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Summary 
 

Spinal muscular atrophy (SMA) is the second most common recessive monogenic disease 

characterized by loss of motor neurons and impaired neuromuscular junctions which leads to 

proximal muscles atrophy. SMA is primarily caused by mutation/loss of survival of motor 

neuron 1 (SMN1) gene encoding the SMN protein. Interestingly, humans carry additionally 

SMN2, a copy gene of SMN1 which is relatively new in evolutionary scale of genes and the 

SMA disease severity is inversely correlated with the copy number of the SMN2 gene. In the 

recent year, SMA therapeutics achieved a landmark with FDA and EMA approval of the 

splice modifier molecule named Nusinersen, which is an SMN dependent therapy as it 

elevates the SMN protein level derived from the SMN2 transcript. However, SMN dependent 

therapies have not been sufficient to fully cure the SMA, especially in most severe SMA type 

I patients which may carry even a single allele of SMN2. Therefore, a combinatorial therapy 

which includes SMN independent strategies would be remarkably beneficial. Certain modifier 

genes, which upon differential expression can protect against SMA are most relevant and 

potential candidates to be studied in context of combinatorial therapies. Recently, reduction 

of a neuronal calcium sensor, Neurocalcin delta (NCALD) significantly ameliorated major 

SMA symptoms: reduced motor neuron axon length, neuromuscular junction size, muscle 

fibre size, impaired endocytosis and motor functions in various SMA model systems. 

Considering these results, reduction of NCALD was proposed for SMA combinatorial 

therapeutics. However, depending upon the physiological functions of NCALD in various 

cellular processes, reduction of NCALD may potentially incur certain side effects. NCALD is 

a member of the brain-enriched neuronal calcium sensor sub-family Visinin like proteins 

(VILIPs). However, till date only few NCALD functions have been explored based on the 

functions of its close homologues VILIP1, hippocalcin and guanylate cyclase activating 

protein (GCAP). Therefore, in this study we first investigated non redundant physiological 

functions of NCALD by characterizing Ncald knockout (NcaldKO/KO) mice; then referring to the 

phenotypes of NcaldKO/KO mice we further analysed heterozygous (NcaldKO/WT) mice to verify 

any potential physiological defects that may arise at 50% NCALD reduction which has been 

proposed as a potential SMA therapeutic option. 

Significant changes were observed in the gross brain morphology of adult NcaldKO/KO mice (4 

month-old) with bigger ventricles, thinner cortex and smaller hippocampus including 

significantly reduced length of dentate gyrus sub granular zone. These morphological defects 

could arise either due to progressive neurodegeneration or impaired brain development/ 

maturation. Therefore, we investigated major hallmarks of progressive neurodegeneration 

like loss of mature neurons, astrogliosis, reduced dendritic branching or exacerbation of the 
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gross morphological changes with aging. However, we did not find any evidence of 

progressive neurodegeneration. On other hand, we found very low NCALD levels in 

embryonic brain (E16) as well as at birth (P1), however a significant increase was observed 

at P10, which implies relevance of NCALD during postnatal brain development/ maturation. 

Therefore, we further investigated generation of doublecortin (DCX) positive new-born 

granule cells in the dentate gyrus (DG) as well as myelination, two major processes of 

postnatal brain maturation. We did not observe any changes in DCX positive neurons at P14 

and only a tendency of reduction at P30 in NcaldKO/KO brain compared to controls. However, 

4-month old adult NcaldKO/KO animals exhibit significantly reduced amount of DCX cells in 

DG. Loss of DCX positive cells in adult brain is widely accepted as a loss of adult 

neurogenesis. Furthermore, we investigated the mechanism behind the observed defects in 

NcaldKO/KO brain by investigating the NCALD interactome using mass spectrometry analysis 

and as co-immunoprecipitation. We identified a novel NCALD interacting partner named 

mitogen-activated protein kinase kinase kinase 10 (MAP3K10). MAP3K10 is an upstream 

kinase in c-Jun N-terminal kinase (JNK) pathway. Therefore we analysed the JNK activation 

in NcaldKO/KO brain and found significantly upregulated pJNK levels compared to controls. 

Contrary to these observations, adult NcaldKO/WT brain analysis showed neither JNK 

activation nor loss DCX positive cells, thereby ruling out the potential side effects of NCALD 

reduction in adult neurogenesis. Conclusively, this is the first study to report the effect of 

NCALD deletion on DCX positive neuron generation, which is a widely accepted as adult 

neurogenesis marker and to identify MAP3K10 as a novel interacting partner of NCALD; 

additionally it reports on the safety of using NCALD reduction for SMA combinatorial therapy.  
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Zusammenfassung 
 

Spinale Muskelatrophie (SMA) ist die zweithäufigste rezessive monogene Erkrankung, die 

durch den Verlust von Motoneuronen und beeinträchtigten neuromuskulären Verbindungen 

gekennzeichnet ist, was zu einer proximalen Muskelatrophie führt. SMA wird hauptsächlich 

durch Mutation / Verlust des Überlebens des Motoneuron 1 (SMN1) -Gens, das das SMN-

Protein kodiert, verursacht. Interessanterweise tragen Menschen zusätzlich SMN2, ein 

Kopiegen von SMN1, das im evolutionären Maßstab von Genen relativ neu ist. Der 

Schweregrad der SMA-Krankheit korreliert negativ mit der Kopienzahl des SMN2-Gens. Im 

vergangenen Jahr erreichte SMA Therapeutics mit dem Spleißmodifikatormolekül 

Nusinersen, das eine SMN-abhängige Therapie durch die Erhöhung des SMN-

Proteinspiegels aus dem SMN2-Transkript darstellt, die FDA- und EMA-Zulassung. SMN-

abhängige Therapien waren jedoch nicht ausreichend, um die SMA vollständig zu heilen, 

insbesondere bei den meisten schweren SMA-Typ-I-Patienten, die sogar ein einzelnes Allel 

von SMN2 tragen können. Daher wäre eine kombinatorische Therapie, die SMN-

unabhängige Strategien beinhaltet, sehr  vorteilhaft. Bestimmte Modifikationsgene, die bei 

unterschiedlicher Expression gegen SMA schützen können, sind die relevantesten und 

potentiellsten Kandidaten, die im Zusammenhang mit kombinatorischen Therapien 

untersucht werden sollen. Kürzlich verbesserte die Reduktion eines neuronalen 

Calciumsensors, Neurocalcin delta (NCALD), bedeutende SMA-Symptome: reduzierte 

Axone des motorischen Neurons, neuromuskuläre Übergangsgröße, Muskelfasergröße, 

gestörte Endozytose und motorische Funktionen in verschiedenen SMA-Modellsystemen. 

Unter Berücksichtigung dieser Ergebnisse wurde eine Reduktion von NCALD für 

kombinatorische SMA-Therapeutika vorgeschlagen. In Abhängigkeit von den 

physiologischen Funktionen von NCALD in verschiedenen zellulären Prozessen kann die 

Reduktion von NCALD jedoch möglicherweise bestimmte Nebenwirkungen hervorrufen. 

NCALD ist ein Mitglied der Gehirn-angereicherten neuronalen Kalzium-Sensor-Unterfamilie 

Visinin like Proteins (VILIPs). Bislang wurden jedoch nur wenige NCALD-Funktionen 

basierend auf den Funktionen seiner nahen Homologen VILIP1, Hippocalcin und 

Guanylatcyclase-aktivierendes Protein (GCAP) untersucht. Daher untersuchten wir in dieser 

Studie zuerst nicht-redundante physiologische Funktionen von NCALD durch 

Charakterisierung von Ncald-Knockout (NcaldKO/KO) Mäusen; Unter Bezugnahme auf die 

Phänotypen von Mäusen analysierten wir weiter heterozygote (NcaldKO/WT) Mäuse, um 

mögliche physiologische Defekte zu bestätigen, die bei 50% NCALD-Reduktion auftreten 

können, was als mögliche SMA-Therapieoption vorgeschlagen wurde. 

Signifikante Veränderungen wurden in der Grobhirnmorphologie von adulten NcaldKO/KO 

Mäusen (4 Monate alt) mit größeren Ventrikeln, dünnerem Kortex und kleinerem 
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Hippocampus, einschließlich einer signifikant reduzierten Länge der subgranularen Zone des 

dentalen Gyrus, beobachtet. Diese morphologischen Defekte können entweder durch 

fortschreitende Neurodegeneration oder gestörte Entwicklung / Reifung des Gehirns 

entstehen. Daher untersuchten wir wichtige Merkmale der progressiven Neurodegeneration 

wie Verlust von reifen Neuronen, Astrogliose, reduzierte dendritische Verzweigung oder 

Exazerbation der makroskopischen Veränderungen mit dem Altern. Wir haben jedoch keinen 

Hinweis auf progressive Neurodegeneration gefunden. Auf der anderen Seite fanden wir 

sehr niedrige NCALD-Spiegel im embryonalen Gehirn (E16) sowie bei der Geburt (P1), 

jedoch wurde ein signifikanter Anstieg bei P10 beobachtet, was die Relevanz von NCALD 

während der postnatalen Gehirnentwicklung / -reifung impliziert. Daher untersuchten wir die 

Bildung von Doppelkortin (DCX) positiven, neu geborenen Körnerzellen im Gyrus dentatus 

(DG) sowie die Myelinisierung, zwei Hauptprozesse der postnatalen Gehirnreifung. Wir 

beobachteten keine Veränderungen in DCX-positiven Neuronen bei P14 und nur eine 

Reduktionsneigung bei P30 in NcaldKO/KO -Gehirn im Vergleich zu Kontrollen. 4 Monate alte 

adulte NcaldKO/KO -Tiere zeigen jedoch eine signifikant reduzierte Menge an DCX-Zellen in 

DG. Der Verlust von DCX-positiven Zellen im adulten Gehirn wird weitgehend als Verlust der 

adulten Neurogenese angesehen. Darüber hinaus untersuchten wir den Mechanismus hinter 

den beobachteten Defekten im NcaldKO/KO Gehirn durch Untersuchung des NCALD-

Interaktoms mittels Massenspektrometrieanalyse und als Co-Immunopräzipitation. Wir 

identifizierten einen neuen NCALD-Interaktionspartner namens Mitogen-aktivierte Protein 

Kinase Kinase Kinase 10 (MAP3K10). MAP3K10 ist eine stromaufwärts gelegene Kinase im 

c-Jun N-terminalen Kinase (JNK) Signalweg. Daher analysierten wir die JNK Aktivierung in 

NcaldKO/KO Gehirn und fanden signifikant erhöhte pJNK Werte im Vergleich zu Kontrollen. Im 

Gegensatz zu diesen Beobachtungen zeigte adulte NcaldKO/WT -Gehirnanalyse weder eine 

JNK-Aktivierung noch einen Verlust von DCX-positiven Zellen, wodurch die möglichen 

Nebenwirkungen der NCALD-Reduktion in der adulten Neurogenese ausgeschlossen 

wurden. Zusammenfassend ist dies die erste Studie, die den Effekt der NCALD-Deletion auf 

die DCX-positive Neurogenese, die als adulter Neurogenesemarker weithin akzeptiert ist, 

und MAP3K10 als einen neuartigen Interaktionspartner von NCALD identifiziert; Darüber 

hinaus bestätigt die Studie die Sicherheit der Verwendung von NCALD Reduktion für SMA 

kombinatorische Therapie. 
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1 Introduction 

 

1.1 Spinal Muscular Atrophy and therapeutic strategies 

 

Although Spinal Muscular Atrophy (SMA) has been known for more than a century 

(Hoffmann, 1893) SMA therapeutics still lacks a complete cure fir SMA (Talbot and Tizzano, 

2017). SMA is caused by loss of the telomeric copy of Survival motor neuron 1 (SMN1) 

which lies at the chromosomal region 5q13 (Brzustowicz et al., 1990;Rodrigues et al., 1995). 

However, the severity of the SMA depends on the copy number of the centromeric gene 

SMN2 (Lefebvre et al., 1997;Feldkotter et al., 2002). The SMN2 gene sequence differs by 

only 5 nucleotides from the SMN1, without impacting the amino acid sequence. However, 

one of these nucleotide mutations (a C –T transition) is found at the Exonic Splicing 

Enhancer (ESE) site in exon 7 (Lorson et al., 1999); this transition leads to loss of the ESE 

and instead establishes an exonic spilicing silencer  (ESS) (Kashima and Manley, 2003). In 

SMN1 ESE binds to positive splicing factors namely, splicing factor 2 (SF2) and alternative 

splicing factor (ASF), thereby leading to production of intact SMN protein (Cartegni and 

Krainer, 2002). Whereas in SMN2 the ESS formed due to C-T transition, binds to a known 

splicing repressor protein hnRNPA1 which along with an additional intronic splicing silencer 

(ISS-N1) at intron 7 causes the skipping of exon 7 in 90% of transcripts (Singh et al., 2006). 

Thus, 90% instable SMN protein and only 10% of stable SMN protein is translated via SMN2 

gene (Lefebvre et al., 1998). Hence in SMA cases, although SMN2 gene is functional it 

cannot completely rescue the loss of SMN1 (Kashima and Manley, 2003).  

 

Figure 1  A schematic overview of the transcriptional regulation of SMN1 and SMN2 gene. 
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SMN1 and SMN2 gene encode the SMN protein. SMN2 is a copy gene of SMN1, which differs by only 
5 neuclotides without any change in the amino acid sequence. However one of the mutations, a C-T 
transition in the exon 7 disrupts an ESE site and instead forms an ESS site recruiting splicing repressor 
hnRNP1. Combination of the newly generated ESS site and another physiological intronic splicing 
silencer site ISS-N1 on intron 7 leads to exclusion of exon 7 in most SMN2 mRNA transcripts, thereby 
producing 90% of instable protein and only 10% stable SMN protein. 
 
 
The SMN is a 294 aa long, ~32 KDa protein (Lefebvre et al., 1995). In its cytoplasmic form, 

SMN interacts with itself (forming oligomers), Smn Interacting Protein 1 (SIP1) and Sm 

proteins (snRNP complex members) imposing an effect on the spliceosomal assembly 

(Fischer et al., 1997). On the other hand the nuclear SMN is usually stored in circular 

structures called „gems‟ (Liu and Dreyfuss, 1996). Interestingly, deficiency of SMN in motor 

neurons leads to reduction of β-actin protein and mRNA in axons and their growth cones as 

well as can cause axon path finding defects (McWhorter et al., 2003;Rossoll et al., 2003). 

Moreover, accumulation of SMN in the growth cone of neuronal cells, suggests its role in the 

neuronal growth, synaptic vesicle recycling and maturation of the neuromuscular junctions 

(NMJs) (Fan and Simard, 2002). NMJs are the synapses formed between a motor neuron 

and skeletal muscle, which mature in the early postnatal period and needs to be maintained 

lifelong for proper functioning of muscles (Shi et al., 2012).  

SMA is an autosomal recessive genetic disease characterized by muscular weakness, 

denervation and atrophy along with the degeneration of the motor neurons in the anterior 

horn of spinal cord. Depending upon the onset and severity of the symptoms, SMA has been 

divided by International SMA Consortium into four different types: SMA type I (most severe), 

SMA type II, SMA type III and SMA type IV (Finkel et al., 2018;Mercuri et al., 2018b).  

Strategies to treat SMA involve various types of transcriptional regulation to eventually 

increase the SMN protein. Following are some of the major strategies:  

1) Histone deacetylase (HDAC) inhibitors: The epigenetic landscape near the promoter 

region of SMN2 gene can be switched into a transcriptionally active chromatin structure by 

regulating acetylation of histone proteins as well as methylation of DNA.(Lunke and El-Osta, 

2013) This can be achieved by use of various histone deacetylase (HDAC) inhibitors (Brichta 

et al., 2003;Andreassi et al., 2004;Avila et al., 2007;Garbes et al., 2009;Riessland et al., 

2010;Somers et al., 2013). Two of these HDAC inhibitors valproic acid and phenylbutyrate 

have even been tested in clinical trials of SMA patients, however the conclusions were not 

evidently successful (Lunke and El-Osta, 2013).  

2) Small molecule therapy with antisense oligonucleotides (ASOs): As mentioned earlier 

SMN2 gene has an intronic silencer ISS-N1 in intron 7(Singh et al., 2006). ISS-N1 recruits 

splicing repressor hnRNP-A1 complex which represses the exon 7 inclusion in the SMN2 
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transcript, thereby producing mainly transcripts lacking exon 7 and generating instable SMN 

protein. Nusinersen is an antisense oligonucleotide (ASO) which targets this ISS-N1 site and 

prevents recruitment of hnRNP-A1 leading to increased amount of stable SMN protein (Hua 

et al., 2010;Rigo et al., 2014). As one of the major breakthrough in the field of SMA 

therapeutics (Finkel et al., 2017;Mercuri et al., 2018a) Nusinersen, after showing promising 

results in clinical trials has recently been approved by the US Food & Drug Administration 

(FDA) and European Medicines Agency (EMA). Nusinersen treatment although has shown 

better results than any other previously described method, it is not the final solution for SMA 

(Talbot and Tizzano, 2017). Moreover, this treatment requires multiple dosage via intrathecal 

route of drug administration which is painful and could possibly have more complications in 

long run (Mercuri et al., 2018a).  

 

Figure 2 Nusinersen therapy.  
Use of an antisense oligonucleotide complimentary to ISS-N1 splicing silencer region, inhibits the 
binding of splicing repressor protein hnRNP1. This leads to retention of exon 7 in more than 10% of 
SMN2 mRNA transcript and higher production of full length, functional SMN protein.  
 
 
3) Knockdown of SMN-AS1: SMN-AS1 is a neuronally rich long non-coding RNA which acts 

as a Natural Antisense Transcript (NAT) and binds to the transcription start site (TSS) of 

SMN2 gene there by negatively regulating the SMN2 transcription (d'Ydewalle et al., 2017). 

SMN-AS1 recruits polycomb repressor complex-2 (PRC2) to the SMN2 regulatory regions 

(Woo et al., 2017). Following this PRC2 recruits certain enzymes which can eventually 

methylate (di- or tri-) the Lys 27 of histone H3 eventually leading to SMN2 gene repression 

(Margueron and Reinberg, 2011). An anti-sense oligonucleotide (ASO) against SMN-AS1 

has been used increase the full length SMN transcript as well as the SMN protein level in 
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SMA therapeutics. However, this approach, by itself, was not sufficient to improve the 

survival and body weight of SMA mice (d'Ydewalle et al., 2017;Talbot and Tizzano, 2017). 

4) Gene replacement therapy: Delivery of exogenous cDNA coding for SMN1 gene is 

another approach to increase the SMN protein level in SMA patients. Avexis-101 therapy is 

based on transduction of a non-pathogenic adeno-associated virus (AAV) of stereotype 9 

(AAV9) which is known to effectively target motor neurons for delivery of SMN1 gene 

(Mendell et al., 2017). A self-complimentary form of AAV9 (scAAV) was used to overcome 

the delay in translation of this transgene. This therapy also is currently in the clinical trials 

and has shown promising results(Sumner and Crawford, 2018). However high dose of the 

AAV9 which showed the highest therapeutic potential in SMA patients, has unfortunately 

resulted in various fatal side effects in non-human primates and piglets (Hinderer et al., 

2018). Therefore, the effectivity of this therapy cannot be simply increased by increasing the 

viral dose but rather needs some other combinatorial therapy to better ameliorate SMA 

symptoms. 

Taken together most therapeutic strategies for SMA involve transcriptional enhancement of 

SMN2 gene, which is the primary modifier of SMA. However the most severe as well as most 

common type of SMA is SMA type I where the individuals may carry even a single allele of 

SMN2 (Feldkotter et al., 2002). Considering such a low number of SMN2 copies, in SMA 

type I patients, SMA therapeutics would highly benefit from a combinatorial therapy involving 

SMN independent genetic modifiers (Wirth et al., 2013;Talbot and Tizzano, 2017;Sumner 

and Crawford, 2018).  

1.2 SMA modifiers independent of SMN 

 

One of the most intriguing aspects of genetic diseases originates from the variability of 

disease phenotypes. This variability in turn is an outcome of numerous genetic and 

environmental factors, one of them are the disease modifier genes. Particularly, the disturbed 

homeostasis of diseased individuals with single-gene disorders may disclose the effect of 

such modifiers otherwise these genes or alleles may not be highly penetrant in healthy 

individuals (Nadeau, 2001;Genin et al., 2008). Therefore, the study of genetic modifiers has 

been beneficial for understanding the molecular changes in individuals beyond those afflicted 

with monogenic conditions (Cutting, 2010;Sankaran et al., 2010).  

1.2.1 Plastin 3 

 

Particularly in case of SMA, there are some infrequent SMA discordant families, where along 

with few SMA patients, some asymptomatic individuals have also been reported (Cobben et 
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al., 1995;Hahnen et al., 1995;Prior et al., 2004;Oprea et al., 2008). These asymptomatic 

individuals carry homozygous deletion of SMN1 and only three or four copies of SMN2, 

which usually causes a SMA type II or type III. Characterization of such individuals 

suggested an additional role of some genetic/ environmental factors in compensation of SMN 

loss (Wirth et al., 2013). Interestingly, in certain SMA discordant families Plastin3 (PLS3) was 

found to be significantly overexpressed specifically in all asymptomatic individuals but not the 

symptomatic siblings. Considering the fact, that both symptomatic and asymptomatic 

individuals carry SMN1 homozygous deletion and identical SMN2 copy number, the role of 

Plastin3 as a protective modifier of SMA was studied in detail (Oprea et al., 2008). Following 

this, our group overexpressed PLS3 which is a Ca2+dependent F-actin bundling protein, 

ubiquitously in an SMA mouse model. This overexpression was able to restore processes 

depending on actin dynamics, such as increased F-actin levels, endplate size, NMJ size, 

synaptic vesicles and active zone numbers (Ackermann et al., 2013). Moreover, we also 

showed that combination of PLS3 overexpression along with suboptimal increase in the SMN 

level (by Nusinersen; SMN antisense oligonucleotide) could even rescue survival of a severe 

SMA mouse model. This in depth study of the mechanism via which PLS3 rescues the SMA 

phenotypes also revealed the indispensable and novel role of endocytosis in the SMA 

pathology (Hosseinibarkooie et al., 2016). 

Endocytosis is a process of internalization of macromolecules by invagination of plasma 

membrane, eventually forming vesicles with a neck, which then bud off inside the cell via 

membrane fission. Endocytosis involve de novo production of internal membranes and is 

also responsible for maintaining the dynamics of plasma membrane composition (Doherty 

and McMahon, 2009). Various types of endocytosis are classified based on the nature of the 

molecules being endocytosed (phagocytosis and pinocytosis) as well as the proteins which 

play major roles like clathrin mediated endocytosis (CME) and caveolin mediated 

endocytosis (Mayor and Pagano, 2007;Schmid and McMahon, 2007). Nevertheless CME is 

the major endocytic route, internalizing most cargoes compared to various other types of 

endocytosis pathways described until now (Kaksonen and Roux, 2018). Endocytosis is 

impaired in SMA 

1.2.2 Neurocalcin delta (Ncald) 

 

Our group discovered second SMA modifier gene, Neurocalcin delta (NCALD), which 

encodes a neuronal calcium sensor protein. In a family with 2 affected (no SMN1, 2 copies of 

SMN2) and 5 asymptomatic individuals (no SMN1, 4 copies of SMN2), NCALD was found to 

be distinctly downregulated in all five asymptomatic individuals (Riessland et al., 2017). 

NCALD reduction ameliorated major SMA symptoms in various model systems namely mice, 
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zebrafish and Caenorhabditis elegans. Moreover, NCALD reduction promoted neuronal 

differentiation, restored the axonal length of motor neurons, improved the NMJ size and 

structure. Interestingly, NCALD reduction also leads to significantly improved endocytosis in 

SMA model systems (Riessland et al., 2017). Additionally, it has been shown that NCALD 

interacts with clathrin in the absence of calcium (Ivings et al., 2002;Riessland et al., 2017). 

Considering that SMA leads to reduced calcium influx, it has been hypothesized that NCALD 

can sequester clathrin in low (lower than physiological) calcium concentration thereby 

hindering the role of clathrin in the endocytosis. Therefore the reduction of NCALD level in 

SMA physiology, where the calcium influx is reduced, would hinder sequestering of clathrin 

making it more available. Hence, more availability of clathrin could be the mechanism behind 

increased endocytosis in SMA upon NCALD reduction.    

 

Figure 3 Proposed model depicting the role of NCALD in the endocytosis in normal, SMA and 
asymptomatic individuals. 
NCALD under normal physiological conditions, upon binding to calcium, tethers to cellular 
membranes. Whereas in SMA conditions the Ca2+ homeostasis is disturbed leading to reduced 
calcium influx and thus NCALD sequesters clathrin. The sequestered clathrin is not available for 
clathrin mediated endocytosis (CME). However in case of asymptomatic individuals, although Ca2+ 

homeostasis is still impaired but as NCALD levels are reduced, clathrin is not sequestered and is 
available for CME (Riessland et al., 2017).  
 

1.2.3 Calcineurin-like EF-hand protein 1 (Chp1) 

 

In addition to Pls3 and Ncald, we found that a novel PLS3 interacting protein, calcineurin-like 

EF-hand protein 1 (CHP1) an inhibitor of calcineurin, can also modify SMA (Lin et al., 

1999;Janzen et al., 2018). We showed that Chp1 downregulation can double the survival of 

SMA mice and restore the impaired axonal growth in SMA motor neurons. Moreover, Chp1 

knockdown in motor neuron like NSC34 cells, tripled macropinocytosis by increasing the 

calcineurin phosphatase activity. As calcineurin maintains the dynamin phosphorylation 

during endocytosis we investigated the endocytosis in heterozygous Chp1 mutant mice on 
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SMA background. We found that in SMA mice, CHP1 deletion ameliorated the impaired 

endocytosis, thereby strengthening the role of SMN independent modifiers in SMA (Janzen 

et al., 2018)  

1.3 Neurocalcin delta, a neuronal calcium sensor 

 

1.3.1 NCS family  

 

Neuronal calcium sensors (NCS) and other calcium binding proteins are the mediators and  

regulators of various cellular processes spatially, temporally and in magnitude via their 

interaction with calcium. NCS family has 14 genes which code for various NCS proteins 

including Calmodulin, GCAP, Visinin, Visinin like proteins (VILIPs), hippocalcin and 

neurocalcins (Burgoyne et al., 2004). A group of closely related neuronal calcium sensors 

forms a subfamily, visinin like proteins (VSNLs), with only 5 members VLIP1, VILIP2, VILIP3, 

hippocalcin and NCALD. These proteins can transduce the Ca2+ signals into specific cellular 

changes, depending upon their location and interactions with other proteins (Mornet and 

Bonet-Kerrache, 2001;Burgoyne, 2007). The NCS proteins are characterized by following 

molecular structure: a Myristoylation signal at N- terminal, two pairs of EF hands (EF1,EF2, 

EF3,EF4) with Ca2+  binding loop and one disabled EF hand near N- terminus (EF1), which 

varies in each NCS protein imparting them specificity (Ames and Lim, 2012).  

As the name, neuronal calcium sensor, suggests these proteins are abundant in the brain or 

neuronal cells and specifically enriched in certain specific subtypes namely retinal and 

olfactory neurons (Hidaka and Okazaki, 1993;Kobayashi et al., 1993;Palczewski et al., 

1994). 

 

Figure 4 Structure of a neuronal calcium sensor. 
NCS proteins have 4 EF hands (2 pairs) which bind to calcium (golden) sequentially (A & B). The 
binding of calcium causes structural changes in the N terminal domain (EF1 and EF2) and ejects the 
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myristoyl group (pink) (C). The hydrophobic myristoyl group then enables NCS proteins to integrate 
into cellular membranes (Ames and Lim, 2012). 
 

