culture at 37°C. 
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3.2 Working with DNA 

3.2.1 Preparation of plasmid DNA 

For plasmid DNA preparation, the “PureLink
®

 Quick Plasmid Miniprep Kit” (Invitrogen 

GmbH) (for DNA amounts up to 40 µg) and the “NucleBond
® 
Xtra Midi Kit” (Macherey 

Nagel GmbH) (for DNA amounts up to 400 µg) were used according to the manufacturer‟s 

instructions. In case of Midi Kit 150 ml of bacteria suspension was prepared, while in case of 

Mini Kit 3-5 ml of bacteria suspension was used. The eluted plasmid DNA was diluted in 

sterile H2Odd and stored at -20°C.  

3.2.2 Quantification of DNA 

Before freezing the plasmid DNA, the DNA concentration was determined 

spectrophotometrically by using the NanoDrop
TM

1000 spectrophotometer (ThermoFisher 

Scientific). In the process, 1 µl DNA sample was applied onto the NanoDrop
TM

 pedestal, and 

the DNA concentration was analyzed at a wavelength of 260 nm, while protein concentration 

was measured at 280 nm. Purity from protein contaminations of the preparation is defined by 

the ratio O.D. 260 nm / abs 280 nm. A ratio of 1.8 marks a high purity of DNA, whereas 

lower values indicate contaminations with proteins and aromatic substances and higher ratios 

suggest contaminations with RNA.  

3.2.3 Restriction endonuclease digestion of DNA 

Restriction enzymes were applied for DNA digestion according to the goal of the cloning 

strategies. Restriction enzymes were used with the appropriate buffers as stated in the 

manufacturer‟s instructions. Digestions with two or more different restriction enzymes were 

accomplished in one step if the reaction conditions and buffers were similar or compatible. 

3.2.4 Agarose gel electrophoresis 

Digested DNA fragments were separated by electrophoresis in 1% (w/v) agarose gels. 

Ethidium bromide (100 ng/ml)-supplemented gels were run at 8-12 V/cm in 1x TAE buffer. 

6x DNA Loading Dye was added to DNA samples before their application into the gel and the 

GeneRuler
TM

 1 kb DNA ladder was applied as DNA sizing standard. For DNA visualization 

the Biometra BioDocAnalyze Live (BDAlive) workstation with UVstar UV transilluminator 

with bandpass filter (254 nm) was used. 
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3.2.5 DNA isolation from agarose gels  

Gel electrophoresis separated DNA fragments (DNA band of interest) were excised under UV 

light (254 nm) by using a scalpel. DNA purification was performed by using the PureLink
®
 

Quick Gel Extraction Kit (Invitrogen GmbH) according to the manufacturer‟s instructions. 

Purified DNA fragments were diluted in sterile H2Odd and stored at -20°C. 

3.2.6 Ligation of DNA fragments  

DNA fragments with appropriate restriction ends were ligated using the T4 DNA ligase and 

the 1x ligase buffer (Fermentas) according to the manufacturer‟s instructions. Plasmid and 

insert DNA were mixed in a molar ratio of 1:3 to yield 50-100 ng plasmid DNA in a total 

volume of 20 µl. The mixture was incubated overnight at 14°C and transformed into highly 

competent bacteria on the next day. 

3.2.7 Polymerase chain reaction (PCR) 

In most cases new DNA sequences were ordered from Integrated DNA Technologies (IDT, 

Coralville, IO, USA) as “gBlocks”, howevere, in other cases the required DNA fragment was 

amplified out of existing vectors by PCR using thermal cyclers T3000 Thermocycler 

(Biometra). 

The following reaction mix was used for the amplification:  

template DNA 50 ng to 100 ng 

upstream primer 1 µl (10 pmol) 

downstream primer 1 µl (10 pmol) 

High Fidelity Master Mix (2x) 25 µl 

sterile H2Odd ad 50 µl 

The following PCR reaction conditions were used for DNA amplification: 

PCR step Time Temperature Number of cycles 

Denaturation 240 sec 96°C 1 

Denaturation 60 sec 96°C 33 - 35 

Annealing 30 – 60 sec 45 – 65°C 33 - 35 

Elongation 30 – 150 sec 72°C 33 - 35 

Final elongation 240 – 360 sec 72°C 1 

Final hold ∞ 4°C N/A 
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Annealing time and temperature were chosen according to the sequence and the melting 

temperature of the used primer oligonucleotides. Typical annealing temperatures are 5°C 

below the lowest primer‟s melting temperature. The length of the amplified DNA fragment 

defined the elongation time (e.g. for Taq polymerase: 1 minute per 1000 base pairs). 

3.2.8 DNA sequencing 

The BigDye
®
 Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems GmbH) and a 

thermal cycler (Eppendorf) were utilized for DNA sequencing via the dideoxy chain 

termination method.  

The following reaction mixture was used: 

template DNA X µl (50-200 ng) 

BigDye sequencing buffer (5x) 2.25 µl 

sequencing primer oligonucleotides 1 µl (10 pmol) 

BigDye v3.1 0.25 µl 

sterile H2Odd ad 10 µl 

The following PCR cycler program was applied: 

PCR step Time Temperature Number of cycles 

Denaturation 60 sec 96°C 1 

Denaturation 30 sec 96°C 90 

Annealing 15 sec 50°C 90 

Elongation 240 sec 60°C 90 

Final hold ∞ 4°C N/A 

DNA sequencing was performed at the Cologne Center for Genomics (University of Cologne) 

using a 3730 DNA analyzer (Applied Biosystems). Sequencing data files were analyzed by 

using the software program ContingExpress®. 
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3.3 Working with cells 

3.3.1 General cell culture conditions 

Cell culture was carried out in laboratories of the Biosafety Levels S2 using laminar flow 

cabinets of Sicherheitsklasse II (Heraeus, Hanau, Germany). The culture conditions for the 

cells were humidified atmosphere (95-100%) with 5% or 10% (v/v) CO2 and 37°C. The 

culture media DMEM and RPMI1640 with GlutaMAX
TM

 were supplemented with 10% (v/v) 

FCS, 25 U/ml penicillin and 25 µg/ml streptomycin and 10 mM HEPES before use, and then 

stored at 4°C. Moreover, the media, additives, and solutions were autoclaved or sterile-filtered 

in advanced. Prior to application, the media and other solutions were pre-warmed up to 37°C. 

3.3.2 Passaging of adherent cells 

For passaging, the medium of adherent cells was carefully removed and the cells were washed 

once with 10 ml pre-warmed PBS. Trypsin/EDTA (1x; 2-3 ml) was added to cover the entire 

surface of the culture flask and to detach the cells from it. As followed, cells were incubated 

for 5-10 minutes at 37°C and after that 10-20 ml fresh culture medium was added to block the 

trypsin/EDTA. Finally, the cells were collected and centrifuged at 300 x g for 5 minutes, the 

supernatant was discarded and the cells were resuspended in fresh culture medium in a ratio 

of 1:5 up to 1:20 depending on the growth progress and the cell line. 

3.3.3 Passaging of suspension cells 

Suspension cells were collected and centrifuged at 300 x g for 5-10 minutes, the supernatant 

was discarded and the cells were resuspended in fresh culture medium in a ratio of 1:5 up to 

1:20 depending on the growth progress. In case of peripheral blood lymphocytes (PBLs), IL-2 

supplementation was applied in an appropriate concentration (100-250 U/ml) depending on 

the growth progress.  

3.3.4 Freezing and thawing of cells 

For long-term storage, the cells (1-5 x 10
7
) were centrifuged at 300 x g for 5-10 minutes. The 

supernatant was discarded and the cells were resuspended in 900 µl fresh medium or 900 µl 

FCS (depending on the cell line and primary cell type) and pipetted into a cryovial. Cells were 

mixed carefully with 100 µl of DMSO and the cryovials were placed in a “Mr. Frosty
TM

 

Freezing Container” (ThermoFisher Scientific) to achieve a rate of cooling close to minus 

1°C/minute. The Mr. Frosty
TM

 Freezing Container was then put into a -80°C freezer and the 

cryovial was replaced and stored in a -150°C freezer on the following day. 
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For the thawing of cells, cryotubes were taken out of the -150°C freezer. The frozen cells 

were carefully mixed with pre-warmed culture medium and immediately transferred into a 

30 ml tube and washed twice by centrifugation at 300 x g for 10 minutes to remove the cell-

toxic DMSO. In the end, the cell pellet was resuspended in fresh culture medium and stored in 

fully humidified 5% or 10% (v/v) CO2 incubator at 37°C. 

3.3.5 Determination of cell counts 

The cell count and cell viability were determined with the help of the Vi-Cell
TM

XR Cell 

Viability Analyzer (Beckman Coulter). For the measurement, the cell suspensions were 

diluted with medium or PBS 1:2 up to 1:10 (total volume of 1 ml). Alternatively, cells were 

diluted (1:1) with trypan blue to identify and exclude dead cells. Out of said mixture, 10 µl 

cell suspension was applied to a “Neubauer” counting chamber (celeromics). The average cell 

count in four squares was calculated. The number of cells (n) in one square equals to n x 

10
4
/ml divided by the dilution factor.  

3.3.6 Isolation of human peripheral blood mononuclear cells (PBMCs) 

Human PBMCs were isolated from fresh blood and buffy coats, respectively, which were 

obtained from healthy donors via the Transfusionsmedizin der Uniklinik Köln. The isolation 

was accomplished through density gradient centrifugation with the aid of the Lymphoprep
TM 

solution
 
(Axis-Shield Poc AS). The separation procedure is based on a polysaccharide 

solution with a density of 1.077 g/ml. Since mononuclear cells have a lower density than 

erythrocytes and granulocytes, they do not sediment during centrifugation. In the process first, 

blood samples were diluted with an equal volume of PBS. Then, 25 ml of the diluted blood 

was carefully layered on the top of 15 ml Lymphoprep
TM

 into a 50 ml reaction tube. The 

reaction tubes were centrifuged at 800 x g without brakes at room temperature for 25 minutes. 

After centrifugation, the accumulated lymphocytes were carefully collected into a new 

reaction tube with a pipet. The collected PBMCs were washed with PBS three times (10 

minutes at 250 x g) to remove the Lymphoprep
TM 

solution and potential serum residue. 

Afterwards, the cells were resuspended in RPMI1640 medium supplemented with 10% FCS 

(v/v), 10mM HEPES, 100 IU/mL penicillin/streptomycin, 500 IU/ml human IL-2, 50 ng/ml 

OKT3 (anti-CD3 mAb), and with or without 50 ng/ml 15E8 (anti-CD28 mAb) depending on 

the planned experiment. In the application to proliferation assay the PBMC were activated 

without 15E8. In the first 24 hours the culture flask was laid down flat in the incubator (5% 

v/v CO2) in order to separate semi-adherent monocytes from the non-adherent lymphocytes. 

After two days, the lymphocytes were collected and centrifuged at 300 x g for 10 minutes. 
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Then the pellet was resuspended in fresh RPMI1640 medium supplemented with 10% (v/v) 

FCS, 10mM HEPES, 100 IU/mL penicillin/streptomycin and 200-250 IU/ml human IL-2 

depending on the growth progress of the cells.
 

3.3.7 Transfection of HEK 293T cells 

Transfection of HEK 293T cells was carried out with the aid of the polymer-based 

transfection reagent PEIpro
®
 (Polyplus transfection) according to the manufacturer‟s 

instructions. One day before transfection, the HEK 293T cells were cultured in DME medium 

supplemented with 10% (v/v) heat inactivated (HI) FCS in a 10 cm petri dish. On the day of 

transfection, the confluency of the cells was ought to be about 70%. Construct plasmid DNA 

was mixed with helper plasmid DNA in DME medium without supplementation. PEIpro 

transfection reagent was diluted separately in DME medium without supplementation. Both 

solutions were vortexed thoroughly before being mixed together. Then the mixture was 

vortexed again and incubated for 15 minutes at room temperature. During this time, the 

supernatant of the HEK 293T cells was changed to X-vivo 15 medium supplemented with 5% 

(v/v) HI-FCS. In the end, the DNA-transfection reagent mixture was added to the cells 

dropwise, and the cells were incubated in 5% (v/v) CO2 incubator at 37°C for 16-20 hours 

(Golumba-Nagy et al., 2017). 

The following transfection scheme was used: 

Culture 

vessel 

Number 

of HEK 

293T 

cells 

Total 

volume 

of 

Medium 

Amount 

of DNA 

added* 

Volume 

of 

Medium 

for DNA 

Volume 

of 

PEIpro
®
 

reagent 

Volume 

of 

Medium 

for 

PEIpro 

Volume 

of 

mixture 

added to 

the cells 

10 cm 

petri 

dish 

3x10
6
 10 ml 20 µg 250 µl

 
20 µl 250 µl 500 µl 

*whole DNA amount consists of: 6 µg DNA of a helper plasmid encoding the -retroviral gag/pol (e.g., pHIT), 

6 µg DNA of the helper plasmid encoding the GALV envelope protein and 8 µg plasmid DNA encoding the 

CAR. 

3.3.8  Retroviral transduction of human T cells 

Virus supernatant was produced by retroviral transfection, which was collected 16-20 hours 

after transfection. Fresh medium (10 ml X-vivo 15 medium with 5% (v/v) HI-FCS) was added 

to the transfected HEK 293T cells for a second harvest the day after. Half of the amount of the 

supernatant (5 ml) was used to coat two wells of a 6 well plate or a T25 cell culture flask, 

which had been coated with poly-D-lysine (PDL, 10 µg/ml in 2 ml sterile distilled H2O) 24 
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hours in advance. The cell culture plate or flask with the virus supernatant was centrifuged at 

2600 x g for 30 minutes at 32°C. Two days after PBLs isolation 5 x 10
6
 cells were 

resuspended in the remaining 5 ml virus supernatant, which had been supplemented with 150 

U/ml IL-2. After the first centrifugation step, the virus supernatant was removed and 

exchanged for the T cell-virus supernatant suspension and centrifuged at 1600 x g and 32°C 

for 90 minutes. At the end, the cells were incubated for 24 hours at 37°C in a 5% (v/v) CO2 

incubator. On the next day, the whole procedure was repeated once more with the newly 

produced and harvested virus supernatant, however, without the addition of IL-2 (Golumba-

Nagy et al., 2017).  

3.3.9 Fluorescence-activated cell sorting (FACS) 

For the purpose of determining the presence of cell surface receptors such as a CAR receptor, 

other cell surface molecules, and intracellular components, the cells were stained with a 

fluorochrome-conjugated antibody for Flow Cytometry analysis. Transfected or transduced 

cells were prepared as a single-cell suspension to the staining procedure. 

3.3.9.1 Direct Immunofluorescence 

Transfected or transduced cells an amount of 5 x 10
5
 cells were used for FACS staining. The 

labeling was prepared in a 5 ml BD Falcon
TM

 tube (BD Biosciences). The single cell 

suspension was washed with 2 ml PBS twice, the supernatant was discarded and the cell pellet 

was resuspended in 100 µl PBS. For staining the appropriate fluorochrome-conjugated 

antibody was used according to the manufacturer‟s instructions. In general, the cells were 

incubated with the fluorochrome-conjugated antibody for 30 minutes at 4°C or on ice in the 

dark. In the end, the cells were washed with 2 ml PBS twice. Then the cell pellet was 

resuspended in 200-400 µl PBS. CAR detection was carried out by the PE-conjugated Goat 

F(ab´)2 anti-human IgG antibody, while for T cell labeling the FITC-conjugated anti-human 

CD3 antibody was used. Data were recorded using the BD FACS Canto II cytofluorometer 

equipped with the FACS Diva software (Becton Dickinson) and the data were analyzed using 

the FlowJo v10 software (FlowJo LLC). 
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3.3.9.2 Intracellular staining 

Detection of pLCK:  

For the detection of pLCK, 5 x 10
5
 CAR-modified T cells were stimulated with the cognate 

immobilized BW2064/36 antibody through the anti-CEA CAR for 5 minutes before the cells 

were harvested into 5 ml BD Falcon
TM

 tubes. For the fixation and permeabilization of the 

cells, the “Intrasure Kit” was used. Reagent A was used for fixation (5 minutes in the dark at 

room temperature), while Reagent B was used together with the PE-conjugated 

anti-phosphoLCK antibody (5 µl) for the permeabilization and staining of the cells. The cells 

were incubated in the dark at room temperature for 30 minutes, and then washed with 2 ml 

PBS at 800 x g for 5 minutes. The cell pellet was resuspended in 200 µl PBS for the FACS 

analysis. 

Detection of Granzyme B:  

The CAR modified T cells (5 x 10
4
 CAR

+
 T cells pro well) were stimulated on BW2064/36 

coated plates over 2 days in the presence or absence of TGF-. After 2 days, the cells were 

harvested into 5 ml BD Falcon
TM

 tubes and then fixated and permeabilized using the 

“Cytofix/Cytoperm” Kit. Firstly, the cells were washed twice with 1 ml PBS supplemented 

with 1% (v/v) HI-FCS (staining buffer), then resuspended in 250 µl Fix/Perm solution, 

vortexed and incubated at 4°C for 20 minutes. Afterwards, cells were washed twice with 1 ml 

1X Perm/Wash buffer, resuspended in 50 µl Perm/Wash buffer with 20 µl FITC-conjugated 

Granzyme B antibodies, and incubated at 4°C in the dark for 30 minutes. Before FACS 

analysis, the cells were washed twice with 1 ml 1X Perm/Wash buffer and resuspended 

100-200 µl staining buffer. 

Detection of pSTAT5:  

For the detection of pSTAT5, 5 x 10
5
 CAR-modified T cells were stimulated with the cognate 

immobilized BW2064/36 antibody through the CAR for 30 minutes or 16 hours. After the 

activation the cells were harvested into 5 ml BD Falcon
TM

 tubes, fixated at room temperature 

in the dark for 30 minutes using “IC Fixation Buffer”. The permeabilization was performed 

with 1 ml ice-cold methanol (99,9%) and on ice for 30 minutes. Afterwards, the cells were 

washed twice with 1 ml staining buffer and stained with the PE-conjugated 

anti-phosphoSTAT5 antibody (5 µl) in 100 µl staining buffer. Before FACS analysis, the cells 

were washed twice with 1 ml staining buffer and resuspended in 100-200 µl staining buffer. 
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All data were recorded by using the BD FACS Canto II cytofluorometer equipped with the 

FACS Diva software (Becton Dickinson) and the data were analyzed using the FlowJo v10 

software (FlowJo LLC). 

3.3.10 5-carboxylfluorescein diacetate succinimidyl ester (CFSE)-labeling of cells 

In order to track CAR-engineered T cell proliferation, the cells were stained with CFSE. First, 

5-10 x 10
6
 cells were washed twice with 10 ml PBS to remove any serum or medium and 

were resuspended in 1 ml PBS. The staining was performed with 0.5 μM CFSE at room 

temperature in the dark for 10 minutes. The labeling was stopped by the addition of 5 ml cold 

RPMI1640 medium supplemented with 10% (v/v) FCS and the cells were then incubated on 

ice for 5 minutes. The cells were washed twice with 10 ml PBS at 300 x g for 5 minutes and 

the cell count was determined in order to prepare to the proliferation assay. 

3.3.11 Staining of apoptotic and living cells 

In order to detect the apoptotic and non-living cells in the CAR-modified T cell population, 

the cells were stained with AnnexinV to label the apoptotic cells and with 7-AAD to be able 

to exclude dead cells. The modified T cells (2.5 x 10
4 

CAR
+
 T cells) were activated for 2 days 

on plates coated with BW2064/36 antibody for CAR stimulation. After the incubation time 

the cells were harvested into 5 ml BD Falcon
TM

 tubes and washed with AnnexinV buffer 

(1X). The staining was performed with an APC-conjugated AnnexinV antibody together with 

a PE-conjugated anti-IgG antibody for CAR labeling in 100 μl 1X AnnexinV buffer and the 

cells were incubated on ice in the dark for 30 minutes. Finally, the cells were washed twice 

with 1 ml 1X AnnexinV buffer and resuspended in 200 μl AnnexinV buffer. Before flow 

cytometry (~10 minutes earlier) 7-AAD (5 μl) was added to the cells.   
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3.4 Assays 

3.4.1 Cultivation of CAR-engineered T cells on solid-phase-bound antibodies 

Sterile cell culture 96 well round-bottom microtiter plates (TPP® Techno Plastic Products 

AG) were coated with antibodies (50 µl/well in PBS) t at 4°C overnigh or at 37°C for at least 

2 hours before assay start. CAR-modified T cells were cultivated without any stimulation for 

24-48 hours after transduction. CAR expression on the T cell surface was verified by flow 

cytometry and the same number of CAR-expressing T cells was adjusted for the assay. The 

cells were washed with cell culture medium and 2.5 x 10
4
 cells/well were cultivated/activated 

with solid-phase bound antibodies at 37°C in 5% (v/v) CO2 in a total volume of 200 µl for 48-

96 hours in the presence or absence of TGF-or other cytokines. After stimulation, 100-

150 µl of culture supernatant were carefully harvested and the cells and the supernatant were 

used for further experiments. 

3.4.2 Co-cultivation of CAR-engineered T cells with target cells 

Before the co-cultivation experiments, the CAR-engineered T cells were cultivated without 

stimulation for 24-48 hours. The number of CAR-expressing T cells was verified by flow 

cytometry and the appropriate number of CAR T cells was co-cultivated with antigen positive 

target cells in different effector-to-target cell ratios in 96 well round-bottom microtiter plates 

(TPP® Techno Plastic Products AG) with or without the presence of TGF- or other 

cytokines at 37°C and 5% (v/v) CO2 in a total volume of 200 µl for 48 hours. An aliquot of 

100 µl of culture supernatant was carefully harvested for further experiments and the viability 

of target cells was determined by an XTT-based cell viability assay. 

3.4.3 Proliferation assay 

Amplification of CAR modified T cells was followed through the CFSE labeled cell dividing. 

CFSE is a fluorescent dye, which can be incorporated within cells for a long term. During cell 

division only half of the dye is transferred to each daughter cell. Thereby, a CFSE dilution is 

developed over the time in order to track proliferation. For this assay, CAR-engineered T cells 

were cultivated without stimulation for 24-48 hours at 37°C after the transduction. Then, they 

were stained with CFSE as described in section 3.3.10. The CAR-modified and CFSE labeled 

cells (2.5 x 10
4
 cells/well) were transferred to a pre-coted 96 well round-bottom plates and 

were incubated with or without TGF- or other cytokines in a total volume of 200 µl. The 

cells were stimulated with an appropriate antibody for CAR stimulation at 37°C for 48-96 

hours. Tests were prepared in triplicates. After incubation, 100-150 µl of cell culture 
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supernatant were collected for further experiments and the CFSE-labeled cells were stained 

on the plate for the CAR receptor with the PE-conjugated Goat F(ab´)2 anti-human IgG 

antibody then analyzed using the BD FACS Canto II cytofluorometer equipped with the 

FACS Diva software (Becton Dickinson) and the data were analyzed using the FlowJo v10 

software (FlowJo LLC). 

3.4.4 Enzyme-linked Immunosorbent Assay (ELISA)  

MaxiSorp
TM

 microtitre plates (Nunc GmbH) were coated with capture antibodies (50 µl/well 

in coating buffer) at room temperature for 2 hours. The plates were blocked with 1% (w/v) 

BSA dissolved in PBS (200 µl/well) for 2 hours at room temperature to prevent unspecific 

binding, before being washed three times with PBS-T (200 µl/well). Afterwards, the plates 

were incubated with supernatants (50 µl/well) and with standard samples (100 µl/well) 

overnight at 4°C on a shaker and then washed four times with PBS-T on the following day. 

Incubation with biotinylated detection antibodies for 1 hour followed in 1% (w/v) BSA in 

PBS-T (50 µl/well) at room temperature and then the plates were washed four times with 

PBS-T. Bound detection antibodies were conjugated to Streptavidin-POD for 30 minutes 

(1:10,000 in 1% (w/v) BSA in PBS-T, 50 µl/well). As next that followed the last washing step 

with PBS-T (five times) thereafter came the visualization of bound proteins by incubation 

with ABTS (1 mg/ml in ABTS buffer, 100 µl/well) and detection in an ELISA plate reader 

(Multiskan Go Microplate Spectrophotometer, SkanIt Software, ThermoFisher Scientific) at 

405 nm and with 490 nm set as reference. In the end, the concentration of bound proteins was 

calculated according to the absorption curve of a standard sequence with known 

concentration. The tests were prepared in triplicates. 

The following ELISA setups were used: 

 IFN- ELISA IL-2 ELISA IL-7 ELISA IL-15 ELISA 

Capture Ab 
1 µg/ml mouse 

anti-human IFN-

γ 

1 µg/ml mouse 

anti-human IL-2 

1.6 µg/ml goat 

anti-mouse IL-7 

2 µg/ml mouse 

anti-human IL-

15 
Detection Ab 

0.5 µg/ml biotin 

mouse anti-

human IFN-γ 

1 µg/ml biotin 

mouse anti-

human IL-2 

0.4 µg/ml biotin 

goat anti-mouse 

IL-7 

0.5 µg/ml biotin 

mouse anti-

human IL-15 

Standard 

1:10,000 of 

stock solution 

Imukin® equals 

20 ng/ml IFN-γ 

in 1% (w/v) 

BSA in PBS-T 

1:900 of stock 

solution 

Proleukin® 

equals 2000 

U/ml IL-2 in 1% 

(w/v) BSA in 

PBS-T 

1:60 of stock 

solution 

DuoSet® 

ELSIA equals 2 

µg/ml IL-7 in 

1% (w/v) BSA 

in PBS-T 

1:95 of stock 

solution 

DuoSet® 

ELSIA equals 1 

µg/ml IL-15 in 

1% (w/v) BSA 

in PBS-T 
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3.4.5 XTT-based cell viability assay 

CAR-engineered T cell-mediated specific cytotoxicity was monitored via an XTT-based cell 

viability assay. The assay was described earlier (Jost et al., 1992). The tetrazolium salt XTT is 

reduced to formazan by metabolically active cells. The dye intensity of formazan is 

measurable with a spectrophotometer and proportional to the number of metabolically active 

cells. For this assay, CAR-modified T cells were co-cultivated in increasing numbers with 

antigen positive target cells in a total volume of 200 µl in 96-well round-bottom plates (TPP® 

Techno Plastic Products AG) in the presence or absence of TGF- or other cytokines. After 

48 hours of co-cultivation at 37°C, 100 µl of culture supernatant were carefully collected from 

each well for further experiments. The visualization of the target cell viability was performed 

by adding 100 µl XTT reagent solution and 1 µl electron coupling reagent solution (PMS) to 

each well. Then, the plates were incubated again at 37°C and the absorption was detected 

using an ELISA plate reader (Multiskan Go Microplate Spectrophotometer, SkanIt Software, 

ThermoFisher Scientific) at 450 nm and with 650 nm set as reference every half an hour until 

no more change was visible. Maximal reduction of XTT was determined as
 
the mean of 

twelve wells containing target cells only, and the background
 
as the mean of twelve wells 

containing only medium. Non-specific formation of formazan due to
 
the presence of T cells 

was determined from three
 
wells containing only T cells in the same number as in the

 

corresponding co-culture wells. 

Viability of target cells was calculated as follows: 

viability [%] =  [(ODE+T – ODE) / (ODT – ODMed)] x 100 

The cytotoxicity was calculated as follows: 

cytotoxicity [%] = 100 – viability [%] 

(E = effector cell; T = target cell; Med = medium; OD = optical density) 

3.4.6 Serial killing 

CAR-modified T cell-mediated specific cytotoxicity in a serial killing setup was performed in 

the same manner as described in section 3.4.5. After 48 hours co-cultivation, cells from the 

parallel assay were centrifuged while still on the plate. Then, the supernatant was removed 

and fresh target cells were added to each well in the same number as at the beginning of the 

experiments for a second 48 hour incubation in a total volume of 200 µl. The same procedure 

was repeated until day 6. The cytotoxicity of each test was calculated as described in section 

3.4.5. 
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3.5 Mouse experiments 

Rag2
-/-
c

-/-
 mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). All 

animal experiments were performed according to the Animal Experiments Committee 

regulations and approved by the Landesamt für Natur, Umwelt und Verbraucherschutz, 

Recklinghausen, Germany (K17/35-05).  

3.5.1 Assay for tumor growth 

CEA
+
 TGF- secreting C15A3 tumor cells were subcutaneously injected into Rag2

-/-
c

-/-
 mice 

(1 x 10
6
 tumor cells per mouse; 4 mice per group). At day 16, when the tumor size had 

reached about 200 mm
3
,
 
CAR-engineered or non-modified human T cells were injected into 

the mice intravenously (1.5 x 10
6

 CAR T cells per mouse). The mice were divided for 4 

groups, the first group did not get any T cells (w/o T cell), the second group were infused with 

T cells without CAR (w/o CAR), while the third and fourth groups were treated with 

CAR-modified T cells (3th group: CD28LCK-, 4th group: CD28LCK--IL7-IL7/IL2R). 

Tumor growth was measured on weakly basis after CAR T cell injection. After 2 weeks, the 

mice were sacrificed and the tumors were removed for immune-histological analysis. 

