Fighting Software Erosion with
Automated Refactoring

Géabor Szdske

Department of Software Engineering
University of Szeged

Szeged, 2019

Supervisor:

Dr. Rudolf Ferenc

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

OF THE UNIVERSITY OF SZEGED

=

Veritas
Virtus
Libertas

University of Szeged

PhD School in Computer Science

“I am a leaf on the wind. Watch how I soar.”
— Wash

Preface

As a child, T always liked technology and my favorite characters on TV were always
the scientists. Whether it was the main protagonist in Dexter’s Laboratory or a science
officer on Star Trek, I never thought that once I would be this close to becoming one.
My journey started when I first saw a computer at my cousins’ place. Next year in
4th grade I joined a computer class in my school. It was staggering for me and I loved
every bit of it. In a year or so I got a computer from my parents and I have been
hooked ever since.

First of all, I would like to express my gratitude to my supervisor Dr. Rudolf
Ferenc, who kept me motivated while doing my studies. Thank you for inspiring me
in times when I needed motivation and that for keeping me on the right path. Thank
you for providing me with freedom in my work and for allowing me to travel a lot and,
consequently, to meet with many fellow researchers. My special thanks goes to my
article co-author and mentor Dr. Csaba Nagy, for guiding me and teaching me a lot of
indispensable things about research. I would like to thank Dr. Lajos Jend Fiilop, who
inspired me to take the scientific path. I would also like to thank Dr. Tibor Gyimoéthy,
for supporting my research work, providing useful ideas, comments, and interesting
research directions. I wish to thank David P. Curley for reviewing and correcting
my work from a linguistic point of view. My many thanks also go to my colleagues
and article co-authors, namely Dr. Léaszl6 Vidéacs, Dr. Péter Hegedts, Gabor Antal,
Norbert Istvan Csiszar, Dr. Zoltan Ujhelyi, Dr. Akos Horvath, Dr. Daniel Varro,
Zoltan Sogor, Péter Siket, Dr. Istvan Siket, Gergé Balogh and Gergely Ladanyi. My
thanks also go to Dr. Arpad Beszédes and Dr. Eva Gombas for helping me to arrange a
scholarship in Singapore. Many thanks also to all the members of the department over
the years, in one way or another, they all have contributed to the creation of this thesis.

An important part of the thesis deals with the Refactoring Project. Most of this
research work would not have been possible without the cooperation of the project
members. Special thanks to all the colleagues within the department and all partici-
pating company members.

Finally, above all I would like to thank my family for providing a pleasant back-
ground conducive to my studies, and also for encouraging me to go on with my research.

Gdbor Szdke, 2019

iii

Preface

Contents

1 Introduction
1.1 Software Erosion
1.2 Code Refactoring L
1.3 Code Smells and Anti-Patterns
1.4 Software Qualityo
1.5 Goals of the Thesis
1.6 Research questions
1.7 Outline of the Thesis
1.8 Publications e

2 Research Domain
2.1 The Refactoring Research Project

2.1.1

Project design

2.2 Measuring Source Code Maintainability
2.3 Refactoring Definition 0oL

3 Evaluation of Developers’ Refactoring Habits
3.1 Developers’ Insights on Hand-written Refactoring Tasks

3.1.1
3.1.2
3.1.3

Survey questions
Casestudy
Discussion Lo

3.2 Case Study on the Effects of Refactoring on Software Maintainability

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Methodology
Overall Change of Maintainability of the Systems
Effect of Different Types of Refactorings on the Maintainability
Impact of Non-Refactoring Commits
Discussion of Motivating Research Questions
Additional Observations
Threats to Validity

3.3 Related Work

3.3.1
3.3.2
3.3.3
3.3.4

3.3.5

Guidelines on how to apply refactoring methods
Refactoring and its effect on software defects
Refactoring and its effect on code metrics.
Empirical studies on refactoring and its effects on software qual-
ity /maintainability
Code smells and maintenance

3.4 Summaryo

—
e
—

CU s s s W NN = -

— © 0 -1

—

4 Challenges and Benefits of Automated Refactoring 49

4.1 An Automatic Refactoring Framework for Java 49
4.1.1 Overviewo 50
4.1.2 Under the Hood: Automating the Refactoring Process 56
4.1.3 Process Details oo o7
4.1.4 Discussiono o 67