 

 

1.3.2 Neurocalcin delta 

 

NCALD protein was first purified from the bovine brain, using a calmodulin antagonist W-77 

(Nakano et al., 1992;Okazaki et al., 1992). On genomic level, human NCALD, which is 

localized on chromosome 8q22.3 encompasses 438 kb, has 7 exons and produces 30 splice 

variants, while mouse Ncald, which is localized on chromosome 15, encompasses 426 kb, 

has 7 exons and generates 12 alternative spliced transcripts (Wang et al., 2001) 

(ENSEMBLE Genome browser).   

NCALD protein has a canonical neuronal calcium sensor structure with four EF hand motifs, 

amongst which three are functional (Terasawa et al., 1992). All three EF hands (EF2, EF3, 

and EF4) are interdependent on each other and have high affinity to bind to Ca2+ ions in 

unmyristoylated form (Ladant, 1995). The myristoyl chain, which is otherwise sequestered in 

deep crevice, extrudes from the hydrophobic pocket of EF1 in the presence of minimum 0.6 

µM Ca2+, eventually leading to incorporation of NCS proteins into phospholipid membrane 

(Ladant, 1995).  Myristoylated (Myr) NCALD can bind to outer mitochondrial membrane and 

endoplasmic reticulum (Iino et al., 1995). All the different NCS proteins vary in their binding/ 

sensitivity to calcium thus can direct varied cellular responses to different calcium 

concentrations (Braunewell and Klein-Szanto, 2009;Ames and Lim, 2012). Interestingly, 

conformational changes in Myr-NCALD exhibited highest sensitivity to lower calcium 

concentrations (0 to 0.5 µM) amongst all the tested NCS family members (Viviano et al., 

2016b;a).   

1.3.3 NCALD abundancy and functions  

 

NCALD is abundant in retinal neurons (Bastianelli et al., 1993;Hidaka and Okazaki, 

1993;Porteros et al., 1996;Brinon et al., 1998). Accordingly, NCALD upon binding to calcium, 

has been shown to regulate the rod outer segment membrane guanylate cyclase, ROS-GC1 

in retinal neurons (Venkataraman et al., 2008). ROS-GC1 plays a crucial role in the process 

of visual and odorant transduction maintaining the cyclic GMP pool in retinal and olfactory 

neurons (Kumar et al., 1999;Krishnan et al., 2004).  
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Hippocalcin is a VSNL family member, which shares the highest homology with NCALD and 

is highly abundant in hippocampus but not in other brain regions (Braunewell and Klein-

Szanto, 2009). On other hand, NCALD is known to be abundant in CA3 and dentate gyrus of 

hippocampus as well as in other brain regions including certain cortical layers (Girard et al., 

2015). Hippocalcin (in hippocampal pyramidal neurons) and NCALD (in hippocampal and 

cortical pyramidal neurons) are known to regulate a particular type of calcium activated 

potassium current referred to as slow after hyperpolarization (IsAHP) (Tzingounis et al., 

2007;Villalobos and Andrade, 2010;Kim et al., 2012). IsAHP is a physiological phenomenon 

modulated by calcium in neurons as a response to extended periods of excitation (which lead 

to increase in intracellular calcium) to prevent hyper excitability and seizures (Madison and 

Nicoll, 1982;Sah, 1996).  

Furthermore, VILIP3 (a VSNL family member) has been shown to interact with Cytochrome 

b5 (cyb5) and NADH-cytochrome b5 reductase (B5R). Cyb5 and B5R are ER membrane 

proteins involved in the microsomal electron transport pathway in mouse brain (Borgese et 

al., 1993;Honsho et al., 1998;Oikawa et al., 2016). Interestingly, Cyb5 has strong affinity not 

only towards VILIP3 but also NCALD as well as to other VSNLs (Oikawa et al., 2004;Oikawa 

et al., 2016). VSNLs bind to Cyb5 only in high calcium concentration, which suggested that 

only activated VSNLs (myr-VSNLs) which migrate to ER membrane can bind to Cyb5. 

Furthermore, interaction of NCALD (and other VSNLs) with Cyb5 and B5R has been 

suggested as calcium dependent modulations of NADH dependent microsomal electron 

transport pathway (Oikawa et al., 2016).  

Nevertheless the localization of NCALD protein is not restricted to the above mentioned 

cellular and subcellular regions. NCALD has a very broad range of abundancy in the brain, 

however it is highly abundant in specific regions including multiple layers of olfactory bulb, 

multiple layers of hippocampus, cortical deep layers, striatum, multiple thalamic nuclei and 

hypothalamus (Girard et al., 2015). Additionally, certain NCALD positive cells are also 

sparsely present in nucleus accumbens, caudoputamen, medial septal nucleus and 

cerebellum (Girard et al., 2015). Although few functions of NCALD have been reported in the 

CNS as mentioned above, the much broader abundancy of NCALD in the brain, points 

toward many more, unexplored, neuronal functions of NCALD.  

1.3.4 NCALD implications in various neurological diseases  

 

Studies of diverse neurological patients as well as disease models have implied NCALD‟s 

function in various neurological diseases.  
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1.3.4.1 Neurodegenerative diseases  

  

Neurodegeneration is a general term to describe deficit in structure and function of neurons 

in certain regions of or whole CNS. Most neurodegenerative diseases are marked by atrophy 

of brain or spinal cord for example in Alzheimer‟s disease (AD) and SMA respectively (Kolb 

and Kissel, 2011;Dos Santos Picanco et al., 2018). Brain neurodegeneration is characterized 

by (1) decline in neuronal density in specific brain regions, which is directly correlated with 

extent of neurodegeneration (Zilkova et al., 2006), (2) loss of neurite (dendritic and axonal) 

complexity not just marks neuronal dysfunction but can even precede neuronal degeneration 

(Lopez-Domenech et al., 2016) ,(3) yet another hallmark of neurodegeneration is the 

dysfunctional  reactive astrogliosis, where in the inflammatory machinery of brain turn against 

itself which leads to neuronal apoptosis (Pekny and Pekna, 2016).  

AD is a neurodegenerative disease and the most common type of dementia globally, which 

still remains to be incurable (Wang et al., 2017). Immunostaining analysis of brain tissue 

biopsies from Alzheimer‟s patients‟ revealed significantly lower NCALD levels as compared 

to healthy controls (Shimohama et al., 1996). Corroborating this, a large-scale transcriptional 

analysis focusing on the CA1 and CA3 field of the hippocampus showed a significant 

decrease in NCALD levels, in both CA1 and CA3 brain regions of AD patients compared to 

controls (Miller et al., 2013b). These findings not only provide insight into the disputed role of 

calcium sensors and calcium in Alzheimer‟s disease (Alzheimer's Association Calcium 

Hypothesis, 2017) but also generated interest in relevance of NCALD physiological function 

in AD.  

1.3.4.2 Neurodevelopmental diseases    

 

Schizophrenia, a cognitive mental disorder, is characterised by disabling psychotic 

symptoms and does not have any efficient treatment or therapy (Galderisi et al., 2018). 

Schizophrenia prevalence occurs generally at post-puberty stage, moreover many 

schizophrenia susceptibility loci are located in neurodevelopmental relevant genes which 

implies schizophrenia as a neurodevelopmental disorder (Owen et al., 2011). Interestingly, 

NCALD has been shown to be significantly low in mass spectrometry analysis of plasma 

membrane and vesicle enriched fraction from pre-frontal cortex (PFC) of 

neurodevelopmental rat model of schizophrenia (Vercauteren et al., 2007). Additionally, 

genome-wide association analysis of schizophrenia risk loci has involvement of neuronal 

calcium signalling (Ripke et al., 2013).    
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Other neurological diseases associated with NCALD are autism and bipolar disorder. Autism 

is also a developmental disorder characterized by challenges with social skills, speech and 

nonverbal communication as well as repetitive behaviors. Pertaining to wide range of 

conditions characterized as Autism, it is generally referred to as Autism Spectrum Disorder 

(ASD) (Whyatt and Torres, 2018). On other hand bipolar disorder is also a developmental 

disorder with onset at adolescence or early adulthood. It is mainly characterized by 

alternating depression and maniac phases in patients (Power, 2015). Interestingly, single 

nucleotide polymorphisms (SNPs) in NCALD have been associated to autism and bipolar 

disorder (Ben-David et al., 2011;Xu et al., 2014). In case of such complicated (in genetics 

and symptoms) diseases, reports on SNPs associated with novel genes not only help to 

understand the mechanism and pathways involved in the disease but also contribute to the 

therapeutic development (Jiao et al., 2012;Harvey et al., 2014;Kerner, 2014;Shinozaki and 

Potash, 2014).   

Therefore a further in depth analysis of NCALD function in both neurodegeneration and 

neurodevelopment can hugely enhance our understanding of NCALD physiological function 

as well as contribute to deeper understanding of these conditions.  

1.3.5 NCALD in other diseases  

 

NCALD abundancy is not restricted to CNS, low levels of NCALD are ubiquitous. However 

NCALD is comparatively more abundant in certain organs like lung, kidney, ovaries and 

testis (Wirth lab unpublished results, NCALD protein atlas). NCALD has been associated 

with various diseases like diabetic nephropathy (Kamiyama et al., 2007), ovarian cancer 

(Isaksson et al., 2014), lung cancer (Shi et al., 2016) etc. However, as the role of NCALD in 

other diseases is beyond the scope of this thesis, therefore we need not give a detailed 

introduction to this topic. 

1.4 Modifying role of NCALD reduction in SMA 

 

The project discussed in this thesis is a continuation of previously published findings of Wirth 

lab (Riessland et al., 2017). We hereby describe in detail the fundamental research that 

shaped this thesis.  

Our group has already shown that treatment of murine NSC34 cells with Ncald siRNA, 

induced neurite outgrowth in these cells even in the absence of retinoic acid. This finding 

suggested the role of NCALD in the neuronal differentiation and maturation. It was also 

observed that downregulation of Ncald (by injecting morpholinos) restores axonal growth in 

SMA model of zebrafish, corroborating that NCALD suppression triggers neuronal 
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differentiation. Smn knockdown in zebrafish resulted in reduction of the miniature endplate 

potential (mEPP) as well as of the endplate potential (EPP), implying disruption of neuronal 

transmission present in SMA fish model. Intriguingly, the protective effect of ncald was seen 

when knockdown of both smn and ncald by morpholino injection restored the EPP and 

mEPP defects to wild-type levels. Strikingly, patch-clamp readings of NSC34 and PC12 cells 

showed a reduction in the calcium influx when Smn was knocked down, which could not be 

restored upon additional knockdown of Ncald which suggested that NCALD most likely acts 

downstream of Ca2+ signals. These results along with other findings implied the role of 

NCALD in the axon growth and maturation (Yamatani et al., 2010).  

 

Figure 5 NCALD reduction induces neuronal differentiation and increases axonal length. 
(a) NCALD reduction in motor neuron like NSC 34 cells by transfecting them with Ncald siRNA 
induced neuronal differentiation without adding retinoic acid (a differentiation promoting molecule) 
(b) NCALD reduction in SMA mouse model by cross breeding them with Ncald heterozygous knockout 
animals resulted in augmentation of axonal length as well as branching (Riessland et al., 2017). 
 
NCALD with its protective modifying effects on SMA pathology, could be a potential therapy 

for SMA. However, the severe SMA mouse model (pups), die before they even reach 

weaning due to multiple organ failure (Hosseinibarkooie et al., 2016). Therefore, we analysed 

the effects of NCALD downregulation on SMA background in a mild SMA mouse model. A 

mild SMA mouse model was generated by treatment of SMA pups (P1) with suboptimum 

SMN ASO (chemically same as Nusinersen). Reduction of NCALD in SMA background was 

established by cross breeding heterozygous Ncald knockout mouse model with the mild SMA 

mouse model. The heterozygous Ncald knock out model purchased from The Jackson 

Laboratories, was generated by inserting the Velocigene cassette ZEN-Ub1 the replaced the 

Ncald gene and deleted approximately 29 kbp in chromosome 15 (“JAX Mice Database - 

018575 B6N(Cg)-Ncald tm1,”).  
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Figure 6 NCALD Knockout mice design.   
Insertion of ZEN-UB1 Velocigene cassette containing beta-galactosidase gene, polyadenylation signal, 
loxP site, promoter from the human ubiquitin C gene and neomycin phosphotransferase replaced the 
NCALD gene (all coding exons and intervening sequences) by homologous recombination in 
embryonic stem cells (modified from International Knockout Mouse Consortium website). Further 
cross breeding removed the neo cassette as well as the Cre transgene from the animals.  
 
Reduction of NCALD by ASO treatment in SMA as well as in HET (control carrying one allele 

of Smn1 gene) mice lead to increase in NMJ area and reduced amount of immature NMJs. 

This reaffirmed the protective modifying effects of NCALD in SMA and we proposed the use 

of NCALD reduction in SMA therapeutics.  

1.4.1 Adult neurogenesis 

 

As this thesis reports a novel link between NCALD and adult neurogenesis, following section 

is an introduction to adult neurogenesis.  

Adult neurogenesis known since more than half decade has been a very interesting and 

controversial field of study. First report on adult neurogenesis were based on rat model using 

a radioactive thymidine (Altman and Das, 1965). Generation of new neurons in certain 

regions of the human brain was first found from post-mortem brain tissues of cancer patients 

injected with bromodeoxyuridine (BrdU) for cancer diagnosis (Eriksson et al., 1998). BrdU is 

a thymidine analogue which incorporates into newly synthesised DNA strands and can be 

detected by probing the tissues with fluorescence labelled anti-BrdU antibody (Dolbeare, 

1995). Since then many studies have shown the presence of this process termed as adult 

neurogenesis in various animal models including various mammals. Although the presence 

of adult neurogenesis has been confirmed by almost all the rodent model based studies, 

whether or not adult neurogenesis exists in human brain has remain a controversy (Ming and 
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Song, 2011). Interestingly the field of human adult neurogenesis was recently shaken by two 

prominent studies contradicting each other on whether or not new neurons are being born 

throughout the adulthood (Boldrini et al., 2018;Sorrells et al., 2018). However, understanding 

the molecular mechanisms involved in generating new neurons in adult brain has widely 

been accepted as an important step towards neuroregenerative therapy (Kempermann et al., 

2018). 
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2 Aim of the study 

 

NCALD reduction in SMA in-vitro and in-vivo models resulted in amelioration of major SMA 

symptoms like increase in the axonal length, axonal branching, NMJ area and maturation, 

endocytosis and motor functions. Therefore, we proposed NCALD reduction as a SMA 

therapeutic option, which can be combined with the already available SMN dependent 

therapies to further enhance the therapeutic impact. However an important question which 

followed our proposal of NCALD reduction in SMA therapy, was about the potential side 

effects of NCALD reduction in the physiological system. To answer this question, we need to 

address an even more primary question about plausible undiscovered physiological roles of 

NCALD. We attempt answering these two questions in this thesis project by characterizing 

the Ncald heterozygous (NcaldKO/WT) as well as homozygous knockout (NcaldKO/KO) mouse 

model, respectively. The NcaldKO/KO   mouse model used in this study has been generated by 

The Jackson Laboratories.   

In the phenotypic data available for Ncald mouse models at International Mouse Phenotyping 

Consortium (IMPC) website, NcaldKO/KO mice show some significant abnormalities namely 

abnormal neuronal behaviour, hyperactivity, abnormal body mass, impaired pupillary reflex 

etc (International Mouse Phenotype Consortium, 2016). Considering the data available from 

IMPC we begin the analysis of brain of NCALD knockout mouse models with following being 

the main aims: 

1. To validate previously published and analyse any new, brain regions with high 

NCALD abundancy in the wildtype mouse brain. These results would narrow down 

the brain regions as well as cell types we would analyse further. Additionally to 

analyse the NCALD levels during the brain development that has not been reported 

yet, to narrow down the age points where NCALD exhibit significant function.   

2. To perform an unbiased characterization of the NcaldKO/KO animal brain using 

standard analysis techniques like Nissl staining for morphological analysis, 

immunostaining analysis for any particular region or cell types based on 

morphological analysis. 

3. To analyse the interactome of NCALD protein to further deepen our understating of 

its function at the molecular level. 

4. Lastly, based on all the results obtained from above mentioned experiment we would 

finally analyse the specific cell types and molecular pathways which are affected in 

the NcaldKO/KO animals also in the NcaldKO/WT animals. To verify the safety and 

potential side effects of NCALD reduction on physiology of model system, if used in 

SMA combinatorial therapy. 
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3 Results 

 

NCALD has been established as an SMN independent protective SMA modifier. NCALD 

suppression has beneficial effects like increased axonal length, larger NMJ area, decreased 

number of immature NMJs, enhanced endocytosis and improved motor function in SMA 

models (Riessland et al., 2017). These findings implied that NCALD reduction can be used 

as a therapy for SMA in combination with other SMN dependent therapies like nusinersen or 

Avexis-101(Hosseinibarkooie et al., 2017;Riessland et al., 2017). However, these findings 

also suggested an effective (non-redundant) role of NCALD in the neuronal function and 

raised a question on any possible side effects that may occur due to reduction of NCALD.  

Certain specific neuronal functions of NCALD have been reported earlier like maintenance of 

cyclic GMP pool in retinal and olfactory neurons (Duda et al., 2004;Krishnan et al., 2004), 

generation of slow afterhyperpolarization current in cortical as well hippocampal neurons 

(Villalobos and Andrade, 2010) and calcium dependent modulations of NADH dependent 

microsomal electron transport pathway (Oikawa et al., 2016). However, all of the above 

mentioned functions of NCALD were studied based on the role of other NCS family members 

like GCAP, hippocalcin and VILIP3 respectively. Therefore, an unbiased study of possible 

non-redundant neuronal functions of NCALD in the brain was an indispensable requirement 

to further understand the physiological role of NCALD.   

In this thesis we have studied NCALD with an unbiased approach via three different genetic 

backgrounds i.e. wildtype, NcaldKO/KO, NcaldKO/WT. Using the wildtype animals we studied the 

abundancy and pattern of NCALD as well as its physiological interactions. In NcaldKO/KO 

animals we analyzed the physiological processes that were disturbed in the absence of 

NCALD, to specifically delineate the role of NCALD in these processes. Lastly, in NcaldKO/WT 

animals we specifically analysed the processes that we found disturbed in NcaldKO/KO 

animals, to verify the safety and effects of NCALD reduction for future SMA therapy. 

 

3.1 NCALD protein, abundancy and pattern in wildtype mice 

 

3.1.1 NCALD protein levels rise dramatically during early postnatal stages 

 

To understand the physiological function of NCALD in brain, it was essential to find at which 

time point during the development of the brain, NCALD is most abundant. As the pattern of 

NCALD abundancy during the brain development has not been reported yet, we analysed 

the wildtype mouse brains through the development. We investigated the NCALD levels in 
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embryonic (E16) and early postnatal stages (P1, P10, and P14). Interestingly, NCALD was 

almost absent at the embryonic stage whereas the NCALD levels increase dramatically from 

P1 to P14 (Figure 7a). This observation prompted us to analyse postnatal abundancy of 

NCALD. We found that the NCALD expression gradually increase from P1 to P10 and 

continues to be equally abundant until later stages (P30) in the wildtype brain (Figure 7a). 

This finding suggested that the function of NCALD is most relevant in postnatal development 

of the mouse brain. 

 

Figure 7 Western blot. 
(a) Western blot with brain lysate samples from E16 to P30 showing the dramatic increase from P1 to 
P10 and high abundancy of NCALD until P30.  

3.1.2 NCALD is abundant in hippocampus and synaptic punctas 

 

Distribution pattern of NCALD protein within the brain regions like multiple layers of olfactory 

bulb, multiple layers of hippocampus, cortical deep layers, striatum, multiple thalamic nuclei 

and hypothalamus have been reported previously (Girard et al., 2015). Nevertheless, we also 

probed the wildtype brain section with NCALD antibody to reaffirm the previous findings and 

if possible to find any novel brain region enriched in NCALD. 

We therefore analysed the NCALD distribution pattern by NCALD antibody immunostaining 

of brain sections from P30 wildtype animals. We observed that NCALD is abundant in certain 

specific regions of the brain namely denate gyrus (DG) and CA3 in the hippocampus, cortex 

deep layer (IV-VI), lateral septal nucleus (LS), anteroventral (AVN) and mediodorsal (MDN) 

thalamic nuclie, stria terminalis (st), agranular insular cortex ventral (AIV) and dorsal (AID) 

and sparsely presenting in certain other regions like cerebellar cortex, midbrain and pons 

(Figure 8a). In addition to these regions that corroborated previous finding we also found 

NCALD highly abundant in presubiculum (PrS), a region that has not been reported in 
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previous studies on NCALD abundancy (Figure 8a). Furthermore, NCALD has also been 

found in the pool of neurotransmission related proteins (Vercauteren et al., 2007), 

synpatosomal fraction (Zareba-Koziol et al., 2014) as well as co-localizes with synaptic 

proteins like SV2 at the NMJ (Riessland et al., 2017). However, NCALD localization in the 

neuronal synapses has not yet been shown. Therefore, to determine more precisely NCALD 

localization within the neurons, we stained the cultured wildtype hippocampal neurons with 

NCALD and found a punctate pattern, indicating the presence of NCALD in synapses. This 

prompted us to co-stain the NCALD with presynaptic markers like Vesicular Glutamate 

Transporter 1 (VGLUT1) and Vesicular GABA Transporter (VGAT) of excitatory and 

inhibitory synapses respectively. We found that the NCALD co-localizes with both VGLUT1 

and VGAT not in all but only in certain synapses (Figure 8b).  

 

Figure 8 Distributaion and localization of NCALD  
 

(a) Wildtype brain section immunostaining with NCALD antibody depicting the distribution of NCALD 
in various different brain regions like DG and CA3 in the hippocampus, cortex deep layer (IV-VI), 
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lateral septal nucleus (LS), anteroventral (AVN) and mediodorsal (MDN) thalamic nuclie, stria 
terminalis (st), agranular insular cortex ventral (AIV) and dorsal (AID). (b) Representative cultured 
wildtype hippocampal neurons stained with NCALD antibody and co stained with presynaptic 
markers VGLUT1 and VGAT. Neurons were imaged with high resolution (40X) for proper visualization 
of synaptic punctas. A colocalization analysis was performed by ImageJ plot profile function for each 
channel individually and asterisks represents overlapping peaks of each channel.  

3.2 Characterization of Ncald knockout mouse 

 

A detailed characterization of NcaldKO/KO mice, specifically of the brain would yield deeper 

insight into novel NCALD neuronal functions. Therefore, we analysed the NcaldKO/KO animals 

and specifically their brains in detail.    

3.2.1 Ncald knockout causes significant reduction of body weight 

 

Previous unpublished studies in our lab and phenotypic analysis from the International 

Mouse Phenotyping Consortium show significant reduction in body weight of NcaldKO/KO 

mouse (International Mouse Phenotype Consortium, 2016). To reaffirm these findings we 

quantified the body weight of 5 month-old male NcaldKO/KO animals, and in line with the 

previous finding we found that adult NcaldKO/KO animals weigh significantly less compared to 

age and sex matched wildtype controls (Figure 9a). Furthermore, the brain from the 4 months 

old (adult) NcaldKO/KO animals and their wildtype littermates were isolated. Interestingly, brain 

of NcaldKO/KO animals also showed significant reduction in their size compared to wildtype 

littermates (Figure 9b,c). However, when normalized to the reduced body weight, NcaldKO/KO 

brain weigh equivalent to wildtype (Figure 9c). 
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Figure 9 Ncald knockout animals show significant reduction in body and brain weight 
(a) Graph depicting that five months old adult NcaldKO/KO males (N=6) weighed significantly less than 
their age and sex matched wildtype controls (N=7); *** P< 0.001. (b) Graph showing the significant 
difference in the brain weight of NcaldKO/KO animals compared to wildtype littermates; N=4;*P< 0.05. 
(c) A representative image of NcaldKO/KO brain next to a wildtype brain from adult animals. Scale bar 
100 pixels and brain weight quantification normalized to body weight. Quantification depicts mean 
values ± SD; unpaired two-tailed student`s t-test; N.S. = non-significant. 
 
 
 
 

3.2.2 Adult Ncald knockout brain exhibit gross morphological alterations and reduced 

dentate gyrus  

 

We analysed the NcaldKO/KO mice brain morphology to determine if there are specific brain 

regions which suffered morphological alterations upon the loss of NCALD as these findings 

could further focus our study on certain specific brain regions.   

We sectioned the brain of 4 month-old NcaldKO/KO animals in 40 µm thick consecutive 

sections. These sections were subjected to Nissl staining for the visualization of the brain 

morphology. The brain sections from NcaldKO/KO animals were compared to that of their 

wildtype littermates and were probed to morphological analysis. We found enlarged lateral 

ventricles, smaller hippocampus (especially DG) as well as presubiculum, thinner corpus 

callosum and cortex in the adult NcaldKO/KO brain compared to controls (Figure 10a). Taking 

into account the conspicuously malformed and smaller DG in hippocampus of adult 
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NcaldKO/KO animals, we quantified the length of the subgranular zone (SGZ) of the denate 

gyrus (DG) in hippocampus. As anticipated, we found that the NcaldKO/KO animals have much 

shorter SGZ length compared to controls (Figure 10b). SGZ is one of the two regions in the 

brain where the neurogenesis continues throughout the adulthood (Miller et al., 2013a) and 

also the region which is significantly affected in the Alzheimer‟s mouse model (Donovan et 

al., 2006). This finding also marked either a potential loss in the proper development of the 

dentate gyrus or initial sign of neurodegeneration.   

 

Figure 10 NcaldKO/KO brain exhibit gross morphological defects. 
(a) Representative nissl staining of brain sections from adult NcaldKO/KO animals show morphological 
defects like enlarged ventricles, corpus callosum atrophy, smaller hippocampus; N=5; scale bar 2mm 
and 500 µm (magnified inset). (b) Representative outline of the SGZ (in DG) for quantitative analysis, 
followed by graph depicting significant reduction in the SGZ length in NcaldKO/KO brain measured via 
quantitative analysis; * P<0.05; N=4. The quantitative analysis was also performed by normalizing the 
length of SGZ to the maximum cross sectional brain length in WT and NcaldKO/KO samples; * P<0.05; 
N=4. Quantification depicts mean values ± SD; unpaired two-tailed student`s t-test.    

3.2.3 Ncald knockout brain do not show progressive neurodegeneration  

 

The observed defects in the morphology of NcaldKO/KO brain could be an initial sign of  

progressive neurodegeneration (Caito et al., 2011). In case of progressive 

neurodegeneration, the morphological disturbances in the structure of adult NcaldKO/KO brain 
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would worsen with age. Considering this we analysed brain of 18 month-old NcaldKO/KO 

animals and compared it to 4 month-old NcaldKO/KO brain. Nevertheless, we did not find 

exacerbation of the phenotype in the older NcaldKO/KO brain (Figure 11a). This result negated 

the assumption that NcaldKO/KO brain underwent neurodegeneration at age of 4 months. To 

further confirm these results, we analysed some major hallmarks of neurodegeneration like 

astrogliosis, reduced neuronal density and neuronal complexity (Zilkova et al., 2006;Lopez-

Domenech et al., 2016;Pekny and Pekna, 2016) in 4 month-old NcaldKO/KO brain. To analyse 

the astrogliosis, which is marked by upregulation of Glial Fibrillary Acidic Protein (GFAP) and 

hypertrophy of astrocytic processes (Pekny and Pekna, 2014), we stained the NcaldKO/KO 

brain sections with GFAP an astrocytic marker (Benninger et al., 2016). However, we did not 

find any signs of astrogliosis in NcaldKO/KO brain (Figure 11b). Next, we investigated plausible 

loss in neuronal density as a sign of neurodegeneration in NcaldKO/KO hippocampus (in DG 

and CA3 region), as it is one of the most severely affected regions in the NcaldKO/KO brain.  