3.5.2 Immune-histological analysis  

The whole procedure was performed in a humid environment to protect the tumors from 

drying out and at room temperature and on shaker if it not stated otherwise. 

In order to prepare tumor section from the tumor tissue samples, the samples were first 

embedded in TissueTek to freeze them. Afterwards, the tumor sections were prepared with the 

help of Kryotom (Leica) and transferred to microscope slide (engelbrecht) to perform 

immune-histological staining. After the tumor sections had dried out on the slide, were fixated 

with ice-cold acetone for 5 minutes at room temperature and were then washed twice with 

PBS for 5 minutes. As next step, „Fc Block” and „Background Buster” (Innovex biosciences) 

treatments followed to avoid unspecific binding, which took 30 minutes each. For CAR
+
 T 

cell detection AlexaFluor555-conjugated Goat F(ab´)2 anti-human IgG antibodies (dilution 

1:250) were used overnight at 4°C. The next day, the slides were washed with PBS three 

times for 5 minutes and then treated with Background Buster for 30 minutes. In the following 

2 hours, the tumor cells were stained with AlexaFluor 488-conjugated anti-human CD66/a/c/e 

(anti-CEA antibody; clone: ASL-32; dilution 1:50). The slides were washed with PBS three 

times for 5 minutes and the cell nuclei were labeled with “Reddot2 nuclear dye” (dilution 

1:200) for 30 minutes. The prepared slides were covered with a mounting medium and a 
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cover glass. For the TGF- staining the anti-TGF- antibody (mouse monoclonal IgG1, clone 

3C11; dilution 1:50) was applied overnight at 4°C. Then on the next day, the AlexaFluor555-

conjugated goat anti-mouse IgG (H+L) antibody (dilution 1:200) was used. In this case, the 

cell nuclei were labeled with DAPI in the mounting medium. For imaging the Olympus IX81 

microscope and the Olympus Fluoview (FV1000) software (Olympus, Center Valley, PA, 

USA) were applied. 
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The results are in part demonstrated in the publication of Golumba-Nagy et al., 2018 

Golumba-Nagy V, Kuehle J, Hombach AA, Abken H (2018) CD28-δ CAR T Cells Resist 

TGF-β Repression through IL-2 Signaling, Which Can Be Mimicked by an Engineered IL-7 

Autocrine Loop. Mol Ther. 5;26(9):2218-2230 
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4 RESULTS 

4.1 Identifying the mechanism of TGF--mediated resistance of CD28- CAR T cells 

 CD3 CAR-modified T cells are sensitive to the suppressive effect of TGF-

In this study we aimed to investigate the impact of CAR signaling on TGF--mediated 

repression of T cell function with respect to T cell amplification, cytokine release, and 

specific cytotoxicity.  

4.1.1.1  T cell amplification by CD3 CAR T cells is repressed by TGF-  

Human T cells were modified with a CEA-specific CAR, including a CD3 () endodomain, 

and analysed with respect to the TGF--mediated suppression of CAR T cell amplification. In 

the cause of this, we labeled the CAR T cells with CFSE, stimulated the cells through 

immobilized antigen in the presence of TGF-, and thereby determined the T cell 

proliferation. The successful CFSE labeling of the remaining population was verified after 

one day using flow cytometry (Figure 4). 
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Figure 4 CFSE labeling of CAR modified T cells 

Human T cells were modified by the CEA specific CD3 CAR () and labeled with CFSE to track the 

proliferation of the cells. One day after the CFSE staining, the remaining cells without stimulation were 

analyzed by flow cytometry to verify the successful labeling. CAR receptors were stained with the PE-

conjugated anti-IgG antibody, which binds to the CAR in the extracellular IgG1 spacer region. The percentage 

represents the cell number in each quadrat, w/o means T cells without CAR. 
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 T cells were activated for 4 days by CAR engagement through the immobilized BW2064/36 

antibody, which is an anti-idiotypic antibody for the anti-CEA scFv of the CAR. The 

amplification of the CAR T cells was determined by analyzing the CFSE dilution over the 

time via flow cytometry. We saw, that  CAR T cell proliferation was inhibited in the 

presence of TGF- (Figure 5).  

4.1.1.2 TGF- decreased CAR T cell IFN- and IL-2 secretion   

To analyze cytokine production the modified T cells with  CAR were activated through the 

immobilized BW2064/36 antibody for 2 days and the accumulated IFN-and IL-2 

Figure 5 T cell amplification by CD3 CAR T cells is repressed by TGF-  

(A) Human T cells were modified by the  CAR and labeled with CFSE. CAR engineered T cells (2.5 x 10
4
 T 

cells per well) were incubated on 96-well plates coated with the anti-idiotypic mAb BW2064/36 (1.5 µg/ml) in 

the presence or absence of TGF- (10 ng/ml) for 4 days. CFSE dilution was recorded by flow cytometry to 

identify CAR T cell amplification, CAR receptor were stained with the PE-conjugated anti-IgG antibody which 

binds to the CAR in the extracellular IgG1 spacer region. The percentage represents the cell number in each 

quadrat. The histogram shows the CAR
+
, CFSE labeled cells, w/o means without cytokine. (B) The data 

represented on the diagram are the proliferated CAR
+
 T cells on the 4

th
 day, comparing the incubation with or 

without TGF-. The assay were repeated three times, data are demonstrated by a representative assay and the 

mean of triplicates ± standard deviation (S.D.) is shown, w/o means T cells without CAR. Statistical analyses 

were executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). The diagram B was 

adapted from the publication of Golumba-Nagy et al., 2018. 
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concentrations were measured in the cell culture supernatant by ELISA. The release of both 

cytokines was repressed in the presence of TGF-, however, the  CAR T cells did not 

produce a significant amount of IFN- and IL-2 (Figure 6).  

4.1.1.3 TGF- altered the specific cytotoxicity of  CAR T cells  

To record the specific cytotoxicity of CAR T cells in the presence of TGF-, T cells were 

engineered with the CAR and co-incubated with CEA
+
 LS174T tumor cells in the presence or 

absence of TGF- for 2 days. The cytotoxic activity was determined by the XTT-based 

viability assay. The CAR-modified T cell-mediated tumor cell killing was altered in the 

presence of TGF- (Figure 7).  

Taken together, the most profound effect of TGF- on CAR T cell effector functions was on 

the CAR T cell amplification. We therefore used T cell proliferation as a marker to record the 

activity of various costimuli against TGF- repression.  

Figure 6 TGF- decreased CAR T cell IFN- and IL-2 secretion 

CAR T cells with a  signaling domain were incubated for 2 days on plates (2.5 x 10
4 

CAR
 
T cells pro well) 

coated with the anti-idiotypic mAb BW2064/36 or mouse IgG1 as isotype control (1.5 µg/ml each). The 

modified T cells were incubated in the presence or absence of TGF- (10 ng/ml). Secreted IFN- and IL-2 

concentration were measured in the cell culture supernatants with ELISA. The assays were repeated three times; 

the data demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown, 

w/o means T cells without CAR, served as control. The diagrams were adapted from the publication of 

Golumba-Nagy et al., 2018. 
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4.1.2 Adding a costimulatory domain can compensate the suppressive effect of TGF- 

Costimulation by CD28 or 4-1BB makes T cell functions more effective; therefore, we 

investigated T cell functions initiated by the second generation CAR in the presence of 

TGF-β. 

4.1.2.1 CD28 overcomes the inhibitory effect of TGF- on T cell proliferation, while 

4-1BB does not 

Human T cells were engineered with either a CAR with a 4-1BB- or a CAR with a CD28- 

endodomain, and in order to record T cell proliferation, the cells were stained with CFSE and 

stimulated through the CAR using immobilized antigen. One day after the CFSE staining, the 

successful labeling was verified by flow cytometry (Figure 8).  
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Figure 7 TGF- altered the specific cytotoxicity of  CAR T cells  

T cells with or without CAR (0.125 x 10
4 
– 4 x 10

4
 CAR T cells per well) were incubated in the presence or 

absence of TGF- (10 ng/ml) with CEA
+
 LS174T cells (2 x 10

4
 tumor cells per well). The specific cytotoxicity 

was determined by the XTT-based viability assay after 2 days. The assays were repeated three times, the data 

demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown, w/o means 

without cytokine. These diagrams were taken from the publication of Golumba-Nagy et al., 2018. 
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After 4 days of activation the proliferative activity was analyzed by determination of the 

CFSE dilution. While the proliferation of CD28- CAR T cells was not inhibited in the 

presence of TGF-, it was suppressed in the absence of CD28 (Figure 5) as well as in the 

presence of the 4-1BB costimulatory domain (Figure 9). Consequently, the CD28 domain, but 

not 4-1BB, has a protective role in T cell proliferation in the presence of suppressive TGF-. 
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Figure 8 CFSE labeling of CAR modified T cells 

Human T cells were modified by CAR with different costimulatory domains (CD28 or 4-1BB), and labeled 

with CFSE to track the proliferation of the cells. One day after the CFSE staining, the remaining cells without 

stimulation were analyzed by flow cytometry to verify the successful labeling. CAR receptors were stained with 

the PE-conjugated anti-IgG antibody which binds to the CAR in the extracellular IgG1 spacer region. The 

percentage represents the cell number in each quadrat, w/o means T cells without CAR. 
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Figure 9 CD28 overcomes the inhibitory effect of TGF- on T cell proliferation, while 4-1BB does not 

(A) Human T cells were modified by the CD28- or 4-1BB- CAR and labeled with CFSE. CAR engineered T 

cells (2.5 x 10
4
 T cells per well) were incubated on 96-well plates coated with the anti-idiotypic mAb 

BW2064/36 (1.5 µg/ml) in the presence or absence of TGF- (10 ng/ml) for 4 days. CFSE dilution was 

recorded by flow cytometry to identify CAR T cell amplification, CAR receptor were stained with the PE-

conjugated anti-IgG antibody which binds to the CAR in the extracellular IgG1 spacer region. The percentage 

represents the cell number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells, w/o means 

without cytokine. (B) The data represented on the diagram are the proliferated CAR
+
 T cells on the 4

th
 day, 

comparing the incubation with or without TGF-. The assay were repeated three times, data are demonstrated 

by a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown. Statistical analyses 

were executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). The diagram B was 

adapted from the publication of Golumba-Nagy et al., 2018. 
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4.1.2.2 TGF- decreased CAR T cell IFN- and IL-2 secretion  

CAR T cells were activated through antigen engagement for 2 days. In the cause of this, the 

immobilised antibody BW2064/36 served as the antigen. The concentration of IFN- and IL-2 

released by CAR-modified T cells was measured by ELISA. Release of both cytokines was 

inhibited by TGF- in the case of CD28- and 4-1BB- CAR-modified T cells (Figure 10). 

4.1.2.3 CAR T cell-mediated specific cytotoxicity is not inhibited in the presence of TGF- 

To investigate the antigen specific killing of tumor cells, CAR-modified T cells were co-

incubated with the CEA
+
 LS174T tumor cells for 2 days in the presence or absence of TGF-. 

Cytolytic activity of 4-1BB- CAR engineered T cells was altered by TGF-, while it had not 

significant effect on CD28- CAR T cell-mediated tumor cell killing (Figure 11).  

In conclusion, TGF- significantly suppresses T cell proliferation and 4-1BB costimulation is 

not capable of overcoming TGF- suppression. However, in the presence of CD28 

costimulation, T cells become resistant against TGF-. 

 

Figure 10 TGF- decreased CAR T cell IFN- and IL-2 secretion 

CAR T cells with different costimulatory domain were incubated on plates (2.5 x 10
4 

CAR
 
T cells pro well) 

coated with the anti-idiotypic mAb BW2064/36 or mouse IgG1 as isotype control (1.5 µg/ml each) for 2 days. 

The modified T cells were incubated in the presence or absence of TGF- (10 ng/ml). Secreted IFN- and IL-2 

concentration were measured in the cell culture supernatants with ELISA. The assays were repeated three times, 

the data demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown, w/o 

means T cells without CAR, served as control. The diagrams were adapted from the publication of Golumba-

Nagy et al., 2018. 
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4.1.3 Mutation in the CD28 domain abolishes some T cells function 

To identify the responsible CD28 function responsible for the mediation of the TGF- 

resistance in T cell proliferation, we dissected the major signaling moieties of CD28 by 

deletion of the binding motifs for LCK, PI3K, or both. 

4.1.3.1 Amino acid sequence of the wild type CD28 costimulatory domain and mutated 

variants 

To abolish LCK binding we introduced point mutations in the respective CD28 domain by the 

substitution of the prolins P187 and P190 by alanin (A). The PI3K binding site was eliminated 

by replacing tyrosin Y170 by phenylalanin (F) (Tai et al., 2005) (Figure 12). 
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Figure 11 CAR T cell-mediated specific cytotoxicity is not inhibited in the presence of TGF- 

T cells with or without CAR (0.125 x 10
4 
– 4 x 10

4
 CAR T cells per well) were incubated in the presence or 

absence of TGF- (10 ng/ml) with CEA
+
 LS174T cells (2 x 10

4
 tumor cells per well). The specific cytotoxicity 

was determined by the XTT-based viability assay after 2 days. The assays were repeated three times, the data 

demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown, w/o means 

without cytokine. These figures were taken from the publication of Golumba-Nagy et al., 2018. 

CD28 wt …NSRRNRLLQSDYMNMTPRRPGLTRKPYQPYAPARDFAAYRP… 

…NSRRNRLLQSDFMNMTPRRPGLTRKPYQPYAPARDFAAYRP…  CD28PI3K 

…NSRRNRLLQSDYMNMTPRRPGLTRKPYQ AYAAARDFAAYRP… CD28LCK 

…NSRRNRLLQSDFMNMTPRRPGLTRKPYQ AYAAARDFAAYRP…  CD28LCKPI3K  

Figure 12 Amino acid sequence of the wild type CD28 costimulatory domain and mutated variants 

Mutation in CD28 domain was performed by substitution of Prolin (P187 and P190) by alanin (A) to destroy the 

LCK binding as well as tyrosin (Y170) was replaced by phenylalanin (F) to eliminate the PI3K binding side. 

The figure was taken from the publication of Golumba-Nagy et al., 2018. 
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4.1.3.2 Deletion of the LCK binding site results in a decreased phosphorylation of LCK 

To verify that the mutation at the LCK binding motif of CD28 impaired LCK signaling, we 

recorded LCK phosphorylation upon activation. T cells were transduced with the wild type 

CD28 CAR or with the mutated CD28LCK CAR and activated through the CAR by 

incubation with immobilized antigen for 5 minutes; the phospho-LCK was stained 

intracellularly and recorded via flow cytometry. T cells with the CD28LCK- CAR showed 

abolished LCK phosphorylation compared to T cells with the CD28- CAR. T cells without 

CAR were used as control and displayed background phosphorylation compared to CAR 

bearing T cells (Figure 13). 

 Deletion in the LCK binding site selectively abolishes the release of IL-2, but not of 

IFN-

We investigated the IL-2 and IFN- secretion of engineered T cells after CAR stimulation. 

The cells were activated through the CAR on plates coated with the cognate BW2064/36 

antigen. After 2 days of incubation, IL-2 and IFN- were measured in the culture supernatant. 

The CD28LCK- CAR-modified T cells were deficient in IL-2 release, while IL-2 secretion 

was not impaired in the case of CAR T cells harboring the mutation in the PI3K binding 

domain. On the other hand, CAR induced IFN- production was not altered in either case, 

indicating that the mutations in the CD28 domain did not impact all T cell functions (Figure 

14). 
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Figure 13 Deletion in LCK binding site results in a decreased phosphorylation of LCK  

Upon CAR signaling LCK is less phosphorylated with mutation of the LCK binding side. T cells with the 

CD28- or the CD28LCK- CAR (1 x 10
6
 T cells per well) were incubated on BW2064/36 coated 96-well 

plates (1.5 µg/ml) for 5 minutes, then collected, fixated, permeabilized and stained with the PE-conjugated anti-

phospho-LCK antibody. The cells were analyzed by flow cytometric measurement. On the histogram, the 

number of pLCK stained positive cells is shown, w/o means T cells without CAR, served as control. The figures 

were taken from the publication of Golumba-Nagy et al., 2018. 
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4.1.3.4 T cell proliferation is inhibited by TGF- in the presence of the mutation in the 

LCK binding moiety of CD28 

In order to address which CD28 domain is required for TGF- resistance we engineered T 

cells with the wild-type CAR, the CAR with a LCK mutation, or a PI3K mutation, or both, 

respectively, and the T cell amplification was recorded by CSFE dilution. Successful CFSE 

labeling of the remaining population was verified one day after staining by flow cytometry 

(Figure 15).  
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Figure 14 Deletion in the LCK binding site selectively abolishes the release of IL-2, but not of IFN- 

T cells with or without CAR were incubated on 96 well plates (2.5 x 10
4 
CAR T cells pro well) coated with anti-

idiotypic mAb BW2064/36 or mouse IgG1 (1.5 µg/ml each) as an isotype control for 2 days. Secreted IFN- 

and IL-2 concentration were recorded in culture supernatants with ELISA. The assays were repeated three 

times, the data demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is 

shown, w/o means T cells without CAR, served as control. These diagrams were adapted from the publication 

of Golumba-Nagy et al., 2018. 
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The modified and CFSE-labeled T cells were incubated for 4 days on plates coated with the 

cognate BW2064/36 antigen with or without TGF-. LCK mutation altered the proliferative 

ability of CD28LCK- CAR T cells, whereas PI3K mutation had no effect on T cell 

amplification in the presence of TGF-. Furthermore, TGF- significantly decreased the 

proliferation of LCK mutated CAR T cells (Figure 16). Mutations in the LCK binding site 

within the CD28 domain convert CAR T cells sensitive to TGF- repression. 
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Figure 15 CFSE labeling of CAR modified T cells 

Human T cells were modified by CAR with different signaling domain, and labeled with CFSE to track the 

proliferation of the cells. One day after the CFSE staining, the remaining cells without stimulation were 

analyzed by flow cytometry to verify the successful labeling. CAR receptors were stained with the PE-

conjugated anti-IgG antibody which binds to the CAR in the extracellular IgG1 spacer region. The percentage 

represents the cell number in each quadrat, w/o means T cells without CAR. 
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Figure 16 T cell proliferation is inhibited by TGF- in the presence of the mutation in the LCK binding 

moiety of CD28 

(A) T cells were modified with the respective CAR, labeled with CFSE and incubated on 96-well plates (2.5 x 

10
4
 T cells per well) coated with anti-idiotypic mAb BW2064/36 (1.5 µg/ml) in the presence or absence of 

TGF- (10 ng/ml) for 4 days. T cell amplification was measured by flow cytometric recording of CSFE 

dilution, CAR receptors were stained with the PE-conjugated anti-IgG antibody.The percentage represents the 

cell number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells, w/o means without cytokine. 

(B) The data represented on the diagram are the proliferated CAR
+
 T cells, comparing the incubation with or 

without TGF-(C) Data were transformed to present the loss or gain in CAR T cell proliferation in the 

presence of TGF-; [number of proliferating cells without TGF- – number of proliferating cells in the presence 

of TGF- / proliferating cells without TGF-] x 100. The assays were repeated three times, the data 

demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown. Statistical 

analyses were executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). Diagrams B 

and C were adapted from the publication of Golumba-Nagy et al., 2018. 
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Moreover, not only T cell proliferation, but also their specific cytotoxicity was inhibited by 

TGF- in the presence of the CD28 LCK mutations. The modified T cells were co-incubated 

with the CEA
+
 LS174T tumor cells for 2 days. On the second day the specific cytotoxicity 

was measured by XXT-based viability assay. The cytolytic activity by CD28LCK- CAR 

transduced T cells was suppressed in the presence of TGF-, compared to the wild type 

receptor (Figure 17). 

Taken together, CD28 costimulation is crucial to provide resistance against TGF-. CD28-

mediated LCK activation, and not PI3K activation, is required for this compensatory effect. 

 Administration of IL-2 restores the original state of T cell proliferation in the 

presence of mutations in the LCK binding site and TGF-

The binding site mutations in the LCK motif abolished IL-2 secretion and consequently IL-2-

driven autocrine T cell proliferation was inhibited. To exclude that other LCK dependent 

functions are responsible for resistance to TGF-, we added back IL-2 to the modified 

CD28LCK- CAR T cells through administration into the culture supernatant or restored 

IL-2 production independently of LCK through transgenic expression and investigated the T 

cell functions in the presence of TGF-. 
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Figure 17 TGF- inhibits the specific cytotoxicity in the presence of the mutation in the LCK binding 

moiety 

T cells with or without CAR (0.125 x 10
4 
– 4 x 10

4
 CAR T cells per well) were incubated in the presence or 

absence of TGF- (10 ng/ml) with CEA
+
 LS174T cells (2 x 10

4
 tumor cells per well). The specific cytotoxicity 

was determined by the XTT-based viability assay after 2 days. The assays were repeated three times, the data 

demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown, w/o means 

without cytokines, served as control. These figures were taken from the publication of Golumba-Nagy et al., 

2018. 
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 Restitution of IL-2 overcomes the suppressive effect of TGF-

In the first experiment, the amplification of modified T cells was measured in the presence 

and absence of TGF- with or without added IL-2. T cells were stained with CFSE after 

transduction with the CD28LCK- CAR and stimulated by the immobilized BW2064/36 

antigen for 4 days. The proliferation with TGF- plus IL-2 was as effective as without TGF-. 

Administration of IL-2 remediated the TGF--caused decreased proliferation capacity (Figure 

18). We assume that IL-2 is a relevant factor in facilitating TGF- resistance of CAR T cells.  
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Figure 18 Restitution of IL-2 overcomes the suppressive effect of TGF- 

(A) CD28LCK- CAR engineered T cells (2.5 x 10
4
 T cells per well) were stained with CFSE and incubated 

with TGF- (10 ng/ml) or TGF- plus IL-2 (500 U/ml) on plates coated with the mAb BW2064/36 (1.5 µg/ml) 

for 4 days. T cell proliferation was recorded by flow cytometry through monitoring the CSFE dilution, CAR
+
 T 

cells were identified by staining with the PE-conjugated anti-IgG antibody. The percentage represents the cell 

number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells.  

 



  RESULTS 

 
56 

4.1.4.2 Generation of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL2 CAR (#1746)  

To confirm our conclusion that released IL-2 can promote TGF- resistance in an autocrine 

fashion, we generated a TRUCK (originated from LCK CAR) with IL-2 release and tested 

the functions of these modified T cells (Figure 19). 

BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL2 (#1746) was generated from the vector #946 

by molecular cloning. The DNA sequence encoding transgenic IL-2 was linked by the self-

cleaving P2A element to the CAR encoding sequence. The DNA sequence for P2A-IL2 was 

ordered as a Gene Fragment (gBlock) from Intergrated DNA Technologies (IDT) and cloned 

into the pJet vector restricted by EcoRV (creates blunt ends) first for sequencing. Then the 

(B) The data represented on the diagram are the proliferated CAR
+
 T cells, comparing the incubation with or 

without TGF- or with TGF- + IL-2. The assay was repeated three times, the data demonstrate a 

representative assay and the mean of triplicates ± standard deviation (S.D.) is shown, w/o means without 

cytokines, served as control. Statistical analyses were executed using a two-tailed Student´s t-test (*p < 0.05; 

**p < 0.01; ***p < 0.001). The diagram B was adapted from the publication of Golumba-Nagy et al., 2018.  
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Figure 19 Schematic demonstration of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL2 CAR (#1746) 

(A) Cloning strategy of CD28LCK-CD3-P2A-IL2 CAR. (B) CD28LCK--IL2 CAR was expressed on T 

cell surface; human T cells were retrovirally transduced with CD28LCK--IL2 CAR by spinfection. CAR 

expression was detected by flow cytometry using the PE-conjugated anti-IgG antibody and for the 

identification of the T cells, the FITC-conjugated anti CD3 antibody was applied. The percentage represents the 

cell number in each quadrat. 
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fragment was cloned between the ApaI and XhoI sites of the pBullet vector containing the 

BW431/26scFv-Fc-CD28LCK-CD3 CAR (#946). For this purpose, #946 was restricted by 

BglII/XhoI and BglII/ApaI (Figure 19A). After retroviral transduction the CAR was detected 

on the T cell surface by flow cytometry (Figure 19B).  

4.1.4.3 CD28LCK CAR with IL-2 release can produce IL-2 despite of the mutation in the 

LCK binding site 

First, the cytokine production of the CD28LCK-modified T cells with transgenic IL-2 

secretion was tested. IFN- and IL-2 were measured in the culture supernatant of transduced T 

cells after 2 days of stimulation through the CAR. As control, the cells were stimulated with 

an isotype mouse IgG as irrelevant antigen. As further controls, the cytokine production of 

non-transduced cells, as well as of the wild type, and LCK CAR-transduced T cells without 

transgenic IL-2 was analyzed. IFN- secretion was not altered in the presence of any 

modification. CD28LCK- CAR with IL-2 release produces IL-2 despite of the mutation in 

the LCK binding site. As mentioned above, this was not the case for CD28LCK- CAR T 

cells without IL-2 production (Figure 20). Interestingly, despite of the constitutive structure of 

the construct we could not record any IL-2 secretion without CAR stimulation. 

 

IF
N

-
 [

n
g

/m
l]

 

BW2064/36 IgG 

IL
-2

 [
U

/m
l]

 

BW2064/36 IgG 

Figure 20 CD28LCK CAR with IL-2 release can produce IL-2 despite of the mutation in the LCK 

binding site 

CAR modified T cells with or without constitutive IL-2 release were incubated on 96 well plates (2.5 x 10
4 
CAR 

T cells pro well) coated with anti-idiotypic mAb BW2064/36 or mouse IgG1 (1.5 µg/ml each) as an isotype 

control for 2 days. Secreted IFN- and IL-2 concentration were recorded in culture supernatants with ELISA. 

The assays were repeated three times, the data demonstrate a representative assay and the mean of triplicates ± 

standard deviation (S.D.) is shown, w/o means T cells without CAR, served as control. The diagrams were 

adapted from the publication of Golumba-Nagy et al., 2018. 
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4.1.4.4 TGF- has no effect on the proliferation of T cells modified with CD28LCK- 

CAR plus transgenic IL-2  

The proliferation of the CD28LCK--IL2-modified T cells was examined to explore whether 

transgenic IL-2 restores TGF- resistance. After transduction the engineered T cells were 

stained by CFSE and stimulated on plates coated with the BW2064/36 antigen in the presence 

or absence of TGF- for 4 days. The successful CFSE labeling of the remaining population 

was confirmed one day after CFSE staining (Figure 21).  

As shown earlier, TGF- inhibited the amplification of CD28LCK- CAR-modified T cells, 

which can be overcome by a CD28LCK- CAR with IL-2 release (Figure 22).  

These results sustained our hypothesis, that IL-2 has a central role in the TGF- resistance of 

CAR T cell amplification.  
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Figure 21 CFSE labeling of CAR modified T cells 

Human T cells were modified by CD28LCK--IL2 CAR and labeled with CFSE to track the proliferation of 

the cells. One day after the CFSE staining, the remaining cells without stimulation were analyzed by flow 

cytometry to verify the successful labeling. CAR receptors were stained with the PE-conjugated anti-IgG 

antibody which binds to the CAR in the extracellular IgG1 spacer region. The percentage represents the cell 

number in each quadrat, w/o means T cells without CAR. 



  RESULTS 

 
59 



proliferating cells [%] 

9,23% 

61,6% 26,8% 

2,36% 

60,9% 28,4% 

2,63% 8,07% 
w/o TGF- 

C
A

R
 

CFSE 

TGF- 
w/o 

ce
ll

 c
o

u
n

t 

CFSE 

CD28LCK--IL2 A 

B 

Figure 22 TGF- has no effect on proliferation of T cells modified with CD28LCK- CAR plus 

transgenic IL-2 

(A) CD28LCK-CD3 CAR engineered T cells without or with constitutive transgenic IL-2 release  (2.5 x 10
4
 

T cells per well) were stained with CFSE and incubated with or without TGF- (10 ng/ml) on BW2064/36 

coated plates (1.5 µg/ml) for 4 days. T cell proliferation was recorded by flow cytometry through monitoring 

the CSFE dilution, CAR
+
 T cells were identified by staining with the PE-conjugated anti-IgG antibody. The 

percentage represents the cell number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells, w/o 

means without cytokines, served as control. (B) The data represented on the diagram are the proliferated CAR
+
 

T cells, comparing the incubation with or without TGF-The assays were repeated three times, the data 

demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown. Statistical 

analyses were executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). The diagram 

B was adapted from the publication of Golumba-Nagy et al., 2018. 



  RESULTS 

 
60 

 Identification of other cytokines capable to overcome the suppressive effect of 

TGF-

We asked whether other cytokines with a similar capability as IL-2 can overcome the 

suppressive effect of TGF-. The rational for the screen is that IL-2 will sustain regulatory T 

cells in the tumor environment and thereby support TGF--mediated T cell repression (Kofler 

et al., 2011). Ideally, a cytokine with similar effect on CAR T cells but without sustainment of 

Treg activation would replace the transgenic IL-2 in this context.  