4.2 Evaluating the Connection between Automatic Refactorings and Main-
tainability L 68
4.2.1 Methodology 69
4.2.2 Results. 70
4.2.3 'Threats to Validityo . 78

4.3 Analysis of Developers’ Opinions on Refactoring Automation 79
4.3.1 What developers think about refactoring automation? 79
4.3.2 Did automation increase developers productivity? 84
4.3.3 Lessions Learned 000 84

4.4 Related Work oo 88

4.5 SUmMmMary e e e e 90

5 Applications of Model-Queries in Anti-Pattern Detection 93

5.1 Motivation 94

5.2 Technological Overview 94
5.2.1 Introduction to Program Queries 94
5.2.2 Managing Models of Java Programs 95
5.2.3 Definition of Model Queries using Graph Patterns 97

5.3 Experiment Setup 99

5.4 Program Queries Approaches 101
5.4.1 Manual Search Code 101
5.4.2 Graph Pattern Matching with Local Search Algorithms 102
5.4.3 Incremental Graph Pattern Matching using the Rete algorithm . 103
5.4.4 Model Queries with OCL 105

5.5 Measurement Context L 106
5.5.1 Java Projectso 106
5.5.2 Query Complexity oo 106
5.5.3 Measurement process e 108

5.6 Measurement Results oL L 0oL 109
5.6.1 Load Time and Memory Usage 109
5.6.2 Search Time o 112

5.7 Evaluation of Usage Profiles 114
5.7.1 Usage Profileso 114
5.7.2 Usage Profile Analysis 114
5.7.3 Lessons Learned oo L. 116
5.7.4 Threats to Validity 0. 119

5.8 Related Work 121
5.8.1 Software Analysis Using Generic Modeling Techniques 121
5.8.2 Software Analysis Designed for Program Models 122

5.9 Summary 123

6 Conclusions 125

6.1 Summary of the thesis contributions 125

vi

Bibliography

Author’s publications
References s

Appendices
A PMD rule violations
B Summary

C Osszefoglalé

vii

129
129
130

143

145

163

167

1.1
2.1

3.1
3.2
3.3

3.4
3.5
3.6
3.7

3.8
3.9

3.10

3.11

3.12

3.13

3.14

3.15

4.1
4.2
4.3
4.4
4.5
4.6

List of Tables

Relation between the thesis topics and the corresponding publications. D
Companies involved in the project 7
Top 10 PMD rules with the best improvements 20
Top 10 riskiest PMD rules to refactor 21

The main characteristics of the selected systems: lines of code, total
number of analyzed revisions, number of refactoring commits, number

of refactoring operations. oL 26
Number of commits which increased or decreased the maintainability of

the systems L Lo 27
Maintainability of the systems before and after the refactoring period . 29
Change in maintainability caused by commits improving metrics . . . 30
Description of metrics 30
Change in maintainability caused by commits fixing antipatterns . . . 31

Positive maintainability changes caused by commits fixing coding issues.
(The SP column shows whether a refactoring made a semantic preserv-
ing transformation or not.) 33
Zero or negative changes in maintainability by commits fixing coding is-
sues. (SP column shows whether a refactoring did a semantic preserving

transformation ormot.) Lo 33
Number of refactoring and development commits which had a nega-
tive/zero/positive impact on maintainability L. 36
The average change in maintainability of refactoring commits normalized
by the change in lines of code for each system 37
Average change in maintainability of development commits normalized
by the change in lines of code for each system 38
Pearson’s r correlation coefficient and p significance levels between the
change in lines of code and the change in maintainability 38
Average, minimum and maximum impact on maintainability of different
refactoring types L 40
Refactoring algorithms in FaultBuster 55
Selected projectso 71
Quality changes of the selected projects 72
Quality changes caused by refactoring coding issues 73
Ratios of quality changes on individual metrics level 76
Developers’ feedback on how hard it would be to automate refactoring
Operations e e e 80

ix

4.7

4.8

0.1
5.2
5.3
0.4

How difficult the refactoring automation of coding issues is according to

developers 80
Total help factor survey oo 81
Search Plan for the String Literal Compare Pattern 103
Model Metrics e 107
Query Complexity Metrics oo 107
Measurement Results oo 110