We stained the NcaldKO/KO brain sections with NeuN, a marker for mature neurons 

(Gusel'nikova and Korzhevskiy, 2015), to visualize all the mature neurons and quantify the 

NeuN+ cell density. In line with our previous results, we did not find any significant loss of 

NeuN+ cell density in NcaldKO/KO hippocampus compared to controls (Figure 11c). Lastly, we 

examined loss of dendritic complexity, yet another hallmark of neurodegeneration, in the 

NcaldKO/KO hippocampal neurons. The cultured hippocampal NcaldKO/KO neurons were 

transfected with a plasmid encoding EGFP which marked entire neuronal morphology. We 

imaged cultured neurons on day in-vitro (DIV) 14 and analysed the dendritic morphology 

using ImageJ sholl analysis tool. Incontestably, the NcaldKO/KO neurons when compared to 

the wildtype neurons did not show any sign of degeneration of dendritic complexity (Figure 

11d). These results all together established the fact that NcaldKO/KO animals do not incur 

progressive neurodegeneration.  
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Figure 11 NcaldKO/KO brain shows no sign of neurodegeneration. 
(a) Representative nissl staining images of 4 months old and 18 months old NcaldKO/KO brain, showing 
no exacerbation of phenotype; N=2; scale bar 2mm. (b) Representative GFAP staining of NcaldKO/KO 

and wildtype brain sections (hippocampus) showing no sign of astrogliosis; N=3. (c) Representative 
NeuN staining of NcaldKO/KO and wildtype brain sections (hippocampus) and graph of quantitative 
analysis of showing no significant reduction in NeuN+ cell density N=4. (d) GFP transfected cultured 
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hippocampal neurons from NcaldKO/KO and wildtype brain and sholl analysis graph showing significant 
loss of dendritic complexity in NcaldKO/KO neurons; N=36 & 39 neurons from N=3 pups for each 
genotype. Quantification depicts mean values ± SD; unpaired two-tailed student`s t-test; N.S. = non-
significant.  

3.2.4 Ncald knockout brain show mild morphological defects even before adulthood 

 

We observed none of the major phenotypes of progressive neurodegeneration in NcaldKO/KO 

brain, however 4 month-old NcaldKO/KO brain exhibit significant morphological defects 

especially in dentate gyrus. Considering this, we addressed neurodevelopmental/ maturation 

defects as the cause of causing the morphological changes in NcaldKO/KO brain. 

To address whether these defects were originating during the early development of the brain 

we further analysed some NcaldKO/KO animals at 2 weeks (P14) and one month (P30). We 

found that the younger (P14, 30) NcaldKO/KO brain did not show as severe alteration as the 

adult brain (Figure 12a,b). However, we observed increase in ventricular area in NcaldKO/KO 

animals, since P14, which seemed to be more evident at P30. These findings implied that 

NcaldKO/KO animals most likely accumulate certain neurodevelopmental defects since early 

post-natal period (P14) through the adolescence (P30) until the adulthood (4 months).  

 

Figure 12 Young (P14 and P30) NcaldKO/KO brain exhibit mild morphological defects. 
(a) Representative nissl staining of brain sections from P14 NcaldKO/KO and wildtype animals, showing 
mild increase in the lateral ventricles as well as mild atrophy of corpus callosum; N=4; scale bar 2 mm 
and 500 µm (magnified inset). (b)  Representative nissl staining of brain sections from P30 NcaldKO/KO 
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and wildtype animals, showing increase in the lateral ventricles as well as mild atrophy of corpus 
callosum; N=3; scale bar 2 mm and 500 µm (magnified inset). 
 

3.2.5 Ncald knockout impairs adult neurogenesis 

 

Our initial findings; first, NCALD abundancy increases dramatically during the perinatal 

period and second, the NcaldKO/KO brains most likely undergo some developmental defect, 

indicated a critical role of NCALD during postnatal brain development/ maturation. 

The developmental defects that were observed in the adult NcaldKO/KO brain, especially in the 

hippocampus, could arise due to defects in the cell proliferation (Ferri et al., 2004;Antonelli et 

al., 2018). To test this hypothesis, we first analysed overall cell proliferation in the NcaldKO/KO 

hippocampus using Ki-67, a general proliferation marker for all actively dividing cells 

(Scholzen and Gerdes, 2000). We found no significant change in the Ki-67+ cell density at 

NcaldKO/KO hippocampus compared to the controls (Figure 13a). Furthermore, we analysed 

nestin positive adult neural stem cells which are the source of postnatal neurogenesis, but 

did not find any significant difference between the wildtype and NcaldKO/KO brain. 

 

Figure 13 NcaldKO/KO hippocampus do not show any defects in general cell proliferation. 
(a) Representative Ki-67 immunostaining of NcaldKO/KO and wildtype hippocampus at P14 and graph 
representing no significant changes in the Ki-67+ proliferating cells in NcaldKO/KO hippocampus; N=3; 
scale bar 100 µm. (b) Representative intensity mask of nestin immunostaining of NcaldKO/KO and 
wildtype hippocampus at P30 and graph representing no significant changes in the nestin staining in 
NcaldKO/KO hippocampus; N=3; scale bar 45 µm.  Quantification depicts mean values ± SD; unpaired 
two-tailed student`s t-test; N.S. = non-significant. 
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Moreover, the volume and morphology of the hippocampus can also be regulated by 

generation of new neurons in the adulthood a process called adult neurogenesis (Fuss et al., 

2014;Baptista and Andrade, 2018). Adult neurogenesis is generation of new neurons from 

the neural precursor cells (NPCs) which continues from embryonic development until 

adulthood (Ming and Song, 2011). However in adult animals this process is restricted to 

certain specific areas of the brain (Bordiuk et al., 2014). There are various stages during the 

process of differentiation and maturation of adult NPCs into mature granule cells, one such 

stage of immature granule cells is specifically marked by doublecortin (Couillard-Despres et 

al., 2005). Doublecortin is a microtubule associated protein known to be expressed 

specifically in newly generated post mitotic migrating neurons (Gleeson et al., 1999).  

Considering this we investigated whether the morphological defects in the NcaldKO/KO 

hippocampus especially in the DG were a result of impaired adult neurogenesis. We 

analysed specifically the adult born neurons, marked by, immature granule cell marker, 

doublecortin (DCX) in NcaldKO/KO hippocampus and their wildtype littermates. We found that 

the DCX+ cells did not change significantly during P14, however showed a tendency to be 

more abundant in NcaldKO/KO hippocampus (Figure 14a). In contrast to P14, P30 NcaldKO/KO 

hippocampus (DG) displayed a non-significant tendency to have less DCX+ neurons 

compared to controls (Figure 14b). Interestingly, at the age of 4 months the NcaldKO/KO 

hippocampus showed a significant decrease in the DCX+ cells compared to their wildtype 

littermates (Figure 14c). Decrease in DCX+ cells in the hippocampus is a hallmark of impaired 

adult neurogenesis; therefore we concluded that loss of NCALD impairs the adult 

neurogenesis. Additionally, in adult NcaldKO/KO hippocampus we observed a dramatic 

reduction in dendritic extensions of DCX+ neurons (Figure 14c). The functional integration and 

maturation of newly generated immature DCX+ neurons into mature granule cell layer (GCL) 

of DG is initiated by the extension of spineless dendrites through molecular layer (Toni and 

Schinder, 2015). Thus, loss of dendritic extensions in DCX+ neurons in NcaldKO/KO 

hippocampus questioned the functionality of these neurons. Furthermore, few DCX+ neurons 

which were present in NcaldKO/KO DG showed an abnormal tangential migration (Figure 14c). 

This disorientation in DCX+ cells could be a result of general migration defects in NcaldKO/KO 

animals (Evsyukova et al., 2013). 
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Figure 14 NcaldKO/KO brain endure impaired adult neurogenesis. 
 

(a) Representative DCX immunostaining of P14 hippocampus in the NcaldKO/KO and the wildtype 

littermate. A graph representing no significant change in the quantitative analysis of DCX intensity in 

NcaldKO/KO hippocampus compared to controls; N=3; scale bar 100 µm and 40 µm (magnified inset). 

(b) Representative DCX immunostaining of P30 hippocampus in the NcaldKO/KO and the wildtype 

littermate. A graph representing no significant change in the quantitative analysis of DCX intensity in 

NcaldKO/KO hippocampus compared to controls; N=3; scale bar 100 µm and 40 µm (magnified inset). 

(c) Representative DCX immunostaining of adult hippocampus in the NcaldKO/KO and the wildtype 

littermate. A graph representing significant reduction in the quantitative analysis of DCX intensity in 

NcaldKO/KO hippocampus compared to controls; N=4;* P< 0.05; scale bar 100 µm and 40 µm 

(magnified inset). Quantification depicts mean values ± SD; unpaired two-tailed student`s t-test; N.S. 

= non-significant. 

3.2.6 Ncald knockout does not cause any migrational defects in the cortex 

 

Migration defects observed in DCX+ cells in NcaldKO/KO hippocampus may not be restricted to 

hippocampus but could even be occurring in other neuronal migration events such as the 

migration of neurons during the formation of cortical layers. Migration defects in cortical 

layers disrupt the standard sequence of deep and superficial layers leading to inversion of 

these layers (Molyneaux et al., 2007;Lawrenson et al., 2017). Therefore we analysed the 

P 14 

P 30 

4-months  
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cortical layers and their spatial localization in the NcaldKO/KO brain. Superficial and deep 

cortical layers were stained using the specific markers, Cut-Like Homeobox-1 (CUX1) and T-

Box, Brain -1 (TBR1) respectively (Molyneaux et al., 2007). We found that CUX1+ and TBR1+ 

cells were located in their proper physiological locations (Figure 15a, b) i.e. we did not find any 

disturbances in the cortical layer organization in the NcaldKO/KO brain.  

 

Figure 15 Cortical layers in NcaldKO/KO brain do not show migration defects 
 

(a) Representative CUX1 and NeuN immunostaining of cortex in adult NcaldKO/KO and wildtype brain. 

CUX1 labelled superficial layer neurons were correctly localized; scale bar 100 µm. (b) Representative 

TBR1 and NeuN immunostaining of cortex in adult NcaldKO/KO and wildtype brain. TBR1 labelled deep 

layer neurons were correctly localized; scale bar 100 µm. 

3.2.7 Myelination is disturbed in Ncald knockout brain 

 

Other than generation of new granule cells in the DG, myelination is an important part of 

postnatal brain development (O'Rourke et al., 2014). Our results indicating possible role of 

NCALD in postnatal brain development as well as observed thinning of corpus callosum 

(bundles of myelinated axons) in the NcaldKO/KO brain nissl staining images, prompted us to 

further investigate myelination in NcaldKO/KO mouse brain. We stained the brain sections from 

one month old NcaldKO/KO and wildtype animals with Myelin Basic Protein (MBP) antibody. 

The immunostaining images and western blot analysis of brain lysate showed significantly 

reduced myelination in the NcaldKO/KO brain compared to controls (Figure 16a, b). This finding 
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suggested loss of NCALD can also impact the process of myelination during the postnatal 

development of brain.  

 

Figure 16 NcaldKO/KO brain display reduced myelination 
(a) Representative MBP immunostaining of NcaldKO/KO P30 brain showing reduced amount of myelin 
compared to wildtype littermate; scale bar 500 µm. (b) Representative western blot from P30 brain 
lysate also showing reduced levels of myelin in the NcaldKO/KO brain compared to controls. A graph 
representing the quantitative analysis of western blot band intensities; N=6, * P< 0.05. Quantification 
depicts mean values ± SD; unpaired two-tailed student`s t-test. 
 

3.3 NCALD physiological interactions and function in mouse brain  

3.3.1 NCALD is absent in oligodendrocytes  

 

Taking in account the reduced myelination observed in NcaldKO/KO brain, we further 

investigated how NCALD could affect the myelination in physiological context. The myelin 

sheath is formed via differentiation of specific type of glia cells called oligodendrocytes 

(Salzer, 2015). To understand further the effect of NCALD on myelination we investigated if 

NCALD is present in the oligodendrocytes. We co-stained the wildtype brain sections with 

the oligodendrocyte marker, Anti- adenomatous Polyposis Coli (APC) (Lang et al., 2013) and 

the NCALD antibody. Interestingly, the co-localization analysis of immunostaining images 

concluded no co-localization of NCALD with APC (Figure 17a). This finding showed that 

NCALD is absent in the oligodendrocyte soma and nullified the possibility of NCALD acting 

directly in the oligodendrocyte. However, there are other factors like neuronal activity which 

can also regulate the process of myelination (Gibson et al., 2014). Since NCALD is present 

in neurons and has also been shown to regulate specific neuronal activities (Villalobos and 

Andrade, 2010), it is a potential possibility that the role of NCALD in neuronal activity may 

influence myelination. 
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Figure 17 NCALD is absent in oligodendrocytes. 
(a) NCALD and APC staining in the wildtype brain section, showing no co-localization of these two 
proteins; scale bar 50 µm; P=0.25, Mander’s coefficient.  

3.3.2 NCALD interacts with MAP3K10  

 

To gain deeper insights into the molecular basis of the NCALD function and effect in the 

mouse brain, we investigated the potential binding partners of NCALD. We addressed this by 

subjecting the brain lysate from one month-old wildtype and NcaldKO/KO mice to 

immunoprecipitation (IP) using endogenous NCALD antibody.  There were three IP groups; 

(1) wildtype brain lysate IPs (3 samples) (2) NcaldKO/KO brain lysate IPs (3 samples) (3) 

independent negative IP using only the beads (3 wildtype samples). The affinity purified 

protein complexes (output) from each group were subjected to mass spectrometry (MS) 

analysis using Orbitrap mass analyzer. Orbitrap generates an electrostatic field using three 

electrodes, and ionizing peptides segregate by oscillating at a particular frequency based 

upon their charge and mass ratio. MS analyses determines the composition as well as 

stoichiometry of the protein complexes (Borch et al., 2005). Therefore, MS is a highly 

sensitive, mass accurate powerful tool for identification of protein complexes and thus 

potential novel interaction partners can be investigated by MS analysis.  

The data obtained from mass spectrometry of all three groups was compared and further 

analysed to identify NCALD interactome i.e. candidates present only in wildtype group 

(group1) but not in the other two groups (Error! Reference source not found.Appendix 

Table 6). The reason behind such strong selection was because NCALD antibody showed 

some background signals in certain NCALD knockout samples, most likely by binding to 

close NCALD homologues like VILIP1 or hippocalcin. Therefore, such a strict selection 

criteria of comparing proteins from all three list, to select proteins that were only present in 

the wildtype group yielded a very precise final list of only three candidates (Figure 18a). 

Among the three proteins in the final list, MAP3K10 had the highest number of peptides 

identified; therefore we first selected this candidate for further analysis. We confirmed 
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MAP3K10 as an NCALD interacting partner via co-immunoprecipitation analysis from the one 

month old wildtype brain tissue using the MAP3K10 antibody (Figure 18b). (This part of work 

was performed by Dr. Seyyedmohsen Hosseinibarkooie, postdoc in AG Wirth). 

 

Figure 18 NCALD interacts with MAP3K10. 
(a) List of candidate proteins, which may specifically interact with NCALD obtained from mass 
spectrometry analysis. (b)  Co-immunoprecipitation blot confirming the interaction of MAP3K10 and 
NCALD (fourth lane). 

3.3.3 pJNK is upregulated in Ncald knockout brain 

 

MAP3K10 is an upstream kinase on the JNK and p38, two major MAP kinase pathways 

(Hirai et al., 1997). JNK pathway can regulate various processes like neuronal differentiation, 

axonal growth, axonal branching and apoptosis (Figure 19a) (Coffey, 2014). Interestingly, in 

addition to these processes, JNK pathway has also been shown to negatively regulate the 

generation of DCX+ cells in adult neurogenesis (Mohammad et al., 2017). Considering our 

previous finding that adult NcaldKO/KO brain exhibited a significant loss in the DCX+ cells, we 

further analysed the JNK and the pJNK (activated JNK) levels in the NcaldKO/KO brain. We 

found significantly higher levels of pJNK (pThr 183 and pTyr 185) in NcaldKO/KO brain 

compared to controls (Figure 19b). Corroborating with the previous studies, we hypothesised 

that higher pJNK is most likely leading to the loss of DCX+  cells in NcaldKO/KO brain. 
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Figure 19 NcaldKO/KO brain show increase pJNK levels. 
(a) Scheme of JNK pathway and the list of cellular processes regulated by JNK. (b) Representative 
western blot showing increase in the pJNK level. Graph representing the quantitative analysis of 
western blot; * P<0.05; N=4. Quantification depicts mean values ± SD; unpaired two-tailed student`s 
t-test. 

3.3.4 Transient inhibition of JNK could not rescue the impairment in adult neurogenesis 

 

To further strengthen the correlation of increased pJNK and loss of DCX+ neurons in 

NcaldKO/KO animals, we treated these animals with JNK inhibitor.  It has already been shown 

that use of JNK inhibitor can significantly increase the adult born DCX+ cells in mouse 

hippocampus (Mohammad et al., 2017). Many JNK inhibitors are available and have been 

used frequently for research purposes, however most of them are not specific to JNK and 

also inhibit other MAPKs (Bain et al., 2003). Therefore, we chose SR3306, one of the orally 

available, most effective and highly selective inhibitor of pJNK (Crocker et al., 2011). We 

treated the NcaldKO/KO animals with the JNK inhibitor SR3306 as well as with the vehicle 

solution. Referring to a previously published protocol (Gao et al., 2017) we first planned to 

treat the animals intraperitoneally by dissolving the SR3306 in 1X PBS. However, SR3306 

was not soluble in 1X PBS at room temperature. Therefore we applied heat by placing the 

mixture in hot water bath but still could not dissolve the SR3306 in 1X PBS. We also used 

different DMSO concentrations (2%, 5%, 10%) according to the product protocol to dissolve 

SR3306, however even with 10% DMSO the SR3306 was not completely soluble. We could 

not further increase DMSO concentration as it may have toxic effects on the animals (Galvao 
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et al., 2014). Finally, we could successfully dissolve SR3306 in 45% w/v β- hydroxypropyl 

cyclodextrin with 0.07% HCl, which has already been published as a solvent for SR3306 

(Crocker et al., 2011). This vehicle solution was highly acidic and hence we changed our 

mode of drug administration from intraperitoneal to oral gavage method. As this drug have 

neuroprotective effects upon its oral administration in mice, we followed the same protocol 

(Chambers et al., 2011). We specifically used the 2 months old, young adult brain which 

displays high rate of adult neurogenesis (Pan et al., 2013) with 3 animals in drug treated 

group and 3 animals in vehicle treated group for our preliminary analysis. Moreover, to 

reduce any gender bias we used only females in this experiment. The treatment lasted for six 

consecutive days, with 7 oral doses of 30 mg/kg SR3306 via gavage, twice on day one and 

once on days 2-6 and similar treatment was carried out with the vehicle solution (Figure 20). 

We sacrificed the animals 3 more weeks post  treatment, as the percentage DCX+ cells 

(BrdU labelled) has shown to be highest in the second and third week post the BrdU 

treatment of mouse brain (Snyder et al., 2009),  

 

Figure 20 Time line of JNK inhibitor and parallel vehicle treatment. 
 
However, using this treatment protocol we did not find any improvement in the body weight, 

brain weight, brain morphology or number of DCX+ cells in the NcaldKO/KO brain (Figure 21a, b, 

c). These preliminary results were not conclusive; more detailed analysis of wildtype brains 

under this treatment protocol would specify whether this transient treatment protocol can 

actually impact the DCX+ population. If not, then a longer chronic inhibition of JNK, most 

likely via mini pump insertion into the animal brain could show a better result as seen in 

previous studies (Mohammad et al., 2017). 
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Figure 21 Transient inhibition of JNK does not ameliorate adult neurogenesis in NcaldKO/KO. 
(a) Graph representing the body and brain weight of vehicle treated and SR3306 treated NcaldKO/KO 
animals. SR3306 (JNK inhibitor) treated NcaldKO/KO animals did not show any improvement in body or 
brain weight; N=3. (b) Representative nissl staining of brain sections from vehicle treated and SR3306 
treated NcaldKO/KO animals. SR3306 (JNK inhibitor) treated NcaldKO/KO animals displayed similar 
defects in hippocampus and lateral ventricles as that of vehicle-treated animals; N =3. (c) 
Representative DCX immunostaining of brain sections from vehicle-treated and SR3306 treated 
NcaldKO/KO animals. Graph representing SR3306 (JNK inhibitor) treated NcaldKO/KO animals displayed 
similar DCX+ cell density as that of vehicle-treated animals; N=3; scale bar 100 µm. Quantification 
depicts mean values ± SD; unpaired two-tailed student`s t-test; N.S. = non-significant. 
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3.3.5 pJNK is not altered in Ncald knockout spinal cord 

 

Some studies have reported significant upregulation in pJNK levels in SMA spinal cord 

(Genabai et al., 2015;Ahmad et al., 2016). Therefore, we also immunoprecipitated the spinal 

cord lysates from wildtype and NcaldKO/KO animals with NCALD antibodies similar to the brain 

lysate. Further analysis of IP samples with the mass spectrometry also remained the same 

as that of brain samples (This part of work was performed by Dr. Seyyedmohsen 

Hosseinibarkooie, postdoc in AG Wirth). Interestingly, spinal cord mass spectrometry 

analysis corroborated the NCALD interaction with the MAP3K10, therefore we  analysed the 

pJNK level in the NcaldKO/KO spinal cord, but did not find any significant changes compared to 

control samples (Figure 22a). 

 

Figure 22 NcaldKO/KO spinal cord do not show increased pJNK levels. 
(a) Representative western blot showing the pJNK levels in NcaldKO/KO and wildtype samples. Graph 
representing the quantitative analysis of the western blot; N=4. Quantification depicts mean values ± 
SD; unpaired two-tailed student`s t-test; N.S. = non-significant. 
 

3.3.6 RNA sequencing and transcriptomics of NcaldKO/KO samples 

 

We further investigated possible changes in physiological gene expression profile upon 

Ncald deletion by analysing the transcriptome of NcaldKO/KO animals. Hippocampus, cortex 

and spinal cord tissues were isolated from the NcaldKO/KO and wildtype animals. We used 5 

females and 5 males from each genotype. We isolated RNA using the Qiagen kit for high 

quality RNA purification. Our RNA samples were sequenced in collaboration by the deCODE 

genetics (Iceland) and the raw data was eventually acquired. 

Next part of this experiment was done by Eike Strathmann, a PhD student at AG Wirth. The 

raw RNA sequencing data was analysed using Kallisto, an open source software. We first 

analysed the difference between male and female samples within the same tissue type. 

However, this analysis did not report any unexpected genes with significant differential 



48 
 

expression, but only the genes from sex chromosomes. Therefore, for further analysis we 

pooled the data obtained from males and females for NcaldKO/KO and wildtype samples for 

each tissue type. We then analysed the raw data for genes that show significant differential 

expression change (either positively or negatively) upon Ncald deletion in each tissue by 

comparing the pooled NcaldKO/KO samples to pooled wildtype samples. We found significant 

differential expression of 8 genes in hippocampus, 69 genes in spinal cord samples and 371 

genes in cortex samples.Unfortunately, during the collection of cortex tissue the limit of 30 

mg tissue weight for RNA isolation kit was not known and hence whole cortex tissue was 

collected, which was much heavier than 30 mg. Consequently, during the RNA isolation only 

1/3 of the frozen cortex tissue was used and hence there was no specificity of the sub 

regions of cortex which were used for analysis. The extremely long list in case of cortex 

samples could be a result be of this variability within the samples. However, principle 

component analysis of our transcriptome data revealed three distinct data sets for each 

tissue thereby reporting the credibility of our samples. 

 

Figure 23 Principle component analysis of transcriptome data from different tissue samples 
Hippocampus, cortex and spinal cord each tissue showed distinct groups of similarities within each 
tissue type. 
 

To further pin down interesting candidates for our future investigations, we analysed our data 

sets for genes which significantly correlate or anti-corelate with expression of the Ncald. We 

found 4 significantly differentially expressed genes in hippocampus, 132 genes in cortex and 

19 genes in spinal cord samples samples in addition to Ncald (Appendix Table 7, 8, 9). We 

also analysed our list of genes based on their annotation in the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database for pathway analysis. Details of certain interesting genes 

and pathways are listed in discussion section in later part of this thesis.  
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3.4 Characterization of NcaldKO/WT animals 

 

NCALD reduction is beneficial on the SMA background and can ameliorate various SMA 

symptoms, therefore, NCALD reduction has been proposed as a combinatorial therapy 

option in SMA (Riessland et al., 2017). As mentioned earlier, one of the aims of this thesis 

was to investigate any possible physiological defects that may arise due to half reduction of 

NCALD. Taking into account all the physiological defects that we observed in NcaldKO/KO 

animals, we analysed the NcaldKO/WT animals specifically for these defects.  

3.4.1 NcaldKO/WT animals did not exhibit any severe physiological defects 

 

Considering all the phenotypes observed in the NcaldKO/KO animals and their brain, we then 

analysed NcaldKO/WT animals. We first quantified the body weight of NcaldKO/WT animals, 

although they showed a strong tendency to weigh less than wildtype animals, NcaldKO/WT did 

not vary significantly in their body weight (Figure 24a). Neither did the brain from NcaldKO/WT 

animals show any significant difference in their weight. Next, we analysed the morphology of 

adult NcaldKO/WT brain in comparison to their wildtype littermates (Figure 24b). However, we 

did not find significant changes in the lateral ventricles, corpus callosum, cortex or 

hippocampus, the regions which showed defects in the NcaldKO/KO brain (Figure 24c).  
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Figure 24 NcaldKO/WT animals do not show any sever morphological defects. 
(a) Graph representing a strong tendency in NcaldKO/WT animal body weight to weigh less, however it 
was not significant; N=5,6. (b) Graph representing no significant changes in the brain weight; N=5. (c) 
Representative nissl staining images of NcaldKO/WT and wildtype brain section, showing no significant 
morphological changes; N=4; scale bar 3 mm and 500 µm (magnified inset). Quantification depicts 
mean values ± SD; unpaired two-tailed student`s t-test; N.S. = non-significant. 
 

Furthermore, we analysed the DCX+ cell density in the NcaldKO/WT brain and found no 

significant alteration compared to controls (Figure 25a). However, the DCX+ cells in NcaldKO/WT 

brain showed the tangential migration and loss in the dendritic branching similar to NcaldKO/KO 

(Figure 25a). Following this we analysed the pJNK level and found that there were no 

significant changes in the NcaldKO/WT brain compared to their littermates (Figure 25b).  
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Figure 25 DCX+ adult born neuron density is not significantly altered in NcaldKO/WT animals. 
(a) Representative DCX immunostaing of NcaldKO/WT and wildtype hippocampus. Graph representing 
no significant difference in the DCX+ cell density in NcaldKO/WT and wildtype brain; N=4; scale bar 100 
µm. (b) Representative western blot showing the pJNK levels in NcaldKO/WT and wildtype brain. Graph 
representing no significant difference in the pJNK levels in NcaldKO/WT and wildtype brain; N=4. 
Quantification depicts mean values ± SD; unpaired two-tailed student`s t-test; N.S. = non-significant. 
 