We tested two other group members of the -cytokine family for the described potential on 

CAR T cells. We selected IL-7 and IL-15, because they are also activator cytokines for T cells 

and are able to induce T cell proliferation. IL-7 is a more potential candidate because of the 

lack of IL-7 receptor expression on Tregs and therefore does not sustain Treg cells. (Perna et 

al., 2014). 

 Administration of IL-7 and IL-15 can overcome the suppressive effect of TGF-

T cells were transduced with the CD28LCK- CAR and labeled with CSFE to track 

proliferation. T cells were stimulated on plates coated by immobilized BW2064/36 antigen in 

the presence or absence of TGF- or TGF- plus IL-7 for 4 days. While TGF- alone 

inhibited T cell amplification, together with IL-7 the proliferation of the CAR-modified T 

cells was as efficient as without TGF- and IL-7. IL-7, similar to IL-2, compensated the 

suppressive effect of TGF-Figure 23.  
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In a very similar experiment the CD28LCK- CAR-modified T cells were incubated with 

IL-15 in the presence or absence of TGF-. IL-15, similar to IL-2 and IL-7, also overcame the 

repressive TGF- effect and the proliferation of the modified T cells was the same compared 

to the situation without TGF- and IL-15 (Figure 24).  
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Figure 23 Administration of IL-7 can overcome the suppressive effect of TGF- 

(A) CD28LCK- CAR engineered T cells (2.5 x 10
4
 T cells per well) were stained with CFSE and incubated 

with TGF- or TGF- plus IL-7 (10 ng/ml each) on plates coated with the mAb BW2064/36 (1.5 µg/ml) for 4 

days. T cell proliferation was recorded by flow cytometry through monitoring the CSFE dilution and the 

staining with the PE-conjugated anti-IgG antibody identified the CAR
+
 T cells. The percentage represents the 

cell number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells. (B) The data represented on 

the diagram are the proliferated CAR
+
 T cells, comparing the incubation with or without TGF- or with TGF- 

+ IL-7. The assay was repeated three times, the data demonstrate a representative assay and the mean of 

triplicates ± standard deviation (S.D.) is shown, w/o means without cytokines, served as control. Statistical 

analyses were executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). The diagram 

B was adapted from the publication of Golumba-Nagy et al., 2018. 
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4.2.2 Generation of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL7 CAR (#1645)  

IL-7 was of benefit when we added it to the cells in vitro in the presence of TGF-, but in 

clinical applications it is difficult to obtain sufficient IL-7 concentrations especially within 

solid tumors. For this reason we generated a TRUCK with a coding region that links the 

transgenic IL-7 to the CD28LCK- CAR with a P2A element to allow constitutive IL-7 

production (Figure 25). 
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Figure 24 Administration of IL-15 can overcome the suppressive effect of TGF- 

(A) CD28LCK- CAR engineered T cells (2.5 x 10
4
 T cells per well) were stained with CFSE and incubated 

with TGF- or TGF- plus IL-15 (10 ng/ml each) on plates coated with the mAb BW2064/36 (1.5 µg/ml) for 4 

days. T cell proliferation was recorded by flow cytometry through monitoring the CSFE dilution and the 

staining with the PE-conjugated anti-IgG antibody identified the CAR
+
 T cells. The percentage represents the 

cell number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells. (B) The data represented on 

the diagram are the proliferated CAR
+
 T cells in compare the incubation with or without TGF- or with TGF- 

+ IL-15. The assay was repeated three times, the data demonstrate a representative assay and the mean of 

triplicates ± standard deviation (S.D.) is shown, w/o means without cytokines, served as control Statistical 

analyses were executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). The diagram 

B was adapted from the publication of Golumba-Nagy et al., 2018. 
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BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL7 (#1645) was generated by assembly PCR. 

P2A-IL7-XhoI sequence was amplified from the vector #1024 (#1024 vector contained the 

sequence for IL-7 linked with the P2A element) by using the oligonucleotides #1018 and 

#1261. BamHI-LCK-P2A sequence was amplified from the vector #946 by using the 

following set of oligonucleotides: #1257 and #1269. The overlap PCR utilized the 

oligonucleotides #1257 and #1261. The amplified PCR product was excised with 

BamHI/XhoI and first cloned into the pJet vector restricted by EcoRV (creates blunt ends) for 

sequencing and then cloned between BamHI and XhoI sites of the pBullet vector containing 

Figure 25 Schematic demonstration of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL7 CAR (#1645) 

(A) Cloning strategy of CD28LCK-CD3-P2A-IL7 CAR. (B) CD28LCK--IL7 CAR was expressed on T 

cell surface; human T cells were retrovirally transduced with CD28LCK--IL7 CAR by spinfection. CAR 

expression was detected by flow cytometry using the PE-conjugated anti-IgG antibody and for the 

identification of the T cells, the FITC-conjugated anti CD3 antibody was used. The percentage represents the 

cell number in each quadrat. 
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the BW431/26scFv-Fc-CD28LCK-CD3 CAR (#946). For this purpose, #946 was restricted 

by BamHI/SpeI and XhoI/SpeI (Figure 25A). The receptor efficiently expressed on the T cell 

surface after retroviral transduction; the CAR was detected by flow cytometry (Figure 25B 

below).  

4.2.3 Generation of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL15 CAR (#1764)  

For the same reason as stated above, we generated another TRUCK, where transgenic IL-15 is 

linked to the CD28LCK- CAR with a P2A element to allow constitutive IL-15 production 

(Figure 26). 

BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL15 (#1764) was generated from the vector 

#946 by molecular cloning. DNA sequence of transgenic IL-15 was linked by the self-

cleaving P2A element. Sequence for P2A-IL15 was ordered as Gene Fragment (gBlock) from 

Intergrated DNA Technologies (IDT) and first cloned into the pJet vector restricted by EcoRV 

(creates blunt ends) for sequencing and then cloned further into the site between ApaI and 

Figure 26 Schematic demonstration of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL15 CAR (#1764)  

(A) Cloning strategy of CD28LCK-CD3-P2A-IL15 CAR. (B) CD28LCK--IL15 CAR was expressed on T 

cell surface, human T cells were retrovirally transduced with CD28LCK--IL15 CAR by spinfection. CAR 

expression was detected by flow cytometry using the PE-conjugated anti-IgG antibody and for the identification 

of the T cells, the FITC-conjugated anti CD-3 antibody was used. The percentage represents the cell number in 

each quadrat. 
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XhoI of the pBullet vector containing the BW431/26scFv-Fc-CD28LCK-CD3 CAR 

(#946). For this purpose, #946 was restricted by BglII/XhoI and BglII/ApaI (Figure 26A). The 

CAR was detected on the T cell surface by flow cytometry after retroviral transduction 

(Figure 26B below).  

4.2.4 Cytokine production of the T cells modified with CD28LCK CAR plus 

transgenic IL-7 or IL-15 

We investigated the cytokine production of T cells engineered with the TRUCK with 

transgenic IL-7 and IL-15, respectively. The modified T cells were stimulated on plates 

coated by the immobilized BW2064/36 antigen for 2 days and IFN-, IL-2, IL-7, and IL-15 

were measured in the culture supernatant via ELISA. Stimulation with an irrelevant mouse 

IgG served as control. Furthermore, we used not transduced T cells and transduced T cells 

with the wild type or LCK CAR as control. As we expected IFN- secretion was unaltered 

compared to T cells with the wild type CAR (Figure 27). IL-2 release was detected in the 

supernatant of T cells modified by the wild type receptor, while the other CAR T cells could 

not express IL-2 (Figure 27). T cells equipped with a IL-7 or IL-15 expression cassette 

produce IL-7 or IL-15, respectively, into the supernatant upon CAR stimulation, while 

incubation of the T cells with irrelevant antigen did not trigger the expression of these 

cytokines (Figure 27). Interestingly, despite of the constitutive promoter for cytokine 

transcription, the engineered T cells do not release IL-7 or IL-15 into the culture supernatant 

without stimulation as observed in the case of the IL-2 TRUCK receptor (Figure 20). 
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4.2.5 TGF- did not impair the proliferation of T cells modified with a CD28LCK- 

CAR plus transgenic IL-7 or IL-15 

The proliferation of T cells modified with the CD28LCK--IL7 or CD28LCK--IL15 CAR 

was determined with the help of CFSE labeling. The CFSE staining of the remaining 

population was verified one day after the CFSE-labeling via flow cytometry (Figure 28). 
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Figure 27 Cytokine production of the T cells modified with CD28DLCK CAR plus transgenic IL-7 or 

IL-15 

CAR modified T cells with or without IL-7 or IL-15 release was incubated on 96 well plates (2.5 x 10
4 

CAR T 

cells pro well) coated with anti-idiotypic mAb BW2064/36 or mouse IgG1 (1.5 µg/ml each) as an isotype 

control for 2 days. Secreted IFN-; IL-2; IL-7 and IL-15 concentration were recorded in culture supernatants 

with ELISA. The assays were repeated three times, the data demonstrate a representative assay and the mean of 

triplicates ± standard deviation (S.D.) is shown, w/o means T cells without CAR, served as control. These 

diagrams were adapted from the publication of Golumba-Nagy et al., 2018. 
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The cells were stimulated on plates coated with the immobilized BW2064/36 antigen in the 

presence or absence of TGF- for 4 days. As control the CD28LCK- CAR without IL-7 is 

also shown. TGF- had no effect on the proliferation of the IL-7-equipped LCK CAR 

engineered T cells; the CAR T cells proliferated in the presence of TGF- as efficient as 

without TGF-(Figure 29). 

 

Figure 28 CFSE labeling of CAR modified T cells 

Human T cells were modified by CD28LCK--IL7 or CD28LCK--IL15 CAR and labeled with CFSE to 

track the proliferation of the cells. One day after the CFSE staining, the remaining cells without stimulation 

were analyzed by flow cytometry to verify the successful labeling. CAR receptor was stained with the PE-

conjugated anti-IgG antibody which binds to the CAR in the extracellular IgG1 spacer region. The percentage 

represents the cell number in each quadrat, w/o means T cells without CAR. 
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IL-15-equipped LCK CAR engineered T cells have shown the same results as IL-7 equipped 

T cells. TGF- had no effect on the proliferation of the IL-15 equipped LCK CAR 

engineered T cells as well. As control the CD28LCK- CAR without IL-15 is also shown 

(Figure 30). The same result was obtained with the added IL-7 or IL-15. In a clinical 

application this is a benefit for CAR engineered T cells producing IL-7 or IL-15 in the tumor 

microenvironment. The suppressive effect of TGF- was overcome by both receptors. The 

modified T cells produce the cytokines required to resist TGF- repression. 
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Figure 29 TGF- did not impair the proliferation of T cells modified with CD28LCK- CAR plus 

transgenic IL-7 

(A) CD28LCK- CAR engineered T cells without or with transgenic IL-7 release  (2.5 x 10
4
 T cells per well) 

were stained with CFSE and incubated with or without TGF- (10 ng/ml) on BW2064/36-coated plates (1.5 

µg/ml) for 4 days. T cell proliferation was recorded by flow cytometry through monitoring the CSFE dilution 

and the CAR
+
 T cells were identified by staining with the PE-conjugated anti-IgG antibody. The histogram 

shows the CAR
+
, CFSE labeled cells. The percentage represents the cell number in each quadrat, w/o means 

without cytokines, served as control. (B) The data represented on the diagram are the proliferated CAR
+
 T cells, 

comparing the incubation with or without TGF-. The assay was repeated three times, the data demonstrate a 

representative assay and the mean of triplicates ± standard deviation (S.D.) is shown. Statistical analyses were 

executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). The diagram B was adapted 

from the publication of Golumba-Nagy et al., 2018. 
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4.2.6 TGF- did not inhibit the specific cytotoxicity of T cells stimulated via the 

CD28LCK--IL7 or CD28LCK--IL15 CAR 

The specific cytotoxicity by CD28LCK--IL7 or CD28LCK--IL15 CAR-modified T cells 

was tested in the presence and absence of TGF-. The engineered T cells were incubated with 

the CEA
+
 LS174T tumor cells for 2 days; the specific cytotoxicity was measured by the XTT-

based viability assay. The results do not show any differences between plus or minus TGF- 

(Figure 31), while TGF- suppressed the specific killing of tumor cells in the case of the 

CD28LCK- CAR without IL-7 or IL-15 (Figure 17). IL-7 and IL-15 not only support T cell 

proliferation but also specific killing in the presence of TGF-. 

Figure 30 TGF- did not impair proliferation of the T cells modified with CD28LCK- CAR plus 

transgenic IL-15 release 

(A) CD28LCK- CAR engineered T cells without or with constitutive transgenic IL-15 release  (2.5 x 10
4
 T 

cells per well) were stained with CFSE and incubated with or without TGF- (10 ng/ml) on BW2064/36 coated 

plates (1.5 µg/ml) for 4 days. T cell proliferation was recorded by flow cytometry through monitoring the CSFE 

dilution and the CAR
+
 T cells were identified by staining with the PE-conjugated anti-IgG antibody. The 

percentage represents the cell number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells, w/o 

means without cytokines, served as control. (B) The data represented on the diagram are the proliferated CAR
+
 T 

cells, comparing the incubation with or without TGF-. The assays were repeated three times, the data 

demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) is shown. Statistical 

analyses were executed using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). The diagram B 

was adapted from the publication of Golumba-Nagy et al., 2018. 
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Figure 31 TGF- did not inhibit the specific cytotoxicity of T cells stimulated via the CD28LCK--IL7 

or CD28LCK--IL15 CAR 

T cells with CD28LCK--IL7 or CD28LCK--IL15 CAR (0.125 x 10
4 
– 4 x 10

4
 CAR T cells per well) were 

incubated in the presence or absence of TGF- (10 ng/ml) with CEA
+
 LS174T cells (2 x 10

4
 tumor cells per 

well). The specific cytotoxicity was determined by the XTT-based viability assay after 2 days. The assay was 

repeated three times, the data demonstrate a representative assay and the mean of triplicates ± standard 

deviation (S.D.) is shown, w/o means without cytokines, served as control. These figures were taken from the 

publication of Golumba-Nagy et al., 2018. 
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4.3 Overexpression of the IL-7 receptor helps to maintain a long term activation of 

modified T cells 

One of our goals was to make CAR engineered T cell less sensitive against TGF-; this can 

be achieved by the administration of IL-2, IL-7, or IL-15, respectively. For potential clinical 

application we excluded IL-2 and IL-15, because they sustain Treg cell activation. In further 

experiments we concentrated on IL-7, because it does not maintain Tregs and is able to 

overcome the TGF--mediated suppression. An added constitutively expressed chimeric 

cytokine receptor would moreover compensate for the downregulation of IL-7 receptor after T 

cell activation (Alves et al., 2008). 

4.3.1 IL-7 receptor -chain (CD127) is downregulated after T cell activation 

We wanted to monitor the IL-7R downregulation after T cell stimulation. Therefore we 

engineered human T cells with different CAR receptors, namely the CD28-, CD28LCK- 

or CD28LCK--IL7 CAR, respectively. The modified T cells were stimulated on plates 

coated by OKT3/15E8 antibodies for CAR independent T cell activation, by the BW2064/36 

antibody mediating CAR-specific stimulation, and by an irrelevant mouse IgG antibody, or by 

PBS as negative control. Non-stimulated cells as well as non-transduced T cells are also 

shown as control (Figure 32). After 2 days incubation time the cells were labeled for the CAR 

and the IL-7 receptor and the data were evaluated by FACS cytometry. The diagrams show 

the cell count of each quadrat of a FACS dotplots. A decreased IL-7R expression among 

CAR
+
 T cells can be clearly seen after stimulation either through the TCR, or through the 

CAR receptor. IL-7R expression stays stable without stimulation. The decreased expression of 

IL-7R is more obvious in the case of the CD28LCK--IL7 CAR-modified T cells. Without 

stimulation these cells produce a fewer amount of IL-7, which –in turn- is able to 

downregulate the IL-7 receptor (Figure 32). 
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4.3.2 Generation of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-T2A-IL7R/IL2R (#1941)  

We generated a vector which, besides of the LCK CAR, contains a hybrid IL-7 receptor. 

The chimeric cytokine receptor contains an IL-7 receptor -chain in the extracellular part and 

the IL-2 receptor -chain in the transmembrane and intracellular part of the receptor (Figure 

33). BW431/26scFv-Fc-CD28LCK-CD3-T2A-IL7R/IL2R (#1941) was generated from 

the vector #1908 by molecular cloning. The gene fragment (gBlock) encoding the CD3-T2A 

fragment with a SanDI and a BspEI restriction sites at the fragment´s ends, respectively was 

inserted first into pJet vector restricted by EcoRV (creates blunt ends) for sequencing and 

followed by an insertion between the SanDI and BspEI sites of the pBullet vector containing 
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Figure 32 IL-7 receptor -chain (CD127) is downregulated after T cell activation 

CAR modified T cells were incubated on 96 well plates coated with OKT3 (1 µg/ml) plus 15E8 (5 µg/ml) for T 

cell activation, with BW2064/36 (1.5 µg/ml) for CAR stimulation, with mouse IgG1 (1.5 µg/ml) as isotype 

control or with PBS or without stimulation (w/o stim.) as control. After 2 days the cells were harvested and 

stained by PE-conjugated anti-IgG antibody for the identification of the CAR, while the FITC-conjugated 

CD127 was used for the labeling of the IL-7 receptor -chain. Data were recorded by flow cytometry. On the 

diagram the cell number of each quadrat of FACS dot plot are shown. Dark grey bar is the CAR
-
 IL-7R

+
, grey 

bar labels the CAR
-
 IL-7R

-
, the white bar shows the CAR

+
 and IL-7R

+
, while the light grey bar indicates the 

CAR
+
 IL-7R

-
 T cells. Furthermore, w/o means T cells without CAR. 
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the BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL7-T2A-IL7R/IL2R (#1908). For this 

purpose, #1908 was restricted by SanDI and SanDI/BspEI (Figure 33).  

The CAR receptor was efficiently expressed on the T cell surface after retroviral transduction 

as well as the CAR and transgenic IL-7R -chain (CD127) were expressed on the transfected 

HEK 293T cell surface. CAR and IL-7R were detected by flow cytometry (Figure 34AB). 

 

CD28LCK-CD3-P2A-IL7R/IL2R 

Figure 33 Schematic demonstration of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL7R/IL2R CAR (#1941) 

Cloning strategy of CD28LCK-CD3-P2A-IL7R/IL2R CAR.  
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4.3.3 Cytokine production by CD28LCK--IL7/IL2R CAR modified T cells 

First, we wanted to test the cytokine production of the CAR plus the hybrid receptor 

engineered T cells. Human T cells were modified with the CD28LCK--IL7/IL2R and 

stimulated on plates coated by the immobilized BW2064/36 antigen or the irrelevant mouse 

IgG antigen in the absence or presence of TGF- or IL-7, or both. After 2 days, IFN- was 

measured in the supernatant via ELISA. We observed that TGF- decreases the IFN- 

secretion, however, the IFN- release increased in the presence of IL-7. Without CAR 

stimulation no IFN- production was measured (Figure 35A). The CD28LCK--IL7/IL2R 

CAR T cells upon CAR stimulation did not release IL-2. Not transduced cells and T cells with 

the wild type CAR are also shown as control. IL-2 secretion was not detected in the culture 

supernatant of T cells engineered with LCK CAR plus the hybrid cytokine receptor, which is 

what we expected because of the presence of the mutations in the LCK binding site (Figure 

35B).  

Figure 34 CD28LCK--IL7/IL2R CAR expression on the cell surface

(A) HEK 293T cells were transfected by the CD28LCK--IL7/IL2R CAR, then the CAR and the IL-7R 

expression were detected by the APC-conjugated anti CD127 antibody and the PE-conjugated anti-IgG 

antibody. (B) In human T cells, the CAR expression was detected using the PE-conjugated anti-IgG antibody 

and for the identification of the T cells the FITC-conjugated anti CD3 antibody was used. Data were recorded 

by flow cytometry. The percentage represents the cell number in each quadrat. 
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4.3.4 TGF--mediated inhibition on CD28LCK--IL7/IL2R-modified T cell 

proliferation and specific killing can be overcome by administration of IL-7  

We investigated the proliferative ability of T cells modified with the LCK CAR plus the 

IL7/IL2 chimeric receptor. After the retroviral transduction the cells were stained with CFSE 

to track the proliferation. The successful CFSE staining of the remaining population was 

verified one day later by flow cytometry (Figure 36).  

Figure 36  CFSE labeling of CAR modified T cells 
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Figure 35 Cytokine production by CD28LCK--IL7/IL2R CAR modified T cells 

(A) IL-7 enhances IFN- secretion by CAR modified T cells in the presence of IL7/IL2R 

T cells were engineered by CD28LCK- CAR with the hybrid IL-7/IL2 receptor and incubated on 96 well 

plates (2.5 x 10
4 

CAR T cells pro well) to stimulate through the CAR by the engagement of immobilized 

BW2064/36 antigen or with mouse IgG as irrelevant antigen (1.5 µg/ml each). The cells were co-incubated with 

or without TGF- in the presence or absence of IL-7 (10 ng/ml each). Secreted IFN- concentration was 

measured in the cell culture supernatant with ELISA after 2 days activation. 

(B) CD28LCK--IL7/IL2R CAR T cells do not secrete IL-2 because of the mutation in LCK binding 

domain 
T cells were engineered with the mentioned CAR and stimulated on plates coated with the BW2064/36 antigen 

or with mouse IgG1 as isotype control. Concentration of IL-2 secreted into the culture supernatants was 

recorded with ELISA after 2 days. The assays were repeated three times, the data demonstrate a representative 

assay and the mean of triplicates ± standard deviation (S.D.) is shown, w/o means T cells without CAR, served 

as control. These diagrams were adapted from the publication of Golumba-Nagy et al., 2018. 
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The cells were stimulated on plates coated with the immobilized BW2064/36 antibody for 4 

days in the presence or absence of TGF-, IL-7, or both. TGF- inhibited the proliferation, 

which was overcome by the presence of IL-7 (Figure 37).  
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Figure 37 TGF--mediated inhibition on CD28LCK--IL7/IL2R-modified T cell proliferation can be 

overcome by administration of IL-7  

(A) CD28LCK- CAR engineered T cells with the hybrid IL-7/IL2R receptor (2.5 x 10
4
 T cells per well) were 

stained with CFSE and incubated with or without TGF- or TGF- plus IL-7 (10 ng/ml each) on BW2064/36 

coated plates (1.5 µg/ml) for 4 days. T cell proliferation was recorded by flow cytometry through monitoring 

the CSFE dilution, while the CAR
+
 T cells were identified by the staining with the PE-conjugated anti-IgG 

antibody. The percentage represents the cell number in each quadrat. The histogram shows the CAR
+
, CFSE 

labeled cells. (B) The data represented on the diagram are the proliferated CAR
+
 T cells, comparing the 

incubation with or without TGF- or TGF- + IL-7. The assay was repeated three times, the data demonstrate a 

representative assay and the mean of triplicates ± standard deviation (S.D.) is shown, w/o means without 

cytokines, served as control. Statistical analyses were executed using a two-tailed Student´s t-test (*p < 0.05; 

**p < 0.01; ***p < 0.001). The diagram B was adapted from the publication of Golumba-Nagy et al., 2018. 

Human T cells were modified by CD28LCK--IL7/IL2R CAR and labeled with CFSE to track the 

proliferation of the cells. One day after the CFSE staining, the remaining cells without stimulation were 

analyzed by flow cytometry to verify the successful labeling. CAR receptor was stained with the PE-

conjugated anti-IgG antibody which binds to the CAR in the extracellular IgG1 spacer region. The percentage 

represents the cell number in each quadrat, w/o means T cells without CAR. 
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The specific cytotoxicity of the modified T cells was measured in the presence or absence of 

TGF-, IL-7, or both. The cells were incubated with the CEA
+
 LS174T tumor cells for 2 days 

and the specific killing was determined by the XTT-based viability assay. TGF- inhibited the 

modified T cell-mediated killing compared to the situation where IL-7 is also present. In the 

presence of IL-7, the modified T cells achieved the same efficiency in killing, as without 

TGF-(Figure 38).  

Taken together, the chimeric IL-7 receptor, along with added IL-7, maintains CAR T cell 

proliferation in the presence of TGF-. 

4.3.5 Generation of the pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL7-T2A-IL7R/IL2R (#1908)  

In order to complete the artificial autocrine loop, we added a transgenic IL-7 expression 

cassette to the construct bearing the LCK CAR plus the earlier described hybrid IL7/IL2 

receptor. Due to this setup we expect CAR T cells to produce IL-7 upon stimulation via the 

CAR, which in turn binds to the hybrid IL-7 receptor and transmits an IL-2 signal into the 

CAR T cells through the IL-2 receptor -chain (Figure 39). 

For this purpose, BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL7-T2A-IL7R/IL2R 

(#1908) was generated from the vector #1645 by molecular cloning. The DNA sequence for 

the hybrid receptor consisting of the IL-7 receptor -chain for the extracellular region and the 
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Figure 38 TGF- inhibits the specific cytotoxicity of CD28LCK--IL7/IL2R modified T cells, which can 

be overcome by administration of IL-7  

T cells with CD28LCK--IL7/IL2R CAR (0.125 x 10
4 
– 4 x 10

4
 CAR T cells per well) were incubated in the 

presence or absence of TGF- or IL-7 with or without added TGF- (10 ng/ml each) with the CEA
+
 LS174T 

cells (2 x 10
4
 tumor cells per well). The specific cytotoxicity was determined by the XTT-based viability assay 

after 2 days. The assay was repeated three times, the data demonstrate a representative assay and the mean of 

triplicates ± standard deviation (S.D.) is shown, w/o means without cytokines, served as control. The figure was 

taken from the publication of Golumba-Nagy et al., 2018. 
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IL-2 receptor -chain as the transmembrane and intracellular regions was ordered as gene 

fragment (gBlock) with a KpnI and a BspEI restriction sites at fragments´s ends, respectively. 

Moreover, the DNA sequence for IL7-T2A-IL7R with the restriction sites BclI and KpnI at 

each end, respectively, were ordered as Gene Fragment (gBlock) from IDT. They were first 

cloned into the pJet vector restricted by EcoRV (creates blunt ends) for sequencing and then 

further cloned between the BclI and BspEI sites of the pBullet vector containing the 

BW431/26scFv-Fc-CD28LCK-CD3-IL7 CAR (#1645) (Figure 39).  

The CAR receptor was efficiently expressed on the T cell surface after retroviral transduction. 

Moreover, the CAR and the transgenic IL-7R -chain (CD127) expressed on the cell surface 

of transfected 293T cells. The CAR and the IL-7R were detected by flow cytometry (Figure 

40AB).  

 

CD28LCK-CD3-P2A-IL7-T2A-IL7R/IL2R 

Figure 39 Schematic demonstration of a pBullet vector containing the BW431/26scFv-Fc-CD28LCK-

CD3-P2A-IL7-T2A-IL7R/IL2R CAR (#1908) 

Cloning strategy of CD28LCK-CD3-P2A-IL7-T2A-IL7R/IL2R CAR.  
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4.3.6 IFN- and IL-7 secretion by T cells are modified by the CD28LCK--IL7-

IL7/IL2R CAR 

First, we tested the cytokine production of the CAR modified T cells. Human T cells were 

transduced with CD28LCK--IL7-IL7/IL2R CAR and were stimulated on plates coated with 

the immobilized BW2064/36 antigen or with irrelevant mouse IgG antigen as control. For 

further control non-transduced T cells and T cells with the wild type CAR are also shown. 

IFN- and IL-7 were detected in the supernatants by ELISA after two days of incubation. 

IFN- release by the new receptor modified T cell was very similar to that by CD28- CAR 

modified T cells. As expected, IL-7 was released by the CD28LCK--IL7-IL7/IL2R CAR 

modified T cells, while the T cells with the wild type CAR did not produce IL-7 (Figure 41). 