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

5.1
5.2

List of Figures

Overview of the refactoring project. 8
An overview of the attribute dependency graph of ColumbusQM 10
Overview of the refactoring process. 14
Distribution of issue indicators L. 16
Percentage scores of fixed issues for different problem types 16
Distribution of refactorings by PMD rulesets 18
Total refactoring durations by PMD rulesets 19
Average refactoring durations by PMD Rulesets 19
Fix rate according to Priority, 21
Fixes in the first and second half according to Priority 22
Overview of the analysis process. 25
Maintainability of System A over the refactoring period 27
Normalized percentage scores of commits 28
Maintainability of the projects before and after the refactoring period . 28
Maintainability of systems A and B during the refactoring period . . . 36
Maintainability of systems C and D during the refactoring period . . . 37
Maintainability of systems E and F during the refactoring period . .. 37
Average impact on maintainability of different refactoring types 41
Overview of the architecture of FaultBuster 50
Eclipse plugin — Screenshot of a Refactoring wizard with the configura-

tion step of a refactoring algorithm for the Long Function smell 53
Eclipse plugin — Difference view of a patch after refactoring a Long

Function smell 53
Simplified illustration of a refactoring on the AST of Listing 4.3. . .. 59
Overview of the refactoring process 69
Overview of the analysis process 71
Histogram of the answers given for ” How difficult would it be to automate

your manual refactoring for the issue?” 81
Histogram of the answers given for the question “How much did the

automated refactoring help in your task?” 82
How much the automated refactoring solution assisted the developers (5

- great help, 1 -nohelpatall) 83
How much faster was it to do a refactoring with tool-assistance on av-

CLAZE . . . L i i e e e e e 85
ASG Representation of Java Code 96
A Subset of the Ecore Model of the Java ASG 97

xi

5.3 Graph Pattern Representation of the Search Queries. 98
5.4 Visitor for the String Literal as Compare Parameter Problem 102
5.5 Executing the Search Plan 103
5.6 Rete Network for the String Literal Compare Pattern 104
5.7 The OCL Expression of the String Literal as Compare Parameter Problem105
5.8 Distribution of Load Time and Memory Usage of the Jackrabbit Project 111
5.9 Distribution of Search Times for the Jackrabbit Project 113
5.10 Execution Time over Models 115
5.11 Execution Time with regards to Model Sizes 117
5.12 Decision Model (Simplified Representation) 119

xii

To my family

“Code smells.”

— Martin Fowler

Introduction

1.1 Software Erosion

At some stage in their career every developer will encounter the code that no one
understands and that no one wants to touch in case it breaks down. But how did the
software get that bad? Presumably no one set out to make it like that. The process
that the software is suffering from is called software erosion — the constant decay of a
software system that occurs in all phases of software development and maintenance.

The process is also known as software rot, software entropy or software decay.
However, these do not adequately capture the notion that it is forces external to the
software that are ultimately the cause of problems within the software. The software
does not actually decay, but rather suffers from a lack of being updated with respect to
the changing environment in which it resides. However, slow deterioration of software
over time will eventually lead to performance problems and the software becoming
faulty or unusable. Erosion is not something that just happens to the code without
someone actively making changes. Rain shapes hills and mountains slowly over time
and by analogy change can shape software.

Pressure for change comes from a variety of sources. Most commonly, new features
are added to a product to increase its sales value and to satisfy their current users’
demands. Similarly, changes in the environment within which the software is deployed
happens frequently. Sometimes it is the software environment e.g. different operating
system or GUI standards, and technical changes, such as adapting new coding stan-
dards. Other times, it is the hardware that changes, like different architecture, better
CPUs, Wi-Fi connection instead of cable. They all have an impact on the software.