3.4.2 NcaldKO/WT and NcaldKO/KO motor neurons show elongated axons and increased 

branching  

 

We have already shown on SMA background that NcaldKO/WT genotype positively affects the 

axonal length and branching (Riessland et al., 2017). Therefore we analysed the cultured 

wildtype, NcaldKO/WT and NcaldKO/KO motor neurons at DIV 4. We chose an early time point in 

culture as the older cultured neurons have very long axons which complicates the axonal 

analysis. We stained MNs with ChAT, a MN specific marker (MacDonald et al., 2003) and 

TAU, a microtubule binding protein, to mark the overall morphology of MNs (Bradke and 

Dotti, 2000). Interestingly, we found longer axonal length and increased branching in both 

NcaldKO/WT and NcaldKO/KO motor neurons compared to controls (Figure 26a). This finding 

supported that not only under SMA condition but also physiologically NCALD reduction acts 

positively on motor neuron axonal growth and branching.   
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Figure 26 NcaldKO/KO and NcaldKO/WT motor neurons have elongated axons. 
(a) Representative images of MN stained with TAU, CHAT, NCALD and DAPI (for nuclear staining) 
from wildtype, NcaldKO/KO and NcaldKO/WT cultures. Graph representing quantitative analysis and 
significant increase in the axonal length and branching; scale bar 20 µm; N= 108, 104, 105 (from 3 
embryos each); P< 0.001. Each box plot covered 25-75% values, line represents median and class 
interval set at <5% and >95%. 

3.4.3 NcaldKO/WT and NcaldKO/KO animals perform well in the motoric test 

 

As crossbreeding of NcaldKO/WT animals on the mild SMA background could ameliorate motor 

function in SMA background such as muscle strength (Riessland et al., 2017), we analysed 

motor performance of the NcaldKO/WT and NcaldKO/KO animals by using muscular phenotypic 

tests such as Rotarod (Brooks and Dunnett, 2009). Rotarod is motor coordination and 

balance test, where the animals are placed on a rotating rod, specifically designed to test 

rodent models of neurological deficits (Dunham and Miya, 1957). From our initial data we 

could see that NcaldKO/WT and NcaldKO/KO animals spent almost equal amount of time on the 

rotarod and performed not significantly different than the wildtype animals (Figure 27a,b). This 

data suggest NCALD reduction or deletion does not have any significant impact on the 

physiological motor functions. 
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Figure 27 NcaldKO/KO and NcaldKO/WT animals do not show any changes in motor abilities. 
(a) Graphs representing time spent by 8 week- old and 12 week- old wildtype, NcaldKO/KO and 
NcaldKO/WT males at running on the rotating rod; N= 4, 5, 3 for wildtype, NcaldKO/KO and NcaldKO/WT 

respectively. (b) Graphs representing time spent by 8 week- old and 12 week- old wildtype, 
NcaldKO/KO and NcaldKO/WT  females at running on the rotating rod; N = 4, 5, 2 for wildtype, NcaldKO/KO 

and NcaldKO/WT respectively. Quantification depicts mean values ± SD; unpaired two-tailed student`s 
t-test; N.S. = non-significant. 
 
Taken together, NcaldKO/WT animals did not show any severe defects in their brain 

morphology or adult neurogenesis. Nevertheless, the MN axon length for these animals 

increased beyond the wildtype control. Conclusively, the reduction of NCALD could most 

likely be safe therapeutic option for SMA.  
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4 Discussion 

4.1 NCALD in postnatal brain development and maturation 

 

NCALD was almost absent at the embryonic stage whereas the NCALD levels increase 

dramatically from P1 to P14. This finding suggested that NCALD function is most relevant in 

postnatal development of the mouse brain.  

The postnatal brain development and maturation can be broadly classified into five major 

processes; 1) Differential expression of molecular attractors and repellents which guide 

axonal and dendritic projections, 2) Synaptogenesis and facilitated neurotransmission which 

establishes a dynamic (subjected to processes of refinement and pruning) neuronal network 

responsive to experiences. 3) Myelination of axons to increase the efficiency and speed to 

neural communications. 4) Gross structural changes in certain regions like cortex and 

hippocampus 5) Neurogenesis although diminished with age but still continues throughout 

the postnatal, adolescence and adult hood (Zelazo et al., 2013). Our finding about NCALD 

being specifically enhanced since the postnatal stages (P10), marked the importance of 

further research in NCALD function in various processes that shape the postnatal 

development and maturation of brain. We would further assemble all the findings on NCALD 

related to above listed postnatal processes in brain maturation, to clearly draw the future 

research map on NCALD. 

4.1.1 Axonal and dendritic projections 

 

NCALD has been shown to accumulate at the axonal and dendritic growth cones of 

hippocampal neurons as well as in motor neurons (Yamatani et al., 2010;Riessland et al., 

2017). Interestingly, overexpression of NCALD significantly reduced axonal branching in 

hippocampal neurons (Yamatani et al., 2010), moreover the reduction in NCALD in motor 

neurons lead to a significant increase in axonal length and branching (Figure 26). Altogether, 

these results point towards the physiological role of NCALD in axon growth regulation.  

4.1.2 Synaptogenesis and neurotransmission 

 

Previous findings show the presence of NCALD in fraction of neurotransmission related 

proteins (Vercauteren et al., 2007) as well as in synaptosomal fractions (Zareba-Koziol et al., 

2014). Moreover, our previously published results emphasized the role of NCALD in 

endocytosis which also plays a fundamental role in synaptic functions (Puthenveedu et al., 

2007;Riessland et al., 2017). The current study corroborated these findings by reporting the 

presence of NCALD in the inhibitory as well as excitatory synaptic punctas (Figure 8). We 
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found that NCALD is present in certain VGLUT1 positive excitatory synapses as well as in 

certain VGAT positive inhibitory synapses. Intriguingly, NCALD was not present in all the 

excitatory or inhibitory synapses, which implies the functional specificity of NCALD within the 

subtypes of synapses. 

Furthermore, NCALD has been implied in the Alzheimer‟s, which, since last decade is being 

accepted primarily as a synaptic disease. Although our results in regard to hallmarks of 

neuronal degeneration in NcaldKO/KO animals were negative, they did not annul the redundant 

contribution of NCALD in neuroprotective function (Figure 11).  Taken together, these findings 

affirm the significance of further in-depth analysis of NCALD synaptic functions.  

4.1.3 Myelination 

 

We found that although absence of NCALD significantly reduced the myelination (Figure 16), 

NCALD was not present in the oligodendrocyte soma (glia cell type which generates myelin) 

(Figure 17) indicating the possibility that certain neuronal function of NCALD may impact 

myelination. Interestingly, Neurotrophin nerve growth factor (NGF) released from axons acts 

as a potent regulator of signals that determine the extent of myelination of neurons by 

regulating their receptivity (Chan et al., 2004). Moreover, role of calcium signaling and 

neurotransmission in regulation of local myelination on electrically active axons of certain 

neuronal subtypes has been reported in previous studies (Wake et al., 2011;Wake et al., 

2015;Koudelka et al., 2016). However, this is the first study showing a link between NCALD, 

a neuronal calcium sensor and myelination. These findings also support the reports on 

neuronal events (release of growth factors or activity) controlled by neuronal proteins, 

independent of oligodendrocyte activity, can regulate myelination (Miller, 2018). 

Furthermore, disturbed white matter integrity, a measure of myelination is strongly linked with 

schizophrenia as the diffusion tensor imaging of schizophrenia patients brain show disruption 

in white matter structures (Friedman et al., 2008). Additionally, many myelination-related 

genes have also been associated with schizophrenia (Chavarria-Siles et al., 2016). Further 

research of the defects in myelination observed in NcaldKO/KO brain and may enhance our 

understanding of how neuronal calcium sensors which are implicated in schizophrenia 

pathology (Ripke et al., 2013), functions at molecular level. Moreover, the association of 

NCALD reduction with schizophrenia (Vercauteren et al., 2007) strengthens the credibility of 

these further investigations. 

 

 



56 
 

4.2 Relevance of NCALD in presubiculum 

 

Although abundancy of NCALD in various brain regions have been reported earlier, this is 

the first study which showed the high abundancy of NCALD in presubiculum, part of the 

parahippocampal region.  Presubiculum is composed of head direction cells (53.7%), grid 

cells (12.8%) and border cells (9%) (Boccara et al., 2010) that project to various other brain 

regions relevant for spatial orientation namely medial entorhinal cortex and lateral 

mammillary nucleus (Huang et al., 2017). Head-direction cells are activated when animals 

face a particular direction, irrespective of their location and activity; grid cells are neurons 

which fire periodically and are place-modulated; whereas border cells fire whenever the 

animal approach any boundary (Boccara et al., 2010). Therefore, presubiculum is a key brain 

region which encodes spatial information (Simonnet et al., 2013). Interestingly, we observed 

a distinct reduction in presubiculum of adult NcaldKO/KO animals, which requires further 

quantification for confirmation (Figure 10). Considering the key role that presubiculum plays in 

encoding spatial information, it will be very relevant to further investigate the spatial learning 

and memory in NcaldKO/KO animals. One of the well-established spatial learning test is water 

maze test (D'Hooge and De Deyn, 2001), however considering that IMPC reported anxiety 

like behaviour in the NcaldKO/KO animals, an exposure to water may further contribute to 

increased anxiety in these animals. Therefore, a spatial learning test which does not involve 

water exposure would be preferential. One such test is the Barnes maze test, which makes 

use of distal visual cues placed on a circular platform to assess the spatial memory of the 

animal (Barnes, 1979). 

Moreover, presubiculum has been a region of interest in the Alzheimer‟s disease. Early 

studies in Alzheimer‟s disease found that presubiculum incurred significantly high amount of 

amyloid deposits, hallmark of Alzheimer‟s pathology, quite early in the disease progression 

(Kalus et al., 1989). Hence presubiculum was considered as one of the most severely 

affected regions in Alzheimer‟s disease (Carlesimo et al., 2015). However a recent study in 

the field has altered this consideration, by showing that the amyloid deposits seen in the 

presubiculum of Alzheimer‟s patients remain in „lake like‟ morphology rather than in form of 

pathological „amyloid beta plaques‟. Furthermore they showed that presubiculum is 

comparatively protected than other severely affected surrounding brain regions (Murray et 

al., 2018). These findings suggested a detailed analysis of presubiculum region as well as 

the factors which are specific to presubiculum may provide essential inputs in development 

of protective therapies for Alzheimer‟s disease. As mentioned earlier significant 

downregulation of NCALD has been reported in Alzheimer‟s disease (Miller et al., 2013b). 

Taking this in account with the remarkably specific and high abundancy of NCALD in 
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presubiculum reported in this study (Figure 8), a further investigation of NCALD into the 

physiology and pathology of presubiculum could deepen our understanding of protective 

therapies for Alzheimer‟s disease. 

4.3 Adult neurogenesis, JNK activation and NCALD 

 

Since the initial finding of adult neurogenesis, one of the primary question which remained is, 

identification of the factors that regulate the proliferation, migration and survival of these rare 

adult born neurons (Gould and Cameron, 1996). Interestingly, stress and anxiety are major 

factors which negatively regulates adult neurogenesis (Gould et al., 1998;Tanapat et al., 

1998). Stress has also been associated with lower hippocampal volume and reduced adult 

neurogenesis (Czeh et al., 2001). Furthermore, it has been shown that adult born granule 

cells can inhibit the mature granule cells in the ventral dentate gyrus thereby increasing the 

resilience to stress as well as can protect against anxiogenic defects in mouse model for 

stress (Anacker et al., 2018). Moreover, adult neurogenesis is a crucial determinant of the 

effect of the anti-depressant therapies and therefore strategies to increase the adult 

neurogenesis have been proposed as therapeutic options against stress and anxiety 

(Santarelli et al., 2003).    

We found significantly reduced amount of DCX positive neurons in the adult NcaldKO/KO 

hippocampus (Figure 14), which is a hallmark for defects in adult neurogenesis (Balthazart 

and Ball, 2014). Defects in adult neurogenesis have been linked not only to stress and 

anxiety but also to short term spatial memory (Denis-Donini et al., 2008). Intriguingly, the 

behavioural analysis of NcaldKO/KO animals at the IMPC showed significant increase in their 

anxiety like behaviours (International Mouse Phenotype Consortium, 2016). Therefore, a 

detailed behavioral analysis of NcaldKO/KO animals, could further provide evidence for 

functions of NCALD in stress, anxiety and short term memory and could potentially unravel 

the mechanism downstream to adult neurogenesis which drives these behavioural deficits.  

Adult neurogenesis is known to be mechanistically regulated by electrical activity and 

intracellular calcium elevations which lead to finer gene expression changes (Spitzer, 2006). 

Interestingly, detailed information is available on how calcium regulates the neurogenesis 

during the pre/perinatal development of brain (Toth et al., 2016). However there is a 

prominent lack of data available on general factors that support specific function of calcium in 

adult neurogenesis. Our finding which links the loss of NCALD, a neuronal calcium sensor 

with a loss of DCX positive specific adult born neuronal cell type invigorates further research 

in understanding the function of calcium in the context of adult neurogenesis. 
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Adult neurogenesis can also be regulated by the JNK pathway (Mohammad et al., 2017). 

JNK1 knockout mice showed enhanced levels of DCX positive cells and treatment with JNK 

inhibitor also significantly increased DCX positive cells and induced anxiolytic response. 

These findings by Mohammad et al were the first ones to show involvement of JNK in the 

mechanism of adult neurogenesis. Interestingly, we found NCALD interacts with MAP3K10 

(an upstream kinase in JNK pathway) (Figure 18) and NcaldKO/KO brain show significantly 

elevated levels of phosphorylated JNKs (Figure 19). This finding along with the previous 

results showing loss of DCX positive neurons in NcaldKO/KO hippocampus (Figure 14), is the 

second link between JNK and adult neurogenesis. Our results are in line with the previous 

findings as we show that elevated pJNK level in NcaldKO/KO brain are paralleled by loss in 

DCX positive neurons and the previous study has shown that inhibition of JNK can increase 

the DCX positive cells in the dentate gyrus (Mohammad et al., 2017). We further attempted 

to investigate the effect of transient JNK inhibition on DCX positive cells in NcaldKO/KO 

hippocampus. However, according to our preliminary results we did not see any increase in 

the DCX positive cells or improvement of any other morphological defects in the NcaldKO/KO 

animal brains (Figure 21) transiently treated for six days with SR3306, a JNK inhibitor 

(Chambers et al., 2011). This treatment protocol needs further substantial optimization, to 

determine the effect of JNK inhibition in NcaldKO/KO hippocampus, as discussed in the future 

outlook section.     

Adult as well as juvenile born granule cells at dentate gyrus (DG) undergo four consecutive 

stages of proliferation, differentiation, maturation and survival (Goncalves et al., 2016). 

These stages are marked by differential genetic expression and has been clustered together 

via single RNA sequencing (Hochgerner et al., 2018). Expression pattern of Ncald within 

these clusters clearly show that Ncald expression is very low at proliferative stages of radial 

glia like cells and neuroblasts whereas significantly higher in the differentiated immature 

granule cells, pyramidal cells and GABAergic interneurons, CA3 pyramidal cells (Linarsson 

lab, 2018) (Error! Reference source not found.). Our results from analysis of NcaldKO/KO 

DG particularly showed a reduction of DCX positive cells (Figure 14) which belong into the 

cluster of immature granule cells (Couillard-Despres et al., 2005). Therefore study of NCALD 

abundancy and function through the various maturation stages of adult born neurons can 

delineate the mechanisms involved in the process. Another important aspect of adult 

neurogenesis is the integration of new born neurons into the granule cell layer (Toni and 

Schinder, 2015). Extension of dendritic arbours from the newly generated DCX positive 

neurons grow into the granule cell layer and establishes the functional integration of these 

neurons into granule cell layer (Rosenzweig and Wojtowicz, 2011). Moreover, inhibition of 
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JNK can significantly increase the dendritic innervations of  DCX positive neurons 

(Mohammad et al., 2017). 

   

Figure 28 Ncald expression pattern in different clusters of dentate gyrus cells. 
Ncald expression is very low during the differentiating neuronal population like radial glia like cells 
and neuroblasts whereas its expression is highest in the differentiated immature granule cells, 
pyramidal cells and GABAergic interneurons. Ncald has moderate expression in the juvenile and adult 
granule cells. Adapted from (Linarsson lab, 2018)  
 
We observed loss of these dendritic innervations in DCX positive cells present in the 

NcaldKO/KO DG (Figure 14), which therefore critically questions the functionality of these 

neurons.  

Lastly, transient increase in the JNK levels is observed during the embryonic differentiation 

and migration of cortical neurons (Hirai et al., 2002). This increase has been associated with 

the retardation of the radial migration and promotion of tangential migration. As we also 

observed aberrant tangential migration of DCX positive neurons in the NcaldKO/KO DG (Figure 

14) and an increase in pJNK (Figure 19), these two findings can also be well connected.  

Thus, further research on the plausible role of JNK in tangential migration of NcaldKO/KO 

neurons can contribute to our understanding of why and how the neurons switch migration 

patterns.   
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4.4 NCALD reduction in SMA 

 

Although recent advances in the field of SMA therapeutics have shown many positive effects, 

there still remains a demand for complete cure of SMA (Talbot and Tizzano, 2017). 

Currently, all the approved therapies for SMA focus on enhancing the SMN protein levels, 

however there are limitations on the amount of SMN protein that can be enhanced via these 

methods (Sumner and Crawford, 2018). Therefore a combinatorial therapy of SMN 

dependent and SMN independent strategies is the need of the hour in SMA therapy.  

NCALD reduction ameliorates various SMA symptoms like NMJ maturation, motor neurons 

(MN) inputs, MN axonal length in severe SMA mouse model (Riessland et al., 2017). As the 

sever SMA mouse sufferes through multi-organ failure, a milder SMA model was produced 

with an early postnatal (P1) injection of SMN-ASO (Nusinersen).  NCALD reduction in the 

mild SMA model significantly improved synaptic endocytosis and motoric function, along with 

above mentioned symptoms (Riessland et al., 2017). Moreover, analysis of MN axons in 

SMA zebrafish (generated by smn morpholino injections) and motor reflexes in SMA 

C.elegans (lacking smn-1) also showed the protective effect of NCALD reduction. These 

findings established that NCALD reduction can significantly augment the increase in SMN 

levels in ameliorating SMA symptoms and led to proposal of NCALD reduction as an SMA 

therapeutic option.  

However, significantly low NCALD levels have been related to Alzheimer‟s a 

neurodegenerative disease (Shimohama et al., 1996;Miller et al., 2013b) as well as 

Schizophrenia, a neurodevelopmental disease (Vercauteren et al., 2007). Therefore, the 

reduction of NCALD along with being beneficial in context of SMA, may additionally have 

potential physiological side effects in the brain. Hence, in this study we first studied general 

hallmarks of both neurodegeneration and neurodevelopment upon Ncald deletion in 

NcaldKO/KO brain and then specifically analysed these phenotypes in NcaldKO/WT brain, as a 

model of the proposed Ncald reduction for SMA therapeutics.  

We found no significant changes in the body and brain weight of NcaldKO/WT animals. 

Moreover we did not find any significant changes in pJNK level or the DCX positive cell 

density at DG of NcaldKO/WT animals. Nevertheless, we observed loss in dendritic innervations 

of the DCX positive cells, which points towards a possible dysfunctionality of these neurons 

in NcaldKO/WT DG and raises concern towards the safety of Ncald reduction in SMA 

therapeutics.  

However there are few points which needs to be considered in context of how well the 

NcaldKO/WT brain model the Ncald reduction proposed for SMA therapeutics. First, the 

reduction in the Ncald levels for SMA therapy are required only during the initial period of 
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CNS development, which accounts for the generation and maturation of NMJs. Second, we 

are currently studying the effect of decrease in Ncald levels using ASOs against Ncald gene 

in combination with SMN ASO at P1 to see the combinatorial effect and precise amount of 

NCALD reduction which can protect the SMA phenotype. Transient Ncald reduction by ASO 

injections at P1 which rescues SMA phenotype, does not sustain the reduction of Ncald until 

adulthood (at 3 months or 6 months)  (unpublished data from AG Wirth). Interestingly the 

severe effects of NCALD deletion/reduction on DCX positive cells were not observed in the 

initial development of the brain (P14 and P30) but only in adult brain (4 month-old). Therefore 

the transient Ncald reduction in early development most likely would not have the same 

effect as sustained reduction of Ncald in case of NcaldKO/WT animals. Nevertheless, this study 

reported the potential physiological processes to be analysed in order to test the safety of 

Ncald reduction in further studies.        

4.5 NCALD in neurodevelopmental disorders 

 

NCALD is linked to multiple neurodevelopmental disorders like schizophrenia (Vercauteren 

et al., 2007), autism (Ben-David et al., 2011) and bipolar disorder (Xu et al., 2014). Both 

autism (human patients) and schizophrenia (mouse model) brain show certain morphological 

defects like enlargement of lateral ventricles (Pletnikov et al., 2008;Movsas et al., 2013). We 

observed a similar enlargement of lateral ventricle in the NcaldKO/KO mice brain, which 

increased from P14 until 4 months, however did not exacerbate at 18 months. These results 

pointed towards a defect in the maturation of brain until adulthood or a possible 

neurodegeneration which did not progress with aging.   

 

Furthermore along with observable changes in the shape and volume of hippocampus, we 

also found significant decrease in the sub-granular zone length in the NcaldKO/KO DG. The 

physiological shape and overall morphology of hippocampus has been implicated in the 

maintenance of cognitive functions (Smith et al., 2012;Voineskos et al., 2015). Schizophrenia 

is marked with smaller hippocampal volume (Sim et al., 2006), additionally various 

neurodevelopmental disorders including schizophrenia are characterized by severely 

impaired cognitive functions (Leekam, 2016;Tripathi et al., 2018). Accordingly NcaldKO/KO 

animals can be further analysed for all the major behavioural and morphological phenotypes 

of neurodevelopmental disorders.  

 

Most of the neurodevelopmental disorders (NDs) like bipolar disorder, autism and 

schizophrenia are genetically complex and therefore understanding the molecular basis of 

these diseases using a model organism has been a challenge (Wilson and Terry, 2010). 
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However, de novo single gene mutations, SNPs or chromosomal deletions found in the 

genome association studies of NDs patients often reveal causative genes. Additionally, 

targeted mutations in causative genes has been used to generate mouse models as a 

translational research tool for various NDs (Crawley, 2012). Interestingly, not only the 

NCALD abundancy was significantly low in schizophrenia rat model but also certain SNPs in 

Ncald are linked to autism and bipolar disorder. Moreover, phenotypic data available at the 

International Mouse Phenotyping Consortium platform indicate that NcaldKO/KO mice are 

hyperactive and anxious and exhibit severe reduction of body mass (International Mouse 

Phenotype Consortium, 2016). Henceforth, a detailed study of NCALD function in 

pathophysiology of schizophrenia and autism, as well as a comprehensive analysis of 

cognitive behaviour in NcaldKO/KO animals have a potential to reveal a novel disease mouse 

model for neurodevelopmental disorders with subtle behavioural symptoms, thereby 

improving our understanding of such disorders. 

4.6 Interesting candidates and pathways in NcaldKO/KO transcriptome analysis 

 

RNA transcriptome analysis comparing NcaldKO/KO and wildtype control was performed for 

hippocampus, cortex and spinal cord tissue. Significant differentially expressed genes were 

selected and their correlation coefficient with Ncald was calculated. Full list of proteins is 

included in the appendix ( Appendix Table 7Appendix Table 8Appendix Table 9) contains 4 

genes in hippocampus, 132 genes in cortex and 19 genes in spinal cord. We discuss 

physiological functions of certain proteins with minimum value of log2 fold change as 0.3 (or-

0.3) which is equivalent to one- fold increase, as smaller values indicate less significance.  

In hippocampus we obtained 3 genes in total with above listed criteria. Lrp2 was the only 

gene negatively correlated to Ncald, Lrp2 encodes Low-Density Lipoprotein Receptor-

Related Protein 2, an endocytic receptor. Interestingly, loss of Lrp2 has been shown to impair 

adult neurogenesis in subependymal zone (SEZ) (Gajera et al., 2010). Lrp2 regulates bone 

morphognetic protein (BMP) signaling and plays a crucial role in balancing proliferative and 

non-proliferative neural stem cell fate determination during embryonic development as well 

as adult neurogenesis (Choe et al., 2015). Previous studies have reported loss of Lrp2 does 

not affect the adult neurogenesis in sub granular zone (Gajera et al., 2010). Considering that 

we observe an increase in the Lrp2 expression and defects in DCX positive adult born 

neurons in hippocampus upon Ncald deletion (Figure 14), even if Lrp2 plays a role in 

hippocampus, it is most likely via different mode of action than in the cortex. The other two 

genes Sema3c and Bok were positively correlated to Ncald. Sema3c encodes for 

Semaphorin 3C, an axon growth and guidance molecule whereas Bok encodes for Bcl-2 

related Ovarian Killer protein. Semaphorin 3C can act as repellent as well as an attractant for 
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neurons depending upon the different receptor subunits it recruits (Wolman et al., 2004). As 

we observed a significantly reduced amount of Sema3c transcripts in hippocampus of 

NcaldKO/KO hippocampus, it would be interesting to further analyse the effect of NCALD 

reduction on hippocampal axon length.   

In cortex there were 132 genes with filtered criteria, out of which 130 were negatively 

correlated to Ncald. The top 10 negatively correlated genes were MS4a15, Lhx8, Gbx1, 

Ntrk1, Gpx6, Slc10a4, Serpina9, Isl1, Gdnf and Chat. On the other hand, there were only 2 

positively correlated genes namely Tbc1d9b and Cbln4. Among negatively correlated genes, 

Ntrk1 encodes neurotrophic tyrosine kinase, receptor, type 1 and a variant in Ntrk1 is related 

to defects in white matter (myelin) structures in young adults (Braskie et al., 2012). Moreover, 

Ntrk1 is receptor for neurotrophin growth factor (NGF) which is known to negatively regulate 

myelination (Chan et al., 2004). Therefore, increase in the Ntrk1 transcript in NcaldKO/KO 

cortex can be associated with the myelination defects observed in the NcaldKO/KO brain (Figure 

16). 

In spinal cord there were 13 genes with filtered criteria, out of which 4 were negatively 

correlated to Ncald namely Shh, Kctd9, Rgs4, Tmem56 and 9 were positively correlated to 

Ncald namely Fbln2, Ccnb2, Ckap2, Mybpc 1, Cenpa, Ogn, Cdc25c, Rem1 and Gsx1. 

Among the positively correlated genes, Fbln2 encodes for Fibulin 2 an extracellular matrix 

protein which has recently been reported to be involved in axon growth repulsion (de Vega et 

al., 2009;Schaeffer et al., 2018). It functions via enhancing Sema3A an axon repellent cue 

repulsive activity to promote growth cone collapse and regulates spinal nerve organization in 

developing embryo (Schaeffer et al., 2018). Taken together the significant increase in MN 

axon length (Figure 26) and significantly low transcripts of Fbln2 (with axonal growth repulsive 

function) in NcaldKO/KO motor neurons reported in this study, it would fascinating to further 

investigate the role of Fibulin 2 in growth of NcaldKO/KO motor neurons.   

4.7 Future outlook 

 

1) We found that NcaldKO/KO DG have significantly low number of DCX positive cells and on 

other hand we observed a significant increase in pJNK levels in NcaldKO/KO brain. As the 

inhibition of JNK is reported to increase the DCX positive cells in mouse model (Mohammad 

et al., 2017), we attempted to inhibit the JNK in NcaldKO/KO mouse. We used a very basic 

inhibition strategy of 7 dosage of SR3306, a JNK specific inhibitor via gavage feeding in the 

young adult (2 month-old) NcaldKO/KO animals, but could not see any increase in the DCX 

positive cell density.  Nevertheless, there can be many reasons behind the negative results, 

some of them are discussed below with alternate strategies for future research.   

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/growth-cone
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I. The amount of SR3306 used was not sufficient to facilitate the increase in the DCX 

positive neurons, therefore a gradual and permissible increase in the concentration of 

JNK inhibitor, SR3306 can be designed to further investigate the effects.  