 

Figure 40 CD28LCK--IL7-IL7/IL2R CAR expression on the cell surface 

(A) HEK 293T cells were transfected by CD28LCK--IL7-IL7R/IL2R CAR, then the CAR and IL-7R 

expression were detected by the APC-conjugated anti CD127 antibody and the PE-conjugated anti-IgG 

antibody. (B) In human T cells, the CAR expression was detected using the PE-conjugated anti-IgG antibody, 

while for the identification of the T cells the FITC-conjugated anti CD3 antibody was used. Data were recorded 

by flow cytometry. The percentage represents the cell number in each quadrat. 
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4.3.7 TGF- had no effect on T cell proliferation or specific cytotoxicity when T cells 

were modified with the CD28LCK--IL7-IL7/IL2R CAR 

Proliferation of CD28LCK--IL7-IL7/IL2R CAR modified T cells was investigated after 2 

days of stimulation by the immobilized BW2064/36 antibody in the presence or absence of 

TGF-. The successful CFSE staining was verified one day after the labeling via flow 

cytometry (Figure 42).  
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Figure 41 IFN- and IL-7 secretion by T cells are modified by the CD28LCK--IL7-IL7/IL2R CAR  

T cells were engineered by CD28LCK- CAR with the hybrid IL-7/IL2R receptor plus transgenic IL-7 and 

incubated on 96 well plates (2.5 x 10
4 

CAR T cells pro well) to stimulate through the CAR by engagement of 

immobilized antigen BW2064/36 or with mouse IgG as irrelevant antigen (1.5 µg/ml each). Secreted IFN- and 

IL-7 concentration were measured in the culture supernatants of cells with ELISA after 2 days activation The 

assays were repeated three times, the data demonstrate a representative assay and the mean of triplicates ± 

standard deviation (S.D.) is shown,w/o means T cells without CAR, served as control. These diagrams were 

adapted from the publication of Golumba-Nagy et al., 2018. 
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Figure 42 CFSE labeling of CAR modified T cells 

Human T cells were modified with the CD28LCK--IL7-IL7/IL2R CAR and labeled with CFSE to track the 

proliferation of the cells. One day after the CFSE staining, the remaining cells without stimulation were 

analyzed by flow cytometry to verify the successful labeling. CAR receptor was stained with the PE-conjugated 

anti-IgG antibody which binds to the CAR in the extracellular IgG1 spacer region. The percentage represents 

the cell number in each quadrat, w/o means T cells without CAR. 
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TGF- had no effect on T cell proliferation; CAR engineered T cells proliferated with TGF- 

as efficient as without TGF- (Figure 43). The inhibitory effect of TGF- was overcome by 

the secreted IL-7 through the artificial autocrine loop. 

The specific cytotoxicity of the new tricistronic vector was tested with the CEA
+
 LS174T 

tumor cells in the presence or absence of TGF-. The modified T cells were incubated with 

the tumor cells for 2 days then the XTT-based viability assay was performed. TGF- has 

shown no effect on the specific killing of antigen positive tumor cells by the CD28LCK--

IL7-IL7/IL2R CAR engineered T cell (Figure 44).  
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Figure 43 TGF- had no effect on T cell proliferation when T cells were modified with the CD28LCK--

IL7-IL7/IL2R CAR  

(A) CD28LCK--IL7-IL7/IL2R CAR engineered T cells (2.5 x 10
4
 T cells per well) were stained with CFSE 

and incubated with or without TGF- (10 ng/ml) on BW2064/36 coated plates (1.5 µg/ml) for 2 days. T cell 

proliferation was recorded by flow cytometry through monitoring the CSFE dilution, while  the CAR
+
 T cells 

were identified by the staining with the PE-conjugated anti-IgG antibody. The percentage represents the cell 

number in each quadrat. The histogram shows the CAR
+
, CFSE labeled cells. (B) The data represented on the 

diagram are the proliferated CAR
+
 T cells, comparing the incubation with or without TGF-. The assay was 

repeated three times, the data demonstrate a representative assay and the mean of triplicates ± standard 

deviation (S.D.) is shown, w/o means without cytokines, served as control. The diagram B was adapted from 

the publication of Golumba-Nagy et al., 2018. 
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4.3.8 CD28LCK--IL7-IL7/IL2R showed superior activity as wild type CAR in the 

presence of TGF- in the long term   

To test the ability of the CAR modified T cells to overcome suppression by TGF- in the long 

term, the cells were stimulated by repetitive antigen engagement. For this purpose, T cells 

were engineered either with the wild type CAR or, with the LCK CAR, or with the LCK 

CAR plus transgenic IL-7 and the hybrid receptor. The cells were cultivated with the CEA
+
 

LS174T tumor cells for 2 days. Fresh tumor cells were added every two days to the CAR 

modified T cells until day 6 to stimulate them repetitively (Figure 45A). In this manner, 

specific serial killing was recorded. CD28LCK--IL7-IL7/IL2RCAR T cells showed 

superior cytolytic activity compared to T cells with wild type or the LCK CAR without the 

autocrine IL-7 loop (Figure 45B).  
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Figure 44 TGF- has no effect on the specific cytotoxicity of T cells in the presence of self-produced IL-7 

and the hybrid IL7/IL2R  

T cells with CD28LCK--IL7-IL7/IL2R CAR (0.125 x 10
4 
– 4 x 10

4
 CAR T cells per well) were incubated in 

the presence or absence of TGF- (10 ng/ml) with the CEA
+
 LS174T cells (2 x 10

4
 tumor cells per well). The 

specific cytotoxicity was determined by the XTT-based viability assay after 2 days. The assay was repeated 

three times; the data demonstrate a representative assay and the mean of triplicates ± standard deviation (S.D.) 

is shown, w/o means without cytokines, served as control. The figure was taken from the publication of 

Golumba-Nagy et al., 2018. 
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4.3.9 Cytokine production after repetitive stimulation by target cells  

After repetitive killing of tumor cells, cytokine concentration in the supernatant was measured 

every two days. IFN- was decreased during the time. However, CD28- CAR T cells 

produced the same amount of IFN- until day 4. Decreasing IL-2 production was measured 

compared with the wild type CAR, while IL-7 production by the CD28LCK--IL7-

IL7/IL2RCAR T cells remained constant (Figure 46). 

Figure 45 CD28LCK--IL7-IL7/IL2R showed superior activity as wild type CAR in the presence of 

TGF- in the long term   

(A) Schematic timeline demonstrates the serial killing assay, addition of target cells, the cytotoxicity and 

cytokine readings are labeled. (B) T cells modified with appropriate CAR (2 x10
4
 CAR

+
 T cells per well) were 

incubated with CEA
+
 LS174T cells (2 x 10

4
 cells per well) and specific cytotoxicity was determined by the 

XTT-based viability assay after 2 days. The cells from a parallel assay were harvested and incubated again with 

fresh CEA
+
 LS174T cells (2 x 10

4
 cells per well) for 2 more days; the same procedure was repeated again until 

day 6. The data represent the mean of triplicates ± standard deviation (S.D). Statistical analyses were executed 

using a two-tailed Student´s t-test (*p < 0.05; **p < 0.01; ***p < 0.001), where CAR T cells with IL-7 loop 

compared with CD28- CAR T cells. The figures were taken from the publication of Golumba-Nagy et al., 

2018. 
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Figure 46 Cytokine production after repetitive stimulation by target cells  

Secreted IFN-, IL-2 and IL-7 concentration were measured in the cell culture supernatant every two days until 

day 6 with ELISA after repetitive stimulation with target cells. The data represent the mean of triplicates ± 

standard deviation (S.D). The diagrams were taken from the publication of Golumba-Nagy et al., 2018. 
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In conclusion, the chimeric cytokine receptor plus IL-7 release besides the CD28LCK CAR 

expression made the engineered T cells resistant against TGF-, not only for a short period, 

but also for a long term. 

4.3.10 Comparative analysis of CAR modified T cells with different functionality assays 

4.3.10.1 Intracellular staining of Granzyme B 

Human T cells were modified with the wild type, or the CD28LCK-CAR with or without 

the IL-7 autocrine loop, and incubated on BW2064/36-coated plate for CAR stimulation in 

the presence or absence of TGF-. Stimulation with isotype mouse IgG antibody served as 

control. After two days the produced Granzyme B (Gr B) was measured in the CAR
+
 T cell 

population via flow cytometry. There was no difference in the produced amount of Gr B 

between the different CAR receptor bearing T cells in the absence of TGF-, while with 

TGF- the Gr B level was decreased in the presence of the mutation in the LCK binding site 

within the CD28 domain. However, the MFI (mean fluorescence intensity) remained the same 

in all cases independent of the presence of TGF- (Figure 47). 

4.3.10.2 Quantification of apoptotic and living cells after antigen-driven CAR activation 

CAR-modified T cells were stimulated on plates coated with BW2064/36 antibody. After 2 

days of activation, the cells were harvested. In order to identify the apoptotic and living cells 

in the CAR
+
 T cell population, the cells were stained with Annexin V to label the apoptotic 

Figure 47 Intracellular staining of granzyme B 

T cells with different CAR were incubated on 96 well plates (2.5 x 10
4 

CAR
+
 T cells pro well) coated with the 

anti-idiotypic mAb BW2064/36 or mouse IgG1 (1.5 µg/ml each) as an isotype control in the presence or 

absence of TGF- (10 ng/ml) for 2 days. CAR
+
 T cells were stained with a PE-conjugated anti-human IgG 

antibody, while granzyme B was labeled with the FITC-conjugated anti-granzyme B antibody. The assay was 

repeated three times. The data represent the mean of triplicates ± standard deviation (S.D). The figure 

demonstrates a representative assay. The diagrams were adapted from the publication of Golumba-Nagy et al., 

2018. 
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cells, and with 7-AAD to exclude dead cells. The measurement was performed using flow 

cytometry. The number of living CD28LCK--IL7-IL7/IL2RCAR T cells was substantially 

higher than the number of the wild type CAR modified T cells, while the number of apoptotic 

cells was higher in the case of CD28LCK-CAR modified T cells (Figure 48). The 

improved survival of the CD28LCK-CAR with the IL-7 autocrine loop could lead to an 

improved elimination of cancer cells in the long term (Figure 45). 

4.3.10.3 Intracellular staining of pSTAT5 

After 30 minutes of antigen engagement with the immobilized BW2064/36 mAb to stimulate 

the T cells through their CAR, early antigen-mediated T cell activation was detected by 

STAT5 phosphorylation. Increase in phosphoSTAT5 levels was recorded in T cells with the 

CD28LCK--IL7-IL7/IL2R CAR, which was not detectable in the case of the wild type 

CAR, nor the CD28LCK-CAR modified T cells without the IL-7 autocrine loop. After 16 

hours activation through the CAR receptor, increased level of pSTAT5 was detected in all 

cases. We speculate, that this finding hints at the existence of other STAT5 activation 

pathways in the complex intracellular signaling matrix (Figure 49). 
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Figure 48 Quantification of apoptotic and living cells after antigen-driven CAR activation  

CAR modified T cells were activated on plates coated with the anti-idiotypic mAb BW2064/36 for 2 days. 

APC-conjugated AnnexinV and 7-AAD staining was used to identify apoptotic and living cells. Hereby the 

demonstrated cells are gated for CAR
+
 cells; the percentages in each quadrat represent the cell number. The 

assay was repeated three times, the data demonstrate a representative assay, w/o means T cells without CAR. 

These figures were taken from the publication of Golumba-Nagy et al., 2018.  

CD28- 
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Taken together and in comparison to the wild type CAR-modified T cells, the CD28LCK--

IL7-IL7/IL2RCAR-modified T cells show advanced T cell function in survival and in early 

antigen-mediated T cell activation, as well as improved killing of antigen positive tumor cells 

in the long term. 
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Figure 49 Intracellular staining of pSTAT5 

CAR modified T cells were incubated on plates (3.5 x 10
5 

CAR T cells pro well) coated with the anti-idiotypic 

mAb BW2064/36 (1.5 µg/ml each) for 30 minutes or for 16 hours, then the cells were harvested and stained 

with a PE-conjugated anti-pSTAT5 antibody. T cells without CAR (w/o) served as control. On the histogram 

the PE-conjugated pSTAT5 staining of the respective cells are demonstrated. The assay was repeated three 

times, the data show a representative assay. The figures were taken from the publication of Golumba-Nagy et 

al., 2018. 
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4.4 In vivo anti-tumor activity of CD28LCK--IL7-IL-7/IL-2R CAR T cells 

4.4.1 Improved anti-tumor activity of CAR T cells with IL-7 autocrine loop in 

immunodeficient mice 

We investigated the novel LCK CAR with transgenic IL-7 and hybrid IL7/IL2 receptor in 

comparison with the CD28LCK-CAR without IL-7 loop in vivo. In the cause of this, 

Rag2
-/-
c

-/-
 immunodeficient mice with established tumor were treated with CAR T cells. 

Firstly, TGF-
+
 CEA

+ 
C15A3 tumor cells (1 x 10

6
 cells per mouse; Figure 50) were 

subcutaneously inoculated into the mice and the modified T cells were intravenously injected 

(1.5 x 10
6
 CAR T cells per mouse) at day 16, when the tumor size reached about 200 mm

3
. 

The mice were divided into four groups. The control groups were treated either without T 

cells (w/o T cells), or with T cells without CAR (w/o CAR). The mice treated with 

CD28LCK-CAR T cells with IL-7 autocrine loop showed slowed tumor progression 

compare to those treated with CD28LCK-CAR T cells without IL-7 loop. T cells with 

LCK CAR had no major effect on TGF-
+
 tumor progression (Figure 51A). Two weeks 

after T cell injection, a significant difference was detected between the two groups of mice 

treated with CAR T cells with or without IL-7 autocrine loop (Figure 51B). 

 

Figure 50 Staining of TGF- and CEA in C15A3 tumor cells 

C15A3 tumor cells were labeled for TGF- with a PE-conjugated anti-LAP antibody, while for CEA with a 

PE-conjugated anti-CEA antibody. Tumor cells without staining are shown as control. 

w/o staining 
anti-LAP-PE 

C15A3 

w/o staining 
anti-CEA-PE 
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4.4.2 Improved persistence of CAR T cells with IL-7 autocrine loop at the tumor site 

The mice were sacrificed at the end of all experiments, and the tumors were used for 

microscopy imaging to detect CAR
+
 T cell persistence in the tumor tissue. We found more 

remaining CAR+ T cells in the tumor tissue samples derived from mice treated with 

CD28LCK--IL7-IL7/IL2R CAR
+
 T cells, than in the samples derived from mice treated 

with CD28LCK- CAR+ T cells. This finding is consistent with the improved anti-tumor 

effect of the CD28LCK--IL7-IL7/IL2R CAR
+
 T cells observed in the in vivo experiment 

(Figure 52). 
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Figure 51 Improved anti-tumor activity of CAR T cells with IL-7 autocrine loop in immunodeficient 

mice 

(A) Rag2
-/-

 c
-/-

 mice (4 mice per group) were subcutaneously inoculated with TGF-
+
 CEA

+ 
C15A3 tumor cells 

(10
6
 cells per mouse). T cells were modified with the CD28LCK- CAR or additionally with CD28LCK-  

CAR with IL-7 loop. On day 16, when the tumor size reached about 200 mm
3
, the engineered T cells were 

applied by intravenous injection (1.5 x 10
6
 CAR T cells per mouse). Mice without T cells (w/o T cells) or with 

T cells without CAR (w/o CAR) served as controls. Tumor growth after T cell injection was weekly observed. 

(B) After T cell injection on day 14, the relative tumor growth of mice is shown regarding to the mice recevied 

CAR modified T cells. Tumor growth at day 14 was referred to the tumor growth at day the treatment with 

CAR modified T cells was started. Statistical analyses were performed using the two-tailed Student´s t-test (*p 

< 0.05). The figures were taken from the publication of Golumba-Nagy et al., 2018. 
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In order to verify the existed suppressive tumor microenvironment mediated by TGF-, we 

stained tumor cells derived TGF- in the tumor tissue samples. There was no difference in the 

level of TGF- at the tumor site in the four groups therefore the same suppressive effect was 

expected in all cases (Figure 53). 
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Figure 52 Improved persistence of CAR T cells with IL-7 autocrine loop at the tumor site 

(A) CAR
+
 T cells were detected in tumor tissue by labeling of CAR receptor on the T cells with AlexaFluor 

555-conjugated anti-human IgG antibody (dilution 1:250); the tumor cells were stained with AlexaFluor 

488-conjugated anti-CEA (aCD66a/c/e) antibody (dilution 1:50), while cell nuclei was labeled by “Reddot2” 

(dilution 1:200). Scale bar represents 100 µm. (B) CAR
+
 T cells was recorded in tumor tissue slides in 

microscopy imaging. The figures were taken from the publication of Golumba-Nagy et al., 2018. 
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Figure 53 Detection of TGF- at the tumor site 

TGF- was detected in tumor tissue using the anti-TGF- antibody (dilution 1:50) and AlexaFluor 

555-conjugated anti-mouse IgG (H+L) antibody (dilution 1:200); tumor cells were distinguished with the 

AlexaFluor 488-conjugated anti-CEA (aCD66a/c/e) antibody (dilution 1:50), cell nuclei were identified with 

DAPI. Scale bar represents 100 µm. The figures were taken from the publication of Golumba-Nagy et al., 2018.  
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5 DISCUSSION  

The innovation of the second generation CAR contributed to the success of adaptive CAR T 

cell therapy. Adding one or more costimulatory domains to the CAR structure promoted CAR 

engineered T cell function such as longer persistence, better ability for cytokine secretion and 

enhanced specific anti-tumor effects (Kowolik et al., 2006). This is especially true in case of 

solid tumors, where the tumor-antigen specific T cells have a hard time destroying the tumor 

cells because of the immunesuppressive tumor microenvironment. TGF- is a frequent tumor 

resident suppressive cytokine, which is in most cases responsible for the decreased T cell 

activity in the tumor milieu. The advanced proliferative capacity of second generation CAR T 

cells in the presence of TGF-has been shown earlier for CAR T cells with CD28 as 

costimulatory domain (Koehler et al., 2007). However, the background mechanisms behind 

the compensatory effect of the CD28 domain in the TGF--mediated suppression were 

unsolved. The primary object of this study was to disclose the mechanism. 

In the absence of costimulatory domains, CAR T cell proliferation is strongly inhibited in the 

presence of TGF- (Figure 5). Among other CAR T cell functions such as CAR activation-

mediated cytokine secretion or specific killing against antigen positive target cells, the CAR T 

cell amplification was mostly concerned by the inhibition through TGF-. Therefore, we used 

T cell proliferation as primary marker for T cell activity in the presence of TGF-.  

CD28 signaling promoted to the overcoming of the TGF--mediated inhibitory effect. We 

tested two 2nd generation CARs either with the CD28 or the 4-1BB costimulatory domains. 

The use of different costimulatory domains can have various effect on T cell function: while 

CD28 has a role in early T cell activation, 4-1BB promotes a long-term activation of T cells 

(Hombach and Abken, 2011). The mostly used costimulatory domains in CAR applied 

therapy are the CD28, 4-1BB and OX40 domains. According to Brentjens et al., the CD28 

costimulatory domain in combination with CD3 domain are testified to be the best in 

comparison to other combination (Brentjens et al., 2007). 

The proliferation ability of CAR-modified T cells with costimulatory domain was analyzed in 

the presence and absence of TGF-. While the CD28 domain was protective for CAR T cells 

in the presence of TGF-, the 4-1BB domain had no advantages in this process (Figure 9). We 

speculated that the different cytokine production profiles could be responsible for these 

divergent attitudes. CD28 is induces IL-2 secretion (Powell et al., 1998; Thomas et al., 2005), 
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which promotes T cell proliferation. In contrast, CAR T cells with 4-1BB domain release 

lower amounts of IL-2 (Figure 10). In the presence of TGF-, IL-2 and IFN- production 

were inhibited in the case of CAR T cells with either of both costimulatory domains. Such 

observation regarding to the suppressive effect of TGF- on cytokine production was 

described earlier (Brabletz et al., 1993; Gorelik and Flavell, 2002; Yoshimura et al., 2010).  

In order to explore which CD28 function is responsible for the resistance towards 

TGF--mediated inhibition, we mutated either the LCK or the PI3K binding motif of CD28, 

or in both. LCK activation is involved a signaling cascade which promotes IL-2 release 

(Lovatt et al., 2006). For this reason, we supposed that the mutation in the LCK binding site 

leads to decreased level in LCK phosphorylation in the LCK CAR-modified T cells (Figure 

13). Moreover, this mutation within the CD28 domain caused not only impaired LCK 

signaling but also a decrease in IL-2 release, while this mutation did not affect the IFN- 

release (Figure 14). In contrast, the mutation in the PI3K binding site did not cause any 

alteration in IFN- or in IL-2 production by CAR engineered T cells. Furthermore, CAR T 

cell amplification was concerned by TGF-inhibition in case of the mutation in the LCK 

binding motif (Figure 16) but not in case of the mutation in the PI3K binding site, which 

indicates that the PI3K binding site within the CD28 domain is not responsible for the 

resistance against TGF- in T cell proliferation. However, it would be interesting to 

investigate weather other binding part of the CD28 domain has a role in this compensatory 

effect. We supposed that the lack of IL-2 release could be responsible for the suppressed 

proliferation of the LCK CAR-equipped T cells. Our assumption was confirmed by the 

observation that the administration of IL-2 restored the LCK CAR T cell proliferation in the 

presence of TGF- (Figure 18). This outcome squarely indicates the central role of IL-2 in 

TGF- resistance. Furthermore, the transgenically expressed IL-2 along with the CAR results 

IL-2 production by CAR-modified T cells and T cell proliferation in the presence of TGF-. 

The concept confirmed that autocrine IL-2 release independently from the CAR is also able to 

overcome the suppressive effect of TGF- in T cell proliferation (Figure 22). Of note, IL-2 

release without stimulation is not occurred (Figure 20). 

The presence of IL-2 in the tumor environment leads to the activation of regulatory T cells 

(Yoshimura et al., 2010), which inhibits effector T cell functions through the production of 

TGF- (Somasundaram et al., 2002). In addition, in the presence of both suppressive factors, 

Treg cells and TGF-, the use of the second generation CARs with CD28 domain is not 
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sufficient to overcome the inhibition in T cell proliferation (Kofler et al., 2011). Nonetheless, 

IL-2 and TGF- together are needed to generate Tregs with stable suppressive function (Chen 

et al., 2011). For this purpose, we wanted to replace IL-2 with other cytokines, which have the 

same properties as IL-2, in order to overcome the inhibitory effect of TGF-without 

sustaining Tregs. 

We identified IL-7 and IL-15 from the -cytokine family, and replaced IL-2 by administering 

IL-7 or IL-15. IL-7 and IL-15 as well, significantly advanced T cell proliferation in the 

presence of TGF- (Figure 23 and Figure 24). The rationale for using these cytokines is their 

role in T cell homeostasis such as the essential role of IL-7 in T cell development (Rich and 

Leder, 1995). We took advantage of the TRUCK strategy in order to make the cytokines 

available for effector T cells at the tumor site by using CAR T cells with transgenic IL-7 or 

IL-15 release. Otherwise it showed not sufficient to obtain adequate IL-7 or IL-15 

concentrations during clinical applications. Our approach is supported by the report that the 

increased IL-7 production within the tumor microenvironment was provided by dendritic cells 

(DC), which were modified to produce IL-7 and transferred to tumor site. Such modified DCs 

augmented T cell proliferation and contributed to enhanced anti-tumor responses (Miller et 

al., 2000; Westermann et al., 1998). Our IL-7- or IL-15-equipped LCK CAR-modified T 

cells produced IL-7 or IL-15, respectively, after CAR-mediated stimulation, while IL-2 

release was not occurred (Figure 27). IL-7 and IL-15 cytokine releases were activation-

dependent, a phenomenon which we also observed with the IL-2 TRUCK. We assumed that 

the produced cytokines are stored in the intracellular milieu when there is no CAR 

stimulation. The cytokine production is inducible through CAR engagement, which is an 

important aspect for clinical applications in order to avoid uncontrolled cytokine release. 

Furthermore, simultaneous administration of cytokines could lead to toxic side effects 

(Rosenberg et al., 1989). With the TRUCK approach we achieved the same results in T cell 

proliferation as with the administration of IL-7 or IL-15. In the presence of TGF-, the 

proliferation ability of CAR-modified T cells was not changed in comparison to the situation 

without TGF- (Figure 29 and Figure 30). 

Our aim was to find another cytokine, which is able to compensate the inhibitory effect of 

TGF- but without sustaining Treg activation at the same time. The IL-7 receptor is not 

expressed on the Treg cell surface; therefore IL-7 is not adequate to activate them. The use of 

IL-7 is moreover underlined by previous reports, because the Rosenberg group reported that 

the administration of IL-7 to a human patient with lymphopenia resulted in selective increase 
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in the number of CD4
+
 and CD8

+
 lymphocytes and decrease in Treg numbers (Rosenberg et 

al., 2006). Furthermore, a local accumulation of IL-7 advances to enhanced anti-tumor 

response of resident tumor infiltrating T cells (Ditonno et al., 1992). In addition, FoxP3 

protein expression in Tregs is a marker for Treg identification. The regulation of FoxP3 is 

antagonistic to the IL-7 receptor expression. Upregulation of FoxP3 leads to the 

downregulation of IL-7 receptor -chain (CD127), which results the lack of IL-7 receptor in 

Treg cells (Seddiki et al., 2006). In contrast, IL-15 plays a rather activatory role in Treg 

biology. IL-15 increases the expression of CD25 and FoxP3 in CD4
+
 T cells and furthermore 

induces the proliferation of Tregs (Imamichi et al., 2008; Xu et al., 2011). These properties 

make IL-15 less suitable in this context. 

Thus, IL-7 is able to stimulate exclusively effector T cells as long as IL-7 receptor is available 

on the cell surface. However, the IL-7 receptor expression is downregulated after T cell 

activation: CD127 transcripts as well as the surface protein are downregulated by IL-7 within 

a few hours. IL-7 treatment decreases the IL-7 receptor half-life from 24 hours to 3 hours 

(Henriques et al., 2010). In addition, low levels of IL-7 cause smaller and transient decreases 

in CD127 protein level, while higher concentrations lead to more profound and sustained 

IL-7R suppression (Ghazawi et al., 2013). Noteworthy, there is a different regulation of the 

IL-7 receptor by IL-7 and TCR/CD28 stimulation: After IL-7 treatment and withdrawal, 

CD127 mRNA and surface protein reappeared within 7 hours, while after TCR/CD28 

stimulation the re-expression is impeded for a longer time (Alves et al., 2008). We observed a 

similar outcome when we stimulated T cells either through the TCR or through the CAR in 

the absence and presence of self-released transgenic IL-7 (Figure 32). The IL-7 receptor is 

evidently downregulated after T cell stimulation and stays unaltered without stimulation. This 

observation was seen even stronger in the presence of CAR/TCR stimulation plus IL-7. In the 

case of wild type CAR, the IL-7 receptor downregulation was also higher than in the case of 

LCK CAR-modified T cells. This is not surprising, since IL-2 plays a role in CD127 

downregulation as well (Xue et al., 2002). 

In order to avoid IL-7 receptor downregulation after T cell activation, we expressed a 

chimeric cytokine receptor along with the CAR in T cells. This cytokine receptor consists of 

the extracellular part of the IL-7 receptor -chain and the intracellular part of IL-2 receptor 

-chain. This way, IL-7-mediated engagement is converted to IL-2 signaling. We chose the 

chimeric approach, because IL-2 still has a stronger effect on T cell proliferation than IL-7 

has. The chimeric cytokine receptor strategy was supported by previous publications, however 
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the purpose for the useage was different,  in particular, to convert an inhibitory cytokine 

signal into a stimulatory signal either by linked IL-4 receptor -chain to IL2/IL15 receptor 

-chain (Wilkie et al., 2010) or IL-4 receptor -chain to IL-7 receptor -chain (Mohammed et 

al., 2017). 

After IL-7 administration, the engineered T cells showed enhanced IFN- release (Figure 35), 

improved proliferation (Figure 37), and specific cytotoxicity (Figure 38) even in the presence 

of TGF-, which indicates the presence of the chimeric IL7/IL2 receptor. In order to take the 

advantage of the self-produced IL-7 by CAR-modified T cells, we created an autocrine acting 

circle and linked transgenic IL-7 release with a chimeric cytokine receptor. In this way, the 

CAR engineered T cells are able to release IL-7 after CAR engagement, which can bind to the 

chimeric IL7/IL2 receptor and transmit IL-2 signaling. In addition, enhanced T cell 

proliferation and specific killing by LCK CAR-modified T cells with IL-7 autocrine loop in 

the presence of TGF- were registered (Figure 43 and Figure 44). In order to show the benefit 

of such modified T cells towards wild type CAR or LCK CAR in a long term, we repeatedly 

stimulated CAR engrafted T cells for 6 days. The IL-7 autocrine loop was compared to IL-2 

autocrine loop where IL-7 exceeded IL-2 in repeatedly specific killing mediated by 

CAR-modified T cells (Figure 45), although a comparison is difficult because of the different 

circumstances. According to this, Lynch et al. published similar results earlier; they found 

that IL-7 contributed more efficiently to the proliferation of CTLs as well as its antitumor 

effect compared to the administration of IL-2 (Lynch and Miller, 1994). Cytokine release after 

repeated stimulation through CAR engagement revealed differences between the different 

CAR-modified T cells. IFN- and IL-2 secretion by wild type CAR was decreased with the 

time, while IL-7 release by IL-7 autocrine loop-equipped T cells stayed constant during the 

measurement (Figure 46). The stronger cytotoxicity is attributed to the constitutive presence 

of IL-7 mediated by T cells with LCK CAR plus IL-7 autocrine loop in the long term. This 

is underlined with the observation that the granzyme B (Gr B) level after stimulation through 

the CAR stayed unaltered and there was no difference between the different receptor-

modified T cells. In contrast,  although TGF- decreased the level of Gr B in case of the 

CAR T cells with the mutation of the LCK binding site within the CD28 domain (Figure 47). 