Software that is being continuously modified may lose its integrity over time if
proper mitigating processes are not consistently applied. However, much software re-
quires continuous changes to meet new requirements and correct bugs, and re-engineering
software each time a change is made is rarely practical. This creates what is essentially
an evolution process for the program, causing it to depart from the original engineered
design. As a consequence of this and a changing environment, assumptions made by
the original designers may be invalidated, introducing bugs. Where the initial vision

Chapter 1. Introduction

for the software does not allow for change, such erosion effects will be seen very quickly.

Stopping software erosion requires management commitment. If managers are only
interested in the short-term viability of their software projects then it is hard for
developers to find the time and make the effort to tackle the problem. This does not
excuse developers from doing what they can to fight decay but this will inevitably make
their struggle less effective. With management support you can create a work culture
where stopping erosion is valued. This culture is likely to have characteristics such as
— an emphasis on regular refactoring, clear assignment of responsibilities, sharing of
architectural knowledge and work, frequent communication between the whole group.

1.2 Code Refactoring

In life, software erosion is inevitable. It is typical of software systems that they evolve
over time, so they get enhanced, modified, and adapted to new requirements. As a con-
sequence, the source code usually becomes more complex, and drifts away from its orig-
inal design, hence the maintainability costs of the software increases. This is one reason
why a major part of the total software development cost (about 80%) is spent on soft-
ware maintenance tasks [10]. One solution for preventing the undesirable effects of soft-
ware erosion, and to improve maintainability is to perform refactoring tasks regularly.

The term refactoring was introduced in the PhD dissertation of Opdyke [11]. Refac-
toring is a kind of reorganization, and it is defined as “a change made to the internal
structure of software to make it easier to understand and cheaper to modify without
changing its observable behavior”. Technically, it comes from mathematics when an
expression is factored into an equivalence — the factors are cleaner ways of expressing
the same statement. Refactoring implies equivalence; the beginning and end products
must be functionally identical.

Refactoring is typically done in small steps. After each small step, the working sys-
tem’s functionally is unaltered. Practitioners typically interleave bug fixes and feature
additions between these steps. So refactoring does not preclude changing functionality,
it just says that it is a different activity from rearranging code. A key insight is that it
is easier to rearrange the code correctly if at the same time no change is being made its
functionality. Another is that it is easier to change functionality when the code is clean
(refactored). Practically speaking, refactoring means making code clearer and cleaner
and simpler and elegant. Or, in other words, “clean up after yourself when you code”.
Examples range from renaming a variable to introducing a method into a third-party
class which source is unavailable.

1.3 Code Smells and Anti-Patterns

The term refactoring became popular after Fowler published a catalog of refactoring
transformations [12|. These transformations were meant to fix so-called ‘bad smells’
(a.k.a. ‘code smells’). Bad smells usually indicate badly constructed and hard-to-
maintain code segments. For example, the method at hand may be very long, or it
may be a near duplicate of another similar method. Code smells are usually not bugs
— they are not technically incorrect and do not currently prevent the program from
functioning. Instead, they suggest weaknesses in design that may slow development or
increase the risk of bugs or failures in the future. Once recognized, such problems can

Chapter 1. Introduction

be addressed by refactoring the source code, that is transforming it into a new form
that behaves in the same way as before but it no longer ‘smells’. Refactoring is usually
motivated by noticing a code smell.

There are application-level code smells: duplicated code, contrived complexity;
class-level smells: feature envy, cyclomatic complexity, downcasting; and method-level
smells: too many parameters, long method. Determining what is and is not a code
smell is subjective, and varies by programming language, developer and development
methodology. There are tools such as Checkstyle, PMD and FindBugs for Java which
to automatically check for certain kinds of code smells.

The benefit of understanding code smells is that is helps you to discover and cor-
rect the anti-patterns and bugs that are the real problems. To understand what an
anti-pattern is, we have to know first what a pattern is [13|. Over time, many different
software developers have had to solve the same or similar problems. How many differ-
ent developers needed to restrict user access to portions of an application? Or had to
communicate object states between threads or machines? Some developers come up
with good solutions, while others are able to solve the problem, but do it poorly or inef-
ficiently. These are patterns, and it took a while before we started giving them names.
For example, when good developers solve the problem of securing an application, most
of the time it may look like what we now call the Role Based Access Control pattern.