II. SR3306 is not a potent inhibitor for newly synthesised neurons; as the previous 

studies showing the effect of SR3306 dealt with post mitotic neurons only, it is 

possible that using any another JNK inhibitor molecule can be an efficient way to 

inhibit the JNKs in DCX positive neurons.  

III. Treatment period of six days may not be sufficient to observe the difference in the 

DCX positive cells as differentiation of each precursor cell into mature granule cell 

takes about 4-6 weeks. DCX expression increases during the maturation phase of 

these cells from about 2 weeks to 3 week (Snyder et al., 2009). Hence, longer 

inhibition of JNK for about 4 weeks long might have better effect on the whole 

process of differentiation including the maturation of DCX cells.  

IV. Another important factor impacting the effectivity of drug is the mode of 

administration. We administered SR3306 using a gavage method, which has been 

effective to protect dopaminergic neurons (Crocker et al., 2011). However, it is 

possible that DCX positive cells in NcaldKO/KO brain need distinct effectivity of JNK 

inhibition for their survival which can be achieved by a more effective mode of 

administration namely intracerebral mini pump installation. The effectivity of this 

method has already been published (Mohammad et al., 2017). 

 

2) Currently, we are analysing the effect of NCALD reduction using Ncald ASO in the mild 

SMA model. As perinatally restricted reduction of NCALD in these animals closely mimics the 

NCALD reduction proposed for SMA therapy, we would also analyse these animals for the 

major defects observed in NcaldKO/KO brain like gross brain morphology, loss of DCX positive 

cells and elevated pJNK levels.  

3) Certain behavioural tests for social and cognitive deficits, short and long term memory, 

fear and anxiety would add much value to the NcaldKO/KO animals as model system for certain 

subtle but complex cognitive behaviours of neurodevelopmental diseases like schizophrenia.  

4) Analysis of axonal length of cultured hippocampal neurons, will give us further insight, 

whether the effect of NCALD on axon length is restricted to motor neurons or is a general 

neuronal function of NCALD. 

5) Further analysis of endocytosis in the NcaldKO/KO hippocampal as well as motor neurons 

would yield better understanding of NCALD function in the process of endocytosis, as 

NCALD has been shown to regulate endocytosis in SMA mice (Riessland et al., 2017).  
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6) Analysis of top candidate proteins form the NCALD mass spectrometry data like Formin-2 

(FMN2), Dihydrolipoyl dehydrogenase mitochondrial (DLD) other than MAP3K10 can unravel 

yet to be identified physiological functions of NCALD. Moreover, analysis of data obtained 

from the transcriptome sequencing of wildtype and NcaldKO/KO animals would also enhance 

our understanding of NCALD functions.   

7) The antibodies available currently against pJNK, including the one used by us, mark all 

isoforms of all three JNK encoding genes namley JNK1, 2 and 3. Although JNK1 knockout 

mice show increase in DCX positive cell density, considering that the JNK inhibitor used by 

Mohammad et al also targets all the JNK isoforms, it will be interesting to further study adult 

neurogenesis in context of the JNK2 and JNK3 specifically. Especially as JNK3 is specific to 

hippocampus (Coffey, 2014), JNK3 knockout is definitely an interesting candidate for adult 

neurogenesis analysis.  
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5 Materials and methods 

 

5.1 Materials 

5.1.1 Laboratory equipment 

  

Analytical balance   AX2202M   Ohaus 

Analytical balance (fine scale) ARJ 120-4M   Kern 

Analytical Column                             Poroshell EC120                    Agilent 

Bacterial incubators   Innova 44   New Brunswick Scientific 

     Innova 4230    New Brunswick Scientific 

Cell incubator    Heracell™ 150  Heraeus 

Cell culture hood   Herasafe™ KS 12  Heraeus 

Centrifuges    AllegraX22-R   Beckmann Coulter 

     Avanti J-20XPI  Beckmann Coulter 

     5415R    Eppendorf 

     5415D    Eppendorf 

     5804    Eppendorf 

     Concentrator 5301  Eppendorf 

     Galaxy Mini    VWR 

Mass spectrometer                           Q Exactive plus                      Thermo 

Microtome    CM3050 S   Leica 

Electrophoresis chambers  

 Agarose gels   MGV-620T   C.B.S & Scientific 

     SGE-020-02   C.B.S & Scientific 

     E-H6    Febicon 

 SDS-PAA gels  Mini-Protean 3 cell  Bio-Rad  

Fibre optic light source  KL 1500 LCD    Leica 

Gel documentation   ChemiDoc XRS  Bio-Rad 

Heating block    HTMR132   HLC Bio Tech 

Heating magnetic stirrer  MR 3001   Heidolph 

Horizontal shaker   3015    GFL 
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Homogenizer    Precellys 24   Peqlab 

Microscopes 

 Slidescanner   Leica SCN400  Leica 

 Fluorescent   AxioImager.M2   Zeiss 

     Apotome   Zeiss 

 Confocal   Leica TCS SP8  Leica 

Microscope cameras   AxioCam MRm  Zeiss 

     AxioCam ICc 1   Zeiss 

     AxioCam ERc 5s  Zeiss 

Microwave     R-898 (AL)-A   Sharp 

Neubauer chamber   1100000   LO Laboroptik Ltd 

pH meter    inoLab pH level  WTW 

Photometer    BioPhotometer  Eppendorf 

Photometer    NanoDrop 1000  Peqlab 

Pipettes 

 Research    2.5/10/20/200/1000 µl Eppendorf 

 Automatic   Research Pro (10/100 µl) Eppendorf 

 Pipettor   Easypet   Eppendorf 

Power supplies   PowerPac™ Basic/HC/1000 Bio-Rad 

Roller mixer    SRT9    Stuart 

     RM5    Hartenstein 

Thermocyclers   DNAengine Dyad/Tetrad MJ Research 

     C1000 Touch   Bio-Rad 

S1000    Bio-Rad 

Tissue processor   ASP300   Leica 

UPLC                                                 EASY nLC 1000                   Thermo 

Vacuum pump   PM126040-026.3  Biometra 

Vortex     444-1372   VWR   

Water bath    1083    GFL 

Water bath    FBC 620   Fischer Brand 

Dissection Microscope                       Leica M80                             Leica 
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5.1.2 Mouse work equipment 

 

Ear tag applicator   1005-s1   National Band & Tag Co. 

Ear tags    1005-1    National Band & Tag Co. 

EP-1 Econo pump                             7318142                                Bio-Rad 

Forceps    BD047R   Aeskulap 

FM002R   Aeskulap 

     Dumont #55   Fine Science Tools 

Friedman-pearson rongeurs             16020-14                               Fine Science Tools 

Heating pad    76084    Trixie 

Injection needles                               HAMI7803-07                        Hamilton                                                                  
27 gauge, Ø-A: 0,31 mm, pst 4 

Microliter syringe (5 µl)  75 N SYR   Hamilton 

Operating scissors   BC 321R   Aeskulap 

     BC 341R   Aeskulap 

RotaRod                                            RotaRod advance systems   TSE systems 

Student Vannas Spring Scissors FD 012R   Fine Science Tool 

 

5.1.3 Chemical 
 

If available, chemicals used in this work had the purity grade “pro analysis”. 

 

β-Mercaptoethanol (99%, p.a)    AppliChem 

2-Propanol (≥ 99.5%)      AppliChem 

Acetone       AppliChem 

Agarose       Sigma  

Ammonium persulfate     AppliChem 

Ampicillin       AppliChem 

Bacto Agar       AppliChem 

Bovine serum albumin (BSA)     Sigma 

Bromophenol blue      AppliChem 

Coomassie Brilliant Blue R-250    AppliChem 
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Dimethyl sulfoxide       Sigma 

Doxycycline hyclate      Sigma 

Ethanol (≥ 99.5%, p.a.)     AppliChem 

Ethidium bromide (1% in H2O)    AppliChem 

Ethylenediaminetetracetic acid (EDTA)   AppliChem 

Glycerol (86%, p.a.)       AppliChem 

Glycine       AppliChem   

Hydrochloric acid (37%)     AppliChem 

Hydroxymethylaminoethane (Tris)    AppliChem 

Hydroxypropyl-β-cyclodextrin                                              Sigma 

Kanamycin       AppliChem 

Methanol (≥ 99.9%, p.a.)     AppliChem 

Milk powder (low fat)      AppliChem 

Mowiol        Sigma 

Paraformaldehyde      Fluka 

Sodium chloride (p.a.)     AppliChem 

Sodium dodecyl sulfate (SDS)    AppliChem 

Sucrose       AppliChem 

TBE buffer (10x)      AppliChem 

Tetratmethylenediamine (TEMED)    AppliChem 

Tissue Tek                                                                           Sakura (Hartenstein) 

Triton X-100       AppliChem 

Trizma base       Sigma 

Tryptone (microbiology base)    AppliChem 

Tween-20        AppliChem 

Water (HPLC grade)      Sigma 

Yeast extract (microbiology grade)    AppliChem 

 

5.2 Reagents 

5.2.1 Reagents for molecular biology  
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10x PCR master mix      New England Biolabs 

AquaPlus Mix 40% (29:1) Acrylamide   AppliChem 

Bradford reagent      AppliChem 

Complete Mini Protease Inhibitors    Roche 

DNA ladder (100bp/1kb)     Life Technologies 

dNTPs        Peqlab 

Horse serum        Life Technologies 

Page Ruler Prestained Protein Ladder    Thermo Fisher Scientific 

PBS (10x)       Roche 

Ponceau S       Sigma 

Phosphatase Inhibitor                                                          Thermo Fisher Scientific 

Restore Western Blot Stripping Buffer   Sigma 

RIPA buffer       Sigma 

Super Signal West Pico ECL Substrate   Thermo Fisher Scientific 

5.2.2 Cell Culture reagents and media 

 

1x PBS Dulbecco, w/o Ca2+, Mg2+    Life Technologies 

B-27 Supplement (50x) (#17540)    Life Technologies 

β-mercaptoethanol 1000x (ME) (#31350-010)  Life Technologies 

Amphotericin B      Promocell 

Brain derived neurotrophic factor (BDNF)   Peprotech 

Borate acid                                                                          Sigma 

Tetra Borate Sodium                                                           Sigma 

Cilliary neurotrophic factor (CNTF)    Peprotech 

Cytosine beta-D-arabinofuranoside                                     Sigma 

DMEM (+ 4.5 g/L D-Glucose, +L-Glutami                            Life Technologies                                      
+Pyruvate) (#11995-065) 

DNAse I (2000 U/ml)      New England Biolabs 

DNAse I (2000 U/mg)                                                           Sigma 

Fetal Calf Serum (FCS)     Biochrom AG 

Gelatin  (2%)       Sigma 
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Geneticin (G418-Sulfate)     Life Technologies 

Glial cell-line derive neurotrophic factor (GDNF)  Peprotech 

Glucose                                                                               Sigma 

Glutamax                                                                             Life Technologies 

Hanks‟s Balanced Salt Solution (HBSS)                             Life Technologies 

HEPES        Life Technologies 

Insulin                                                                                  Life Technologies 

Leukemia inhibitory factor 1000x (LIF)   Millipore 

Lipofectamine® 2000      Life Technologies 

Minimum Essential Media                                                    Life Technologies 

Mitomycin C (MMC)      Sigma 

Neurobasal® Medium (1x) (#21103)    Life Technologies 

Non-essential amino acids 100x (NEAA)   Life Technologies 

OptiMEM® (1x) (#31985)     Life Technologies 

Penicillin/Streptomycin     Life Technologies  

Poly-D-Lysine       Applichem 

Poly-D-Lysine                                                                      Milllipore 

Pansera ES       PAN-Biotech 

Sodium Pyruvate                                                                 Life Technologies 

Transferrin                                                                           Merck 

Trypsin                                                                                 Sigma 

Trypsin/EDTA       Life Technologies 

Trypsin        Worthington 

5.2.3 Reagents for molecular biology  
 

Power SYBR Green Master Mix    Thermo Fisher Scientific 

PureYield Plasmid Miniprep System    Promega 

PureYield Plasmid Midiprep System    Promega 

ProFection mammalian transfection system                        Promega 

RNeasy Mini Kit      QIAGEN 

RNase-free DNase I Set     QIAGEN  
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Platinum Taq DNA Polymerase High Fidelity  Life Technologies 

RNase A       Life Technologies 

 

5.2.4 Antibodies 

5.2.4.1 Primary antibodies and staining reagents 
 

α- Actin beta, mouse (A5316)                                               Sigma 

α- Adenomatous Polyposis Coli (APC) (OP80)                    Merck 

α- Choline Acetyltransferase (ChAT), goat (AB144P)          Millipore 

α- Doublecortin (DCX) (AB2253)                                          Merck 

α- GAPDH, Rabbit (G9295)                                                  Sigma 

α- Glial Fibrillary Acidic Protein (GFAP) (G3893)                 Sigma 

α- GFP, mouse (ab13970)                           Abcam 

α- Homeobox protein cut-like 1 (CUX1) (sc-13024)              Santa Cruz 

α- c-Jun N-terminal Kinase (JNK) (9252)                              Cell Signalling 

α- Ki- 67 (ab15580)                                                                Abcam 

α- Myelin Basic Protein (MBP) (SMI94)                                 Covance 

α- Mitogen Activated Protein 3 Kinase 10 (MAP3K10)(NBP1-87737) Novus Biologicals 

α- NeuN (EPR12763)                                                            Abcam 

α- Neurocalcin delta, rabbit (12925-1-AP)    Proteintech 

α- Phosphorylated c-Jun N-terminal Kinase (pJNK) (sc-6254) Santa Cruz 

α- Tau, mouse (sc-390476)                Santa Cruz 

α- T- box brain 1 (TBR1) (ab31940)                                     Abcam 

α- Vesicular GABA Transporter (VGAT) (135011)               Synaptic Systems 

α- Vesicular Glutamate Transporter 1 (VGLUT1) (131004) Synaptic Systems 

        

5.2.4.2 Secondary antibodies and staining reagents 
 

HRP-conjugated goat α-mouse IgG    Dianova 

HRP-conjugated goat α-rabbit    Cell Signaling   

Goat α-mouse Alexa 488 IgG                          Thermo Fisher Scientific 
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Donkey α-rabbit Alexa 488                          Thermo Fisher Scientific 

Donkey α-goat Alexa 568 IgG               Thermo Fisher Scientific 

Goat α-mouse Alexa 568 IgG     Thermo Fisher Scientific 

 

5.2.5 Solutions and media 

5.2.5.1 Cell culture media 
 

All cell culture media was stored at 4°C.  

 

Hippocampal neuron culture basic media 

Minimum Essential ®Medium                1 L 

Glucose                              5 g 

NaHCO3         200 mg 

Transferrin         100 mg 

 

Hippocampal neuron culture plating media 

Hippocampal neuron culture basic media     100 ml 

FCS                                          10 ml 

L-Glutamine (200mM)        0.25 ml 

Insuline solution                   0.2 ml 

Pen/Strep                                                                                1.1 ml 

 sterile filtered before use 
 

 

Hippocampal neuron culture growth media 

Hippocampal neuron culture basic media     100 ml 

FCS                                          10 ml 

L-Glutamine (200mM)        0.25 ml 

B27                                           2 ml 

Pen/Strep                                                                                1.1 ml 

 sterile filtered before use 
 

HBSS solution 
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Sodium Pyruvate                                        5 ml 

HEPES buffer                               5 ml 

Pen/Strep                                                                                5.1 ml 

Commercial HBSS solution                                                    500 ml 

 adjust pH to 7.3-7.4 
 sterile filtered before use 

 

Digestion solution 

NaCl (5M)                                                          1.37 ml 

KCl (3M)                               83 µl 

HEPES buffer (1M)                                                                 1.25 ml 

Na2HPO4 (120 mM)                                                                 2.9 ml 

MilliQ water                                                                             to the final volume of 50 ml 

 adjust pH to 7.2 
 sterile filtered before use 

 

Dissociation solution 

MgSO4.7H2O                                                   148 mg 

HBSS solution                   50 ml 

 

Motor neuron culture media 

Neurobasal®Medium      500 ml 

B-27 supplement (50x)     10 ml 

L-Glutamine        5 ml 

Pen/Strep       7 ml 

Amphotericin B      1.25 ml 

BDNF        50 ng/ml 

CNTF        50 ng/ml 

GDNF        50 ng/ml 

 

Motor neuron plating media (for 50 ml) 

DMEM        45 ml   

FKS        2.5 ml 

Glucose (20%)      1.5 ml 
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Pen/Strep       0.7 ml  

Amphotericin B      0.15 ml 

 sterile filtered before use 
 7.5 g 

 autoclave and store at 4°C 

5.2.5.2 Solutions to work with DNA 
 

Tail lysis buffer (pH 7.4, for 500 ml) 

EDTA (0.5 M)       5 ml 

NaCl (5 M)       20 ml 

SDS (20%)       5 ml 

Tris/HCl (1 M, pH 8.5)     50 ml 

Deionized H2O      to the final volume of 500 ml 

 Proteinase K (200 µg/ml) added freshly before use 
 

TE-4 buffer (for 100 ml): 

Tris (1 M, pH 8.0)      1 ml 

EDTA (0.5 M, pH 8.0)      20 µl 

Deionized H2O      to the final volume of 100 ml 

 RNase A (50 µg/ml) added freshly before use 

5.2.5.3 Solutions to work with Proteins 
 

Ammonium Persulfate (APS) solution (10%, for 10 ml):  

APS        1 g 

Deionized H2O      to the final volume of 10 ml 

 aliquoted and stored at -20°C 
 

 

Blocking solution (6%, for 100 ml) 

Milk powder (low fat)      6 g 

TBS Tween buffer      to the final volume of 100 ml 

 

Electrophoresis buffer (10x, for 1 L) 

Trizma® base       30.29 g 
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Glycine       144.13 g 

SDS         10 g 

Deionized H2O      to the final volume of 1 L 

 

Laemmli buffer for SDS page (3x, for 10 ml) 

Tris/HCl (1M, pH 6.8)      2.4 ml 

Glycerol       3 ml 

SDS (20%)       3 ml  

Bromophenol blue      6 mg 

ß-mercaptoethanol      1.6 ml 

 

Separating gel for SDS PAGE (12%, for 10ml) 

Deionized H2O      4.85 ml 

AquaPlus Mix (39:1) Acrylamide    2.55 ml 

Tris (1.5 M, pH 8.8)      2.6 ml 

SDS (10%)       0.1 ml 

APS (10%)       0.1 ml 

TEMED       40 µl 

 

Stacking gel for SDS PAGE (for 4 ml) 

Deionized H2O      2.96 ml 

AquaPlus Mix (39:1) Acrylamide    0.52 ml 

Tris (1 M, pH 6.8)      0.52 ml    

SDS (10%)       40 µl 

APS (10%)       40 µl 

TEMED       4 µl 

 

TBS Tween buffer (for 5 L) 

Tris (20 mM)       12.1 g 

NaCl (137 mM)      40 g 

Tween-20 (0.5%)      25 ml 

Deionized H2O      to the final volume of 5 L 
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 adjust pH to 7.56 
 

Transfer buffer (for 5 L) 

Trizma® Base       12.1 g 

Glycine       56.3 g 

Methanol        1 L 

Deionized H2O      to the final volume of 5 L 

 

 

Tris-HCl (1 M, pH 6.8, for 100 ml) 

Tris-HCl       15 g 

Deionized H2O      to the final volume of 100 ml 

 adjust pH to 6.8 with 37% HCl 
 

Tris-HCl (1.5 M, pH 8.8, for 200 ml) 

Tris-HCl       45.25 g 

Deionized H2O      to the final volume of 200 ml 

 adjust pH to 8.8 with 37% HCl 
 

5.2.5.4 Solutions for histology and immunohistology 

 

Blocking solution (motor neurons for 10 ml) 

BSA (4%)       0.4 g 

1% Tween/1x PBS      2 ml 

1x PBS       to the final volume of 10 ml 

 

Ringer solution (for perfusion) 

NaCl (0.85%)       4.25 g 

KCl (0.025%)       0.125 g 

NaHCO3 (0.02%)                 0.1 g 

Deionized H2O                           to the final volume of 500 ml 

 

4% paraformaldehyde (PFA) in PBS (pH 7.3, for 1 L) 

PFA         40 g 
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Deionized H2O      to the volume of 900 ml 

 adjust pH to 7.3 
Deionized H2O      to the volume of 1 L 

 aliquot and store at -20°C 
 

 

Phosphate buffer (for immunostaining) 

 

0.4M 

 

NaH2PO4H2O                  27.6 g 

Na2HPO4H2O                  35.6 g 

Deionized H2O                            to the final volume of 500 ml 

 

 0.125M 

 

Mix 31.25 ml of 0.4M phosphate buffer with 68.75 ml of deionized water for final volume of 
100 ml 

 

DMSO solution (for storing perfused brain and brain sections) 

Phosphate buffer (0.4M)                31.25 ml 

Glycerin                  20 ml 

DMSO                                        2 ml  

Deionized H2O                                                           to the final volume of 100 ml  

 

Gelatin solution (for mounting brain sections) 

Gelatin                                                   0.2 g 

Tris-HCl (pH 7.6)      to the final volume of 100 ml 

 

5.2.6 Primers and oligoneclueotides 

 

Sequences for primers purchased as lyophilized from Integrated DNA Technologies. Stock 

solutions at a concentration of 100 pmol/µl were prepared from lyophilized products and 

subsequently diluted to 10 pmol/µl.   
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Table 1: Primers for genotyping 

Application Name  Sequence Amplico

n  

length 

(bp) 

Annealin

g temp 

(°C) 

Genotyping Ncald 

mut 

fwd CGGTCGCTACCATTACCAGT 824 60 

  rev GCATGTGTGACAACAGACCC 

 Ncald 

wt  

fwd AGCATTTCTGCCTTGCTGAT 201 58 

  rev TTTCCCTTACGGGGATGCT 

 

 

5.2.7 Plasmid 

 

pEGFP-N1 plasmid with vector backbone of pEGFP-N and a CMV promoter, a generous gift 

from Kononeko lab (CECAD, Cologne) was used in the work presented in this thesis. The 

vector can be ordered at Snap-gene. 

5.2.8 Software packages and internet database 

 

 1D Scan EX    Scanalytics Inc.   

(densitometric analysis)  

 EndNoteX7    Thomson Research  

(reference organization) 

 Fiji (ImageJ)    Open Source  

(image analysis) 

 GraphPad Prism     GraphPad Software 

(graph design, statistical analysis) 

 Inkscape      Inkscape Community 

(figure design)      

 Kallisto                           Open source  

(RNA sequencing analysis) 

 MaxQuant               Open source  

(mass spectrometry analysis) 

 Office 2013    Microsoft  

(text processing, data analysis)   

 OMERO                Open source 

(image analysis)   

 Quantity One 4.5.1   Bio-Rad 
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(image acquisition and analysis) 

 ZEN      Zeiss 

(image acquisition and analysis) 

 Ensembl      http://www.ensembl.org/  

 GeneCards     http://www.genecards.org/ 

 Medline      https://www.ncbi.nlm.nih.gov/pubmed 

 NCBI      http://www.ncbi.nlm.nih.gov/  

 OMIM      http://www.ncbi.nlm.nih.gov/omim  

 UniProt               http://www.uniprot.org/ 

5.2.9 Mice 

 

Ncald KO/KO – homozygous knockout animals were acquired from The Jacksons Laboratories.  

Detailed description of the design of mouse has been discussed in Figure 6 

5.3 Methods 

 

Unless stated otherwise, all molecular biology methods were adapted from the standard 

reference work “Molecular Cloning: A Laboratory Manual (volume 1-3)” by Joseph Sambrook 

and David W. Russell. The culture, transfection and selection of ES cells was performed 

according to the guidelines from the work “Laboratory protocols for conditional gene 

targeting” by Raul M. Torres and Ralf Kühn.   

5.3.1 Working with nucleic acids 

5.3.1.1 RNA isolation 

 

RNA was isolated from tissues (hippocampus, spinal cord and piece of cortex weighing max 

30 mg), by incubating them in RLT buffer (Qiagen) supplemented with 10 µl/ml β- 

mercaptoethanol. Next, the samples were homogenized using automated homogenizer 

(Peqlab) and transferred using RNAse free filter tips to sterile tubes. Extraction of RNA was 

performed using RNeasy Mini Kit (Qiagen) according to the manufacturer‟s protocol. 

Genomic DNA contaminations were prevented in all cases by incubating samples in DNAse I 

digestion for 20 min at RT. Finally, RNAse free water was used to extract RNA and samples 

were stored at -80°C. The QuBit RNA assay Kit was used to measure exact RNA 

concentrations according to the manufacturer‟s protocol. Briefly, 1 µl RNA BR reagent was 

mixed with 199 µl RNA BR buffer to prepare a master mix. Reference RNA standards were 

used to calibrate the QuBit machine, 10 µl of each standard were mixed with 190 µl of master 

mix. Finally, RNA concentration by 1 µl RNA sample were added in 199 µl master mix. After 

incubating for 2 min at RT, the RNA concentrations were calculated using the RNA broad 

range assay of the QuBit system.  

https://www.ncbi.nlm.nih.gov/pubmed
http://www.uniprot.org/
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5.3.1.2 Isolation of DNA 

 

For genotyping the animals, tail tip/ ear punch were collected. The tissues were immersed in 

Tail lysis buffer (493 µl) and proteinase K solution was (7 µl, 200 µg/ml) added freshly. The 

mixture was incubated at 55°C on a shaker/incubator until the tissue completely dissolved. 

Suspension containing fully dissolved tissue was centrifuged at maximum speed (16200 x g) 

for 5 min to pellet extra debris. The clear supernatant was transferred in a new 1.5 ml tube 

containing 500 µl isopropanol. By gentle shaking (12 times gentle flipping of tube) and 

centrifugation for 10 min (13000 rpm) DNA was precipitated. The pellet was washed with 

70% ethanol (200 µl) to remove residual salt by 5 min centrifugation (13000 rpm) whereas 

the supernatant was discarded. The ethanol was discarded and the pellet was dried for 10 

min in a vaccum concentrator centrifuge and resuspended in TE (100 µl) with RNase at 37°C 

for approx. 1 h. subsequently, a genotyping PCR was performed using 1 µl of the DNA 

suspension. 

5.3.1.3 Polymerase Chain Reaction (PCR) 

 

A polymerase chain reaction was used to amplify the specific genomic fragment for 

genotyping, PCR developed in 1980s by Kary Mullis (Mullis et al., 1986) is one of the most 

important and fundamental molecular technique. It is an enzymatic DNA amplification 

technique that initially uses complementary oligonucleotides (primers) which flank the DNA 

fragment of interest. Subsequently, a thermostable DNA polymerase termed Taq polymerase 

from Thermophilus aquaticus is used to amplify the DNA fragment of interest. Taq 

polymerase synthesizes new DNA starting from the 3‟ end of a single-strand DNA template. 

A PCR reaction mix is composed of: a template DNA (mainly genomic DNA, but also cDNA), 

target specific primers, Taq polymerase, MgCl2 necessary co-factor for polymerase, all 

dNTPs to synthesize the PCR product, enzymatic buffer and water. Currently, many 

manufacturers offer all PCR components (except template DNA and primers) as convenient 

and inexpensive ready-to-use Master mixes which are optimized for a wide range of 

annealing temperatures. For genotyping, such a 2x Master mix (New England Biolabs) was 

routinely used. An exemplary PCR composition with individual components or with a Master 

mix is given in Table 2.  
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Table 2: A standard 20 µl PCR composition  

Left side – with individual components, right side – with 2x Master Mix 

Components Volume [µl] Components Volume [µl] 

10x PCR buffer 2  

2x Master mix 

 

10 
100 mM of dNTP 3 

MgCl2 0.75 

Taq polymerase 0.15 

ddH2O 11.1 ddH2O 7 

Primer fwd (10 pmol) 1 

Primer fwd (10 pmol) 1 

Template DNA 1 

 

Each PCR consists of a series of three steps: denaturation, primer annealing and elongation; 

these three steps together constitute one PCR cycle. Each step requires different 

temperature conditions: the denaturation is performed at 95°C to separate two strands of the 

template DNA, the primer annealing depends on the sequence of an individual primer 

(specifically on its length and CG/AT proportion) and the elongation depends on the amplicon 

length, as the amplification speed of the Taq polymerase is ~ 1 kb/min. An exemplary PCR 

program is given in Table 3.  