The reason could be that IL-2 can contribute to the expression of Gr B possibly even in the 

presence of TGF- (Janas et al., 2005). IL-7 TRUCK with IL-7 autocrine loop has shown 

improved survival within the CAR
+
 T cell population according to the measurement of living 

and/or apoptotic cells after CAR stimulation (Figure 48). This finding is well related to the 
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improved elimination of cancer cells by the CD28LCK- CAR T cells with IL7/IL2R and 

transgenic IL-7 in the long term (Figure 45). Shortly, after 30 min CAR stimulation results 

STAT5 phosphorylation in modified T cells with DLCK CAR with IL-7 autocrine loop and 

indicates the IL-2 receptor signaling pathway. In contrast, CAR T cells without IL-7 loop did 

not show an increase in pSTAT5. The STAT5 protein is a common signal transduction factor 

in both, the IL-2 and the IL-7 signaling pathway (Rani and Murphy, 2016). However, after 30 

min stimulation, the phosphorylation of STAT5 was not detected in the wild type 

CAR-modified T cells. Whereas, after 16 hours stimulation with the cognate antigen an 

increase in pSTAT5 was measured in all CAR-modified T cells (Figure 49). This observation 

is supported by a previous report, that showed that IL-2 release and STAT5 phosphorylation 

appeared between 8 and 16 hours (Long and Adler, 2006). Interestingly, in case of LCK 

CAR-engineered T cells without IL-7 loop, the pSTAT5 signal was detected after 16 hours 

stimulation, which indicated other activation pathways for the STAT5 protein. The Janus-

activated kinase (JAK) is also involved in the activation of the STAT5 protein. Furthermore, 

many other hematopoietic and non-hematopoietic cytokines use the JAK-STAT signaling 

pathway, which could explain the late phosphorylation of the STAT5 protein independent of 

the presence of IL-2 (Rani and Murphy, 2016).  

In order to compare LCK CAR plus IL-7 loop with LCK CAR without IL-7 loop in vivo, 

we investigated a tumor challenge in tumor bearing mice. As first step, the mice received the 

CEA and TGF- positive C15A3 tumor cells. After the tumor growth reached about 200 mm
3
, 

T cells with or without CAR were injected intravenously into the mice. By using these tumor 

cells, the presence of TGF- and therefore the created suppressive tumor microenvironment 

was provided, a fact we recorded at the tumor site with the help of immune-histological 

staining of TGF- (Figure 53). In spite of the suppressive milieu, the LCK CAR with IL-7 

loop successfully reduced the tumor growth in comparison to the LCK CAR without IL-7 

loop (Figure 51). The increased persistence of CAR-modified T cells with IL-7 loop at the 

tumor site (Figure 52) verified our expectation that the IL-7 loop enhanced T cell proliferation 

in the presence of TGF- even in vivo.  

Based on our observation and results that IL-2 and other -cytokines such as IL-7 and IL-15 

are able to compensate the suppressive effect of TGF- on T cell proliferation, we assume 

that there is a crossover between the TGF- and -cytokine signaling pathway. TGF- inhibits 

several mechanisms e.g. through the upregulation of cell cycle regulators such as cyclin-
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dependent kinase inhibitors (CKIs), or through the downregulation of cell cycle promoters 

such as c-myc, cyclin D2, CDK2, and cyclin E. In addition, TGF- is able to suppress 

activated T cells by inhibiting S-phase progression through reduction of the early increases in 

c-myc mRNA levels (Ruegemer et al., 1990). On the other hand, IL-2 has a role in the 

accumulation of c-MYC (myelocytomatosis oncogene) protein in activated T cells. After T 

cell activation, the cells have to upregulate amino acid and glucose uptake in order to sustain 

all T cell functions required to be effector T cells (Chou and Egawa, 2015). In this metabolic 

reprogramming the transcriptional regulator c-MYC has one of the most important roles 

(Wang et al., 2011). The regulation of c-Myc expression is driven by TCR and pro-

inflammatory cytokines, such as IL-2, or possibly IL-7 or IL-15 through the JAK-STAT(5) 

signaling pathway. Stimulation through the TCR is essential to turn on c-myc synthesis, while 

the IL-2 signal is essential to promote long-term accumulation of c-MYC protein (Preston et 

al., 2015).  

According to the different up- or downregulation of c-myc by TGF- and IL-2, respectively, 

c-myc acts as a central modulator in the regulation of T cell proliferation. In our strategy, we 

used IL-7 stimulated IL-2 signaling through the chimeric cytokine receptor for overcoming 

the suppressive effect of TGF- in T cell proliferation. In this way, we could compensate the 

speculative TGF- caused downregulation in c-myc synthesis by moving the balance in order 

to support T cell proliferation. By using IL-7, we expected that IL-7 has a similar role in the 

regulation of c-myc, since IL-7 is acting in the same final pathway as IL-2 (Rani and Murphy, 

2016). This argument is supported by the result of Preston et al., since stimulation with IL-7 

or IL-2 resulted in equivalent levels of myc mRNA, although different levels of MYC protein 

(Preston et al., 2015). Besides c-myc, other genes are also upregulated by IL-2 signaling, 

which have a role in anti-apoptotic mechanisms, such as bcl-2 or bcl-x (Lord et al., 2000). 

IL-7 also plays a role in the upregulation of bcl-2 family molecules (Fry and Mackall, 2002). 

Moreover, in IL-7-deficient mice, the BCL-2 protein was markedly decreased (von Freeden-

Jeffry et al., 1997). In addition, IL-7 and TGF- have a reciprocal relationship since each is 

capable of downregulating the expression of the other (Fry and Mackall, 2002). TGF- is able 

to downregulate IL-7 production by stromal cells (Tang et al., 1997), while IL-7 is able to 

downregulate TGF- production (Dubinett et al., 1995). Thus, IL-7 is an appropriate 

candidate to replace IL-2 as antagonist against TGF- mediated suppression of T cell 

proliferation. In our strategy we retained the advantages of IL-2 signaling through the 

chimeric receptor approach, however, with IL-7 triggering.  
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As a result of the suppressive attitude of TGF- and its tumor supporting behavior, 

tremendous effort was made to overcome the suppressive effect of TGF- around the tumor 

stroma. There are many approaches to repress the activity of TGF- on T cells. Monoclonal 

antibodies and antisense oligonucleotides are concentrated to block TGF- or TGF- 

signaling and thus they impede the whole regulation possibility of TGF-. Despite of this, 

they have shown some promising results in the clinics (Schlingensiepen et al., 2008).  

The transgenic IL-7/IL-2R approach has an advantage over the transgenic expression of the 

dominant-negative TGF- receptor because our strategy tries to compensate the suppressive 

effect of TGF- by overcoming it, while the dominant-negative TGF- receptor tries to 

reduce or eliminate TGF- mediated signaling. The DNTGF- receptor offers a binding site 

for TGF- however without signaling through the receptor, which could lead to a “turned 

off” signal in TGF- mediated regulation. Another limitation could be the accessibility of the 

DNTGF- receptor in the presence of high TGF- concentrations. In this situation, TGF- 

would bind to the physiological TGF- receptors as well and thereby would convey some 

repressive signals even in the presence of the DNTGF- receptor. However, the first clinical 

trial with a dominant-negative TGF- receptor was recently published with promising results 

(Bollard et al., 2018). It should be noted with respect to that that this strategy shows favorable 

results against hematological malignancies. In addition, by using transgenic mice with 

overexpression of the DNTGF- receptor in T cells, a developed autoimmune disease and 

lymphoproliferative disorder were demonstrated (Gorelik and Flavell, 2000; Lucas et al., 

2000). Such disorders could be avoided by using our strategy in order to overcome the 

suppressive effect of TGF- and not to inhibite the regulation through TGF-. 

All of the existing approaches are targeted the TGF- or any parts of the TGF- signaling and 

thereby attempt to repress all possible regulation by TGF-. Nevertheless, the role of TGF- 

in immune homeostasis is essential (Gorelik and Flavell, 2002). This fact is supported by the 

results of TGF-1 KO mice, which show several inflammatory diseases and embryonic 

lethality (Kulkarni and Karlsson, 1993; Shull et al., 1992). In contrast, our strategy is 

dependent on CAR signaling, which leads to T cell activation and IL-7 production. In this 

case the process stays inducible and local, and therefore off-target auto-stimulatory activation 

is not expected. We think with our solution the targeting of solid tumors is feasible even in the 

presence of Treg cells or presumably high concentrations of TGF-, which makes our strategy 

suitable for local activities upon systemic application. 
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In this thesis, we provide a novel solution and demonstrate a new approach for CAR T cell 

therapy against solid tumors. Due to our strategy, we make CAR-engineered T cells more 

efficient against tumor cells in the suppressive TGF- signal-enriched tumor environment 

(Figure 54).  

  

Figure 54 Model of the strategy 

The summary of the concept shows the different behavior of various CAR format in T cell proliferation in the 

presence of TGF-. The figure is adapted and modified from the publication of Golumba-Nagy et al., 2018. 
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6 APPENDIX 

DNA sequence of each plasmid are demonstrated, which were generated for this work. The 

amino acid sequence is shown as single-letter amino acid code above the nucleotide sequence. 

An asterisk (*) is indicated the stop codon. 

6.1 BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL7 CAR (#1645) 

                                                  Lk 

 

                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                   Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                            M  D  F  Q   V  Q  I  F   S  F  L  L   I  S  A  S 

    1945                           ATGGATTTTCAG GTGCAGATTTTC AGCTTCCTGCTA ATCAGTGCCTCA 

                           TACCTAAAAGTC CACGTCTAAAAG TCGAAGGACGAT TAGTCACGGAGT 

                                  anti-CEA scFV BW431/26 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

       Lk 

 ~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  I  M  S   R  G  V  H   S  Q  V  Q   L  Q  E  S   G  P  G  L   V  R  P  S 

    2017 GTCATAATGTCT AGAGGTGTCCAC TCCCAGGTCCAA CTGCAGGAGTCA GGTCCAGGTCTT GTGAGACCTAGC 

 CAGTATTACAGA TCTCCACAGGTG AGGGTCCAGGTT GACGTCCTCAGT CCAGGTCCAGAA CACTCTGGATCG 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  T  L  S   L  T  C  T   V  S  G  F   T  I  S  S   G  Y  S  W   H  W  V  R 

    2089 CAGACCCTGAGC CTGACCTGCACC GTGTCTGGCTTC ACCATCAGCAGT GGTTATAGCTGG CACTGGGTGAGA 

 GTCTGGGACTCG GACTGGACGTGG CACAGACCGAAG TGGTAGTCGTCA CCAATATCGACC GTGACCCACTCT 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  P  P  G   R  G  L  E   W  I  G  Y   I  Q  Y  S   G  I  T  N   Y  N  P  S 

    2161 CAGCCACCTGGA CGAGGTCTTGAG TGGATTGGATAC ATACAGTACAGT GGTATCACTAAC TACAACCCCTCT 

 GTCGGTGGACCT GCTCCAGAACTC ACCTAACCTATG TATGTCATGTCA CCATAGTGATTG ATGTTGGGGAGA 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  K  S  R   V  T  M  L   V  D  T  S   K  N  Q  F   S  L  R  L   S  S  V  T 

    2233 CTCAAAAGTAGA GTGACAATGCTG GTAGACACCAGC AAGAACCAGTTC AGCCTGAGACTC AGCAGCGTGACA 

 GAGTTTTCATCT CACTGTTACGAC CATCTGTGGTCG TTCTTGGTCAAG TCGGACTCTGAG TCGTCGCACTGT 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  A  D  T   A  V  Y  Y   C  A  R  E   D  Y  D  Y   H  W  Y  F   D  V  W  G 

    2305 GCCGCCGACACC GCGGTCTATTAT TGTGCAAGAGAA GACTATGATTAC CACTGGTACTTC GATGTCTGGGGC 

 CGGCGGCTGTGG CGCCAGATAATA ACACGTTCTCTT CTGATACTAATG GTGACCATGAAG CTACAGACCCCG 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  T  T   V  T  V  S   S  G  G  G   G  S  G  G   G  G  S  G   G  G  G  S 

    2377 CAAGGGACCACG GTCACCGTCTCC TCAGGAGGTGGT GGATCGGGCGGT GGCGGGTCGGGT GGCGGCGGATCT 

 GTTCCCTGGTGC CAGTGGCAGAGG AGTCCTCCACCA CCTAGCCCGCCA CCGCCCAGCCCA CCGCCGCCTAGA 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  D  I  Q  L   T  Q  S  P   S  S  L  S   A  S  V  G   D  R  V  T   I  T  C  S 

    2449 GACATCCAGCTG ACCCAGAGCCCA AGCAGCCTGAGC GCCAGCGTGGGT GACAGAGTGACC ATCACCTGTAGT 

 CTGTAGGTCGAC TGGGTCTCGGGT TCGTCGGACTCG CGGTCGCACCCA CTGTCTCACTGG TAGTGGACATCA 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  S  S  S   V  S  Y  M   H  W  Y  Q   Q  K  P  G   K  A  P  K   L  L  I  Y 

    2521 ACCAGCTCGAGT GTAAGTTACATG CACTGGTACCAG CAGAAGCCAGGT AAGGCTCCAAAG CTGCTGATCTAC 

 TGGTCGAGCTCA CATTCAATGTAC GTGACCATGGTC GTCTTCGGTCCA TTCCGAGGTTTC GACGACTAGATG 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  T  S  N   L  A  S  G   V  P  S  R   F  S  G  S   G  S  G  T   D  F  T  F 

    2593 AGCACATCCAAC CTGGCTTCTGGT GTGCCAAGCAGA TTCAGCGGTAGC GGTAGCGGTACC GACTTCACCTTC 

 TCGTGTAGGTTG GACCGAAGACCA CACGGTTCGTCT AAGTCGCCATCG CCATCGCCATGG CTGAAGTGGAAG 

                          anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  I  S  S   L  Q  P  E   D  I  A  T   Y  Y  C  H   Q  W  S  S   Y  P  T  F 

    2665 ACCATCAGCAGC CTCCAGCCAGAG GACATCGCCACC TACTACTGCCAT CAGTGGAGTAGT TATCCCACGTTC 

 TGGTAGTCGTCG GAGGTCGGTCTC CTGTAGCGGTGG ATGATGACGGTA GTCACCTCATCA ATAGGGTGCAAG 

     anti-CEA scFV BW431/26                              hinge 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  Q  G  T   K  V  E  I   K  V  D  P   A  E  P  K   S  P  D  K   T  H  T  C 

    2737 GGCCAAGGGACC AAGGTGGAGATC AAAGTGGATCCC GCCGAGCCCAAA TCTCCTGACAAA ACTCACACATGC 

 CCGGTTCCCTGG TTCCACCTCTAG TTTCACCTAGGG CGGCTCGGGTTT AGAGGACTGTTT TGAGTGTGTACG 

 hinge 

 ~~~ 

                                  humanIgG 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  P  C  P   A  P  E  L   L  G  G  P   S  V  F  L   F  P  P  K   P  K  D  T 

    2809 CCACCGTGCCCA GCACCTGAACTC CTGGGGGGACCG TCAGTCTTCCTC TTCCCCCCAAAA CCCAAGGACACC 

 GGTGGCACGGGT CGTGGACTTGAG GACCCCCCTGGC AGTCAGAAGGAG AAGGGGGGTTTT GGGTTCCTGTGG 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  M  I  S   R  T  P  E   V  T  C  V   V  V  D  V   S  H  E  D   P  E  V  K 

    2881 CTCATGATCTCC CGGACCCCTGAG GTCACATGCGTG GTGGTGGACGTG AGCCACGAAGAC CCTGAGGTCAAG 

 GAGTACTAGAGG GCCTGGGGACTC CAGTGTACGCAC CACCACCTGCAC TCGGTGCTTCTG GGACTCCAGTTC 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  F  N  W  Y   V  D  G  V   E  V  H  N   A  K  T  K   P  R  E  E   Q  Y  N  S 

    2953 TTCAACTGGTAC GTGGACGGCGTG GAGGTGCATAAT GCCAAGACAAAG CCGCGGGAGGAG CAGTACAACAGC 

 AAGTTGACCATG CACCTGCCGCAC CTCCACGTATTA CGGTTCTGTTTC GGCGCCCTCCTC GTCATGTTGTCG 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  Y  R  V   V  S  V  L   T  V  L  H   Q  D  W  L   N  G  K  E   Y  K  C  K 

    3025 ACGTACCGTGTG GTCAGCGTCCTC ACCGTCCTGCAC CAGGACTGGCTG AATGGCAAGGAG TACAAGTGCAAG 

 TGCATGGCACAC CAGTCGCAGGAG TGGCAGGACGTG GTCCTGACCGAC TTACCGTTCCTC ATGTTCACGTTC 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  S  N  K   A  L  P  A   P  I  E  K   T  I  S  K   A  K  G  Q   P  R  E  P 

    3097 GTCTCCAACAAA GCCCTCCCAGCC CCCATCGAGAAA ACCATCTCCAAA GCCAAAGGGCAG CCCCGAGAACCA 

 CAGAGGTTGTTT CGGGAGGGTCGG GGGTAGCTCTTT TGGTAGAGGTTT CGGTTTCCCGTC GGGGCTCTTGGT 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  V  Y  T   L  P  P  S   R  D  E  L   T  K  N  Q   V  S  L  T   C  L  V  K 

    3169 CAGGTGTACACC CTGCCCCCATCC CGGGATGAGCTG ACCAAGAACCAG GTCAGCCTGACC TGCCTGGTCAAA 

 GTCCACATGTGG GACGGGGGTAGG GCCCTACTCGAC TGGTTCTTGGTC CAGTCGGACTGG ACGGACCAGTTT 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  F  Y  P   S  D  I  A   V  E  W  E   S  N  G  Q   P  E  N  N   Y  K  T  T 

    3241 GGCTTCTATCCC AGCGACATCGCC GTGGAGTGGGAG AGCAATGGGCAG CCGGAGAACAAC TACAAGACCACG 

 CCGAAGATAGGG TCGCTGTAGCGG CACCTCACCCTC TCGTTACCCGTC GGCCTCTTGTTG ATGTTCTGGTGC 

                                 humanIgG 
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 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  P  V  L   D  S  D  G   S  F  F  L   Y  S  K  L   T  V  D  K   S  R  W  Q 

    3313 CCTCCCGTGCTG GACTCCGACGGC TCCTTCTTCCTC TACAGCAAGCTC ACCGTGGACAAG AGCAGGTGGCAG 

 GGAGGGCACGAC CTGAGGCTGCCG AGGAAGAAGGAG ATGTCGTTCGAG TGGCACCTGTTC TCGTCCACCGTC 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  N  V   F  S  C  S   V  M  H  E   A  L  H  N   H  Y  T  Q   K  S  L  S 

    3385 CAGGGGAACGTC TTCTCATGCTCC GTGATGCATGAG GCTCTGCACAAC CACTACACGCAG AAGAGCCTCTCC 

 GTCCCCTTGCAG AAGAGTACGAGG CACTACGTACTC CGAGACGTGTTG GTGATGTGCGTC TTCTCGGAGAGG 

    humanIgG                               CD28DLCK 

 ~~~~~~~~~~~~~~~~   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  S  P  G   K  K  D  P   K  F  W  V   L  V  V  V   G  G  V  L   A  C  Y  S 

    3457 CTGTCTCCGGGT AAAAAAGATCCC AAATTTTGGGTG CTGGTGGTGGTT GGTGGAGTCCTG GCTTGCTATAGC 

 GACAGAGGCCCA TTTTTTCTAGGG TTTAAAACCCAC GACCACCACCAA CCACCTCAGGAC CGAACGATATCG 

                                 CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  L  V  T   V  A  F  I   I  F  W  V   R  S  K  R   S  R  L  L   H  S  D  Y 

    3529 TTGCTAGTAACA GTGGCCTTTATT ATTTTCTGGGTG AGGAGTAAGAGG AGCAGGCTCCTG CACAGTGACTAC 

 AACGATCATTGT CACCGGAAATAA TAAAAGACCCAC TCCTCATTCTCC TCGTCCGAGGAC GTGTCACTGATG 

                                 CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  M  N  M  T   P  R  R  P   G  P  T  R   K  H  Y  Q   A  Y  A  A   A  R  D  F 

    3601 ATGAACATGACT CCCCGCCGCCCC GGGCCCACCCGC AAGCATTACCAG GCCTATGCCGCC GCACGCGACTTC 

 TACTTGTACTGA GGGGCGGCGGGG CCCGGGTGGGCG TTCGTAATGGTC CGGATACGGCGG CGTGCGCTGAAG 

                                           CD3z 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    CD28DLCK 

 ~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  A  Y  R   S  L  R  V   K  F  S  R   S  A  D  A   P  A  Y  Q   Q  G  Q  N 

    3673 GCAGCCTATCGC TCCCTGAGAGTG AAGTTCAGCAGG AGCGCAGACGCC CCCGCGTACCAG CAGGGCCAGAAC 

 CGTCGGATAGCG AGGGACTCTCAC TTCAAGTCGTCC TCGCGTCTGCGG GGGCGCATGGTC GTCCCGGTCTTG 

                                   CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  L  Y  N   E  L  N  L   G  R  R  E   E  Y  D  V   L  D  K  R   R  G  R  D 

    3745 CAGCTCTATAAC GAGCTCAATCTA GGACGAAGAGAG GAGTACGATGTT TTGGACAAGAGA CGTGGCCGGGAC 

 GTCGAGATATTG CTCGAGTTAGAT CCTGCTTCTCTC CTCATGCTACAA AACCTGTTCTCT GCACCGGCCCTG 

                                   CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  E  M  G   G  K  P  R   R  K  N  P   Q  E  G  L   Y  N  E  L   Q  K  D  K 

    3817 CCTGAGATGGGG GGAAAGCCGAGA AGGAAGAACCCT CAGGAAGGCCTG TACAATGAACTG CAGAAAGATAAG 

 GGACTCTACCCC CCTTTCGGCTCT TCCTTCTTGGGA GTCCTTCCGGAC ATGTTACTTGAC GTCTTTCTATTC 

                                   CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  M  A  E  A   Y  S  E  I   G  M  K  G   E  R  R  R   G  K  G  H   D  G  L  Y 

    3889 ATGGCGGAGGCC TACAGTGAGATT GGGATGAAAGGC GAGCGCCGGAGG GGCAAGGGGCAC GATGGCCTTTAC 

 TACCGCCTCCGG ATGTCACTCTAA CCCTACTTTCCG CTCGCGGCCTCC CCGTTCCCCGTG CTACCGGAAATG 

                                                                         P2A 

                                                                        ~~~~~~ 

                                CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                  Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  L  S   T  A  T  K   D  T  Y  D   A  L  H  M   Q  A  L  P   P  R  G  S 

    3961 CAGGGTCTCAGT ACAGCCACCAAG GACACCTACGAC GCCCTTCACATG CAGGCCCTGCCC CCTCGCGGATCT 

 GTCCCAGAGTCA TGTCGGTGGTTC CTGTGGATGCTG CGGGAAGTGTAC GTCCGGGACGGG GGAGCGCCTAGA 

                                                                      mIL7 

                                                                  ~~~~~~~~~~~~ 

                                                                  mIL7 Signal Peptide 

                                                                  ~~~~~~~~~~~~ 

                             P2A 
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 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  A  T  N   F  S  L  L   K  Q  A  G   D  V  E  E   N  P  G  P   M  F  H  V 

    4033 GGAGCCACGAAC TTCTCTCTGTTA AAGCAAGCAGGA GACGTGGAAGAA AACCCCGGTCCT ATGTTCCATGTT 

 CCTCGGTGCTTG AAGAGAGACAAT TTCGTTCGTCCT CTGCACCTTCTT TTGGGGCCAGGA TACAAGGTACAA 

                       mIL7 Signal Peptide 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                   mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  F  R  Y   I  F  G  I   P  P  L  I   L  V  L  L   P  V  T  S   S  E  C  H 

    4105 TCTTTTAGATAT ATCTTTGGAATT CCTCCACTGATC CTTGTTCTGCTG CCTGTCACATCA TCTGAGTGCCAC 

 AGAAAATCTATA TAGAAACCTTAA GGAGGTGACTAG GAACAAGACGAC GGACAGTGTAGT AGACTCACGGTG 

                                   mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                             BclI 

                                            ~~~~~~ 

  I  K  D  K   E  G  K  A   Y  E  S  V   L  M  I  S   I  D  E  L   D  K  M  T 

    4177 ATTAAAGACAAA GAAGGTAAAGCA TATGAGAGTGTA CTGATGATCAGC ATCGATGAATTG GACAAAATGACA 

 TAATTTCTGTTT CTTCCATTTCGT ATACTCTCACAT GACTACTAGTCG TAGCTACTTAAC CTGTTTTACTGT 

                                   mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  T  D  S   N  C  P  N   N  E  P  N   F  F  R  K   H  V  C  D   D  T  K  E 

    4249 GGAACTGATAGT AATTGCCCGAAT AATGAACCAAAC TTTTTTAGAAAA CATGTATGTGAT GATACAAAGGAA 

 CCTTGACTATCA TTAACGGGCTTA TTACTTGGTTTG AAAAAATCTTTT GTACATACACTA CTATGTTTCCTT 

                                   mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  A  F  L   N  R  A  A   R  K  L  K   Q  F  L  K   M  N  I  S   E  E  F  N 

    4321 GCTGCTTTTCTA AATCGTGCTGCT CGCAAGTTGAAG CAATTTCTTAAA ATGAATATCAGT GAAGAATTCAAT 

 CGACGAAAAGAT TTAGCACGACGA GCGTTCAACTTC GTTAAAGAATTT TACTTATAGTCA CTTCTTAAGTTA 

                                   mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  H  L  L   T  V  S  Q   G  T  Q  T   L  V  N  C   T  S  K  E   E  K  N  V 

    4393 GTCCACTTACTA ACAGTATCACAA GGCACACAAACA CTGGTGAACTGC ACGAGTAAGGAA GAAAAAAACGTA 

 CAGGTGAATGAT TGTCATAGTGTT CCGTGTGTTTGT GACCACTTGACG TGCTCATTCCTT CTTTTTTTGCAT 

                                   mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  E  Q  K   K  N  D  A   C  F  L  K   R  L  L  R   E  I  K  T   C  W  N  K 

    4465 AAGGAACAGAAA AAGAATGATGCA TGTTTCCTAAAG AGACTACTGAGA GAAATAAAAACT TGTTGGAATAAA 

 TTCCTTGTCTTT TTCTTACTACGT ACAAAGGATTTC TCTGATGACTCT CTTTATTTTTGA ACAACCTTATTT 

         mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~ 

                                 BspEI 

                                 ~~~~~~~ 

  I  L  K  G   S  I  *  L   E  R  S  G 

    4537 ATTTTGAAGGGC AGTATATAACTC GAGAGATCCGGA                                        

 TAAAACTTCCCG TCATATATTGAG CTCTCTAGGCCT                                        
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6.2 BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL2 CAR (#1746)  

                                            Lk-BW431/26scFv-Fc- 

                                                               CD28DLCK-CD3z 

                                                     ~~~~~~~~~~~~~ 

                                                          Lk 

                                                     ~~~~~~~~~~~~~ 

                                                      M   D  F  Q 

    1921                                                     AT GGATTTTCAG 

                                                     TA CCTAAAAGTC 

                         Lk 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                                         anti-CEA-scFv BW431/26 

                                                         ~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  Q  I  F   S  F  L   L  I  S   A  S  V  I   M  S  R   G  V  H 

    1981 GTGCAGATTT TCAGCTTCCT GCTAATCAGT GCCTCAGTCA TAATGTCTAG AGGTGTCCAC 

 CACGTCTAAA AGTCGAAGGA CGATTAGTCA CGGAGTCAGT ATTACAGATC TCCACAGGTG 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  Q  V  Q   L  Q  E   S  G  P   G  L  V  R   P  S  Q   T  L  S 

    2041 TCCCAGGTCC AACTGCAGGA GTCAGGTCCA GGTCTTGTGA GACCTAGCCA GACCCTGAGC 

 AGGGTCCAGG TTGACGTCCT CAGTCCAGGT CCAGAACACT CTGGATCGGT CTGGGACTCG 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  T  C  T   V  S  G   F  T  I   S  S  G  Y   S  W  H   W  V  R 

    2101 CTGACCTGCA CCGTGTCTGG CTTCACCATC AGCAGTGGTT ATAGCTGGCA CTGGGTGAGA 

 GACTGGACGT GGCACAGACC GAAGTGGTAG TCGTCACCAA TATCGACCGT GACCCACTCT 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  P  P  G   R  G  L   E  W  I   G  Y  I  Q   Y  S  G   I  T  N 

    2161 CAGCCACCTG GACGAGGTCT TGAGTGGATT GGATACATAC AGTACAGTGG TATCACTAAC 

 GTCGGTGGAC CTGCTCCAGA ACTCACCTAA CCTATGTATG TCATGTCACC ATAGTGATTG 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  N  P  S   L  K  S   R  V  T   M  L  V  D   T  S  K   N  Q  F 

    2221 TACAACCCCT CTCTCAAAAG TAGAGTGACA ATGCTGGTAG ACACCAGCAA GAACCAGTTC 

 ATGTTGGGGA GAGAGTTTTC ATCTCACTGT TACGACCATC TGTGGTCGTT CTTGGTCAAG 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  L  R  L   S  S  V   T  A  A   D  T  A  V   Y  Y  C   A  R  E 