Anti-patterns are patterns, but they are just undesirable ones. Taking the previous
example, when bad developers solve the problem of securing an application, one may
end up with poorly-designed objects, resulting in what is called the Divergent Change
anti-pattern (or any number of others). In software engineering there are several well-
known anti-patterns, such as Spaghetti Code, Golden Hammer, The Blob, Lava Flow,
and Cut-and-Paste Programming (a non-exhaustive list).

1.4 Software Quality

“Quality software is reasonably bug or defect free, delivered on time and within budget,
meets requirements and/or expectations, and is maintainable.” [14] The quality of a
piece of software is assessed by a number of variables. These variables can be divided
into external and internal quality criteria. External quality is what a user experiences
when running the software package in its operational mode. Internal quality refers to as-
pects that are code-dependent, and that are not visible to the end-user. External qual-
ity is critical to the user, while internal quality is only meaningful to the developer. [15]

Internal quality is mainly evaluated through the analysis of the software inner struc-
ture, namely its source code. A better structure represents an easier maintainable code
and a poor structure mirrors hard-to-maintain code. Hence it is also called software
maintainability. Measuring maintainability is not a straightforward task. It is usually
done by using static analysis techniques which measure different software properties,
such as size, complexity, coupling, duplicated code ratio, and the number of coding
violations or bad smells.

Maintainability has a direct connection with software evolution costs. For example,
if a system is easier to maintain, adding a new feature to it will be straightforward
because it is more changeable. Similarly, it will be safer as well, because such a system is
less error-prone and modifying existing code will be less likely to cause unwanted bugs.

Keeping software maintainability high is in everybody’s interest. The users get their
new features faster and with fewer bugs, the developers have an easier job modifying the

Chapter 1. Introduction

code, and the company should have lower maintenance costs. Good maintainability
can be achieved via very thorough specification and elaborated development plans.
However, this is very rare and only specific projects have the ability to do so. Because
software is always evolving, in practice, the continuous-refactoring approach seems
more feasible. This means that developers from time to time should refactor the code
to make it more maintainable. Maintenance activity like this keeps the code "fresh”
and extends its lifetime.

1.5 Goals of the Thesis

A key goal of this thesis is to contribute to the automated support of software system
maintenance. In particular, in the thesis we propose methodologies, techniques and
tools for:

1. analyzing software developers behavior during hand-written and tool-aided refac-
toring tasks;

2. evaluating the beneficial and detrimental effects of refactoring on software quality;

3. adapting local-search based anti-pattern detection to model-query based tech-
niques in general, and to graph pattern matching in particular.

1.6 Research questions

This thesis research is driven by the following research questions:

RQ1: What will developers do first when they have given the time and money to
do refactoring tasks?

RQ2: What does an automatic refactoring tool need to meet developers require-
ments?

RQ3: How does manual and automatic-tool aided refactoring activity affect soft-
ware maintainability?

RQ4: Can we utilize graph pattern matching to identify anti-patterns as the starting
point of the refactoring process?

1.7 Outline of the Thesis

The thesis contains 6 chapters. This includes an introduction, a conclusion, and a
research domain chapter along with the three main chapters which discuss the results
of the thesis. The present thesis is structured as follows.

Chapter 1 provides a short introduction to the basic concepts used in the thesis.

Chapter 2 presents the research project this thesis is built on; and provides back-
ground to a few terms and technologies that we will use in later chapters.

4

Chapter 1. Introduction

Chapter 3 investigates how programmers re-engineer their code base if they have
the time and extra money to improve the quality of their software systems. In
a project we worked together with five companies where one of the goals was to
improve the quality of some systems being developed by them. It was interesting
to see how these companies optimized their efforts to achieve the best quality im-
provements at the end of the project. They are all profit-orientated companies, so
they really tried to get the best ROI in terms of software quality. To achieve it, they
had to make important decisions on what, where, when and how to re-engineer. We
investigated how developers decided to improve the quality of their source code and
what was the real effect of the manual refactorings on the quality. We collected this
information as experimental data and here we present our evaluation in the form
of a case study.