 

Table 3: A standard thermocycler PCR program 
 

Step Duration Temperature [°C] 

1. Initial denaturation 5 min 95 

2. Denaturation 30 sec 95 
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3. Primer annealing 30 sec Primer dependent, 

usually 58-62°C 

4. Elongation 1 min per 1 kb 72 

Repeat steps 2-4 for 35x 

5. Final elongation 10 min 72 

Cooling - 4 

 

5.3.1.4 Agarose gel electrophoresis 

 

In a agarose gel DNA fragments are separated depending on their size using an electric 

field. As the DNA molecules carry negative charge, they migrate towards positively charged 

anode in the gel.  

Generally 1% gels were prepared by dissolving agarose powder in 1x TBE buffer by heating 

the solution in a microwave. Once the agarose was completely dissolved, the solution was 

cooled down on a stirrer and ethidium bromide solution was added into agarose gel solution 

with a final concentration 1 µg/ml. In parallel, a gel chamber was set with well combs and the 

agarose solution was poured into the chamber to solidify. Before loading the samples, the 

agarose gel chamber was filled with 1x TBE and then the combs were removed to load the 

samples in the empty wells. The PCR samples (along with loading dye) were cautiously 

pipetted into the wells of agarose gel. Finally, the gel was run for about 20-30 min at 100-120 

V to separate the bands of different sizes and was imaged using the ChemiDoc XRS Imaging 

System from Bio-Rad.  

5.3.2 Working with proteins  

Proteins being highly sensitive biomolecules are easily degraded at temperatures higher than 

ice-cold, therefore all protein work was carried out at ice-cold temperatures (4°C). 

Additionally, the lysis buffer was supplemented with a cocktail of protease inhibitors (Roche) 

and phosphatase inhibitor (Thermo Scientific).  

5.3.2.1 Isolation of proteins from tissues 

 

The tissues were collected during mice dissection and snap-frozen for protein isolation 

without any degradation. Using Precellys24 device (Peqlab) the tissue samples were 
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homogenized for protein isolation: the sample was placed in a 2 ml eppendorf with ceramic 

beads and cold RIPA buffer in sufficient amount. The homogenization of the tissues was 

carried out for 25 sec at 5500 rpm. The samples were further sonicated for 5 minutes using 

Bioruptor® Plus device (Diagenova). Sonication fragments the DNA and thereby prevents 

smearing on SDS-PAGE blot. Lastly, the tissue lysate was centrifuged at 4°C for 30 min at 

13000 rpm and clear supernatant was collected for further analysis. 

5.3.2.2 Bradford assay  

 

Bradford assay was used to measure the protein concentration in the tissue lysates 

(Bradford, 1976).  Upon binding to protein, a shift takes place in Bradford reagent absorption 

maximum from 470 to 595 nm, which can be measured photometrically. A photometer was 

first calibrated for the Bradford assay using a standard curve of BSA dilutions. 1 µl of the 

lysate of unknown protein concentration was mixed with 499 µl of Bradford solution and 

incubated for 15 min at room temperature; in parallel, a blank containing 1 µl of the lysis 

buffer (routinely RIPA buffer) with 499 µl of the Bradford solution was prepared. First the 

absorption of the blank, and then of all samples was measured at a wavelength of 595 nm 

and the protein concentration was calculated from the measured values by comparison to the 

BSA standard curve. 

5.3.2.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

 

The protein lysates were run on SDS-PAGE followed by Western blot analysis. First, a 

certain required amount of protein lysate (20-40 µg) was mixed with 3x Laemmli buffer and 

denatured at 95°C for 5 min. The proteins were given a strong negative charge exceeding 

their native charge by addition of the SDS both in the Laemmli buffer and the polyacrylamide 

(PAA) gel gives. This allows the separation of all proteins irrespective of their intrinsic charge 

solely based on their molecular weight.   

A 12% PAA separating and a stacking gel were prepared in a 0.5 mm spacer glass and a 

thin glass plates. These two gel types differ in their composition by the PAA concentration 

and pH. The stacking gel contains less PAA and forms larger pores, so that the proteins can 

migrate easily and concentrate at the border between both gels. The separating gel contains 

more amount of PAA and therefore forms smaller pores, thus bigger proteins migrate slowly 

and can be identified in the upper part of the SDS-PAGE gel, while smaller proteins move 

easily to the bottom part of the gel.  

The separating gel was poured first and covered with isopropanol which helps to form 

smooth egde of the gel. One the gel was polymerized, the isopropanol was washed out. 
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Subsequently, the stacking gel was pipetted on top of the solidified separating gel and well 

combs were carefully inserted.  

The protein lysates were loaded into the wells along with 3x Laemmli loading buffer of the 

stacking gel. Additionally, a protein ladder PAGE Ruler Plus (Thermo Fisher Scientific) was 

loaded a marker to estimate the size of analyzed proteins. PAA SDS-PAGE gel 

electrophoresis was performed in the Mini-Protean 3 cell system (Bio-Rad) at 50-100 V and 

partially filled with 1x electrophoresis buffer.  

5.3.2.4 Western blot  

 

Once seperated by SDS-PAGE according to size, the samples were transferred from the gel 

to a nitrocellulose membrane (Hartenstein) by semi dry or wet blotting in the transfer system 

(Bio-Rad). The gel transfer was arranged from the following components (all of them 

previously equilibrated in the transfer buffer): a sponge pad (only for wet transfer), a 

Whatman paper layer, the PAA gel with separated proteins, the nitrocellulose membrane, 

again a Whatman paper layer and finally a sponge pad (only for wet transfer). All 

components were fixed in a transfer stack and placed in a transfer chamber fully filled with 

transfer buffer. The protein transfer was carried out at 4°C for 2 h at 110 V. During the 

transfer negatively charged proteins migrate to the positively charged anode in the electric 

field and adhere to the membrane by hydrophobic interaction.  

5.3.2.5 Immunochemical detection of proteins 

 

The membrane with freshly transferred proteins was washed with TBS-T to remove residual 

methanol and stained with the Ponceau solution to visualize the quality of the transfer. The 

membrane was washed with TBS-T to remove the Ponceau dye and  was incubated in the 

blocking solution (6% milk solution) for at least 1 h. Subsequently, the membrane was 

incubated overnight with the primary antibody diluted in 3% milk solution at 4°C. After the 

sufficient incubation time, the membrane was washed with TBS-T 3x 10 min each. 

Subsequently, membrane was incubated with the secondary antibody solution. The primary 

and secondary antibodies with the respective dilutions and incubation times are listed in 

Table 4.  Finally, the membrane was again washed 3x 10 min with TBS-T and incubated for 

5 min in the SuperSignal® Wets Pico Chemiluminiscent Substrate (Thermo Fisher Scientific) 

in order to visualize the proteins stained with the specific antibodies. The visualization was 

performed using ChemiDoc XRS Imaging System (Bio-Rad).   
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Table 4: Primary and secondary antibodies used for protein detection 

 

Antibody Dilution  Incubation time 

HRP anti-ß-actin 1:10000 2 h 

anti-GAPDH 1:5000 2 h 

anti-NCALD 1:1000 o.n 

anti-MBP 1:1000 o.n. 

anti-MAP3K10 1:500 o.n. 

anti-pJNK 1:500 o.n. 

anti-JNK 1:1000 o.n. 

Secondary antibody 

anti-mouse-HRP 1:5000 1 h 

anti-rabbit-HRP 1:5000 1 h 

 

5.3.2.6 Co-immunoprecipitation 

 

This technique was performed by Dr. Seyyedmohsen Hosseinibarkooie, postdoc in AG Wirth. 

The brain and spinal cord samples were collected at P30 and P14, respectively (From both 

wild type and NcaldKO/KO mice). The tissue samples were homogenized and lysed in the 

NP40 based lysis buffer (50mM Tris-HCl, 1% NP40, 100mM NaCl, 2mM MgCl2 including 

protease inhibitor (Roche).  10µl of Control rabbit IgG (SantaCruz) and NCALD polyclonal 

antibody were used for immunoprecipitation using protein A paramagnetic MicroBeads 

(Miltenyi) following the manufacturer‟s instruction. Finally, the IP columns were washed at 

least 6 times with lysis buffer. The bound fraction of proteins was directly used for further 

mass spectrometry analysis.  

5.3.2.7 Mass spectrometry and data analysis  
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This technique was performed by Dr. Seyyedmohsen Hosseinibarkooie, postdoc in AG Wirth. 

All samples were analysed on a Q-Exactive Plus (Thermo Scientific) mass spectrometer 

coupled to an EASY nLC 1000 UPLC (Thermo Scientific). The protocol used in this work was 

followed from a published study (Dafinger et al., 2018).Peptides were loaded with solvent A 

(0.1% formic acid in water) onto an in-house packed analytical column (50 cm × 75 µm I.D., 

filled with 2.7 µm Poroshell EC120 C18, Agilent). Peptides were chromatographically 

separated at a constant flow rate of 250 nL/min using the following gradient: 5-30% solvent B 

(0.1% formic acid in 80 % acetonitrile) within 66 min, 30-50% solvent B within 13 min, 

followed by washing and column equilibration. The mass spectrometer was operated in data-

dependent acquisition mode. The MS1 survey scan was acquired from 300-1750 m/z at a 

resolution of 70,000. The top 10 most abundant peptides were isolated within a 1.8 Th 

window and subjected to HCD fragmentation at a normalized collision energy of 27%. The 

AGC target was set to 5e5 charges, allowing a maximum injection time of 120 ms. Product 

ions were detected in the Orbitrap at a resolution of 35,000. Precursors were dynamically 

excluded for 20 s. 

All mass spectrometric raw data were processed with Maxquant (version 1.5.3.8) using 

default parameters. Briefly, MS2 spectra were searched against the Uniprot MOUSE.fasta 

(downloaded at: 18.47.2017) database, including a list of common contaminants. False 

discovery rates on protein and PSM level were estimated by the target-decoy approach to 

1% (Protein FDR) and 1% (PSM FDR) respectively. The minimal peptide length was set to 7 

amino acids and carbamidomethylation at cysteine residues was considered as a fixed 

modification. Oxidation (M) and Acetyl (Protein N-term) were included as variable 

modifications. The match-between runs option was enabled. LFQ quantification was enabled 

using default settings. 

5.3.3 Working with mice and mouse tissues 

5.3.3.1 Mouse strain 

We used highly homozygous inbred mouse strains, as the genetic background of each strain 

has been shown to affect the gene expression and therefore the phenotypic outcome (Linder, 

2006). In this work experiments were performed on C57BL/6N mice with a genetically pure 

background. All mice were housed 12 h day/night cycle in the mouse facility of the Institute of 

Genetics, Cologne as well as Center for Molecular Medicine, Cologne. The experiments 

used in this work are described in detail in an animal experimental protocol which was 

permitted by the local animal protection committee under the reference number 84-

02.04.2014.A126. Each mouse was humanly euthanized according to protocols approved by 

the Landesamt für Natur, Umwelt and Verbraucherschutz of Northrhine Westfalia (LANUV 

NRW).  
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5.3.3.2 Ncaldko/ko mice 

 

The B6N.Cg-Ncaldtm1.1(KOMP)Vlcg/J mice were acquired from the Jackson Laboratory 

(Stock number #018575). These mice were generated using the VelociGene strategy 

developed by the Regeneron Company by the Knockout Mouse Phenotyping Program 

(KOMP2) to target most difficult genes. The VelociGene cassette ZEN-Ub1 (beta-

galactosidase coding sequence from E. coli lacZ gene; polyadenylation signal; loxP site; 

promoter from the human ubiquitin C gene; neomycin phosphotransferase; polyadenylation 

signal; loxP site) was inserted to replace 28620 bp between positions 37298567-37327186 of 

chromosome 15 (Genome Build37) deleting all exons and intervening sequences. 

Subsequently, the neomycin cassette used for colony selection was excised by Cre 

expression. The NcaldKO/KO mice were viable and fertile, but in our observation the fertility of 

homozygous knock-out mice was severely diminished compared to wildtype. Breeding of 

Ncaldko/ko animals was very inefficient and produced infrequent litters, which did not seldom 

survived due to lack of parental care. Therefore, NcaldKO/WT animals generated by cross 

breeding wildtype mice with NcaldKO/KO mice were used to for breeding with efficient breeding 

performance. Moreover, breeding of NcaldKO/WT produced wildtype, NcaldKO/WT and NcaldKO/KO 

littermates which were used for further experiments 

5.3.3.3 Generation of primary motor neurons 

 

Primary motor neurons culture were prepared from spinal cords of E13.5 of embryos 

following the previously published protocol . The beginning of pregnancy was determined by 

regular plug check. On E13.5, the pregnant female was sacrificed and embryos were 

carefully seperated from the uterus. Subsequently, the embryo was placed on a Sylgard-filled 

Petri dish filled with 1x PBS. In order to open the embryo dorsally, it was carefully fixed 

ventrally using forceps and fine minutien pins wiothout damaging the dorsal part of embryo. 

Subsequently, the skin of the embryo above the spinal cord was carefully removed and spine 

was released by scratching out along the vertebrae with sharp pins. Surrounding glial cells 

and meninges membrane were neatly removed without damaging the spinal cord. The clean 

spinal cord tissue was place in a 1.5 ml tube with 500 µl of 1x PBS and centrifuged at 4°C 

and 1000 x g for 10 min.  

All work with cell lines was performed in a laminar flow culture hood in sterile conditions. 

Additionally, antibiotics and anti-fungal agents were added to cell culture media to prevent 

contamination. Cells were placed in sterile cell incubators at 37°C with 5% CO2. Following 

this, the 1x PBS was pipetted off and the spinal cord was resuspended in 500 µl of 1% 

Trypsin in 1x PBS and incubated for 10 min at 37°C. Afterwards, resupended spinal cord was 
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centrifuged again for 7 min at 4°C and 1000 x g. Finally, the supernatant Trypsin solution 

was removed and 500 µl of motor neuron plating medium with DNase I (100 U/ml) was 

added and the tissue was completely dissolved by slow and repetitive pipetting. This is a 

crucial step as even little rigorous pipetting can damage motor neurons. After 2 min 

incubation at RT, the undissolved debris settled at the bottom of the tube and the cell 

suspension was transferred to a fresh 1.5 ml tube. 10 µl of cell suspension was pipetted out 

and the cells were counted using the Neubauer chamber. 75.000 cells/well were plated on 

poly-D-lysine (PDL) coated coverslips in a 12-well plate containing 2 ml of plating medium 

(For immunofluorescent staining to determine axonal length). Increasing the cell density did 

not allow visualization of distinct axons, whereas decreasing the seeding density did not 

allow the cells to grow properly due to lack of cell to cell interaction. Next day, the plating 

medium was replaced with Neurobasal® medium with growth factors. For the staining, the 

motor neurons were cultured for 4 days.  

5.3.3.4 Generation of primary hippocampal neurons 

 

The protocol used for this experiment has been published earlier (Kononenko et al., 2017). 

Post-Natal (P1-P4) pups were sacrificed without damaging their heads. The brain were 

carefully removed from the heads in a sterile dissection hood and collected in a small petri 

dish containing 20% fetal calf serum (fcs) dissolved in Hank‟s Balanced Salt Solution 

(HBBS). Hippocampi from both sides of the cortex were dissected under a dissection 

microscope and placed in a dish containing 20% FCS dissolved in HBBS. This dish needs to 

be kept on top of ice cooked metal plate, do prevent any degradation of tissue. The 

Hippocampi were carefully cut into small pieces with sharp blades. This step is crucial, as 

rough handling of the blade can damage neurons. Following this, the small pieces of 

hippocampi along with the 20% FCS HBSS solution were transferred to a 15ml falcon tube 

using 5ml glass pipette. Once the small pieces of hippocampi settled down the tube, the 

supernatant solution was aspired carefully.  Hippocampi pieces were washed two times with 

5 ml of 20% FCS HBBS solution and the two times with 5 ml HBSS supplemented with 

Trypsin (10 mg/2ml) and DNAse I (10 µl/2ml) and filtered to be added on the hippocampi 

after aspirating the last washing solution. The tube with Hippocampi pieces in digestion 

solution was incubated in the sterile incubator for 15 minutes at 37°C. Subsequently, the 

hippocampi pieces were washed two times with 5ML of 20% FCS HBSS solution and then 

two times with 5ML HBSS supplemented with penicillin and streptomycin. After aspirating the 

last washing solution 2ml of dissociation solution freshly supplemented with DNAse I (10 

µl/2ml) was added on the hippocampi pieces. Glass Pasteur pipette was carefully melted at 

the tip, to prepare a very small opening which allows passing of more or less single cell 

suspension. Such a glass pipette was used to homogenize the hippocampi pieces into single 
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cell suspension by gently pipetting up and down. Homogenized cell suspension was 

centr4ifuged at 300 g at 4°C. Supernatant was carefully aspirated, this step is crucial as the 

pellet is very loose and can easily get aspirated along with the supernatant. Cells were 

diluted in the desired amount of plating media and 10 µl of cell suspension was pipetted out 

and the cells were counted using the Neubauer chamber. 70.000 cells/well were plated on 

poly-D-lysine (PDL) coated coverslips in a 6-well plate and left to firmly attach onto the 

coverslip surface for one hour. Subsequently, 2 ml of plating medium was added onto each 

well. Next day the plating medium was replaced with growth medium. Hippocampal neurons 

were cultured for 14 days.  

5.3.3.5 Transfection of primary hippocampal neurons 

 

The protocol used for this experiment has been published earlier (Kononenko et al., 

2017).The hippocampal neurons were transfected at DIV 7-9 using the calcium phosphate 

transfection kit from Promega and following the manufacture‟s protocol. The HBSS solution 

and the NBA media were equilibrated by placing them in the cell culture incubator for 1 h 

before the transfection. Osmolarity of HBSS and NBA solution used for transfection needs to 

be adjusted to the osmolarity of growth media of the cells to be transfected, otherwise the 

cells may not survive the harsh transfection conditions. Therefore, the osmolarity of HBSS 

and NBA was measured and adjusted to the cell growth medium osmolarity. Precipitation 

reaction mixture was prepared by mixing the DNA (Plasmid) that needs to be transfected into 

the cells, CaCl2 and water in one tube and corresponding amount of HEPES in 14 ml falcon 

tube. The DNA, CaCl2 and water solution was added dropwise into HEPES solution along 

with gentle stirring on the vertex in 2-3 minutes and was incubated for 20 mins in dark. 

Coverslips with hippocampal neurons were transferred into a plate containing NBA and about 

100 µl of precipitates were added on top of the coverslips. This plate was incubated for 30 

minutes in the cell culture incubator. Afterwards, the transfection media was aspirated from 

the plate and coverslips were washed to remove any precipitate which sediment on the 

neurons with pre-warm HBSS solution. Finally, the coverslips were brought back to original 

plate with growth medium. 

5.3.3.6 Immunofluorescent staining of primary neurons 

 

The proteins of interest are specifically detected using a primary antibody, which is 

subsequently visualized by the binding of a fluorophore-conjugated secondary antibody. 

Cells were seeded out and cultured on coverslips for immunofluorescent staining. The cells 

grow in culture incubator for a given time, depending upon each experiment. To start with 

immunostaining, cells were washed with 2x PBS and fixed with 4 % PFA (supplemented with 
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4 % sucrose in case of motor neurons) for 15 min . After the fixation cells were washed again 

and permeabilized with 1 % Triton detergent in 1x PBS for 5 minutes. Subsequently, cells 

were blocked with 4 % BSA and 0.2 % Triton in PBS for 1 h at room temperature. After 

blocking Primary antibodies (listed above) were diluted in the blocking solution and pipetted 

on the cells and incubated o.n. at 4°C. Next day, the cells were washed with 1x PBS 3x for 5 

min and then incubated with secondary antibodies in a dark chamber (listed above) at room 

temperature diluted in 1x PBS tor 1h. Following this, the cells were again washed to remove 

residual salts 3X with 1X PBS and 1X ddH2O. Finally, the coverslips were mounted on glass 

slides with Mowiol and stored at 4°C for further microscopic analysis.  

5.3.3.7 Gavage treatment 

Ncald homozygous knockout animals were treated with the JNK inhibitor SR3306 as well as 

with the vehicle solution. As this drug has been shown to have neuroprotective effects upon 

its oral administration in mice, the same protocol was followed (Chambers et al). SR3306 

was dissolved in 45% W/V solution of beta- Hydroxy propyl Cyclodextrin and 0.07% HCl and 

the same solution without SR3306 to be used as the vehicle control. Two months old age 

point has also been used in Muhammad et al for the treatment of JNK inhibitor which showed 

the increase in adult neurogenesis, therefore we choose the same age for our treatment. We 

treated the animals orally using the well-established oral gavage method with 7 doses, twice 

on day one and once on days 2-6 (as described in Chambers et al). As the DCX expression 

in the newly born neurons in mice brain, peaks at about 2-3 weeks after the beginning of 

differentiation NSCs, we started the treatment in 2 months old animals and waited for 3 more 

weeks after the treatment has finished to sacrifice the animal.  

5.3.3.8 Transcardial perfusion fixation  

 

Fixation of larger tissues like whole brain does not work well if directly placed in a fixative 

solution, as the fixative cannot reach the regions of the tissue. Therefore, whole animal 

perfusion fixation allows usage of the physiological circulatory system of the animal to evenly 

distribute the fixative inside tissues like brain (Gage et al., 2012).Moreover, perfusion of the 

animal cleans the blood from the body organs before fixing them thereby supporting cleaning 

background signals in immunohistological analysis which may arise due to blood vessel.  

Animals were anesthetised with specific amount of narcotic solution (0.1 ml/10 g 

ketamine/xylazine) based on their body weight. Once the animals reach a sleeping state 

termed surgical plane, where they no longer respond to strong pinching stimuli between their 

toes, they were fixed on a Styrofoam plate. The skin and muscles above the heart were 

carefully cut open to expose the heart and a very fine needle (27 G) connected to the 

perfusion tube was inserted into the left ventricle of heart. Subsequently, a small cut was 
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made on the right atrium of the heart to allow the outflow of the blood. The perfusion pump 

was set at low speed (7ml/min) to allow drop by drop flow of the perfusion solutions. Firstly 

freshly prepared ringer solution was pumped through the body to clear the blood, color of the 

tongue and liver was used to observe the clearance of the blood. After sufficiently clearing 

the blood from the body, 4 % PFA solution was pumped through the tube. The efficiency of 

fixation was measured by the observed stiffness of head and tail, when sufficiently stiff 

perfusion was stopped and the brain were carefully removed using special Friedman-

pearson rongeurs. The isolated brain were transferred in a tube containing 4 % PFA at 

incubated overnight at 4 ° C and then next day were transferred to 2 % DMSO solution to be 

stored until further processing.  

5.3.3.9 Serial sectioning and Nissl staining of brain sections 

 

PFA fixed brains in DMSO solution were sectioned using a freezing microtome device. The 

microtome stage was cooled down to -30°C. Tissue-tek (Hartenstein) solution was frozen to 

prepare a raising base on stage and brain was fixed on this base. Stage was covered 

completely with finely crushed dry ice to freeze the whole brain. Once frozen and solid, 40 

um thick brain sectioned were generated with a sharp blade adhered to the microtome and 

each section was collected in a series of 6 tubes containing 2 % DMSO solution. These 

tubes were stored in -80°C until further processing.  

In this study Nissl staining was used to stain brain sections for a gross histological analysis of 

brain morphology. Sections were first incubated in Cresyl violet solution for 8-10 minutes 

then washed 3 times with water and subsequently were dehydrated in a series of increasing 

EtOH concentrations ( 50 % , 70 % , 80 % , 96 % + acetic acid , 100 % , 2 min each ) and 

lastly were incubated in Xylol. Finally, sections were mounted with Entellan and a coverslip.  

 

5.3.3.10 Immunohistochemical staining of brain sections  

 

For immunofuorescent staining of brain sections, firstly the sections were washed 3X 10 min 

each, to remove any DMSO solution in which they were stored. Similar dorso-ventral brain 

sections were selected from wildtype and NcaldKO/KO. After washing, the brain sections were 

permeabilized using a 1 % triton solution in phosphate buffer (0.125 M) for 2 h. Following this 

the sections were incubated with the blocking solution (3 % BSA and 0.3 % triton X) for 1 h. 

Subsequently, the sections were incubated with primary antibodies diluted in blocking 

solution at 4 °C overnight. Next day sections were washed 3X 5 min each, with phosphate 

buffer (0.125 M) and then incubated with secondary antibodies diluted in blocking solution for 

2 h. Finally, the sections were washed 3X 5 min each and then mounted on glass slides with 
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Mowiol. Slides were stored at 4°C until further microscopic analysis. The following antibodies 

were used: anti-NCALD (1:100, 12925-1-AP, Proteintech), anti-NeuN (1:500, EPR 12763, 

Abcam), anti- TBR1 (1:500, ab31940), anti- CUX1 (1:200 sc-13024, Santa Cruz), anti- GFAP 

(1:500, G3893, Sigma), anti- Ki-67 (1:500, ab15580 Abcam), anti- DCX (1:500, AB2253, 

Merck), anti- APC (1:500, OP80, Merck), anti- MBP (1:1000 SMI94, Covance).  

5.3.3.11 Microscopic image acquisition and analysis 

 

All bright field images of Nissl stained brain sections were imaged using high throughput 

automated SCN400 Slide Scanner (Leica) whereas fluorescent images of brain sections with 

Z stacks (1 um thickness) were acquired using laser scanning confocal microscope SP8 

(Leica). On other hand, all fluorescent images of fixed cells were acquired with a fully 

motorized fluorescence microscope AxiolmagerM2 equipped with an AxioCam MRm camera 

and an ApoTome device for optical sectioning (Zeiss). The images included in this thesis 

represent the maximum intensity projections of the Z stacks. The image analysis was 

performed with the Aperio ImageScope (Leica), ZEN (Zeiss), Fiji software (Open Source) 

and OMERO software.  

5.3.3.11.1 Hippocampal culture colocalization analysis 

 

Hippocampal neurons were imaged with high resolution (40X) using AxiolmagerM2 and 

images were analysed using ImageJ software for colocalization analysis of NCALD with 

synaptic markers. As the co-localization was visibly restricted to certain punctas, a random 

stretch of neurites with certain observable punctas with co-localization (yellow) signal was 

chosen. A line was drawn on this stretch and ImageJ plot profile function was used for each 

channel individually to calculate the intensity plot through the line. These intensity values was 

plotted against the XY value on the line for each channel in GraphPad Prism 6 software. 

Subsequently, the plots for NCALD and each synaptic marker were superimposed. The 

asterisks represents overlapping peaks of each channel, thus showing the co-localization  

5.3.3.11.2 Analysis of sub granular zone nissl staining  

 

OMERO software was used for measuring the SGZ length. Draw polyline function was used 

to accurately draw a line over the SGZ length and draw line function was used to measure 

the cerebral length of whole section. This method has already been published (Antonelli et 

al., 2018).  

5.3.3.11.3 Sholl Analysis  
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Dendritic complexity of cultured hippocampal neurons was done using ImageJ software. 