    2281 AGCCTGAGAC TCAGCAGCGT GACAGCCGCC GACACCGCGG TCTATTATTG TGCAAGAGAA 

 TCGGACTCTG AGTCGTCGCA CTGTCGGCGG CTGTGGCGCC AGATAATAAC ACGTTCTCTT 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  D  Y  D  Y   H  W  Y   F  D  V   W  G  Q  G   T  T  V   T  V  S 

    2341 GACTATGATT ACCACTGGTA CTTCGATGTC TGGGGCCAAG GGACCACGGT CACCGTCTCC 

 CTGATACTAA TGGTGACCAT GAAGCTACAG ACCCCGGTTC CCTGGTGCCA GTGGCAGAGG 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  G  G  G   G  S  G   G  G  G   S  G  G  G   G  S  D   I  Q  L 

    2401 TCAGGAGGTG GTGGATCGGG CGGTGGCGGG TCGGGTGGCG GCGGATCTGA CATCCAGCTG 

 AGTCCTCCAC CACCTAGCCC GCCACCGCCC AGCCCACCGC CGCCTAGACT GTAGGTCGAC 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  Q  S  P   S  S  L   S  A  S   V  G  D  R   V  T  I   T  C  S 

    2461 ACCCAGAGCC CAAGCAGCCT GAGCGCCAGC GTGGGTGACA GAGTGACCAT CACCTGTAGT 

 TGGGTCTCGG GTTCGTCGGA CTCGCGGTCG CACCCACTGT CTCACTGGTA GTGGACATCA 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

       XhoI 

      ~~~~~~~ 

  T  S  S  S   V  S  Y   M  H  W   Y  Q  Q  K   P  G  K   A  P  K 

    2521 ACCAGCTCGA GTGTAAGTTA CATGCACTGG TACCAGCAGA AGCCAGGTAA GGCTCCAAAG 

 TGGTCGAGCT CACATTCAAT GTACGTGACC ATGGTCGTCT TCGGTCCATT CCGAGGTTTC 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  L  I  Y   S  T  S   N  L  A   S  G  V  P   S  R  F   S  G  S 

    2581 CTGCTGATCT ACAGCACATC CAACCTGGCT TCTGGTGTGC CAAGCAGATT CAGCGGTAGC 

 GACGACTAGA TGTCGTGTAG GTTGGACCGA AGACCACACG GTTCGTCTAA GTCGCCATCG 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  S  G  T   D  F  T   F  T  I   S  S  L  Q   P  E  D   I  A  T 

    2641 GGTAGCGGTA CCGACTTCAC CTTCACCATC AGCAGCCTCC AGCCAGAGGA CATCGCCACC 

 CCATCGCCAT GGCTGAAGTG GAAGTGGTAG TCGTCGGAGG TCGGTCTCCT GTAGCGGTGG 

                    anti-CEA-scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  Y  C  H   Q  W  S   S  Y  P   T  F  G  Q   G  T  K   V  E  I 

    2701 TACTACTGCC ATCAGTGGAG TAGTTATCCC ACGTTCGGCC AAGGGACCAA GGTGGAGATC 

 ATGATGACGG TAGTCACCTC ATCAATAGGG TGCAAGCCGG TTCCCTGGTT CCACCTCTAG 

 anti-CEA-scFv BW431/26                                  humanIgG 

 ~~~~~~                                                  ~~~~~~~~~ 

                                hinge 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  V  D  P   A  E  P   K  S  P   D  K  T  H   T  C  P   P  C  P 

    2761 AAAGTGGATC CCGCCGAGCC CAAATCTCCT GACAAAACTC ACACATGCCC ACCGTGCCCA 

 TTTCACCTAG GGCGGCTCGG GTTTAGAGGA CTGTTTTGAG TGTGTACGGG TGGCACGGGT 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  P  E  L   L  G  G   P  S  V   F  L  F  P   P  K  P   K  D  T 

    2821 GCACCTGAAC TCCTGGGGGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC 

 CGTGGACTTG AGGACCCCCC TGGCAGTCAG AAGGAGAAGG GGGGTTTTGG GTTCCTGTGG 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  M  I  S   R  T  P   E  V  T   C  V  V  V   D  V  S   H  E  D 

    2881 CTCATGATCT CCCGGACCCC TGAGGTCACA TGCGTGGTGG TGGACGTGAG CCACGAAGAC 

 GAGTACTAGA GGGCCTGGGG ACTCCAGTGT ACGCACCACC ACCTGCACTC GGTGCTTCTG 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  E  V  K   F  N  W   Y  V  D   G  V  E  V   H  N  A   K  T  K 

    2941 CCTGAGGTCA AGTTCAACTG GTACGTGGAC GGCGTGGAGG TGCATAATGC CAAGACAAAG 

 GGACTCCAGT TCAAGTTGAC CATGCACCTG CCGCACCTCC ACGTATTACG GTTCTGTTTC 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  R  E  E   Q  Y  N   S  T  Y   R  V  V  S   V  L  T   V  L  H 

    3001 CCGCGGGAGG AGCAGTACAA CAGCACGTAC CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC 

 GGCGCCCTCC TCGTCATGTT GTCGTGCATG GCACACCAGT CGCAGGAGTG GCAGGACGTG 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  D  W  L   N  G  K   E  Y  K   C  K  V  S   N  K  A   L  P  A 

    3061 CAGGACTGGC TGAATGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGC CCTCCCAGCC 

 GTCCTGACCG ACTTACCGTT CCTCATGTTC ACGTTCCAGA GGTTGTTTCG GGAGGGTCGG 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  I  E  K   T  I  S   K  A  K   G  Q  P  R   E  P  Q   V  Y  T 

    3121 CCCATCGAGA AAACCATCTC CAAAGCCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC 
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 GGGTAGCTCT TTTGGTAGAG GTTTCGGTTT CCCGTCGGGG CTCTTGGTGT CCACATGTGG 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  P  P  S   R  D  E   L  T  K   N  Q  V  S   L  T  C   L  V  K 

    3181 CTGCCCCCAT CCCGGGATGA GCTGACCAAG AACCAGGTCA GCCTGACCTG CCTGGTCAAA 

 GACGGGGGTA GGGCCCTACT CGACTGGTTC TTGGTCCAGT CGGACTGGAC GGACCAGTTT 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  F  Y  P   S  D  I   A  V  E   W  E  S  N   G  Q  P   E  N  N 

    3241 GGCTTCTATC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAC 

 CCGAAGATAG GGTCGCTGTA GCGGCACCTC ACCCTCTCGT TACCCGTCGG CCTCTTGTTG 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  K  T  T   P  P  V   L  D  S   D  G  S  F   F  L  Y   S  K  L 

    3301 TACAAGACCA CGCCTCCCGT GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC 

 ATGTTCTGGT GCGGAGGGCA CGACCTGAGG CTGCCGAGGA AGAAGGAGAT GTCGTTCGAG 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  V  D  K   S  R  W   Q  Q  G   N  V  F  S   C  S  V   M  H  E 

    3361 ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG 

 TGGCACCTGT TCTCGTCCAC CGTCGTCCCC TTGCAGAAGA GTACGAGGCA CTACGTACTC 

                      humanIgG                              CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   ~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  L  H  N   H  Y  T   Q  K  S   L  S  L  S   P  G  K   K  D  P 

    3421 GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGGTAA AAAAGATCCC 

 CGAGACGTGT TGGTGATGTG CGTCTTCTCG GAGAGGGACA GAGGCCCATT TTTTCTAGGG 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  F  W  V   L  V  V   V  G  G   V  L  A  C   Y  S  L   L  V  T 

    3481 AAATTTTGGG TGCTGGTGGT GGTTGGTGGA GTCCTGGCTT GCTATAGCTT GCTAGTAACA 

 TTTAAAACCC ACGACCACCA CCAACCACCT CAGGACCGAA CGATATCGAA CGATCATTGT 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  A  F  I   I  F  W   V  R  S   K  R  S  R   L  L  H   S  D  Y 

    3541 GTGGCCTTTA TTATTTTCTG GGTGAGGAGT AAGAGGAGCA GGCTCCTGCA CAGTGACTAC 

 CACCGGAAAT AATAAAAGAC CCACTCCTCA TTCTCCTCGT CCGAGGACGT GTCACTGATG 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                            ApaI 

                           ~~~~~~~ 

  M  N  M  T   P  R  R   P  G  P   T  R  K  H   Y  Q  A   Y  A  A 

    3601 ATGAACATGA CTCCCCGCCG CCCCGGGCCC ACCCGCAAGC ATTACCAGGC CTATGCCGCC 

 TACTTGTACT GAGGGGCGGC GGGGCCCGGG TGGGCGTTCG TAATGGTCCG GATACGGCGG 

          CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                            CD3z 

                              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  R  D  F   A  A  Y   R  S  L   R  V  K  F   S  R  S   A  D  A 

    3661 GCACGCGACT TCGCAGCCTA TCGCTCCCTG AGAGTGAAGT TCAGCAGGAG CGCAGACGCC 

 CGTGCGCTGA AGCGTCGGAT AGCGAGGGAC TCTCACTTCA AGTCGTCCTC GCGTCTGCGG 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  A  Y  Q   Q  G  Q   N  Q  L   Y  N  E  L   N  L  G   R  R  E 

    3721 CCCGCGTACC AGCAGGGCCA GAACCAGCTC TATAACGAGC TCAATCTAGG ACGAAGAGAG 

 GGGCGCATGG TCGTCCCGGT CTTGGTCGAG ATATTGCTCG AGTTAGATCC TGCTTCTCTC 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 
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 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  E  Y  D  V   L  D  K   R  R  G   R  D  P  E   M  G  G   K  P  R 

    3781 GAGTACGATG TTTTGGACAA GAGACGTGGC CGGGACCCTG AGATGGGGGG AAAGCCGAGA 

 CTCATGCTAC AAAACCTGTT CTCTGCACCG GCCCTGGGAC TCTACCCCCC TTTCGGCTCT 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  R  K  N  P   Q  E  G   L  Y  N   E  L  Q  K   D  K  M   A  E  A 

    3841 AGGAAGAACC CTCAGGAAGG CCTGTACAAT GAACTGCAGA AAGATAAGAT GGCGGAGGCC 

 TCCTTCTTGG GAGTCCTTCC GGACATGTTA CTTGACGTCT TTCTATTCTA CCGCCTCCGG 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  S  E  I   G  M  K   G  E  R   R  R  G  K   G  H  D   G  L  Y 

    3901 TACAGTGAGA TTGGGATGAA AGGCGAGCGC CGGAGGGGCA AGGGGCACGA TGGCCTTTAC 

 ATGTCACTCT AACCCTACTT TCCGCTCGCG GCCTCCCCGT TCCCCGTGCT ACCGGAAATG 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  L  S   T  A  T   K  D  T   Y  D  A  L   H  M  Q   A  L  P 

    3961 CAGGGTCTCA GTACAGCCAC CAAGGACACC TACGACGCCC TTCACATGCA GGCCCTGCCC 

 GTCCCAGAGT CATGTCGGTG GTTCCTGTGG ATGCTGCGGG AAGTGTACGT CCGGGACGGG 

                                P2A 

       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  CD3z 

 ~~~~~~ 

 Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~ 

  P  R  G  S   G  A  T   N  F  S   L  L  K  Q   A  G  D   V  E  E 

    4021 CCTCGCGGAT CTGGAGCCAC GAACTTCTCT CTGTTAAAGC AAGCAGGAGA CGTGGAAGAA 

 GGAGCGCCTA GACCTCGGTG CTTGAAGAGA GACAATTTCG TTCGTCCTCT GCACCTTCTT 

                                    hIL2 

              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

     P2A 

 ~~~~~~~~~~~~~ 

  N  P  G  P   M  Y  R   M  Q  L   L  S  C  I   A  L  S   L  A  L 

    4081 AACCCCGGTC CTATGTACAG GATGCAACTC CTGTCTTGCA TTGCACTAAG TCTTGCACTT 

 TTGGGGCCAG GATACATGTC CTACGTTGAG GACAGAACGT AACGTGATTC AGAACGTGAA 

                             hIL2 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  T  N  S   A  P  T   S  S  S   T  K  K  T   Q  L  Q   L  E  H 

    4141 GTCACAAACA GTGCACCTAC TTCAAGTTCT ACAAAGAAAA CACAGCTACA ACTGGAGCAT 

 CAGTGTTTGT CACGTGGATG AAGTTCAAGA TGTTTCTTTT GTGTCGATGT TGACCTCGTA 

                             hIL2 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  L  L  D   L  Q  M   I  L  N   G  I  N  N   Y  K  N   P  K  L 

    4201 TTACTGCTGG ATTTACAGAT GATTTTGAAT GGAATTAATA ATTACAAGAA TCCCAAACTC 

 AATGACGACC TAAATGTCTA CTAAAACTTA CCTTAATTAT TAATGTTCTT AGGGTTTGAG 

                             hIL2 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  R  M  L   T  F  K   F  Y  M   P  K  K  A   T  E  L   K  H  L 

    4261 ACCAGGATGC TCACATTTAA GTTTTACATG CCCAAGAAGG CCACAGAACT GAAACATCTT 

 TGGTCCTACG AGTGTAAATT CAAAATGTAC GGGTTCTTCC GGTGTCTTGA CTTTGTAGAA 

                             hIL2 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  C  L  E   E  E  L   K  P  L   E  E  V  L   N  L  A   Q  S  K 

    4321 CAGTGTCTAG AAGAAGAACT CAAACCTCTG GAGGAAGTGC TAAATTTAGC TCAAAGCAAA 

 GTCACAGATC TTCTTCTTGA GTTTGGAGAC CTCCTTCACG ATTTAAATCG AGTTTCGTTT 

                             hIL2 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  N  F  H  L   R  P  R   D  L  I   S  N  I  N   V  I  V   L  E  L 

    4381 AACTTTCACT TAAGACCCAG GGACTTAATC AGCAATATCA ACGTAATAGT TCTGGAACTA 

 TTGAAAGTGA ATTCTGGGTC CCTGAATTAG TCGTTATAGT TGCATTATCA AGACCTTGAT 

                             hIL2 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  G  S  E   T  T  F   M  C  E   Y  A  D  E   T  A  T   I  V  E 

    4441 AAGGGATCTG AAACAACATT CATGTGTGAA TATGCTGATG AGACAGCAAC CATTGTAGAA 

 TTCCCTAGAC TTTGTTGTAA GTACACACTT ATACGACTAC TCTGTCGTTG GTAACATCTT 

                          hIL2 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                                             XhoI 

                                                            ~~~~~~ 

  F  L  N  R   W  I  T   F  C  Q   S  I  I  S   T  L  T   *  L  E 

    4501 TTTCTGAACA GATGGATTAC CTTTTGTCAA AGCATCATCT CAACACTAAC TTGACTCGAG 

 AAAGACTTGT CTACCTAATG GAAAACAGTT TCGTAGTAGA GTTGTGATTG AACTGAGCTC 
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6.3 BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL15 CAR (#1764) 

                                                  Lk 

                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                   Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                            M  D  F  Q   V  Q  I  F   S  F  L  L   I  S  A  S 

    1945                           ATGGATTTTCAG GTGCAGATTTTC AGCTTCCTGCTA ATCAGTGCCTCA 

                           TACCTAAAAGTC CACGTCTAAAAG TCGAAGGACGAT TAGTCACGGAGT 

       Lk 

 ~~~~~~~~~~~~~~~~ 

                                  anti-CEA scFv BW431/26 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  I  M  S   R  G  V  H   S  Q  V  Q   L  Q  E  S   G  P  G  L   V  R  P  S 

    2017 GTCATAATGTCT AGAGGTGTCCAC TCCCAGGTCCAA CTGCAGGAGTCA GGTCCAGGTCTT GTGAGACCTAGC 

 CAGTATTACAGA TCTCCACAGGTG AGGGTCCAGGTT GACGTCCTCAGT CCAGGTCCAGAA CACTCTGGATCG 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  T  L  S   L  T  C  T   V  S  G  F   T  I  S  S   G  Y  S  W   H  W  V  R 

    2089 CAGACCCTGAGC CTGACCTGCACC GTGTCTGGCTTC ACCATCAGCAGT GGTTATAGCTGG CACTGGGTGAGA 

 GTCTGGGACTCG GACTGGACGTGG CACAGACCGAAG TGGTAGTCGTCA CCAATATCGACC GTGACCCACTCT 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  P  P  G   R  G  L  E   W  I  G  Y   I  Q  Y  S   G  I  T  N   Y  N  P  S 

    2161 CAGCCACCTGGA CGAGGTCTTGAG TGGATTGGATAC ATACAGTACAGT GGTATCACTAAC TACAACCCCTCT 

 GTCGGTGGACCT GCTCCAGAACTC ACCTAACCTATG TATGTCATGTCA CCATAGTGATTG ATGTTGGGGAGA 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  K  S  R   V  T  M  L   V  D  T  S   K  N  Q  F   S  L  R  L   S  S  V  T 

    2233 CTCAAAAGTAGA GTGACAATGCTG GTAGACACCAGC AAGAACCAGTTC AGCCTGAGACTC AGCAGCGTGACA 

 GAGTTTTCATCT CACTGTTACGAC CATCTGTGGTCG TTCTTGGTCAAG TCGGACTCTGAG TCGTCGCACTGT 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  A  D  T   A  V  Y  Y   C  A  R  E   D  Y  D  Y   H  W  Y  F   D  V  W  G 

    2305 GCCGCCGACACC GCGGTCTATTAT TGTGCAAGAGAA GACTATGATTAC CACTGGTACTTC GATGTCTGGGGC 

 CGGCGGCTGTGG CGCCAGATAATA ACACGTTCTCTT CTGATACTAATG GTGACCATGAAG CTACAGACCCCG 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  T  T   V  T  V  S   S  G  G  G   G  S  G  G   G  G  S  G   G  G  G  S 

    2377 CAAGGGACCACG GTCACCGTCTCC TCAGGAGGTGGT GGATCGGGCGGT GGCGGGTCGGGT GGCGGCGGATCT 

 GTTCCCTGGTGC CAGTGGCAGAGG AGTCCTCCACCA CCTAGCCCGCCA CCGCCCAGCCCA CCGCCGCCTAGA 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  D  I  Q  L   T  Q  S  P   S  S  L  S   A  S  V  G   D  R  V  T   I  T  C  S 

    2449 GACATCCAGCTG ACCCAGAGCCCA AGCAGCCTGAGC GCCAGCGTGGGT GACAGAGTGACC ATCACCTGTAGT 

 CTGTAGGTCGAC TGGGTCTCGGGT TCGTCGGACTCG CGGTCGCACCCA CTGTCTCACTGG TAGTGGACATCA 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

       XhoI 

      ~~~~~~ 

  T  S  S  S   V  S  Y  M   H  W  Y  Q   Q  K  P  G   K  A  P  K   L  L  I  Y 

    2521 ACCAGCTCGAGT GTAAGTTACATG CACTGGTACCAG CAGAAGCCAGGT AAGGCTCCAAAG CTGCTGATCTAC 

 TGGTCGAGCTCA CATTCAATGTAC GTGACCATGGTC GTCTTCGGTCCA TTCCGAGGTTTC GACGACTAGATG 

                          anti-CEA scFv BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  T  S  N   L  A  S  G   V  P  S  R   F  S  G  S   G  S  G  T   D  F  T  F 

    2593 AGCACATCCAAC CTGGCTTCTGGT GTGCCAAGCAGA TTCAGCGGTAGC GGTAGCGGTACC GACTTCACCTTC 

 TCGTGTAGGTTG GACCGAAGACCA CACGGTTCGTCT AAGTCGCCATCG CCATCGCCATGG CTGAAGTGGAAG 

                          anti-CEA scFv BW431/26 
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 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  I  S  S   L  Q  P  E   D  I  A  T   Y  Y  C  H   Q  W  S  S   Y  P  T  F 

    2665 ACCATCAGCAGC CTCCAGCCAGAG GACATCGCCACC TACTACTGCCAT CAGTGGAGTAGT TATCCCACGTTC 

 TGGTAGTCGTCG GAGGTCGGTCTC CTGTAGCGGTGG ATGATGACGGTA GTCACCTCATCA ATAGGGTGCAAG 

     anti-CEA scFv BW431/26                              hinge 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  Q  G  T   K  V  E  I   K  V  D  P   A  E  P  K   S  P  D  K   T  H  T  C 

    2737 GGCCAAGGGACC AAGGTGGAGATC AAAGTGGATCCC GCCGAGCCCAAA TCTCCTGACAAA ACTCACACATGC 

 CCGGTTCCCTGG TTCCACCTCTAG TTTCACCTAGGG CGGCTCGGGTTT AGAGGACTGTTT TGAGTGTGTACG 

 hinge 

 ~~~ 

                                  humanIgG 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  P  C  P   A  P  E  L   L  G  G  P   S  V  F  L   F  P  P  K   P  K  D  T 

    2809 CCACCGTGCCCA GCACCTGAACTC CTGGGGGGACCG TCAGTCTTCCTC TTCCCCCCAAAA CCCAAGGACACC 

 GGTGGCACGGGT CGTGGACTTGAG GACCCCCCTGGC AGTCAGAAGGAG AAGGGGGGTTTT GGGTTCCTGTGG 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  M  I  S   R  T  P  E   V  T  C  V   V  V  D  V   S  H  E  D   P  E  V  K 

    2881 CTCATGATCTCC CGGACCCCTGAG GTCACATGCGTG GTGGTGGACGTG AGCCACGAAGAC CCTGAGGTCAAG 

 GAGTACTAGAGG GCCTGGGGACTC CAGTGTACGCAC CACCACCTGCAC TCGGTGCTTCTG GGACTCCAGTTC 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  F  N  W  Y   V  D  G  V   E  V  H  N   A  K  T  K   P  R  E  E   Q  Y  N  S 

    2953 TTCAACTGGTAC GTGGACGGCGTG GAGGTGCATAAT GCCAAGACAAAG CCGCGGGAGGAG CAGTACAACAGC 

 AAGTTGACCATG CACCTGCCGCAC CTCCACGTATTA CGGTTCTGTTTC GGCGCCCTCCTC GTCATGTTGTCG 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  Y  R  V   V  S  V  L   T  V  L  H   Q  D  W  L   N  G  K  E   Y  K  C  K 

    3025 ACGTACCGTGTG GTCAGCGTCCTC ACCGTCCTGCAC CAGGACTGGCTG AATGGCAAGGAG TACAAGTGCAAG 

 TGCATGGCACAC CAGTCGCAGGAG TGGCAGGACGTG GTCCTGACCGAC TTACCGTTCCTC ATGTTCACGTTC 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  S  N  K   A  L  P  A   P  I  E  K   T  I  S  K   A  K  G  Q   P  R  E  P 

    3097 GTCTCCAACAAA GCCCTCCCAGCC CCCATCGAGAAA ACCATCTCCAAA GCCAAAGGGCAG CCCCGAGAACCA 

 CAGAGGTTGTTT CGGGAGGGTCGG GGGTAGCTCTTT TGGTAGAGGTTT CGGTTTCCCGTC GGGGCTCTTGGT 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  V  Y  T   L  P  P  S   R  D  E  L   T  K  N  Q   V  S  L  T   C  L  V  K 

    3169 CAGGTGTACACC CTGCCCCCATCC CGGGATGAGCTG ACCAAGAACCAG GTCAGCCTGACC TGCCTGGTCAAA 

 GTCCACATGTGG GACGGGGGTAGG GCCCTACTCGAC TGGTTCTTGGTC CAGTCGGACTGG ACGGACCAGTTT 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  F  Y  P   S  D  I  A   V  E  W  E   S  N  G  Q   P  E  N  N   Y  K  T  T 

    3241 GGCTTCTATCCC AGCGACATCGCC GTGGAGTGGGAG AGCAATGGGCAG CCGGAGAACAAC TACAAGACCACG 

 CCGAAGATAGGG TCGCTGTAGCGG CACCTCACCCTC TCGTTACCCGTC GGCCTCTTGTTG ATGTTCTGGTGC 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  P  V  L   D  S  D  G   S  F  F  L   Y  S  K  L   T  V  D  K   S  R  W  Q 

    3313 CCTCCCGTGCTG GACTCCGACGGC TCCTTCTTCCTC TACAGCAAGCTC ACCGTGGACAAG AGCAGGTGGCAG 

 GGAGGGCACGAC CTGAGGCTGCCG AGGAAGAAGGAG ATGTCGTTCGAG TGGCACCTGTTC TCGTCCACCGTC 

                                 humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  N  V   F  S  C  S   V  M  H  E   A  L  H  N   H  Y  T  Q   K  S  L  S 

    3385 CAGGGGAACGTC TTCTCATGCTCC GTGATGCATGAG GCTCTGCACAAC CACTACACGCAG AAGAGCCTCTCC 

 GTCCCCTTGCAG AAGAGTACGAGG CACTACGTACTC CGAGACGTGTTG GTGATGTGCGTC TTCTCGGAGAGG 
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    humanIgG                               CD28DLCK 

 ~~~~~~~~~~~~~~~~   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  S  P  G   K  K  D  P   K  F  W  V   L  V  V  V   G  G  V  L   A  C  Y  S 

    3457 CTGTCTCCGGGT AAAAAAGATCCC AAATTTTGGGTG CTGGTGGTGGTT GGTGGAGTCCTG GCTTGCTATAGC 

 GACAGAGGCCCA TTTTTTCTAGGG TTTAAAACCCAC GACCACCACCAA CCACCTCAGGAC CGAACGATATCG 

                                 CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  L  V  T   V  A  F  I   I  F  W  V   R  S  K  R   S  R  L  L   H  S  D  Y 

    3529 TTGCTAGTAACA GTGGCCTTTATT ATTTTCTGGGTG AGGAGTAAGAGG AGCAGGCTCCTG CACAGTGACTAC 

 AACGATCATTGT CACCGGAAATAA TAAAAGACCCAC TCCTCATTCTCC TCGTCCGAGGAC GTGTCACTGATG 

                                 CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                            ApaI 