Chapter 4 describes the results of a case study conducted in practice to investigate
whether automated refactorings improve code quality. We introduce FaultBuster,
a refactoring toolset which is able to support automatic refactoring: identifying the
problematic code parts via static code analysis and running automatic algorithms
to fix selected code smells. We elaborate on the requirements which make a refac-
toring tool appealing to developers. We share our experiences which we learned
while working with developers who were fixing coding issues with the help of our
automated tool in an industrial case study.

Chapter 5 presents a detailed comparison of anti-pattern detection techniques.
We provide an observation of memory usage in different ASG representations (ded-
icated vs. EMF); and run time performance of different program query techniques.
For the latter, we evaluate four essentially different solutions: (i) hand-coded visitor
queries, (ii) queries implemented in native Java code over EMF models, (iii) generic
model queries following a local search strategy and (iv) incremental model queries
using a caching technique. We compare the performance characteristics of these
query technologies by using the source code of open-source Java projects.

Chapter 6 summarizes the contributions of the thesis with respect to the above
research questions. After, the appendix contains a summary of the thesis in English
and Hungarian.

1.8 Publications

Most of the research results presented in this thesis were published in journals or pro-
ceedings of international conferences and workshops. The Corresponding publications
of the Thesis section provides a list of selected peer-reviewed publications. Table 1.1
is a summary of which publications cover which results of the thesis.

Chapter Contribution - short title Publications
3. Case study of a large-scale refactoring project [1], 12], [3]

4. An automated refactoring framework and an industrial case study [4], [5], [6], [7]
5. Benchmarking different anti-pattern detection techniques 18], 19]

Table 1.1. Relation between the thesis topics and the corresponding publications.

Chapter 1. Introduction

Here, the author should mention that although the results presented in this thesis
are his major contribution, from this point on, the term ‘we’ will be used instead of ‘I’
for self-reference to acknowledge the contribution of the co-authors of the papers that

this thesis is based on.

“Discovery consists of looking at the same thing
as everyone else and thinking something different.”

— Albert Szent-Gyorgyi

Research Domain

2.1 The Refactoring Research Project

Much of the research work presented in this thesis was motivated by an R&D project
called the Refactoring Project. This two-year long project was supported by the EU
and a Hungarian national grant. The author was one of the involved researchers in
the project and the results of the thesis are connected to this project. Here, we briefly
present the project and its goals.

The aim of the project was to develop software tools to support the ‘continuous
reengineering’ methodology, hence provide support to identify problematic code parts
in a system and to refactor them in order to enhance maintainability. Continuous
refactoring has many benefits [16], as Kerievsky says “by continuously improving the
design of code, we make it easier and easier to work with. This is in sharp contrast to
what typically happens: little refactoring and a great deal of attention paid to expediently
adding new features. If you get into the hygienic habit of refactoring continuously, you’ll
find that it is easier to extend and maintain code” [17]. This included the development
of an automatic refactoring framework and the testing of it on the source code of the
industrial partners. Hence, we had an in vivo environment and continuous feedback
from using the tools. Moreover, the project provided the companies with a good
opportunity to refactor their code and improve its maintainability.

Table 2.1. Companies involved in the project

Company Primary domain

Company I Enterprise Resource Planning
Company II Integrated Business Management
Company III Integrated Collection Management
Company IV Specific Business Solutions
Company V Web-based PDF Generation

Five experienced software companies were involved in this project. They were
founded in the last two decades, and they started developing some of their systems

7

Chapter 2. Research Domain

before the millennium. The systems that they refactored in the project consisted of
about 2.5 million lines of code altogether, which had been written mostly in Java, and
were related to different areas like ERPs (business process management), ICMs (inte-
grated collection management systems), and online PDF Generators (see Table 2.1).
By taking part in this project, they got extra budget to refactor their own source code.

2.1.1 Project design

Figure 2.1 offers an overview of the main stages of the project. In the first stage
(Analysis), we asked the companies to refactor their code manually. We gave them
support by using static code analyzers to help them identify code parts that should
be refactored in their code (anti-patterns or coding issues, for instance). We asked the
developers to provide detailed documentation of each refactoring phases, and explain
the main reasons and the steps of how they improved the code fragment in question.