Cells were imaged centring the cell soma in each image and then a line was drawn from 

centre of cell soma until longest neurite length. Sholl analysis function of ImageJ was used to 

draw virtual concentric circles around the cell soma until the length of manually drawn line, 

with specified interval distance. Number of intersections at each circle was calculated as a 

measure of dendritic complexity and plotted against distance from soma in GraphPad Prism 

6 software. 

 

5.3.3.11.4 Cell density analysis  

 

Cell density for NeuN and DCx positive cells in the brain sections was calculated using 

ImageJ software. Three different ROls were drawn across DG and CA3 (for NeuN) or hilus 

(for DCX) and the plane with highest number of cells was selected for each image and 

number of cells was counted using Cell counter function in ImageJ. As the thickness of each 

stack was 1 um, the dimensions of ROI (length * breadth) were multiplied to obtain the 

volume of each ROl and then number of cells in the ROI were divided with this volume to 

obtain the cell density.  

5.3.3.11.5 Intensity analysis 

 

Intensity of DCX and nestin staining for each brain section was measured using ImageJ 

software. All images were converted to 8 bit type and certain intensity threshold which 

sufficiently superimposed immunostaining, was set using a wildtype section. Each image was 

opened with the same threshold and the stained area of image was measured. 

5.3.3.11.6 Motor neuron morphological analysis 

 

Motor neuron (MN) axon length was measured by tracing the longest neurite in each cell with 

„spiral line‟ tool of ZEN software (Ziess) whereas MN branching was calculated by manually 

counting the number of outgrowth on the longest axon. 

5.3.3.12 Rotarod 

 

Rota rod is a motoric performance test where the mice are placed on a rotating rod and are 

allowed to run on a rod for about 300 seconds. Amount of time (in seconds) which a mice 

spends running on the rod before it falls off the rod is calculated a sensing metallic floor 

below the rods and is automatically stored in the connecting computer. The amount of time 
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that each mice spend on the rotation rod gives a measurement of their balance, coordination, 

physical condition and motoric abilities. 8 weeks or 12 week old animals were placed on such 

a machine and the seconds spent on the rod were calculated for each animal. 

5.3.3.13 Transcriptome analysis 

 

This analysis was done by Eike Strathmann, a PhD student at AG Wirth RNA sequencing 

data were analyzed using the program Kallisto (Bray et al., 2016) and the R plugin DESeq2 

(Love et al., 2014) as well as custom R scripts. Kallisto uses the raw data (fastq files) to 

estimate the transcript abundance using a method based on pseudoalignment. 

5.3.3.14 Statistical analysis 

 

The GraphPad Prism 6 software was used to perform all statistical analysis. One-way 

ANOVA test was used to analyze wildtype, heterozygous and homozygous motor neuron 

axon length and branching; with Tukey‟s correction for multiple comparisons. Histological 

analyses the SGZ length, neuronal density, DCX intensity, were tested for significance by 

assessing determined with two-tailed unpaired student‟s tests.  

 P<0.05 values were considered significant and further statistical significance were 

represented by: *P<0.05, **P<0.01 and ***P<0.001.  
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7 Appendix 

 

Appendix Table 5  List of potential binding partners of NCALD (comparison between wildtype IPs and control IPs) 
 

Gene names Protein names Number of 
Peptides 

Student's t-
test q-value 

Student's 
t-test 

Plcl2 Inactive phospholipase C-like protein 2 63 0,037 -9,483 

Ppfia3 Liprin-alpha-3 96 0,015 -8,234 

Hpca Neuron-specific calcium-binding protein hippocalcin 20 0,000 -7,987 

Mast4 Microtubule-associated serine/threonine-protein kinase 4 94 0,000 -7,525 

Rasip1 Ras-interacting protein 1 39 0,000 -6,974 

Plcl1 Inactive phospholipase C-like protein 1 48 0,021 -6,892 

Ncald Neurocalcin-delta 15 0,000 -6,336 

Tubgcp2 Gamma-tubulin complex component 2 34 0,019 -6,093 

Ogdhl Oxoglutarate dehydrogenase-like 35 0,017 -5,983 

Tubg2 Tubulin gamma-2 chain 24 0,000 -5,982 

Golga2 Golgin subfamily A member 2 41 0,023 -5,912 

Tubgcp3 Gamma-tubulin complex component 3 45 0,009 -5,832 

Pawr PRKC apoptosis WT1 regulator protein 19 0,000 -5,542 

Slc4a10 Anion exchange protein;Sodium-driven chloride bicarbonate exchanger 24 0,041 -5,209 

Map3k10 Mitogen-activated protein kinase kinase kinase 10 28 0,017 -5,074 

Ogdh 2-oxoglutarate dehydrogenase, mitochondrial 37 0,026 -4,939 

Kpna1 Importin subunit alpha-5;Importin subunit alpha-5, N-terminally processed 19 0,025 -4,518 

Tubgcp6 Gamma-tubulin complex component 6 25 0,020 -4,441 

Fnbp1l Formin-binding protein 1-like 28 0,019 -4,384 

Mrps36 28S ribosomal protein S36, mitochondrial 4 0,012 -4,352 

Osbpl2 Oxysterol-binding protein-related protein 2 19 0,016 -4,180 

Rnmt mRNA cap guanine-N7 methyltransferase  14 0,045 -4,026 



II 
 

Prkar1a cAMP-dependent protein kinase type I-alpha regulatory subunit;cAMP-dependent protein 
kinase type I-alpha regulatory subunit, N-terminally processed 

9 0,021 -3,889 

Eno1 Alpha-enolase 16 0,045 -3,839 

Tubgcp4 Gamma-tubulin complex component 4 16 0,036 -3,767 

Psmd3 26S proteasome non-ATPase regulatory subunit 3 15 0,048 -3,706 

Mzt2 Mitotic-spindle organizing protein 2 5 0,021 -3,690 

Vsnl1 Visinin-like protein 1 12 0,000 -3,689 

Fam21 WASH complex subunit FAM21 21 0,048 -3,550 

Vcp Transitional endoplasmic reticulum ATPase 19 0,046 -3,502 

Fmn2 Formin-2 10 0,010 -3,488 

Uchl1 Ubiquitin carboxyl-terminal hydrolase isozyme L1 10 0,021 -3,467 

Tubg1 Tubulin gamma-1 chain 24 0,019 -3,445 

Crmp1 Dihydropyrimidinase-related protein 1 24 0,014 -3,408 

Vps45 Vacuolar protein sorting-associated protein 45 26 0,022 -3,305 

Igf2r Cation-independent mannose-6-phosphate receptor 30 0,012 -3,302 

Stxbp1 Syntaxin-binding protein 1 38 0,035 -3,200 

Cttn Src substrate cortactin 21 0,025 -3,192 

Atp2b3 Calcium-transporting ATPase 34 0,022 -3,154 

M6pr Cation-dependent mannose-6-phosphate receptor 5 0,009 -3,114 

Soga3 Protein SOGA3 16 0,023 -3,096 

Stx1a Syntaxin-1A 12 0,045 -2,989 

Hpcal1 Hippocalcin-like protein 1 18 0,013 -2,963 

Cltb Clathrin light chain B 5 0,045 -2,959 

Sv2b Synaptic vesicle glycoprotein 2B 10 0,022 -2,907 

Ppp2r1a Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform 26 0,020 -2,890 

Ppp2ca;Ppp2cb Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform;Serine/threonine-
protein phosphatase 2A catalytic subunit beta isoform 

9 0,018 -2,844 

Hbbt1;Hbb-bs Beta-globin 9 0,014 -2,838 

Dnm1 Dynamin-1 41 0,020 -2,835 



III 
 

Sept7 Septin-7 26 0,031 -2,833 

Psmd11 26S proteasome non-ATPase regulatory subunit 11 13 0,041 -2,768 

Dpysl5 Dihydropyrimidinase-related protein 5 15 0,023 -2,767 

Hspa4 Heat shock 70 kDa protein 4 17 0,012 -2,709 

Slc6a17 Sodium-dependent neutral amino acid transporter SLC6A17 8 0,042 -2,633 

sept3 Neuronal-specific septin-3 7 0,021 -2,612 

Syn1 Synapsin-1 18 0,045 -2,612 

Cltc Clathrin heavy chain;Clathrin heavy chain 1 61 0,041 -2,607 

Dctn2 Dynactin subunit 2 16 0,026 -2,576 

Lima1 LIM domain and actin-binding protein 1 17 0,034 -2,565 

Gorasp2 Golgi reassembly-stacking protein 2 6 0,022 -2,474 

Gfap Glial fibrillary acidic protein 63 0,020 -2,468 

Stx6 Syntaxin-6 6 0,023 -2,463 

Prkacb cAMP-dependent protein kinase catalytic subunit beta 13 0,037 -2,426 

Phactr1 Phosphatase and actin regulator 1;Phosphatase and actin regulator 17 0,010 -2,425 

Prickle2 Prickle-like protein 2 16 0,036 -2,405 

Specc1 Cytospin-B 37 0,024 -2,393 

Stx16 Syntaxin-16 5 0,036 -2,370 

Src Neuronal proto-oncogene tyrosine-protein kinase Src 13 0,023 -2,357 

Sort1 Sortilin 10 0,000 -2,357 

C2cd2l C2 domain-containing protein 2-like 15 0,035 -2,357 

Ruvbl2 RuvB-like 2 11 0,051 -2,342 

Coro1b Coronin-1B 15 0,045 -2,337 

Prdx6 Peroxiredoxin-6 8 0,044 -2,278 

Scamp3 Secretory carrier-associated membrane protein 3 4 0,020 -2,228 

sept11 Septin-11 16 0,015 -2,219 

Snap25 Synaptosomal-associated protein 25 20 0,023 -2,194 

Gabra1 Gamma-aminobutyric acid receptor subunit alpha-1 8 0,040 -2,157 

Hspa2 Heat shock-related 70 kDa protein 2 25 0,046 -2,155 



IV 
 

Ndrg2 Protein NDRG2 7 0,045 -2,154 

Stxbp5 Syntaxin-binding protein 5 6 0,022 -2,104 

Twf1 Twinfilin-1 11 0,050 -2,099 

Strn4 Striatin-4 12 0,035 -2,073 

Etl4;Skt Sickle tail protein 24 0,050 -2,051 

Pfn2 Profilin-2;Profilin 4 0,046 -2,016 

Hsph1 Heat shock protein 105 kDa 26 0,008 -2,000 

Adcy5 Adenylate cyclase type 5 12 0,033 -1,990 

Itpka Inositol-trisphosphate 3-kinase A 30 0,036 -1,980 

Pdia3 Protein disulfide-isomerase A3 23 0,045 -1,978 

Rab3a Ras-related protein Rab-3A 12 0,026 -1,974 

Lancl1 LanC-like protein 1 10 0,013 -1,963 

Sec22b Vesicle-trafficking protein SEC22b 12 0,025 -1,936 

Add3 Gamma-adducin 23 0,050 -1,873 

Ppp3ca Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform 25 0,024 -1,867 

Ywhaz 14-3-3 protein zeta/delta 23 0,045 -1,863 

Basp1 Brain acid soluble protein 1 20 0,012 -1,863 

Rtn1 Reticulon-1 12 0,021 -1,862 

Stx1b Syntaxin-1B 18 0,041 -1,796 

Hspa4l Heat shock 70 kDa protein 4L 15 0,024 -1,791 

Phyhip Phytanoyl-CoA hydroxylase-interacting protein 7 0,019 -1,775 

Eef1g Elongation factor 1-gamma 4 0,022 -1,742 

Tpi1 Triosephosphate isomerase 17 0,019 -1,684 

Tpm1 Triosephosphate isomerase 37 0,020 -1,682 

Ywhaq 14-3-3 protein theta 18 0,041 -1,625 

Ppp1r9b Neurabin-2 56 0,034 -1,606 

Map9 Microtubule-associated protein 9 9 0,016 -1,598 

Rtn4 Reticulon-4 17 0,025 -1,587 

Ppp2r2a Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform 19 0,011 -1,577 



V 
 

Stx7 Syntaxin-7 7 0,037 -1,566 

Map6 Microtubule-associated protein 6 64 0,024 -1,549 

Mapt Microtubule-associated protein;Microtubule-associated protein tau 19 0,045 -1,499 

Cep170 Centrosomal protein of 170 kDa 22 0,009 -1,499 

Glul Glutamine synthetase 16 0,044 -1,442 

Eef1a1 Elongation factor 1-alpha 1 14 0,020 -1,412 

Rimbp2 RIMS-binding protein 2 9 0,034 -1,389 

Zc3h11a Zinc finger CCCH domain-containing protein 11A 25 0,045 -1,331 

Mark1 Serine/threonine-protein kinase MARK1 31 0,035 -1,316 

Ahcyl1 Putative adenosylhomocysteinase 2 11 0,044 -1,315 

Cyfip2 Cytoplasmic FMR1-interacting protein 2 22 0,035 -1,306 

Ywhah 14-3-3 protein eta 20 0,000 -1,296 

Nhsl2 NHS-like protein 2 8 0,044 -1,266 

Farp1 FERM, RhoGEF and pleckstrin domain-containing protein 1 13 0,037 -1,197 

Eif3l Eukaryotic translation initiation factor 3 subunit L 13 0,017 -1,191 

Ruvbl1 RuvB-like 1 11 0,000 -1,182 

Map2 Microtubule-associated protein 2 90 0,024 -1,158 

Numbl Numb-like protein 10 0,031 -1,091 

Eif4b Eukaryotic translation initiation factor 4B 12 0,046 -1,082 

Eif3d Eukaryotic translation initiation factor 3 subunit D 15 0,025 -1,077 

Ywhag 14-3-3 protein gamma;14-3-3 protein gamma, N-terminally processed 19 0,038 -1,067 

Pin1 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 9 0,050 -1,058 

Vamp2 Vesicle-associated membrane protein 2 11 0,036 -1,012 

Rps24 40S ribosomal protein S24 10 0,045 -0,952 

Prpf4 U4/U6 small nuclear ribonucleoprotein Prp4 26 0,041 -0,845 

Frmd4a FERM domain-containing protein 4A 9 0,042 -0,836 

Hspa8 Heat shock cognate 71 kDa protein 51 0,033 -0,759 

Syt1 Synaptotagmin-1 31 0,021 -0,745 

Rab11b;Rab11a Ras-related protein Rab-11A;Ras-related protein Rab-11B 11 0,048 -0,660 



VI 
 

Poldip3 Polymerase delta-interacting protein 3 24 0,032 -0,618 

Hspa5 78 kDa glucose-regulated protein 38 0,035 -0,580 

Rpsa 40S ribosomal protein SA 19 0,046 -0,579 

Rpl24 60S ribosomal protein L24 9 0,035 -0,419 

 

 

Appendix Table 6 List of potential binding partners of NCALD (comparison between wildtype IPs and control IPs) 
 

Gene names Protein names Number of 
Peptides 

Student's t-test q-value  Student's t-test 
Difference 

Ncald Neurocalcin-delta 15 0 -7,31515 

Ogdh 2-oxoglutarate dehydrogenase, mitochondrial 37 0,0327273 -6,41476 

Ogdhl Oxoglutarate dehydrogenase-like 35 0,0453333 -6,39871 

Map3k10 Mitogen-activated protein kinase kinase kinase 10 28 0,034 -5,47567 

Mical3 Protein-methionine sulfoxide oxidase MICAL3 26 0,034 -4,2531 

Map1lc3a Microtubule-associated proteins 1A/1B light chain 3A 2 0,0303415 -3,86627 

Mrps36 28S ribosomal protein S36, mitochondrial 4 0,0334884 -3,64041 

Bcas1 Breast carcinoma-amplified sequence 1 homolog 11 0,0272 -3,10259 

Cald1 Caldesmon 1 9 0,0432184 -2,92907 

Mapre3 Microtubule-associated protein RP/EB family member 3 8 0,0487103 -2,87439 

Cnksr2 Connector enhancer of kinase suppressor of ras 2 18 0,0479208 -2,77992 

Coro1a Coronin-1A;Coronin 13 0,0391707 -2,76407 

Cttn Src substrate cortactin 21 0,0488403 -2,75635 

Fmn2 Formin-2 10 0,0422222 -2,75019 

Bin1 Myc box-dependent-interacting protein 1 11 0,0453333 -2,72064 

Prkar1b cAMP-dependent protein kinase type I-beta regulatory subunit 8 0,0407143 -2,53287 

Syn1 Synapsin-1 18 0,0327536 -2,51268 

Etl4;Skt Sickle tail protein 24 0,0340952 -2,49628 



VII 
 

Epb4.1;Epb41 Protein 4.1 13 0,0181333 -2,48325 

Cfl2 Cofilin-2 15 0,0386988 -2,25772 

Tom1 Target of Myb protein 1 13 0,0295556 -2,25181 

Eef2 Elongation factor 2 11 0,0394359 -2,19836 

Epb4.1l1;Epb41l1 Band 4.1-like protein 1 33 0,0311 -2,15104 

Basp1 Brain acid soluble protein 1 20 0,0388571 -1,99575 

Caskin1 Caskin-1 30 0,0491698 -1,98887 

Ndrg2 Protein NDRG2 7 0,0355429 -1,98361 

Prkar1a cAMP-dependent protein kinase type I-alpha regulatory 
subunit;cAMP-dependent protein kinase type I-alpha regulatory 
subunit, N-terminally processed 

9 0,046955 -1,96419 

Twf1 Twinfilin-1 11 0,0380392 -1,94299 

Dlg1 Disks large homolog 1 20 0,0442353 -1,92518 

Ppp1r12a Protein phosphatase 1 regulatory subunit 12A 51 0,0480354 -1,89061 

Lmnb1 Lamin-B1 45 0,0367742 -1,85116 

Igsf8 Immunoglobulin superfamily member 8 14 0,0347692 -1,84031 

Lmna Prelamin-A/C;Lamin-A/C 19 0,043956 -1,83684 

Pfn2 Profilin-2;Profilin 4 0,035625 -1,81664 

Tppp Tubulin polymerization-promoting protein 10 0,0337313 -1,79444 

Tpi1 Triosephosphate isomerase 17 0,0318974 -1,76422 

Epb41l3 Band 4.1-like protein 3;Band 4.1-like protein 3, N-terminally processed 44 0,0322857 -1,76238 

Dnaja1 DnaJ homolog subfamily A member 1 2 0,0359259 -1,74732 

Hspa4 Heat shock 70 kDa protein 4 17 0,0399481 -1,74243 

Ppp1r9b Neurabin-2 56 0,0482593 -1,71205 

Tcerg1 Transcription elongation regulator 1 19 0 -1,70047 

Tpm3-rs7;Tpm3  32 0,0354054 -1,69956 

Frmd4a FERM domain-containing protein 4A 9 0,0368571 -1,69703 

Tubb3 Tubulin beta-3 chain 21 0,035873 -1,69387 

Dbn1 Drebrin 49 0,0353125 -1,69138 



VIII 
 

Nedd4l E3 ubiquitin-protein ligase NEDD4-like 37 0,0466383 -1,59188 

Vamp1 Vesicle-associated membrane protein 1 7 0,0379733 -1,583 

Tpm1 Tropomyosin 1 39 0,0427273 -1,54761 

Cplx1 Complexin-1 3 0,0352727 -1,54463 

Map6 Microtubule-associated protein 6 64 0,0393103 -1,50765 

Tubb5 Tubulin beta-5 chain 31 0,0373077 -1,49033 

Rtn3 Reticulon-3 19 0,0312941 -1,48975 

Lancl1 LanC-like protein 1 10 0,0403077 -1,48794 

Map2 Microtubule-associated protein 2 90 0,0365882 -1,45668 

Map1b Microtubule-associated protein 1B;MAP1B heavy chain;MAP1 light 
chain LC1 

72 0,0498824 -1,43293 

Pip4k2b Phosphatidylinositol 5-phosphate 4-kinase type-2 beta 9 0,0343111 -1,40607 

Bsn Protein bassoon 97 0,0422472 -1,38531 

Crmp1 Dihydropyrimidinase-related protein 1 24 0,0392632 -1,37971 

Rtn4 Reticulon-4 17 0,0461474 -1,37676 

Mapt Microtubule-associated protein;Microtubule-associated protein tau 19 0,0226667 -1,36019 

Dnm1 Dynamin-1 41 0,0209231 -1,31479 

Ppp2r1a Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A 
alpha isoform 

26 0,0342424 -1,30918 

Ywhah 14-3-3 protein eta 20 0,0376842 -1,29483 

Nefm Neurofilament medium polypeptide 67 0,03776 -1,2486 

Dpysl2 Dihydropyrimidinase-related protein 2 32 0,0478165 -1,23457 

Hsph1 Heat shock protein 105 kDa 26 0,0370492 -1,23167 

Prkacb cAMP-dependent protein kinase catalytic subunit beta 13 0,0388 -1,22705 

Mark2 Serine/threonine-protein kinase MARK2 23 0,0496752 -1,19705 

Prdx5 Peroxiredoxin-5, mitochondrial 12 0,0471398 -1,18734 

Hspa8 Heat shock cognate 71 kDa protein 51 0,0302222 -1,17909 

Eef1a1 Elongation factor 1-alpha 1 14 0,029619 -1,17311 

Srcin1 SRC kinase-signaling inhibitor 1 83 0,0298333 -1,15808 



IX 
 

Tufm Elongation factor Tu, mitochondrial 7 0,0451959 -1,09875 

Nono Non-POU domain-containing octamer-binding protein 18 0,0336216 -1,09511 

Palm Paralemmin-1 8 0,047614 -1,0621 

Ppp2r2a Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B 
alpha isoform 

19 0,038383 -1,04175 

Spon1 Spondin-1 9 0,0332353 -1,02584 

Plcb1 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 28 0,0247273 -1,0144 

Nefl Neurofilament light polypeptide 52 0,0493981 -0,971658 

Camk2b Calcium/calmodulin-dependent protein kinase type II subunit beta 35 0,0364516 -0,959005 

Dctn2 Dynactin subunit 2 16 0,0325455 -0,933247 

Gm9242;Gm6793  34 0,0437209 -0,931716 

Elavl3 ELAV-like protein 18 0,0489231 -0,912036 

Ywhag 14-3-3 protein gamma;14-3-3 protein gamma, N-terminally processed 19 0,0358904 -0,901483 

Glul Glutamine synthetase 16 0,0484 -0,898485 

Prickle2 Prickle-like protein 2 16 0,0395918 -0,894818 

Pdia3 Protein disulfide-isomerase A3 23 0,0394762 -0,890786 

Pin1 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 9 0,0272 -0,881037 

Agap2 Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 33 0,0373793 -0,869799 

Hnrnpm Heterogeneous nuclear ribonucleoprotein M 36 0,03845 -0,860689 

Ik Protein Red 30 0,0346667 -0,85973 

Eif4b Eukaryotic translation initiation factor 4B 12 0,0456667 -0,843805 

Cep170 Centrosomal protein of 170 kDa 22 0,038 -0,828345 

Apba2 Amyloid beta A4 precursor protein-binding family A member 2 3 0,0488889 -0,795023 

Ccar1 Cell division cycle and apoptosis regulator protein 1 27 0,0484571 -0,771659 

Rab11b;Rab11a Ras-related protein Rab-11A;Ras-related protein Rab-11B 11 0,0375833 -0,77088 

Sf3b3 Splicing factor 3B subunit 3 81 0,0484643 -0,76327 

Matr3 Matrin-3 51 0,0483826 -0,763242 

Hspa5 78 kDa glucose-regulated protein 38 0,037697 -0,758642 

Ruvbl1 RuvB-like 1 11 0,0417778 -0,751209 



X 
 

Arhgef2 Rho guanine nucleotide exchange factor 2 31 0,0383051 -0,7358 

Csde1 Cold shock domain-containing protein E1 10 0,0311304 -0,710271 

Rpl12 60S ribosomal protein L12 8 0,031831 -0,646967 

Cpeb3 Cytoplasmic polyadenylation element-binding protein 3 22 0,0362105 -0,587071 

Syncrip Heterogeneous nuclear ribonucleoprotein Q 34 0,0473818 -0,574904 

Ap2m1 AP-2 complex subunit mu 31 0,017 -0,51694 

Mark3 MAP/microtubule affinity-regulating kinase 3 26 0,0376667 -0,447166 
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Appendix Table 7 List of genes with significant differential expression upon Ncald deletion and strongly correlated with Ncald gene expression 
(Hippocampus)  
 

Gene log2FoldChange adjusted 
P-value 

Chr Description Type of relationship rho 

Lrp2 -0,432 0,0358 2 low density lipoprotein receptor-related protein 2 
[Source:MGI Symbol;Acc:MGI:95794] 

anti-correlation with Ncald -0,674 

Ubl3 0,153 0,0081 5 ubiquitin-like 3 [Source:MGI Symbol;Acc:MGI:1344373] correlation with Ncald 0,812 

Sema3c 0,309 0,0002 5 sema domain, immunoglobulin domain (Ig), short basic 
domain, secreted, (semaphorin) 3C [Source:MGI 
Symbol;Acc:MGI:107557] 

correlation with Ncald 0,839 

Bok 0,331 0,0001 1 BCL2-related ovarian killer [Source:MGI 
Symbol;Acc:MGI:1858494] 

correlation with Ncald 0,611 

Ncald 2,674 0,0000 15 neurocalcin delta [Source:MGI 
Symbol;Acc:MGI:1196326] 

correlation with Ncald 1,000 
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Appendix Table 8 List of genes with significant differential expression upon Ncald deletion and strongly correlated with Ncald gene expression (Cortex)  
 

Gene log2FoldChange Adjusted 
P-value 

Chr Description Type of 
relationship 

rho 

Ms4a15 -3,604 0,024 19 membrane-spanning 4-domains, subfamily A, member 15 
[Source:MGI Symbol;Acc:MGI:3617853] 

anti-correlation 
with Ncald 

-
0,771 

Lhx8 -3,014 0,001 3 LIM homeobox protein 8 [Source:MGI 
Symbol;Acc:MGI:1096343] 

anti-correlation 
with Ncald 

-
0,811 

Gbx1 -2,884 0,001 5 gastrulation brain homeobox 1 [Source:MGI 
Symbol;Acc:MGI:95667] 

anti-correlation 
with Ncald 

-
0,796 

Ntrk1 -2,559 0,026 3 neurotrophic tyrosine kinase, receptor, type 1 [Source:MGI 
Symbol;Acc:MGI:97383] 

anti-correlation 
with Ncald 

-
0,789 

Gpx6 -2,527 0,010 13 glutathione peroxidase 6 [Source:MGI 
Symbol;Acc:MGI:1922762] 

anti-correlation 
with Ncald 

-
0,796 

Slc10a4 -2,422 0,006 5 solute carrier family 10 (sodium/bile acid cotransporter 
family), member 4 [Source:MGI Symbol;Acc:MGI:3606480] 

anti-correlation 
with Ncald 

-
0,789 

Serpina9 -2,343 0,030 12 serine (or cysteine) peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 9 [Source:MGI 
Symbol;Acc:MGI:1919157] 

anti-correlation 
with Ncald 

-
0,718 

Gpr149 -2,329 0,000 3 G protein-coupled receptor 149 [Source:MGI 
Symbol;Acc:MGI:2443628] 

anti-correlation 
with Ncald 

-
0,886 

Isl1 -2,292 0,000 13 ISL1 transcription factor, LIM/homeodomain [Source:MGI 
Symbol;Acc:MGI:101791] 

anti-correlation 
with Ncald 

-
0,889 

Gdnf -2,167 0,000 15 glial cell line derived neurotrophic factor [Source:MGI 
Symbol;Acc:MGI:107430] 

anti-correlation 
with Ncald 

-
0,804 

Chat -2,102 0,006 14 choline acetyltransferase [Source:MGI 
Symbol;Acc:MGI:88392] 

anti-correlation 
with Ncald 

-
0,857 

Olfr1393 -2,044 0,003 11 olfactory receptor 1393 [Source:MGI 
Symbol;Acc:MGI:3031227] 

anti-correlation 
with Ncald 

-
0,721 



XIII 
 

Drd2 -2,032 0,030 9 dopamine receptor D2 [Source:MGI Symbol;Acc:MGI:94924] anti-correlation 
with Ncald 