                           ~~~~~~ 

  M  N  M  T   P  R  R  P   G  P  T  R   K  H  Y  Q   A  Y  A  A   A  R  D  F 

    3601 ATGAACATGACT CCCCGCCGCCCC GGGCCCACCCGC AAGCATTACCAG GCCTATGCCGCC GCACGCGACTTC 

 TACTTGTACTGA GGGGCGGCGGGG CCCGGGTGGGCG TTCGTAATGGTC CGGATACGGCGG CGTGCGCTGAAG 

    CD28DLCK 

 ~~~~~~~~~~~~~~~~ 

                                           CD3z 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  A  Y  R   S  L  R  V   K  F  S  R   S  A  D  A   P  A  Y  Q   Q  G  Q  N 

    3673 GCAGCCTATCGC TCCCTGAGAGTG AAGTTCAGCAGG AGCGCAGACGCC CCCGCGTACCAG CAGGGCCAGAAC 

 CGTCGGATAGCG AGGGACTCTCAC TTCAAGTCGTCC TCGCGTCTGCGG GGGCGCATGGTC GTCCCGGTCTTG 

                                   CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  L  Y  N   E  L  N  L   G  R  R  E   E  Y  D  V   L  D  K  R   R  G  R  D 

    3745 CAGCTCTATAAC GAGCTCAATCTA GGACGAAGAGAG GAGTACGATGTT TTGGACAAGAGA CGTGGCCGGGAC 

 GTCGAGATATTG CTCGAGTTAGAT CCTGCTTCTCTC CTCATGCTACAA AACCTGTTCTCT GCACCGGCCCTG 

                                   CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  E  M  G   G  K  P  R   R  K  N  P   Q  E  G  L   Y  N  E  L   Q  K  D  K 

    3817 CCTGAGATGGGG GGAAAGCCGAGA AGGAAGAACCCT CAGGAAGGCCTG TACAATGAACTG CAGAAAGATAAG 

 GGACTCTACCCC CCTTTCGGCTCT TCCTTCTTGGGA GTCCTTCCGGAC ATGTTACTTGAC GTCTTTCTATTC 

                                   CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  M  A  E  A   Y  S  E  I   G  M  K  G   E  R  R  R   G  K  G  H   D  G  L  Y 

    3889 ATGGCGGAGGCC TACAGTGAGATT GGGATGAAAGGC GAGCGCCGGAGG GGCAAGGGGCAC GATGGCCTTTAC 

 TACCGCCTCCGG ATGTCACTCTAA CCCTACTTTCCG CTCGCGGCCTCC CCGTTCCCCGTG CTACCGGAAATG 

                                                                         P2A 

                                                                        ~~~~~~ 

                                CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                  Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  L  S   T  A  T  K   D  T  Y  D   A  L  H  M   Q  A  L  P   P  R  G  S 

    3961 CAGGGTCTCAGT ACAGCCACCAAG GACACCTACGAC GCCCTTCACATG CAGGCCCTGCCC CCTCGCGGTTCC 

 GTCCCAGAGTCA TGTCGGTGGTTC CTGTGGATGCTG CGGGAAGTGTAC GTCCGGGACGGG GGAGCGCCAAGG 

                                                                   hIL15 48aa 

                                                                  ~~~~~~~~~~~~ 

                             P2A 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  A  T  N   F  S  L  L   K  Q  A  G   D  V  E  E   N  P  G  P   M  R  I  S 

    4033 GGAGCCACGAAC TTCTCTCTGTTA AAGCAAGCAGGA GACGTGGAAGAA AACCCCGGTCCT ATGAGAATTTCG 

 CCTCGGTGCTTG AAGAGAGACAAT TTCGTTCGTCCT CTGCACCTTCTT TTGGGGCCAGGA TACTCTTAAAGC 

                                hIL15 48aa 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  P  H  L   R  S  I  S   I  Q  C  Y   L  C  L  L   L  N  S  H   F  L  T  E 

    4105 AAACCACATTTG AGAAGTATTTCC ATCCAGTGCTAC TTGTGTTTACTT CTAAACAGTCAT TTTCTAACTGAA 

 TTTGGTGTAAAC TCTTCATAAAGG TAGGTCACGATG AACACAAATGAA GATTTGTCAGTA AAAGATTGACTT 

                                hIL15 48aa 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  G  I  H   V  F  I  L   G  C  F  S   A  G  L  P   K  T  E  A   N  W  V  N 

    4177 GCTGGCATTCAT GTCTTCATTTTG GGCTGTTTCAGT GCAGGGCTTCCT AAAACAGAAGCC AACTGGGTGAAT 
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 CGACCGTAAGTA CAGAAGTAAAAC CCGACAAAGTCA CGTCCCGAAGGA TTTTGTCTTCGG TTGACCCACTTA 

                                hIL15 48aa 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  I  S  D   L  K  K  I   E  D  L  I   Q  S  M  H   I  D  A  T   L  Y  T  E 

    4249 GTAATAAGTGAT TTGAAAAAAATT GAAGATCTTATT CAATCTATGCAT ATTGATGCTACT TTATATACGGAA 

 CATTATTCACTA AACTTTTTTTAA CTTCTAGAATAA GTTAGATACGTA TAACTACGATGA AATATATGCCTT 

                                hIL15 48aa 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  D  V  H   P  S  C  K   V  T  A  M   K  C  F  L   L  E  L  Q   V  I  S  L 

    4321 AGTGATGTTCAC CCCAGTTGCAAA GTAACAGCAATG AAGTGCTTTCTC TTGGAGTTACAA GTTATTTCACTT 

 TCACTACAAGTG GGGTCAACGTTT CATTGTCGTTAC TTCACGAAAGAG AACCTCAATGTT CAATAAAGTGAA 

                                hIL15 48aa 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  E  S  G  D   A  S  I  H   D  T  V  E   N  L  I  I   L  A  N  N   S  L  S  S 

    4393 GAGTCTGGAGAT GCAAGTATTCAT GATACAGTAGAA AATCTGATCATC CTAGCAAACAAC AGTTTGTCTTCT 

 CTCAGACCTCTA CGTTCATAAGTA CTATGTCATCTT TTAGACTAGTAG GATCGTTTGTTG TCAAACAGAAGA 

                                hIL15 48aa 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  N  G  N  V   T  E  S  G   C  K  E  C   E  E  L  E   E  K  N  I   K  E  F  L 

    4465 AATGGGAATGTA ACAGAATCTGGA TGCAAAGAATGT GAGGAACTGGAG GAGAAGAACATT AAGGAATTTTTG 

 TTACCCTTACAT TGTCTTAGACCT ACGTTTCTTACA CTCCTTGACCTC CTCTTCTTGTAA TTCCTTAAAAAC 

                  hIL15 48aa 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                                  XhoI 

                                                 ~~~~~~~ 

  Q  S  F  V   H  I  V  Q   M  F  I  N   T  S  *  L   E 

    4537 CAGAGTTTTGTA CATATTGTCCAA ATGTTCATCAAC ACTTCTTGACTC GAG                       

 GTCTCAAAACAT GTATAACAGGTT TACAAGTAGTTG TGAAGAACTGAG CTC                       
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6.4 BW431/26scFv-Fc-CD28LCK-CD3-P2A-IL7-T2A-IL7R/IL2R (#1908) 

                                                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

                                                     ~~~~~~~~~~~~~ 

                                                          Lk 

                                                     ~~~~~~~~~~~~~ 

                                                      M   D  F  Q 

    1921                                                     AT GGATTTTCAG 

                                                     TA CCTAAAAGTC 

                                                         anti-CEA scFV BW431/26 

                                                         ~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                         Lk 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  Q  I  F   S  F  L   L  I  S   A  S  V  I   M  S  R   G  V  H 

    1981 GTGCAGATTT TCAGCTTCCT GCTAATCAGT GCCTCAGTCA TAATGTCTAG AGGTGTCCAC 

 CACGTCTAAA AGTCGAAGGA CGATTAGTCA CGGAGTCAGT ATTACAGATC TCCACAGGTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  Q  V  Q   L  Q  E   S  G  P   G  L  V  R   P  S  Q   T  L  S 

    2041 TCCCAGGTCC AACTGCAGGA GTCAGGTCCA GGTCTTGTGA GACCTAGCCA GACCCTGAGC 

 AGGGTCCAGG TTGACGTCCT CAGTCCAGGT CCAGAACACT CTGGATCGGT CTGGGACTCG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  T  C  T   V  S  G   F  T  I   S  S  G  Y   S  W  H   W  V  R 

    2101 CTGACCTGCA CCGTGTCTGG CTTCACCATC AGCAGTGGTT ATAGCTGGCA CTGGGTGAGA 

 GACTGGACGT GGCACAGACC GAAGTGGTAG TCGTCACCAA TATCGACCGT GACCCACTCT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  P  P  G   R  G  L   E  W  I   G  Y  I  Q   Y  S  G   I  T  N 

    2161 CAGCCACCTG GACGAGGTCT TGAGTGGATT GGATACATAC AGTACAGTGG TATCACTAAC 

 GTCGGTGGAC CTGCTCCAGA ACTCACCTAA CCTATGTATG TCATGTCACC ATAGTGATTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  N  P  S   L  K  S   R  V  T   M  L  V  D   T  S  K   N  Q  F 

    2221 TACAACCCCT CTCTCAAAAG TAGAGTGACA ATGCTGGTAG ACACCAGCAA GAACCAGTTC 

 ATGTTGGGGA GAGAGTTTTC ATCTCACTGT TACGACCATC TGTGGTCGTT CTTGGTCAAG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  L  R  L   S  S  V   T  A  A   D  T  A  V   Y  Y  C   A  R  E 

    2281 AGCCTGAGAC TCAGCAGCGT GACAGCCGCC GACACCGCGG TCTATTATTG TGCAAGAGAA 

 TCGGACTCTG AGTCGTCGCA CTGTCGGCGG CTGTGGCGCC AGATAATAAC ACGTTCTCTT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  D  Y  D  Y   H  W  Y   F  D  V   W  G  Q  G   T  T  V   T  V  S 

    2341 GACTATGATT ACCACTGGTA CTTCGATGTC TGGGGCCAAG GGACCACGGT CACCGTCTCC 

 CTGATACTAA TGGTGACCAT GAAGCTACAG ACCCCGGTTC CCTGGTGCCA GTGGCAGAGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  G  G  G   G  S  G   G  G  G   S  G  G  G   G  S  D   I  Q  L 

    2401 TCAGGAGGTG GTGGATCGGG CGGTGGCGGG TCGGGTGGCG GCGGATCTGA CATCCAGCTG 

 AGTCCTCCAC CACCTAGCCC GCCACCGCCC AGCCCACCGC CGCCTAGACT GTAGGTCGAC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  Q  S  P   S  S  L   S  A  S   V  G  D  R   V  T  I   T  C  S 

    2461 ACCCAGAGCC CAAGCAGCCT GAGCGCCAGC GTGGGTGACA GAGTGACCAT CACCTGTAGT 

 TGGGTCTCGG GTTCGTCGGA CTCGCGGTCG CACCCACTGT CTCACTGGTA GTGGACATCA 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 
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 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                KpnI 

                               ~~~~~~~ 

  T  S  S  S   V  S  Y   M  H  W   Y  Q  Q  K   P  G  K   A  P  K 

    2521 ACCAGCTCGA GTGTAAGTTA CATGCACTGG TACCAGCAGA AGCCAGGTAA GGCTCCAAAG 

 TGGTCGAGCT CACATTCAAT GTACGTGACC ATGGTCGTCT TCGGTCCATT CCGAGGTTTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  L  I  Y   S  T  S   N  L  A   S  G  V  P   S  R  F   S  G  S 

    2581 CTGCTGATCT ACAGCACATC CAACCTGGCT TCTGGTGTGC CAAGCAGATT CAGCGGTAGC 

 GACGACTAGA TGTCGTGTAG GTTGGACCGA AGACCACACG GTTCGTCTAA GTCGCCATCG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

        KpnI 

       ~~~~~~~ 

  G  S  G  T   D  F  T   F  T  I   S  S  L  Q   P  E  D   I  A  T 

    2641 GGTAGCGGTA CCGACTTCAC CTTCACCATC AGCAGCCTCC AGCCAGAGGA CATCGCCACC 

 CCATCGCCAT GGCTGAAGTG GAAGTGGTAG TCGTCGGAGG TCGGTCTCCT GTAGCGGTGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  Y  C  H   Q  W  S   S  Y  P   T  F  G  Q   G  T  K   V  E  I 

    2701 TACTACTGCC ATCAGTGGAG TAGTTATCCC ACGTTCGGCC AAGGGACCAA GGTGGAGATC 

 ATGATGACGG TAGTCACCTC ATCAATAGGG TGCAAGCCGG TTCCCTGGTT CCACCTCTAG 

                                hinge 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 anti-CEA scFV BW431/26                                  humanIgG 

 ~~~~~~                                                  ~~~~~~~~~ 

  K  V  D  P   A  E  P   K  S  P   D  K  T  H   T  C  P   P  C  P 

    2761 AAAGTGGATC CCGCCGAGCC CAAATCTCCT GACAAAACTC ACACATGCCC ACCGTGCCCA 

 TTTCACCTAG GGCGGCTCGG GTTTAGAGGA CTGTTTTGAG TGTGTACGGG TGGCACGGGT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  P  E  L   L  G  G   P  S  V   F  L  F  P   P  K  P   K  D  T 

    2821 GCACCTGAAC TCCTGGGGGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC 

 CGTGGACTTG AGGACCCCCC TGGCAGTCAG AAGGAGAAGG GGGGTTTTGG GTTCCTGTGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  M  I  S   R  T  P   E  V  T   C  V  V  V   D  V  S   H  E  D 

    2881 CTCATGATCT CCCGGACCCC TGAGGTCACA TGCGTGGTGG TGGACGTGAG CCACGAAGAC 

 GAGTACTAGA GGGCCTGGGG ACTCCAGTGT ACGCACCACC ACCTGCACTC GGTGCTTCTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  E  V  K   F  N  W   Y  V  D   G  V  E  V   H  N  A   K  T  K 

    2941 CCTGAGGTCA AGTTCAACTG GTACGTGGAC GGCGTGGAGG TGCATAATGC CAAGACAAAG 

 GGACTCCAGT TCAAGTTGAC CATGCACCTG CCGCACCTCC ACGTATTACG GTTCTGTTTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  R  E  E   Q  Y  N   S  T  Y   R  V  V  S   V  L  T   V  L  H 

    3001 CCGCGGGAGG AGCAGTACAA CAGCACGTAC CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC 

 GGCGCCCTCC TCGTCATGTT GTCGTGCATG GCACACCAGT CGCAGGAGTG GCAGGACGTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  D  W  L   N  G  K   E  Y  K   C  K  V  S   N  K  A   L  P  A 

    3061 CAGGACTGGC TGAATGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGC CCTCCCAGCC 

 GTCCTGACCG ACTTACCGTT CCTCATGTTC ACGTTCCAGA GGTTGTTTCG GGAGGGTCGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  I  E  K   T  I  S   K  A  K   G  Q  P  R   E  P  Q   V  Y  T 
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    3121 CCCATCGAGA AAACCATCTC CAAAGCCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC 

 GGGTAGCTCT TTTGGTAGAG GTTTCGGTTT CCCGTCGGGG CTCTTGGTGT CCACATGTGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  P  P  S   R  D  E   L  T  K   N  Q  V  S   L  T  C   L  V  K 

    3181 CTGCCCCCAT CCCGGGATGA GCTGACCAAG AACCAGGTCA GCCTGACCTG CCTGGTCAAA 

 GACGGGGGTA GGGCCCTACT CGACTGGTTC TTGGTCCAGT CGGACTGGAC GGACCAGTTT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  F  Y  P   S  D  I   A  V  E   W  E  S  N   G  Q  P   E  N  N 

    3241 GGCTTCTATC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAC 

 CCGAAGATAG GGTCGCTGTA GCGGCACCTC ACCCTCTCGT TACCCGTCGG CCTCTTGTTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  K  T  T   P  P  V   L  D  S   D  G  S  F   F  L  Y   S  K  L 

    3301 TACAAGACCA CGCCTCCCGT GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC 

 ATGTTCTGGT GCGGAGGGCA CGACCTGAGG CTGCCGAGGA AGAAGGAGAT GTCGTTCGAG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  V  D  K   S  R  W   Q  Q  G   N  V  F  S   C  S  V   M  H  E 

    3361 ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG 

 TGGCACCTGT TCTCGTCCAC CGTCGTCCCC TTGCAGAAGA GTACGAGGCA CTACGTACTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                      humanIgG                              CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   ~~~~~~ 

  A  L  H  N   H  Y  T   Q  K  S   L  S  L  S   P  G  K   K  D  P 

    3421 GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGGTAA AAAAGATCCC 

 CGAGACGTGT TGGTGATGTG CGTCTTCTCG GAGAGGGACA GAGGCCCATT TTTTCTAGGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  F  W  V   L  V  V   V  G  G   V  L  A  C   Y  S  L   L  V  T 

    3481 AAATTTTGGG TGCTGGTGGT GGTTGGTGGA GTCCTGGCTT GCTATAGCTT GCTAGTAACA 

 TTTAAAACCC ACGACCACCA CCAACCACCT CAGGACCGAA CGATATCGAA CGATCATTGT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  A  F  I   I  F  W   V  R  S   K  R  S  R   L  L  H   S  D  Y 

    3541 GTGGCCTTTA TTATTTTCTG GGTGAGGAGT AAGAGGAGCA GGCTCCTGCA CAGTGACTAC 

 CACCGGAAAT AATAAAAGAC CCACTCCTCA TTCTCCTCGT CCGAGGACGT GTCACTGATG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  M  N  M  T   P  R  R   P  G  P   T  R  K  H   Y  Q  A   Y  A  A 

    3601 ATGAACATGA CTCCCCGCCG CCCCGGGCCC ACCCGCAAGC ATTACCAGGC CTATGCCGCC 

 TACTTGTACT GAGGGGCGGC GGGGCCCGGG TGGGCGTTCG TAATGGTCCG GATACGGCGG 

                                            CD3z 

                              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

          CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  R  D  F   A  A  Y   R  S  L   R  V  K  F   S  R  S   A  D  A 

    3661 GCACGCGACT TCGCAGCCTA TCGCTCCCTG AGAGTGAAGT TCAGCAGGAG CGCAGACGCC 

 CGTGCGCTGA AGCGTCGGAT AGCGAGGGAC TCTCACTTCA AGTCGTCCTC GCGTCTGCGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  A  Y  Q   Q  G  Q   N  Q  L   Y  N  E  L   N  L  G   R  R  E 

    3721 CCCGCGTACC AGCAGGGCCA GAACCAGCTC TATAACGAGC TCAATCTAGG ACGAAGAGAG 

 GGGCGCATGG TCGTCCCGGT CTTGGTCGAG ATATTGCTCG AGTTAGATCC TGCTTCTCTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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  E  Y  D  V   L  D  K   R  R  G   R  D  P  E   M  G  G   K  P  R 

    3781 GAGTACGATG TTTTGGACAA GAGACGTGGC CGGGACCCTG AGATGGGGGG AAAGCCGAGA 

 CTCATGCTAC AAAACCTGTT CTCTGCACCG GCCCTGGGAC TCTACCCCCC TTTCGGCTCT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  R  K  N  P   Q  E  G   L  Y  N   E  L  Q  K   D  K  M   A  E  A 

    3841 AGGAAGAACC CTCAGGAAGG CCTGTACAAT GAACTGCAGA AAGATAAGAT GGCGGAGGCC 

 TCCTTCTTGG GAGTCCTTCC GGACATGTTA CTTGACGTCT TTCTATTCTA CCGCCTCCGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  S  E  I   G  M  K   G  E  R   R  R  G  K   G  H  D   G  L  Y 

    3901 TACAGTGAGA TTGGGATGAA AGGCGAGCGC CGGAGGGGCA AGGGGCACGA TGGCCTTTAC 

 ATGTCACTCT AACCCTACTT TCCGCTCGCG GCCTCCCCGT TCCCCGTGCT ACCGGAAATG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  L  S   T  A  T   K  D  T   Y  D  A  L   H  M  Q   A  L  P 

    3961 CAGGGTCTCA GTACAGCCAC CAAGGACACC TACGACGCCC TTCACATGCA GGCCCTGCCC 

 GTCCCAGAGT CATGTCGGTG GTTCCTGTGG ATGCTGCGGG AAGTGTACGT CCGGGACGGG 

                                P2A 

       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~ 

  CD3z 

 ~~~~~~ 

  P  R  G  S   G  A  T   N  F  S   L  L  K  Q   A  G  D   V  E  E 

    4021 CCTCGCGGAT CTGGAGCCAC GAACTTCTCT CTGTTAAAGC AAGCAGGAGA CGTGGAAGAA 

 GGAGCGCCTA GACCTCGGTG CTTGAAGAGA GACAATTTCG TTCGTCCTCT GCACCTTCTT 

     P2A 

 ~~~~~~~~~~~~~ 

                                    mIL7 

              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                            mIL7 Signal Peptide 

              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  N  P  G  P   M  F  H   V  S  F   R  Y  I  F   G  I  P   P  L  I 

    4081 AACCCCGGTC CTATGTTCCA TGTTTCTTTT AGATATATCT TTGGAATTCC TCCACTGATC 

 TTGGGGCCAG GATACAAGGT ACAAAGAAAA TCTATATAGA AACCTTAAGG AGGTGACTAG 

                             mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

     mIL7 Signal Peptide 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  V  L  L   P  V  T   S  S  E   C  H  I  K   D  K  E   G  K  A 

    4141 CTTGTTCTGC TGCCTGTCAC ATCATCTGAG TGCCACATTA AAGACAAAGA AGGTAAAGCA 

 GAACAAGACG ACGGACAGTG TAGTAGACTC ACGGTGTAAT TTCTGTTTCT TCCATTTCGT 

                             mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                   BclI 

                  ~~~~~~~ 

  Y  E  S  V   L  M  I   S  I  D   E  L  D  K   M  T  G   T  D  S 

    4201 TATGAGAGTG TACTGATGAT CAGCATCGAT GAATTGGACA AAATGACAGG AACTGATAGT 

 ATACTCTCAC ATGACTACTA GTCGTAGCTA CTTAACCTGT TTTACTGTCC TTGACTATCA 

                             mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  N  C  P  N   N  E  P   N  F  F   R  K  H  V   C  D  D   T  K  E 

    4261 AATTGCCCGA ATAATGAACC AAACTTTTTT AGAAAACATG TATGTGATGA TACAAAGGAA 

 TTAACGGGCT TATTACTTGG TTTGAAAAAA TCTTTTGTAC ATACACTACT ATGTTTCCTT 

                             mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  A  F  L   N  R  A   A  R  K   L  K  Q  F   L  K  M   N  I  S 

    4321 GCTGCTTTTC TAAATCGTGC TGCTCGCAAG TTGAAGCAAT TTCTTAAAAT GAATATCAGT 

 CGACGAAAAG ATTTAGCACG ACGAGCGTTC AACTTCGTTA AAGAATTTTA CTTATAGTCA 

                             mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  E  E  F  N   V  H  L   L  T  V   S  Q  G  T   Q  T  L   V  N  C 

    4381 GAAGAATTCA ATGTCCACTT ACTAACAGTA TCACAAGGCA CACAAACACT GGTGAACTGC 

 CTTCTTAAGT TACAGGTGAA TGATTGTCAT AGTGTTCCGT GTGTTTGTGA CCACTTGACG 

                             mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  S  K  E   E  K  N   V  K  E   Q  K  K  N   D  A  C   F  L  K 

    4441 ACGAGTAAGG AAGAAAAAAA CGTAAAGGAA CAGAAAAAGA ATGATGCATG TTTCCTAAAG 

 TGCTCATTCC TTCTTTTTTT GCATTTCCTT GTCTTTTTCT TACTACGTAC AAAGGATTTC 

                          mIL7 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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                                                             T2A 

                                                            ~~~~~~ 

                                                            BspEI 

                                                            ~~~~~~ 

  R  L  L  R   E  I  K   T  C  W   N  K  I  L   K  G  S   I  S  G 

    4501 AGACTACTGA GAGAAATAAA AACTTGTTGG AATAAAATTT TGAAGGGCAG TATATCCGGA 

 TCTGATGACT CTCTTTATTT TTGAACAACC TTATTTTAAA ACTTCCCGTC ATATAGGCCT 

                            T2A 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                                               IL7 receptor alpha  

                                                                        ectodomain 

                                                               ~~~ 

  E  G  R  G   S  L  L   T  C  G   D  V  E  E   N  P  G   P  S  M 

    4561 GAGGGCCGGG GCTCTCTGCT GACCTGTGGC GACGTGGAGG AGAACCCCGG CCCCTCCATG 

 CTCCCGGCCC CGAGAGACGA CTGGACACCG CTGCACCTCC TCTTGGGGCC GGGGAGGTAC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

           KpnI 

          ~~~~~~~ 

  T  I  L  G   T  T  F   G  M  V   F  S  L  L   Q  V  V   S  G  E 

    4621 ACAATTCTAG GTACCACTTT TGGCATGGTT TTTTCTTTAC TTCAAGTCGT TTCTGGAGAA 

 TGTTAAGATC CATGGTGAAA ACCGTACCAA AAAAGAAATG AAGTTCAGCA AAGACCTCTT 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  G  Y  A   Q  N  G   D  L  E   D  A  E  L   D  D  Y   S  F  S 

    4681 AGTGGCTATG CTCAAAATGG AGACTTGGAA GATGCAGAAC TGGATGACTA CTCATTCTCA 

 TCACCGATAC GAGTTTTACC TCTGAACCTT CTACGTCTTG ACCTACTGAT GAGTAAGAGT 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  C  Y  S  Q   L  E  V   N  G  S   Q  H  S  L   T  C  A   F  E  D 

    4741 TGCTATAGCC AGTTGGAAGT GAATGGATCG CAGCACTCAC TGACCTGTGC TTTTGAGGAC 

 ACGATATCGG TCAACCTTCA CTTACCTAGC GTCGTGAGTG ACTGGACACG AAAACTCCTG 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  D  V  N   I  T  N   L  E  F   E  I  C  G   A  L  V   E  V  K 

    4801 CCAGATGTCA ACATCACCAA TCTGGAATTT GAAATATGTG GGGCCCTCGT GGAGGTAAAG 

 GGTCTACAGT TGTAGTGGTT AGACCTTAAA CTTTATACAC CCCGGGAGCA CCTCCATTTC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  C  L  N  F   R  K  L   Q  E  I   Y  F  I  E   T  K  K   F  L  L 

    4861 TGCCTGAATT TCAGGAAACT ACAAGAGATA TATTTCATCG AGACAAAGAA ATTCTTACTG 

 ACGGACTTAA AGTCCTTTGA TGTTCTCTAT ATAAAGTAGC TCTGTTTCTT TAAGAATGAC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  I  G  K  S   N  I  C   V  K  V   G  E  K  S   L  T  C   K  K  I 

    4921 ATTGGAAAGA GCAATATATG TGTGAAGGTT GGAGAAAAGA GTCTAACCTG CAAAAAAATA 

 TAACCTTTCT CGTTATATAC ACACTTCCAA CCTCTTTTCT CAGATTGGAC GTTTTTTTAT 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  D  L  T  T   I  V  K   P  E  A   P  F  D  L   S  V  V   Y  R  E 

    4981 GACCTAACCA CTATAGTTAA ACCTGAGGCT CCTTTTGACC TGAGTGTCGT CTATCGGGAA 

 CTGGATTGGT GATATCAATT TGGACTCCGA GGAAAACTGG ACTCACAGCA GATAGCCCTT 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  A  N  D   F  V  V   T  F  N   T  S  H  L   Q  K  K   Y  V  K 

    5041 GGAGCCAATG ACTTTGTGGT GACATTTAAT ACATCACACT TGCAAAAGAA GTATGTAAAA 

 CCTCGGTTAC TGAAACACCA CTGTAAATTA TGTAGTGTGA ACGTTTTCTT CATACATTTT 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  L  M  H   D  V  A   Y  R  Q   E  K  D  E   N  K  W   T  H  V 

    5101 GTTTTAATGC ACGATGTAGC TTACCGCCAG GAAAAGGATG AAAACAAATG GACGCATGTG 

 CAAAATTACG TGCTACATCG AATGGCGGTC CTTTTCCTAC TTTTGTTTAC CTGCGTACAC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  N  L  S  S   T  K  L   T  L  L   Q  R  K  L   Q  P  A   A  M  Y 

    5161 AATTTATCCA GCACAAAGCT GACACTCCTG CAGAGAAAGC TCCAACCGGC AGCAATGTAT 

 TTAAATAGGT CGTGTTTCGA CTGTGAGGAC GTCTCTTTCG AGGTTGGCCG TCGTTACATA 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           BclI 

                          ~~~~~~ 

  E  I  K  V   R  S  I   P  D  H   Y  F  K  G   F  W  S   E  W  S 

    5221 GAGATTAAAG TTCGATCCAT CCCTGATCAC TATTTTAAAG GCTTCTGGAG TGAATGGAGT 

 CTCTAATTTC AAGCTAGGTA GGGACTAGTG ATAAAATTTC CGAAGACCTC ACTTACCTCA 

                                                            IL2 Receptor-beta  

                                                                     Transmembran+endodomain 

                                                            ~~~~~~ 

             IL7 receptor alpha ectodomain 
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 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  S  Y  Y   F  R  T   P  E  I   N  N  S  S   G  E  M   D  I  P 

    5281 CCAAGTTATT ACTTCAGAAC TCCAGAGATC AATAATAGCT CAGGGGAGAT GGATATTCCG 

 GGTTCAATAA TGAAGTCTTG AGGTCTCTAG TTATTATCGA GTCCCCTCTA CCTATAAGGC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  W  L  G  H   L  L  V   G  L  S   G  A  F  G   F  I  I   L  V  Y 

    5341 TGGCTCGGCC ACCTCCTCGT GGGCCTCAGC GGGGCTTTTG GCTTCATCAT CTTAGTGTAC 

 ACCGAGCCGG TGGAGGAGCA CCCGGAGTCG CCCCGAAAAC CGAAGTAGTA GAATCACATG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

      BclI 

     ~~~~~~~ 

  L  L  I  N   C  R  N   T  G  P   W  L  K  K   V  L  K   C  N  T 

    5401 TTGCTGATCA ACTGCAGGAA CACCGGGCCA TGGCTGAAGA AGGTCCTGAA GTGTAACACC 

 AACGACTAGT TGACGTCCTT GTGGCCCGGT ACCGACTTCT TCCAGGACTT CACATTGTGG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  D  P  S   K  F  F   S  Q  L   S  S  E  H   G  G  D   V  Q  K 

    5461 CCAGACCCCT CGAAGTTCTT TTCCCAGCTG AGCTCAGAGC ATGGAGGAGA CGTCCAGAAG 

 GGTCTGGGGA GCTTCAAGAA AAGGGTCGAC TCGAGTCTCG TACCTCCTCT GCAGGTCTTC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  W  L  S  S   P  F  P   S  S  S   F  S  P  G   G  L  A   P  E  I 

    5521 TGGCTCTCTT CGCCCTTCCC CTCATCGTCC TTCAGCCCTG GCGGCCTGGC ACCTGAGATC 

 ACCGAGAGAA GCGGGAAGGG GAGTAGCAGG AAGTCGGGAC CGCCGGACCG TGGACTCTAG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  P  L  E   V  L  E   R  D  K   V  T  Q  L   L  L  Q   Q  D  K 

    5581 TCGCCACTAG AAGTGCTGGA GAGGGACAAG GTGACGCAGC TGCTCCTGCA GCAGGACAAG 

 AGCGGTGATC TTCACGACCT CTCCCTGTTC CACTGCGTCG ACGAGGACGT CGTCCTGTTC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  P  E  P   A  S  L   S  S  N   H  S  L  T   S  C  F   T  N  Q 

    5641 GTGCCTGAGC CCGCATCCTT AAGCAGCAAC CACTCGCTGA CCAGCTGCTT CACCAACCAG 

 CACGGACTCG GGCGTAGGAA TTCGTCGTTG GTGAGCGACT GGTCGACGAA GTGGTTGGTC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  Y  F  F   F  H  L   P  D  A   L  E  I  E   A  C  Q   V  Y  F 