Design &

Analysis Development

Application

Manual

|

|

i

|

i Refactoring
refactoring : Framework

|

|

|

|

|

|

|

|

|

|

survey

survey Automated

refactoring

IDE plugins

(Eclipse, IDEA, Netbeans)

Refactoring Algorithms

Figure 2.1. Overview of the refactoring project.

In the second stage (Design & Development), we designed and implemented a refac-
toring framework based on the results of the manual refactorings. This framework was
implemented as a server-side component that provided three types of services:

e A static source code analyzer toolset to derive low-level quality indicators that
could be used to identify refactoring candidates.

e A persistence layer above a database for storing and querying analysis data (with
a complete history).

e A set of web services capable of automatically performing various refactoring
operations to eliminate certain coding issues and generate a source code patch to
be applied on the original code base.

As can be seen from the above list, the framework not only provided refactoring
algorithms for the developers, but it also helped to identify possible targets for refac-
toring by analyzing their systems using a static source code analyzer. The tool is able
to give a list of problematic code fragments including coding issues, anti-patterns (e.g.
duplicated code, long functions) and source code elements with problematic metrics at

8

Chapter 2. Research Domain

different levels (e.g. classes/methods with excessive complexity and classes with bad
coupling or cohesion metrics). However, the framework only supports the refactoring of
40 different coding issues, so the companies were just asked to fix issues from this list.

The participating companies took part in the development of the refactoring tools as
well. One of their tasks was to develop IDE plugins for their own working environments
(Eclipse, IDEA, and Netbeans). So it was the responsibility of the framework to
perform the refactoring transformations and generate patches. The IDE plugins were
responsible for providing an interface to all the features of the framework by taking
advantage of the Ul elements of the IDEs. This way, the refactoring process was
controlled by the framework and the developers worked in their familiar workspace.

In the third stage of the project (Application), the developers used the automatic
tool to refactor their code base. Over 7,800 issues got fixed, which fell into about 30
different kinds of issues. Thanks to the project requirements, all the refactorings were
well documented.

Taking advantage of this controlled environment, we collected a large amount of
data during the refactoring phases. By measuring the maintainability of the given
subject systems before and after the refactorings, we got valuable insights into the
effect of these refactorings on large-scale industrial projects.

2.2 Measuring Source Code Maintainability

Several maintainability models exist which try to express the maintainability of a soft-
ware system numerically. Most of these models rely on the observation that the increase
of some code metrics (e.g. length of the code, or complexity) indicates a decrease in
the maintainability, hence software quality. Chidamber and Kemerer [18] defined sev-
eral object-oriented metrics; these definitions are de facto standards employed in many
studies. Gyimdthy et al. [19] validated empirically that the increase of some of the
defined metrics (e.g. CBO) indeed increase the probability of faults.

To calculate the absolute maintainability values of systems involved in the Refactor-
ing Project we used the ColumbusQM probabilistic software maintainability model'.
The ColumbusQM quality model is based on the ISO/IEC 25010 [21] international
standard for software product quality. Thanks to this probabilistic approach, the
model integrates the objective, measurable characteristics of the source code (e.g. code
metrics) and expert knowledge, which is usually ambiguous. At the lowest level, the
following properties are considered by the model:

e source code metrics (e.g. some C&K metrics),
e source code duplications (copy&pasted code fragments),
e coding rule violations (e.g. coding style guidelines, coding issues).

The computation of the standard’s high-level quality characteristics is based on a
directed acyclic graph (DAG), whose nodes correspond to quality properties that can
be considered low-level or high-level attributes (see Figure 2.2). The nodes without
input edges are low-level nodes (sensor nodes — shown in white). These characterize a
software system from the developers’ view, so their calculation is based on source code
metrics, or other source code properties (e.g. violating coding conventions). These
properties can be calculated by static source code analysis. For this analysis, we use

LA detailed description of ColumbusQM is available in the work of Bakota et al. [20]