-
0,757 

Nkx2-1 -2,024 0,008 12 NK2 homeobox 1 [Source:MGI Symbol;Acc:MGI:108067] anti-correlation 
with Ncald 

-
0,800 

Cd4 -2,024 0,040 6 CD4 antigen [Source:MGI Symbol;Acc:MGI:88335] anti-correlation 
with Ncald 

-
0,714 

Htr1d -1,988 0,001 4 5-hydroxytryptamine (serotonin) receptor 1D [Source:MGI 
Symbol;Acc:MGI:96276] 

anti-correlation 
with Ncald 

-
0,868 

Adora2a -1,988 0,030 10 adenosine A2a receptor [Source:MGI 
Symbol;Acc:MGI:99402] 

anti-correlation 
with Ncald 

-
0,739 

Hist1h2bq -1,987 0,005 13 histone cluster 1, H2bq [Source:MGI 
Symbol;Acc:MGI:3702051] 

anti-correlation 
with Ncald 

-
0,614 

Gm136 -1,954 0,030 4 predicted gene 136 [Source:MGI Symbol;Acc:MGI:2684982] anti-correlation 
with Ncald 

-
0,786 

Slc35d3 -1,954 0,004 10 solute carrier family 35, member D3 [Source:MGI 
Symbol;Acc:MGI:1923407] 

anti-correlation 
with Ncald 

-
0,750 

Th -1,944 0,037 7 tyrosine hydroxylase [Source:MGI Symbol;Acc:MGI:98735] anti-correlation 
with Ncald 

-
0,693 

Epyc -1,902 0,016 10 epiphycan [Source:MGI Symbol;Acc:MGI:107942] anti-correlation 
with Ncald 

-
0,825 

Slc5a7 -1,872 0,007 17 solute carrier family 5 (choline transporter), member 7 
[Source:MGI Symbol;Acc:MGI:1927126] 

anti-correlation 
with Ncald 

-
0,832 

Scn4b -1,863 0,048 9 sodium channel, type IV, beta [Source:MGI 
Symbol;Acc:MGI:2687406] 

anti-correlation 
with Ncald 

-
0,711 

Ecel1 -1,842 0,023 1 endothelin converting enzyme-like 1 [Source:MGI 
Symbol;Acc:MGI:1343461] 

anti-correlation 
with Ncald 

-
0,804 

Slc18a3 -1,841 0,020 14 solute carrier family 18 (vesicular monoamine), member 3 
[Source:MGI Symbol;Acc:MGI:1101061] 

anti-correlation 
with Ncald 

-
0,836 

Rgs9 -1,815 0,023 11 regulator of G-protein signaling 9 [Source:MGI 
Symbol;Acc:MGI:1338824] 

anti-correlation 
with Ncald 

-
0,789 

Sh3rf2 -1,800 0,030 18 SH3 domain containing ring finger 2 [Source:MGI 
Symbol;Acc:MGI:2444628] 

anti-correlation 
with Ncald 

-
0,746 



XIV 
 

Rarb -1,679 0,009 14 retinoic acid receptor, beta [Source:MGI 
Symbol;Acc:MGI:97857] 

anti-correlation 
with Ncald 

-
0,786 

Syndig1l -1,677 0,040 12 synapse differentiation inducing 1 like [Source:MGI 
Symbol;Acc:MGI:2685107] 

anti-correlation 
with Ncald 

-
0,718 

Six3 -1,676 0,030 17 sine oculis-related homeobox 3 [Source:MGI 
Symbol;Acc:MGI:102764] 

anti-correlation 
with Ncald 

-
0,843 

Drd1 -1,655 0,021 13 dopamine receptor D1 [Source:MGI Symbol;Acc:MGI:99578] anti-correlation 
with Ncald 

-
0,736 

Penk -1,647 0,030 4 preproenkephalin [Source:MGI Symbol;Acc:MGI:104629] anti-correlation 
with Ncald 

-
0,746 

Ngfr -1,606 0,030 11 nerve growth factor receptor (TNFR superfamily, member 
16) [Source:MGI Symbol;Acc:MGI:97323] 

anti-correlation 
with Ncald 

-
0,750 

Tac1 -1,600 0,008 6 tachykinin 1 [Source:MGI Symbol;Acc:MGI:98474] anti-correlation 
with Ncald 

-
0,736 

Il20ra -1,555 0,001 10 interleukin 20 receptor, alpha [Source:MGI 
Symbol;Acc:MGI:3605069] 

anti-correlation 
with Ncald 

-
0,829 

Pde10a -1,489 0,021 17 phosphodiesterase 10A [Source:MGI 
Symbol;Acc:MGI:1345143] 

anti-correlation 
with Ncald 

-
0,779 

Stk26 -1,487 0,026 X serine/threonine kinase 26 [Source:MGI 
Symbol;Acc:MGI:1917665] 

anti-correlation 
with Ncald 

-
0,732 

Ccdc187 -1,486 0,012 2 coiled-coil domain containing 187 [Source:MGI 
Symbol;Acc:MGI:3045295] 

anti-correlation 
with Ncald 

-
0,886 

Ptpn7 -1,417 0,016 1 protein tyrosine phosphatase, non-receptor type 7 
[Source:MGI Symbol;Acc:MGI:2156893] 

anti-correlation 
with Ncald 

-
0,746 

Gpr139 -1,415 0,009 7 G protein-coupled receptor 139 [Source:MGI 
Symbol;Acc:MGI:2685341] 

anti-correlation 
with Ncald 

-
0,786 

Gpr6 -1,381 0,025 10 G protein-coupled receptor 6 [Source:MGI 
Symbol;Acc:MGI:2155249] 

anti-correlation 
with Ncald 

-
0,707 

Oprk1 -1,347 0,001 1 opioid receptor, kappa 1 [Source:MGI 
Symbol;Acc:MGI:97439] 

anti-correlation 
with Ncald 

-
0,743 

Pbx3 -1,312 0,004 2 pre B cell leukemia homeobox 3 [Source:MGI 
Symbol;Acc:MGI:97496] 

anti-correlation 
with Ncald 

-
0,771 



XV 
 

Nexn -1,291 0,027 3 nexilin [Source:MGI Symbol;Acc:MGI:1916060] anti-correlation 
with Ncald 

-
0,793 

Rem2 -1,284 0,001 14 rad and gem related GTP binding protein 2 [Source:MGI 
Symbol;Acc:MGI:2155260] 

anti-correlation 
with Ncald 

-
0,736 

Gng7 -1,281 0,004 10 guanine nucleotide binding protein (G protein), gamma 7 
[Source:MGI Symbol;Acc:MGI:95787] 

anti-correlation 
with Ncald 

-
0,786 

Myo3b -1,281 0,032 2 myosin IIIB [Source:MGI Symbol;Acc:MGI:2448580] anti-correlation 
with Ncald 

-
0,657 

Gprin3 -1,214 0,043 6 GPRIN family member 3 [Source:MGI 
Symbol;Acc:MGI:1924785] 

anti-correlation 
with Ncald 

-
0,679 

Gpr88 -1,214 0,030 3 G-protein coupled receptor 88 [Source:MGI 
Symbol;Acc:MGI:1927653] 

anti-correlation 
with Ncald 

-
0,707 

Abhd11os -1,195 0,033 5 abhydrolase domain containing 11, opposite strand 
[Source:MGI Symbol;Acc:MGI:1917062] 

anti-correlation 
with Ncald 

-
0,654 

Ankdd1a -1,189 0,001 9 ankyrin repeat and death domain containing 1A 
[Source:MGI Symbol;Acc:MGI:2686319] 

anti-correlation 
with Ncald 

-
0,875 

Kcna5 -1,189 0,005 6 potassium voltage-gated channel, shaker-related subfamily, 
member 5 [Source:MGI Symbol;Acc:MGI:96662] 

anti-correlation 
with Ncald 

-
0,836 

Klhl13 -1,184 0,003 X kelch-like 13 [Source:MGI Symbol;Acc:MGI:1914705] anti-correlation 
with Ncald 

-
0,786 

Stk32a -1,180 0,007 18 serine/threonine kinase 32A [Source:MGI 
Symbol;Acc:MGI:2442403] 

anti-correlation 
with Ncald 

-
0,775 

Musk -1,175 0,004 4 muscle, skeletal, receptor tyrosine kinase [Source:MGI 
Symbol;Acc:MGI:103581] 

anti-correlation 
with Ncald 

-
0,768 

Kcnh8 -1,173 0,008 17 potassium voltage-gated channel, subfamily H (eag-related), 
member 8 [Source:MGI Symbol;Acc:MGI:2445160] 

anti-correlation 
with Ncald 

-
0,896 

Mme -1,130 0,000 3 membrane metallo endopeptidase [Source:MGI 
Symbol;Acc:MGI:97004] 

anti-correlation 
with Ncald 

-
0,818 

Strip2 -1,121 0,007 6 striatin interacting protein 2 [Source:MGI 
Symbol;Acc:MGI:2444363] 

anti-correlation 
with Ncald 

-
0,786 

Dlx6 -1,105 0,004 6 distal-less homeobox 6 [Source:MGI 
Symbol;Acc:MGI:101927] 

anti-correlation 
with Ncald 

-
0,750 



XVI 
 

Asic4 -1,077 0,015 1 acid-sensing (proton-gated) ion channel family member 4 
[Source:MGI Symbol;Acc:MGI:2652846] 

anti-correlation 
with Ncald 

-
0,746 

Pcp4l1 -1,050 0,021 1 Purkinje cell protein 4-like 1 [Source:MGI 
Symbol;Acc:MGI:1913675] 

anti-correlation 
with Ncald 

-
0,761 

Gpr83 -1,046 0,004 9 G protein-coupled receptor 83 [Source:MGI 
Symbol;Acc:MGI:95712] 

anti-correlation 
with Ncald 

-
0,721 

Prkch -1,043 0,028 12 protein kinase C, eta [Source:MGI Symbol;Acc:MGI:97600] anti-correlation 
with Ncald 

-
0,746 

Adcy5 -1,039 0,008 16 adenylate cyclase 5 [Source:MGI Symbol;Acc:MGI:99673] anti-correlation 
with Ncald 

-
0,725 

Pou3f4 -1,030 0,008 X POU domain, class 3, transcription factor 4 [Source:MGI 
Symbol;Acc:MGI:101894] 

anti-correlation 
with Ncald 

-
0,793 

Htr1b -1,019 0,002 9 5-hydroxytryptamine (serotonin) receptor 1B [Source:MGI 
Symbol;Acc:MGI:96274] 

anti-correlation 
with Ncald 

-
0,786 

Zfp503 -0,996 0,030 14 zinc finger protein 503 [Source:MGI 
Symbol;Acc:MGI:1353644] 

anti-correlation 
with Ncald 

-
0,775 

Adamts3 -0,986 0,001 5 a disintegrin-like and metallopeptidase (reprolysin type) 
with thrombospondin type 1 motif, 3 [Source:MGI 
Symbol;Acc:MGI:3045353] 

anti-correlation 
with Ncald 

-
0,793 

Pde1b -0,966 0,015 15 phosphodiesterase 1B, Ca2+-calmodulin dependent 
[Source:MGI Symbol;Acc:MGI:97523] 

anti-correlation 
with Ncald 

-
0,764 

Pde7b -0,961 0,015 10 phosphodiesterase 7B [Source:MGI 
Symbol;Acc:MGI:1352752] 

anti-correlation 
with Ncald 

-
0,775 

Syt6 -0,959 0,040 3 synaptotagmin VI [Source:MGI Symbol;Acc:MGI:1859544] anti-correlation 
with Ncald 

-
0,707 

Igf2bp2 -0,958 0,030 16 insulin-like growth factor 2 mRNA binding protein 2 
[Source:MGI Symbol;Acc:MGI:1890358] 

anti-correlation 
with Ncald 

-
0,861 

Sv2c -0,944 0,005 13 synaptic vesicle glycoprotein 2c [Source:MGI 
Symbol;Acc:MGI:1922459] 

anti-correlation 
with Ncald 

-
0,800 

Slco5a1 -0,941 0,026 1 solute carrier organic anion transporter family, member 5A1 
[Source:MGI Symbol;Acc:MGI:2443431] 

anti-correlation 
with Ncald 

-
0,825 

Sp9 -0,938 0,013 2 trans-acting transcription factor 9 [Source:MGI 
Symbol;Acc:MGI:3574660] 

anti-correlation 
with Ncald 

-
0,775 



XVII 
 

Dlx5 -0,938 0,025 6 distal-less homeobox 5 [Source:MGI 
Symbol;Acc:MGI:101926] 

anti-correlation 
with Ncald 

-
0,725 

Sp7 -0,927 0,043 15 Sp7 transcription factor 7 [Source:MGI 
Symbol;Acc:MGI:2153568] 

anti-correlation 
with Ncald 

-
0,696 

P2ry1 -0,923 0,020 3 purinergic receptor P2Y, G-protein coupled 1 [Source:MGI 
Symbol;Acc:MGI:105049] 

anti-correlation 
with Ncald 

-
0,786 

Rerg -0,880 0,020 6 RAS-like, estrogen-regulated, growth-inhibitor [Source:MGI 
Symbol;Acc:MGI:2665139] 

anti-correlation 
with Ncald 

-
0,775 

Spata13 -0,876 0,032 14 spermatogenesis associated 13 [Source:MGI 
Symbol;Acc:MGI:104838] 

anti-correlation 
with Ncald 

-
0,761 

Ankrd63 -0,868 0,031 2 ankyrin repeat domain 63 [Source:MGI 
Symbol;Acc:MGI:2686183] 

anti-correlation 
with Ncald 

-
0,721 

Meis2 -0,855 0,016 2 Meis homeobox 2 [Source:MGI Symbol;Acc:MGI:108564] anti-correlation 
with Ncald 

-
0,743 

Cyp2s1 -0,854 0,006 7 cytochrome P450, family 2, subfamily s, polypeptide 1 
[Source:MGI Symbol;Acc:MGI:1921384] 

anti-correlation 
with Ncald 

-
0,668 

Plppr1 -0,849 0,016 4 phospholipid phosphatase related 1 [Source:MGI 
Symbol;Acc:MGI:2445015] 

anti-correlation 
with Ncald 

-
0,804 

Gnal -0,848 0,023 18 guanine nucleotide binding protein, alpha stimulating, 
olfactory type [Source:MGI Symbol;Acc:MGI:95774] 

anti-correlation 
with Ncald 

-
0,714 

Nmnat3 -0,839 0,004 9 nicotinamide nucleotide adenylyltransferase 3 [Source:MGI 
Symbol;Acc:MGI:1921330] 

anti-correlation 
with Ncald 

-
0,664 

Bcl11b -0,824 0,021 12 B cell leukemia/lymphoma 11B [Source:MGI 
Symbol;Acc:MGI:1929913] 

anti-correlation 
with Ncald 

-
0,668 

St8sia2 -0,817 0,021 7 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 
2 [Source:MGI Symbol;Acc:MGI:106020] 

anti-correlation 
with Ncald 

-
0,764 

Rasgrp2 -0,801 0,033 CHR_MG4249_PATCH RAS, guanyl releasing protein 2 [Source:MGI 
Symbol;Acc:MGI:1333849] 

anti-correlation 
with Ncald 

-
0,725 

Rasgrp2 -0,801 0,033 19 RAS, guanyl releasing protein 2 [Source:MGI 
Symbol;Acc:MGI:1333849] 

anti-correlation 
with Ncald 

-
0,725 

Pdyn -0,801 0,014 2 prodynorphin [Source:MGI Symbol;Acc:MGI:97535] anti-correlation 
with Ncald 

-
0,793 



XVIII 
 

Mei4 -0,800 0,032 9 meiotic double-stranded break formation protein 4 
[Source:MGI Symbol;Acc:MGI:1922283] 

anti-correlation 
with Ncald 

-
0,868 

Klhl1 -0,787 0,016 14 kelch-like 1 [Source:MGI Symbol;Acc:MGI:2136335] anti-correlation 
with Ncald 

-
0,714 

Pcsk9 -0,782 0,039 4 proprotein convertase subtilisin/kexin type 9 [Source:MGI 
Symbol;Acc:MGI:2140260] 

anti-correlation 
with Ncald 

-
0,614 

Srgap1 -0,766 0,030 10 SLIT-ROBO Rho GTPase activating protein 1 [Source:MGI 
Symbol;Acc:MGI:2152936] 

anti-correlation 
with Ncald 

-
0,829 

Tbc1d8 -0,758 0,009 1 TBC1 domain family, member 8 [Source:MGI 
Symbol;Acc:MGI:1927225] 

anti-correlation 
with Ncald 

-
0,821 

Mctp1 -0,752 0,026 13 multiple C2 domains, transmembrane 1 [Source:MGI 
Symbol;Acc:MGI:1926021] 

anti-correlation 
with Ncald 

-
0,746 

Ddx11 -0,748 0,037 17 DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 [Source:MGI 
Symbol;Acc:MGI:2443590] 

anti-correlation 
with Ncald 

-
0,879 

Tmem158 -0,740 0,048 9 transmembrane protein 158 [Source:MGI 
Symbol;Acc:MGI:1919559] 

anti-correlation 
with Ncald 

-
0,654 

Klhl14 -0,726 0,003 18 kelch-like 14 [Source:MGI Symbol;Acc:MGI:1921249] anti-correlation 
with Ncald 

-
0,871 

Slc17a8 -0,721 0,011 10 solute carrier family 17 (sodium-dependent inorganic 
phosphate cotransporter), member 8 [Source:MGI 
Symbol;Acc:MGI:3039629] 

anti-correlation 
with Ncald 

-
0,818 

Entpd3 -0,714 0,005 9 ectonucleoside triphosphate diphosphohydrolase 3 
[Source:MGI Symbol;Acc:MGI:1321386] 

anti-correlation 
with Ncald 

-
0,814 

Shh -0,704 0,030 5 sonic hedgehog [Source:MGI Symbol;Acc:MGI:98297] anti-correlation 
with Ncald 

-
0,657 

Fras1 -0,701 0,003 5 Fraser extracellular matrix complex subunit 1 [Source:MGI 
Symbol;Acc:MGI:2385368] 

anti-correlation 
with Ncald 

-
0,814 

Kcnab1 -0,701 0,021 3 potassium voltage-gated channel, shaker-related subfamily, 
beta member 1 [Source:MGI Symbol;Acc:MGI:109155] 

anti-correlation 
with Ncald 

-
0,675 

Spock3 -0,697 0,007 8 sparc/osteonectin, cwcv and kazal-like domains 
proteoglycan 3 [Source:MGI Symbol;Acc:MGI:1920152] 

anti-correlation 
with Ncald 

-
0,782 

Gad2 -0,662 0,028 2 glutamic acid decarboxylase 2 [Source:MGI 
Symbol;Acc:MGI:95634] 

anti-correlation 
with Ncald 

-
0,811 



XIX 
 

Cpne5 -0,642 0,016 17 copine V [Source:MGI Symbol;Acc:MGI:2385908] anti-correlation 
with Ncald 

-
0,675 

Vrk1 -0,641 0,027 12 vaccinia related kinase 1 [Source:MGI 
Symbol;Acc:MGI:1261847] 

anti-correlation 
with Ncald 

-
0,782 

B3gnt2 -0,641 0,030 11 UDP-GlcNAc:betaGal beta-1,3-N-
acetylglucosaminyltransferase 2 [Source:MGI 
Symbol;Acc:MGI:1889505] 

anti-correlation 
with Ncald 

-
0,632 

Fancb -0,628 0,032 X Fanconi anemia, complementation group B [Source:MGI 
Symbol;Acc:MGI:2448558] 

anti-correlation 
with Ncald 

-
0,796 

Arhgap27 -0,628 0,020 11 Rho GTPase activating protein 27 [Source:MGI 
Symbol;Acc:MGI:1916903] 

anti-correlation 
with Ncald 

-
0,761 

Slc32a1 -0,606 0,045 2 solute carrier family 32 (GABA vesicular transporter), 
member 1 [Source:MGI Symbol;Acc:MGI:1194488] 

anti-correlation 
with Ncald 

-
0,775 

Ppp1r2 -0,605 0,040 16 protein phosphatase 1, regulatory (inhibitor) subunit 2 
[Source:MGI Symbol;Acc:MGI:1914099] 

anti-correlation 
with Ncald 

-
0,725 

Ebf1 -0,599 0,048 11 early B cell factor 1 [Source:MGI Symbol;Acc:MGI:95275] anti-correlation 
with Ncald 

-
0,786 

Hs3st5 -0,585 0,015 10 heparan sulfate (glucosamine) 3-O-sulfotransferase 5 
[Source:MGI Symbol;Acc:MGI:2441996] 

anti-correlation 
with Ncald 

-
0,789 

Strn -0,571 0,030 17 striatin, calmodulin binding protein [Source:MGI 
Symbol;Acc:MGI:1333757] 

anti-correlation 
with Ncald 

-
0,829 

Rps6ka5 -0,550 0,035 12 ribosomal protein S6 kinase, polypeptide 5 [Source:MGI 
Symbol;Acc:MGI:1920336] 

anti-correlation 
with Ncald 

-
0,796 

Zfp804a -0,543 0,034 2 zinc finger protein 804A [Source:MGI 
Symbol;Acc:MGI:2442949] 

anti-correlation 
with Ncald 

-
0,729 

Asb18 -0,540 0,009 1 ankyrin repeat and SOCS box-containing 18 [Source:MGI 
Symbol;Acc:MGI:2655109] 

anti-correlation 
with Ncald 

-
0,832 

Dll1 -0,539 0,033 17 delta like canonical Notch ligand 1 [Source:MGI 
Symbol;Acc:MGI:104659] 

anti-correlation 
with Ncald 

-
0,811 

Clip4 -0,512 0,047 17 CAP-GLY domain containing linker protein family, member 4 
[Source:MGI Symbol;Acc:MGI:1919100] 

anti-correlation 
with Ncald 

-
0,718 

Has3 -0,463 0,050 8 hyaluronan synthase 3 [Source:MGI 
Symbol;Acc:MGI:109599] 

anti-correlation 
with Ncald 

-
0,789 



XX 
 

Rbms1 -0,445 0,048 2 RNA binding motif, single stranded interacting protein 1 
[Source:MGI Symbol;Acc:MGI:1861774] 

anti-correlation 
with Ncald 

-
0,875 

Mycbp -0,373 0,030 4 MYC binding protein [Source:MGI 
Symbol;Acc:MGI:1891750] 

anti-correlation 
with Ncald 

-
0,825 

Gm14418 -0,351 0,020 2 predicted gene 14418 [Source:MGI 
Symbol;Acc:MGI:3702408] 

anti-correlation 
with Ncald 

-
0,732 

Mterf2 -0,327 0,049 10 mitochondrial transcription termination factor 2 
[Source:MGI Symbol;Acc:MGI:1921488] 

anti-correlation 
with Ncald 

-
0,818 

Stat5b -0,284 0,048 11 signal transducer and activator of transcription 5B 
[Source:MGI Symbol;Acc:MGI:103035] 

anti-correlation 
with Ncald 

-
0,796 

Tbc1d9b 0,326 0,030 11 TBC1 domain family, member 9B [Source:MGI 
Symbol;Acc:MGI:1924045] 

correlation with 
Ncald 

0,846 

Cbln4 0,845 0,030 2 cerebellin 4 precursor protein [Source:MGI 
Symbol;Acc:MGI:2154433] 

correlation with 
Ncald 

0,679 

Ncald 2,849 0,000 15 neurocalcin delta [Source:MGI Symbol;Acc:MGI:1196326] correlation with 
Ncald 

1,000 
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Appendix Table 9 List of genes with significant differential expression upon Ncald deletion and strongly correlated with Ncald gene expression (Spinal Cord)  
 

Gene log2FoldChange Adjusted 
P-value 

Chr Description Type of relationship rho 

Shh -0,538 0,045 5 sonic hedgehog [Source:MGI Symbol;Acc:MGI:98297] anti-correlation with 
Ncald 

-0,621 

Kctd9 -0,363 0,019 14 potassium channel tetramerisation domain containing 9 
[Source:MGI Symbol;Acc:MGI:2145579] 

anti-correlation with 
Ncald 

-0,756 

Rgs4 -0,349 0,000 1 regulator of G-protein signaling 4 [Source:MGI 
Symbol;Acc:MGI:108409] 

anti-correlation with 
Ncald 

-0,735 

Tmem56 -0,307 0,045 3 transmembrane protein 56 [Source:MGI Symbol;Acc:MGI:1923195] anti-correlation with 
Ncald 

-0,693 

Tiparp -0,291 0,021 3 TCDD-inducible poly(ADP-ribose) polymerase [Source:MGI 
Symbol;Acc:MGI:2159210] 

anti-correlation with 
Ncald 

-0,633 

Pdp1 -0,261 0,033 4 pyruvate dehyrogenase phosphatase catalytic subunit 1 
[Source:MGI Symbol;Acc:MGI:2685870] 

anti-correlation with 
Ncald 

-0,600 

Kif5c -0,254 0,020 2 kinesin family member 5C [Source:MGI Symbol;Acc:MGI:1098269] anti-correlation with 
Ncald 

-0,693 

Mapk6 -0,202 0,019 9 mitogen-activated protein kinase 6 [Source:MGI 
Symbol;Acc:MGI:1354946] 

anti-correlation with 
Ncald 

-0,648 

Kbtbd2 -0,164 0,044 6 kelch repeat and BTB (POZ) domain containing 2 [Source:MGI 
Symbol;Acc:MGI:2384811] 

anti-correlation with 
Ncald 

-0,660 

Ahcyl1 -0,146 0,043 3 S-adenosylhomocysteine hydrolase-like 1 [Source:MGI 
Symbol;Acc:MGI:2385184] 

anti-correlation with 
Ncald 

-0,615 

Pld4 0,286 0,014 12 phospholipase D family, member 4 [Source:MGI 
Symbol;Acc:MGI:2144765] 

correlation with Ncald 0,666 

Fbln2 0,434 0,003 6 fibulin 2 [Source:MGI Symbol;Acc:MGI:95488] correlation with Ncald 0,795 

Ccnb2 0,485 0,046 9 cyclin B2 [Source:MGI Symbol;Acc:MGI:88311] correlation with Ncald 0,705 

Ckap2 0,492 0,008 8 cytoskeleton associated protein 2 [Source:MGI correlation with Ncald 0,650 



XXII 
 

Symbol;Acc:MGI:1931797] 

Mybpc1 0,498 0,020 10 myosin binding protein C, slow-type [Source:MGI 
Symbol;Acc:MGI:1336213] 

correlation with Ncald 0,689 

Cenpa 0,607 0,045 5 centromere protein A [Source:MGI Symbol;Acc:MGI:88375] correlation with Ncald 0,728 

Ogn 0,790 0,014 13 osteoglycin [Source:MGI Symbol;Acc:MGI:109278] correlation with Ncald 0,844 

Cdc25c 0,797 0,019 18 cell division cycle 25C [Source:MGI Symbol;Acc:MGI:88350] correlation with Ncald 0,663 

Rem1 0,823 0,015 2 rad and gem related GTP binding protein 1 [Source:MGI 
Symbol;Acc:MGI:1097696] 

correlation with Ncald 0,785 

Gsx1 1,036 0,014 5 GS homeobox 1 [Source:MGI Symbol;Acc:MGI:95842] correlation with Ncald 0,738 

Ncald 2,376 0,000 15 neurocalcin delta [Source:MGI Symbol;Acc:MGI:1196326] correlation with Ncald 1,000 
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