    5701 GGTTACTTCT TCTTCCACCT CCCGGATGCC TTGGAGATAG AGGCCTGCCA GGTGTACTTT 

 CCAATGAAGA AGAAGGTGGA GGGCCTACGG AACCTCTATC TCCGGACGGT CCACATGAAA 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  Y  D  P   Y  S  E   E  D  P   D  E  G  V   A  G  A   P  T  G 

    5761 ACTTACGACC CCTACTCAGA GGAAGACCCT GATGAGGGTG TGGCCGGGGC ACCCACAGGG 

 TGAATGCTGG GGATGAGTCT CCTTCTGGGA CTACTCCCAC ACCGGCCCCG TGGGTGTCCC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  S  P  Q   P  L  Q   P  L  S   G  E  D  D   A  Y  C   T  F  P 

    5821 TCTTCCCCCC AACCCCTGCA GCCTCTGTCA GGGGAGGACG ACGCCTACTG CACCTTCCCC 

 AGAAGGGGGG TTGGGGACGT CGGAGACAGT CCCCTCCTGC TGCGGATGAC GTGGAAGGGG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  R  D  D   L  L  L   F  S  P   S  L  L  G   G  P  S   P  P  S 

    5881 TCCAGGGATG ACCTGCTGCT CTTCTCCCCC AGTCTCCTCG GTGGCCCCAG CCCCCCAAGC 

 AGGTCCCTAC TGGACGACGA GAAGAGGGGG TCAGAGGAGC CACCGGGGTC GGGGGGTTCG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  A  P  G   G  S  G   A  G  E   E  R  M  P   P  S  L   Q  E  R 

    5941 ACTGCCCCTG GGGGCAGTGG GGCCGGTGAA GAGAGGATGC CCCCTTCTTT GCAAGAAAGA 

 TGACGGGGAC CCCCGTCACC CCGGCCACTT CTCTCCTACG GGGGAAGAAA CGTTCTTTCT 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  P  R  D   W  D  P   Q  P  L   G  P  P  T   P  G  V   P  D  L 

    6001 GTCCCCAGAG ACTGGGACCC CCAGCCCCTG GGGCCTCCCA CCCCAGGAGT CCCAGACCTG 

 CAGGGGTCTC TGACCCTGGG GGTCGGGGAC CCCGGAGGGT GGGGTCCTCA GGGTCTGGAC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  D  F  Q   P  P  P   E  L  V   L  R  E  A   G  E  E   V  P  D 

    6061 GTGGATTTTC AGCCACCCCC TGAGCTGGTG CTGCGAGAGG CTGGGGAGGA GGTCCCTGAC 

 CACCTAAAAG TCGGTGGGGG ACTCGACCAC GACGCTCTCC GACCCCTCCT CCAGGGACTG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  G  P  R   E  G  V   S  F  P   W  S  R  P   P  G  Q   G  E  F 

    6121 GCTGGCCCCA GGGAGGGAGT CAGTTTCCCC TGGTCCAGGC CTCCTGGGCA GGGGGAGTTC 

 CGACCGGGGT CCCTCCCTCA GTCAAAGGGG ACCAGGTCCG GAGGACCCGT CCCCCTCAAG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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  R  A  L  N   A  R  L   P  L  N   T  D  A  Y   L  S  L   Q  E  L 

    6181 AGGGCCCTTA ATGCTCGCCT GCCCCTGAAC ACTGATGCCT ACTTGTCCCT CCAAGAACTC 

 TCCCGGGAAT TACGAGCGGA CGGGGACTTG TGACTACGGA TGAACAGGGA GGTTCTTGAG 

 IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                  BspEI 

                                  ~~~~~~ 

  Q  G  Q  D   P  T  H   L  V  *   S  G 

    6241 CAGGGTCAGG ACCCAACTCA CTTGGTGTAG TCCGGA                           

 GTCCCAGTCC TGGGTTGAGT GAACCACATC AGGCCT                           
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6.5 BW431/26scFv-Fc-CD28LCK-CD3-T2A-IL7R/IL2R (#1941) 

                                                     Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

                                                     ~~~~~~~~~~~~~ 

                                                          Lk 

                                                     ~~~~~~~~~~~~~ 

                                                      M   D  F  Q 

    1921                                                     AT GGATTTTCAG 

                                                     TA CCTAAAAGTC 

                                                         anti-CEA scFV BW431/26 

                                                         ~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                         Lk 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  Q  I  F   S  F  L   L  I  S   A  S  V  I   M  S  R   G  V  H 

    1981 GTGCAGATTT TCAGCTTCCT GCTAATCAGT GCCTCAGTCA TAATGTCTAG AGGTGTCCAC 

 CACGTCTAAA AGTCGAAGGA CGATTAGTCA CGGAGTCAGT ATTACAGATC TCCACAGGTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  Q  V  Q   L  Q  E   S  G  P   G  L  V  R   P  S  Q   T  L  S 

    2041 TCCCAGGTCC AACTGCAGGA GTCAGGTCCA GGTCTTGTGA GACCTAGCCA GACCCTGAGC 

 AGGGTCCAGG TTGACGTCCT CAGTCCAGGT CCAGAACACT CTGGATCGGT CTGGGACTCG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  T  C  T   V  S  G   F  T  I   S  S  G  Y   S  W  H   W  V  R 

    2101 CTGACCTGCA CCGTGTCTGG CTTCACCATC AGCAGTGGTT ATAGCTGGCA CTGGGTGAGA 

 GACTGGACGT GGCACAGACC GAAGTGGTAG TCGTCACCAA TATCGACCGT GACCCACTCT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  P  P  G   R  G  L   E  W  I   G  Y  I  Q   Y  S  G   I  T  N 

    2161 CAGCCACCTG GACGAGGTCT TGAGTGGATT GGATACATAC AGTACAGTGG TATCACTAAC 

 GTCGGTGGAC CTGCTCCAGA ACTCACCTAA CCTATGTATG TCATGTCACC ATAGTGATTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  N  P  S   L  K  S   R  V  T   M  L  V  D   T  S  K   N  Q  F 

    2221 TACAACCCCT CTCTCAAAAG TAGAGTGACA ATGCTGGTAG ACACCAGCAA GAACCAGTTC 

 ATGTTGGGGA GAGAGTTTTC ATCTCACTGT TACGACCATC TGTGGTCGTT CTTGGTCAAG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  L  R  L   S  S  V   T  A  A   D  T  A  V   Y  Y  C   A  R  E 

    2281 AGCCTGAGAC TCAGCAGCGT GACAGCCGCC GACACCGCGG TCTATTATTG TGCAAGAGAA 

 TCGGACTCTG AGTCGTCGCA CTGTCGGCGG CTGTGGCGCC AGATAATAAC ACGTTCTCTT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  D  Y  D  Y   H  W  Y   F  D  V   W  G  Q  G   T  T  V   T  V  S 

    2341 GACTATGATT ACCACTGGTA CTTCGATGTC TGGGGCCAAG GGACCACGGT CACCGTCTCC 

 CTGATACTAA TGGTGACCAT GAAGCTACAG ACCCCGGTTC CCTGGTGCCA GTGGCAGAGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  G  G  G   G  S  G   G  G  G   S  G  G  G   G  S  D   I  Q  L 

    2401 TCAGGAGGTG GTGGATCGGG CGGTGGCGGG TCGGGTGGCG GCGGATCTGA CATCCAGCTG 

 AGTCCTCCAC CACCTAGCCC GCCACCGCCC AGCCCACCGC CGCCTAGACT GTAGGTCGAC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  Q  S  P   S  S  L   S  A  S   V  G  D  R   V  T  I   T  C  S 

    2461 ACCCAGAGCC CAAGCAGCCT GAGCGCCAGC GTGGGTGACA GAGTGACCAT CACCTGTAGT 

 TGGGTCTCGG GTTCGTCGGA CTCGCGGTCG CACCCACTGT CTCACTGGTA GTGGACATCA 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 
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 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  S  S  S   V  S  Y   M  H  W   Y  Q  Q  K   P  G  K   A  P  K 

    2521 ACCAGCTCGA GTGTAAGTTA CATGCACTGG TACCAGCAGA AGCCAGGTAA GGCTCCAAAG 

 TGGTCGAGCT CACATTCAAT GTACGTGACC ATGGTCGTCT TCGGTCCATT CCGAGGTTTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  L  I  Y   S  T  S   N  L  A   S  G  V  P   S  R  F   S  G  S 

    2581 CTGCTGATCT ACAGCACATC CAACCTGGCT TCTGGTGTGC CAAGCAGATT CAGCGGTAGC 

 GACGACTAGA TGTCGTGTAG GTTGGACCGA AGACCACACG GTTCGTCTAA GTCGCCATCG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  S  G  T   D  F  T   F  T  I   S  S  L  Q   P  E  D   I  A  T 

    2641 GGTAGCGGTA CCGACTTCAC CTTCACCATC AGCAGCCTCC AGCCAGAGGA CATCGCCACC 

 CCATCGCCAT GGCTGAAGTG GAAGTGGTAG TCGTCGGAGG TCGGTCTCCT GTAGCGGTGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                    anti-CEA scFV BW431/26 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  Y  C  H   Q  W  S   S  Y  P   T  F  G  Q   G  T  K   V  E  I 

    2701 TACTACTGCC ATCAGTGGAG TAGTTATCCC ACGTTCGGCC AAGGGACCAA GGTGGAGATC 

 ATGATGACGG TAGTCACCTC ATCAATAGGG TGCAAGCCGG TTCCCTGGTT CCACCTCTAG 

                                hinge 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 anti-CEA scFV BW431/26                                  humanIgG 

 ~~~~~~                                                  ~~~~~~~~~ 

  K  V  D  P   A  E  P   K  S  P   D  K  T  H   T  C  P   P  C  P 

    2761 AAAGTGGATC CCGCCGAGCC CAAATCTCCT GACAAAACTC ACACATGCCC ACCGTGCCCA 

 TTTCACCTAG GGCGGCTCGG GTTTAGAGGA CTGTTTTGAG TGTGTACGGG TGGCACGGGT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  P  E  L   L  G  G   P  S  V   F  L  F  P   P  K  P   K  D  T 

    2821 GCACCTGAAC TCCTGGGGGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC 

 CGTGGACTTG AGGACCCCCC TGGCAGTCAG AAGGAGAAGG GGGGTTTTGG GTTCCTGTGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  M  I  S   R  T  P   E  V  T   C  V  V  V   D  V  S   H  E  D 

    2881 CTCATGATCT CCCGGACCCC TGAGGTCACA TGCGTGGTGG TGGACGTGAG CCACGAAGAC 

 GAGTACTAGA GGGCCTGGGG ACTCCAGTGT ACGCACCACC ACCTGCACTC GGTGCTTCTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  E  V  K   F  N  W   Y  V  D   G  V  E  V   H  N  A   K  T  K 

    2941 CCTGAGGTCA AGTTCAACTG GTACGTGGAC GGCGTGGAGG TGCATAATGC CAAGACAAAG 

 GGACTCCAGT TCAAGTTGAC CATGCACCTG CCGCACCTCC ACGTATTACG GTTCTGTTTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  R  E  E   Q  Y  N   S  T  Y   R  V  V  S   V  L  T   V  L  H 

    3001 CCGCGGGAGG AGCAGTACAA CAGCACGTAC CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC 

 GGCGCCCTCC TCGTCATGTT GTCGTGCATG GCACACCAGT CGCAGGAGTG GCAGGACGTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  D  W  L   N  G  K   E  Y  K   C  K  V  S   N  K  A   L  P  A 

    3061 CAGGACTGGC TGAATGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGC CCTCCCAGCC 

 GTCCTGACCG ACTTACCGTT CCTCATGTTC ACGTTCCAGA GGTTGTTTCG GGAGGGTCGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  I  E  K   T  I  S   K  A  K   G  Q  P  R   E  P  Q   V  Y  T 

    3121 CCCATCGAGA AAACCATCTC CAAAGCCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC 

 GGGTAGCTCT TTTGGTAGAG GTTTCGGTTT CCCGTCGGGG CTCTTGGTGT CCACATGTGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  L  P  P  S   R  D  E   L  T  K   N  Q  V  S   L  T  C   L  V  K 

    3181 CTGCCCCCAT CCCGGGATGA GCTGACCAAG AACCAGGTCA GCCTGACCTG CCTGGTCAAA 

 GACGGGGGTA GGGCCCTACT CGACTGGTTC TTGGTCCAGT CGGACTGGAC GGACCAGTTT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  F  Y  P   S  D  I   A  V  E   W  E  S  N   G  Q  P   E  N  N 

    3241 GGCTTCTATC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAC 

 CCGAAGATAG GGTCGCTGTA GCGGCACCTC ACCCTCTCGT TACCCGTCGG CCTCTTGTTG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  K  T  T   P  P  V   L  D  S   D  G  S  F   F  L  Y   S  K  L 

    3301 TACAAGACCA CGCCTCCCGT GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC 

 ATGTTCTGGT GCGGAGGGCA CGACCTGAGG CTGCCGAGGA AGAAGGAGAT GTCGTTCGAG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           humanIgG 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  T  V  D  K   S  R  W   Q  Q  G   N  V  F  S   C  S  V   M  H  E 

    3361 ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG 

 TGGCACCTGT TCTCGTCCAC CGTCGTCCCC TTGCAGAAGA GTACGAGGCA CTACGTACTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                      humanIgG                              CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   ~~~~~~ 

  A  L  H  N   H  Y  T   Q  K  S   L  S  L  S   P  G  K   K  D  P 

    3421 GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGGTAA AAAAGATCCC 

 CGAGACGTGT TGGTGATGTG CGTCTTCTCG GAGAGGGACA GAGGCCCATT TTTTCTAGGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  F  W  V   L  V  V   V  G  G   V  L  A  C   Y  S  L   L  V  T 

    3481 AAATTTTGGG TGCTGGTGGT GGTTGGTGGA GTCCTGGCTT GCTATAGCTT GCTAGTAACA 

 TTTAAAACCC ACGACCACCA CCAACCACCT CAGGACCGAA CGATATCGAA CGATCATTGT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  A  F  I   I  F  W   V  R  S   K  R  S  R   L  L  H   S  D  Y 

    3541 GTGGCCTTTA TTATTTTCTG GGTGAGGAGT AAGAGGAGCA GGCTCCTGCA CAGTGACTAC 

 CACCGGAAAT AATAAAAGAC CCACTCCTCA TTCTCCTCGT CCGAGGACGT GTCACTGATG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                           CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  M  N  M  T   P  R  R   P  G  P   T  R  K  H   Y  Q  A   Y  A  A 

    3601 ATGAACATGA CTCCCCGCCG CCCCGGGCCC ACCCGCAAGC ATTACCAGGC CTATGCCGCC 

 TACTTGTACT GAGGGGCGGC GGGGCCCGGG TGGGCGTTCG TAATGGTCCG GATACGGCGG 

                                            CD3z 

                              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

          CD28DLCK 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  R  D  F   A  A  Y   R  S  L   R  V  K  F   S  R  S   A  D  A 

    3661 GCACGCGACT TCGCAGCCTA TCGCTCCCTG AGAGTGAAGT TCAGCAGGAG CGCAGACGCC 

 CGTGCGCTGA AGCGTCGGAT AGCGAGGGAC TCTCACTTCA AGTCGTCCTC GCGTCTGCGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  P  A  Y  Q   Q  G  Q   N  Q  L   Y  N  E  L   N  L  G   R  R  E 

    3721 CCCGCGTACC AGCAGGGCCA GAACCAGCTC TATAACGAGC TCAATCTAGG ACGAAGAGAG 

 GGGCGCATGG TCGTCCCGGT CTTGGTCGAG ATATTGCTCG AGTTAGATCC TGCTTCTCTC 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                    SanDI 

                                   ~~~~~~~ 

  E  Y  D  V   L  D  K   R  R  G   R  D  P  E   M  G  G   K  P  R 

    3781 GAGTACGATG TTTTGGACAA GAGACGTGGC CGGGACCCTG AGATGGGGGG AAAGCCGAGA 
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 CTCATGCTAC AAAACCTGTT CTCTGCACCG GCCCTGGGAC TCTACCCCCC TTTCGGCTCT 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  R  K  N  P   Q  E  G   L  Y  N   E  L  Q  K   D  K  M   A  E  A 

    3841 AGGAAGAACC CTCAGGAAGG CCTGTACAAT GAACTGCAGA AAGATAAGAT GGCGGAGGCC 

 TCCTTCTTGG GAGTCCTTCC GGACATGTTA CTTGACGTCT TTCTATTCTA CCGCCTCCGG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  S  E  I   G  M  K   G  E  R   R  R  G  K   G  H  D   G  L  Y 

    3901 TACAGTGAGA TTGGGATGAA AGGCGAGCGC CGGAGGGGCA AGGGGCACGA TGGCCTTTAC 

 ATGTCACTCT AACCCTACTT TCCGCTCGCG GCCTCCCCGT TCCCCGTGCT ACCGGAAATG 

               Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             CD3z 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  L  S   T  A  T   K  D  T   Y  D  A  L   H  M  Q   A  L  P 

    3961 CAGGGTCTCA GTACAGCCAC CAAGGACACC TACGACGCCC TTCACATGCA GGCCCTGCCC 

 GTCCCAGAGT CATGTCGGTG GTTCCTGTGG ATGCTGCGGG AAGTGTACGT CCGGGACGGG 

 Lk-BW431/26scFv-Fc-CD28DLCK-CD3z 

 ~~~~~~ 

                                T2A 

       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  CD3z 

 ~~~~~~ 

       BspEI 

       ~~~~~~~ 

  P  R  S  G   E  G  R   G  S  L   L  T  C  G   D  V  E   E  N  P 

    4021 CCTCGCTCCG GAGAGGGCCG GGGCTCTCTG CTGACCTGTG GCGACGTGGA GGAGAACCCC 

 GGAGCGAGGC CTCTCCCGGC CCCGAGAGAC GACTGGACAC CGCTGCACCT CCTCTTGGGG 

    T2A 

 ~~~~~~~~~ 

                     IL7 receptor alpha ectodomain 

          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  G  P  S  M   T  I  L   G  T  T   F  G  M  V   F  S  L   L  Q  V 

    4081 GGCCCCTCCA TGACAATTCT AGGTACCACT TTTGGCATGG TTTTTTCTTT ACTTCAAGTC 

 CCGGGGAGGT ACTGTTAAGA TCCATGGTGA AAACCGTACC AAAAAAGAAA TGAAGTTCAG 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  S  G  E   S  G  Y   A  Q  N   G  D  L  E   D  A  E   L  D  D 

    4141 GTTTCTGGAG AAAGTGGCTA TGCTCAAAAT GGAGACTTGG AAGATGCAGA ACTGGATGAC 

 CAAAGACCTC TTTCACCGAT ACGAGTTTTA CCTCTGAACC TTCTACGTCT TGACCTACTG 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Y  S  F  S   C  Y  S   Q  L  E   V  N  G  S   Q  H  S   L  T  C 

    4201 TACTCATTCT CATGCTATAG CCAGTTGGAA GTGAATGGAT CGCAGCACTC ACTGACCTGT 

 ATGAGTAAGA GTACGATATC GGTCAACCTT CACTTACCTA GCGTCGTGAG TGACTGGACA 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  F  E  D   P  D  V   N  I  T   N  L  E  F   E  I  C   G  A  L 

    4261 GCTTTTGAGG ACCCAGATGT CAACATCACC AATCTGGAAT TTGAAATATG TGGGGCCCTC 

 CGAAAACTCC TGGGTCTACA GTTGTAGTGG TTAGACCTTA AACTTTATAC ACCCCGGGAG 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  E  V  K   C  L  N   F  R  K   L  Q  E  I   Y  F  I   E  T  K 

    4321 GTGGAGGTAA AGTGCCTGAA TTTCAGGAAA CTACAAGAGA TATATTTCAT CGAGACAAAG 

 CACCTCCATT TCACGGACTT AAAGTCCTTT GATGTTCTCT ATATAAAGTA GCTCTGTTTC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  F  L  L   I  G  K   S  N  I   C  V  K  V   G  E  K   S  L  T 

    4381 AAATTCTTAC TGATTGGAAA GAGCAATATA TGTGTGAAGG TTGGAGAAAA GAGTCTAACC 

 TTTAAGAATG ACTAACCTTT CTCGTTATAT ACACACTTCC AACCTCTTTT CTCAGATTGG 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  C  K  K  I   D  L  T   T  I  V   K  P  E  A   P  F  D   L  S  V 

    4441 TGCAAAAAAA TAGACCTAAC CACTATAGTT AAACCTGAGG CTCCTTTTGA CCTGAGTGTC 

 ACGTTTTTTT ATCTGGATTG GTGATATCAA TTTGGACTCC GAGGAAAACT GGACTCACAG 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  Y  R  E   G  A  N   D  F  V   V  T  F  N   T  S  H   L  Q  K 

    4501 GTCTATCGGG AAGGAGCCAA TGACTTTGTG GTGACATTTA ATACATCACA CTTGCAAAAG 

 CAGATAGCCC TTCCTCGGTT ACTGAAACAC CACTGTAAAT TATGTAGTGT GAACGTTTTC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  Y  V  K   V  L  M   H  D  V   A  Y  R  Q   E  K  D   E  N  K 
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    4561 AAGTATGTAA AAGTTTTAAT GCACGATGTA GCTTACCGCC AGGAAAAGGA TGAAAACAAA 

 TTCATACATT TTCAAAATTA CGTGCTACAT CGAATGGCGG TCCTTTTCCT ACTTTTGTTT 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  W  T  H  V   N  L  S   S  T  K   L  T  L  L   Q  R  K   L  Q  P 

    4621 TGGACGCATG TGAATTTATC CAGCACAAAG CTGACACTCC TGCAGAGAAA GCTCCAACCG 

 ACCTGCGTAC ACTTAAATAG GTCGTGTTTC GACTGTGAGG ACGTCTCTTT CGAGGTTGGC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  A  M  Y   E  I  K   V  R  S   I  P  D  H   Y  F  K   G  F  W 

    4681 GCAGCAATGT ATGAGATTAA AGTTCGATCC ATCCCTGATC ACTATTTTAA AGGCTTCTGG 

 CGTCGTTACA TACTCTAATT TCAAGCTAGG TAGGGACTAG TGATAAAATT TCCGAAGACC 

                IL7 receptor alpha ectodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  E  W  S   P  S  Y   Y  F  R   T  P  E  I   N  N  S   S  G  E 

    4741 AGTGAATGGA GTCCAAGTTA TTACTTCAGA ACTCCAGAGA TCAATAATAG CTCAGGGGAG 

 TCACTTACCT CAGGTTCAAT AATGAAGTCT TGAGGTCTCT AGTTATTATC GAGTCCCCTC 

             IL2 Receptor-beta Transmembran+endodomain 

       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 IL7 receptor alpha ectodomain 

 ~~~~~~ 

  M  D  I  P   W  L  G   H  L  L   V  G  L  S   G  A  F   G  F  I 

    4801 ATGGATATTC CGTGGCTCGG CCACCTCCTC GTGGGCCTCA GCGGGGCTTT TGGCTTCATC 

 TACCTATAAG GCACCGAGCC GGTGGAGGAG CACCCGGAGT CGCCCCGAAA ACCGAAGTAG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  I  L  V  Y   L  L  I   N  C  R   N  T  G  P   W  L  K   K  V  L 

    4861 ATCTTAGTGT ACTTGCTGAT CAACTGCAGG AACACCGGGC CATGGCTGAA GAAGGTCCTG 

 TAGAATCACA TGAACGACTA GTTGACGTCC TTGTGGCCCG GTACCGACTT CTTCCAGGAC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  K  C  N  T   P  D  P   S  K  F   F  S  Q  L   S  S  E   H  G  G 

    4921 AAGTGTAACA CCCCAGACCC CTCGAAGTTC TTTTCCCAGC TGAGCTCAGA GCATGGAGGA 

 TTCACATTGT GGGGTCTGGG GAGCTTCAAG AAAAGGGTCG ACTCGAGTCT CGTACCTCCT 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  D  V  Q  K   W  L  S   S  P  F   P  S  S  S   F  S  P   G  G  L 

    4981 GACGTCCAGA AGTGGCTCTC TTCGCCCTTC CCCTCATCGT CCTTCAGCCC TGGCGGCCTG 

 CTGCAGGTCT TCACCGAGAG AAGCGGGAAG GGGAGTAGCA GGAAGTCGGG ACCGCCGGAC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  P  E  I   S  P  L   E  V  L   E  R  D  K   V  T  Q   L  L  L 

    5041 GCACCTGAGA TCTCGCCACT AGAAGTGCTG GAGAGGGACA AGGTGACGCA GCTGCTCCTG 

 CGTGGACTCT AGAGCGGTGA TCTTCACGAC CTCTCCCTGT TCCACTGCGT CGACGAGGAC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  Q  D  K   V  P  E   P  A  S   L  S  S  N   H  S  L   T  S  C 

    5101 CAGCAGGACA AGGTGCCTGA GCCCGCATCC TTAAGCAGCA ACCACTCGCT GACCAGCTGC 

 GTCGTCCTGT TCCACGGACT CGGGCGTAGG AATTCGTCGT TGGTGAGCGA CTGGTCGACG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  F  T  N  Q   G  Y  F   F  F  H   L  P  D  A   L  E  I   E  A  C 

    5161 TTCACCAACC AGGGTTACTT CTTCTTCCAC CTCCCGGATG CCTTGGAGAT AGAGGCCTGC 

 AAGTGGTTGG TCCCAATGAA GAAGAAGGTG GAGGGCCTAC GGAACCTCTA TCTCCGGACG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  V  Y  F   T  Y  D   P  Y  S   E  E  D  P   D  E  G   V  A  G 

    5221 CAGGTGTACT TTACTTACGA CCCCTACTCA GAGGAAGACC CTGATGAGGG TGTGGCCGGG 

 GTCCACATGA AATGAATGCT GGGGATGAGT CTCCTTCTGG GACTACTCCC ACACCGGCCC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  A  P  T  G   S  S  P   Q  P  L   Q  P  L  S   G  E  D   D  A  Y 

    5281 GCACCCACAG GGTCTTCCCC CCAACCCCTG CAGCCTCTGT CAGGGGAGGA CGACGCCTAC 

 CGTGGGTGTC CCAGAAGGGG GGTTGGGGAC GTCGGAGACA GTCCCCTCCT GCTGCGGATG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  C  T  F  P   S  R  D   D  L  L   L  F  S  P   S  L  L   G  G  P 

    5341 TGCACCTTCC CCTCCAGGGA TGACCTGCTG CTCTTCTCCC CCAGTCTCCT CGGTGGCCCC 

 ACGTGGAAGG GGAGGTCCCT ACTGGACGAC GAGAAGAGGG GGTCAGAGGA GCCACCGGGG 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  S  P  P  S   T  A  P   G  G  S   G  A  G  E   E  R  M   P  P  S 

    5401 AGCCCCCCAA GCACTGCCCC TGGGGGCAGT GGGGCCGGTG AAGAGAGGAT GCCCCCTTCT 

 TCGGGGGGTT CGTGACGGGG ACCCCCGTCA CCCCGGCCAC TTCTCTCCTA CGGGGGAAGA 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                             SanDI 

                            ~~~~~~~~ 
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  L  Q  E  R   V  P  R   D  W  D   P  Q  P  L   G  P  P   T  P  G 

    5461 TTGCAAGAAA GAGTCCCCAG AGACTGGGAC CCCCAGCCCC TGGGGCCTCC CACCCCAGGA 

 AACGTTCTTT CTCAGGGGTC TCTGACCCTG GGGGTCGGGG ACCCCGGAGG GTGGGGTCCT 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  V  P  D  L   V  D  F   Q  P  P   P  E  L  V   L  R  E   A  G  E 

    5521 GTCCCAGACC TGGTGGATTT TCAGCCACCC CCTGAGCTGG TGCTGCGAGA GGCTGGGGAG 

 CAGGGTCTGG ACCACCTAAA AGTCGGTGGG GGACTCGACC ACGACGCTCT CCGACCCCTC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  E  V  P  D   A  G  P   R  E  G   V  S  F  P   W  S  R   P  P  G 

    5581 GAGGTCCCTG ACGCTGGCCC CAGGGAGGGA GTCAGTTTCC CCTGGTCCAG GCCTCCTGGG 

 CTCCAGGGAC TGCGACCGGG GTCCCTCCCT CAGTCAAAGG GGACCAGGTC CGGAGGACCC 

          IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Q  G  E  F   R  A  L   N  A  R   L  P  L  N   T  D  A   Y  L  S 

    5641 CAGGGGGAGT TCAGGGCCCT TAATGCTCGC CTGCCCCTGA ACACTGATGC CTACTTGTCC 

 GTCCCCCTCA AGTCCCGGGA ATTACGAGCG GACGGGGACT TGTGACTACG GATGAACAGG 

 IL2 Receptor-beta Transmembran+endodomain 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                                               BspEI 

                                               ~~~~~~ 

  L  Q  E  L   Q  G  Q   D  P  T   H  L  V  *   S  G 

    5701 CTCCAAGAAC TCCAGGGTCA GGACCCAACT CACTTGGTGT AGTCCGGA              

 GAGGTTCTTG AGGTCCCAGT CCTGGGTTGA GTGAACCACA TCAGGCCT              
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