9

Chapter 2. Research Domain

Maintainability

Effectiveness

TEm

Stability Changesbility

/ A J \
ol

Figure 2.2. An overview of the attribute dependency graph of ColumbusQM [20]. Un-
filled nodes represent the sensor nodes (code metrics, number of coding rule violations,
number of code clones, etc.) in the model. Aggregated nodes (both light and dark
gray nodes) are calculated from these sensor nodes or other aggregated nodes. They
were either defined by the ISO/IEC 25010 standard (dark gray) or introduced to show
other maintainability attributes (light gray).

an implementation of the ColumbusQM model, called QualityGate [22]. QualityGate
uses the free SourceMeter [23] tool, which builds an abstract semantic graph (ASG)
from the source code, and it uses this graph to calculate metrics, find code clones
(duplications) and to find coding issues such as unused code and empty catch blocks.
High-level nodes (called aggregate nodes) characterize a software system from the
end user’s view. They are calculated as an aggregation of the low-level and other high-
level nodes. In addition to the aggregate nodes which are defined by the standard (dark
gray nodes), there are also some new ones that were introduced to show further external
maintainability attributes (light gray nodes). These nodes have input and output edges
as well. The edges of the graph show the dependencies between sensor nodes and
aggregated nodes. Evaluating all the high-level nodes is performed by an aggregation
along the edges of the graph, which is called the attribute dependency graph (ADG).
Typically, we wish to know how good or bad an attribute is in terms of maintain-
ability. We use the term goodness to express this with the help of the model. To
include some degree of uncertainty in the value of goodness, it is represented as a ran-
dom variable with a probability density function, which is called the goodness function.
The goodness function is based on the metric histogram over the code elements, as it
characterizes the system from the aspect of one metric (from one aspect). As goodness
is a relative term, it is expected to be measured by means of a comparison with other
histograms. After applying the distance function between two histograms, we get a
goodness value for the subject histogram. This value will be relative to the other his-
togram, but the goal is to be independent. Although, the result will always depend on
the histograms in the benchmark (see below), we can get a better estimate by repeating
the comparison with a larger set of systems in the benchmark. For every comparison,
we get a goodness value which can be basically regarded as a sample of a random

10

Chapter 2. Research Domain

variable over the range [—oo, oo]. Interpolation of the empirical density function leads
us to the goodness function of the low-level nodes. There is also a way to aggregate the
sensor nodes along the edges of the ADG. Bakota et al. [20] held an online survey, where
they asked academic and industrial experts for their opinions about the weights of the
quality attributes. The number assigned to an edge is considered to be the degree of
contribution of source goodness to target goodness. Taking into account every possible
combination of goodness values and weights, and the probability values of their result,
they defined a formula to compute the goodness function for each aggregate node. In
the end, the top-level node in the ADG, maintainability, will have an aggregated value
over the interval [0, 10].

As we mentioned before, each histogram gets compared to several other histograms.
In order to do this, it is necessary to have a reference database (benchmark) which
contains source code properties and histograms of numerous software systems. This
benchmark is the basis for a comparison of the software system to be evaluated. By
applying the same benchmark, quality becomes comparable among different software
systems, or different versions of the same system.

This qualification methodology is general and independent of the ADG and the votes
of the experts. But the latter is language specific, resulting in the need for language-
specific ADGs. The ADG for Java is shown in Figure 2.2, which was constructed based
on the opinions of over 50 experts. The benchmark for Java contains the analysis
results of over 100 industrial and open-source Java systems.

In chapters 3 and 4 we use QualityGate with ColumbusQM for Java to objectively
measure the maintainability of software systems.

2.3 Refactoring Definition

After the term refactoring was introduced in the PhD dissertation of Opdyke [11],
Fowler published a catalog of refactoring transformations, where he defined refactoring
as “a change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior” |12]. However, there
is some controversy between researchers about how to interpret this definition. The
common academic reading of this definition is that “a function has to be semantically
equivalent before and after refactoring”. This is a strict interpretation, for example,
when a function contains a fault (i.e. crashes on a null input) it has to preserve
this behavior even after the refactoring. Kim et al. |24| found in their study that, in
practice, developers’ views on refactoring usually differ from the academic ones. They
found that developers define refactoring simply as “Rewriting code to make it better in
some way.”.

In the following chapters we use the term “refactoring” in the form of the latter
definition. This perspective is closer to the Refactoring Project, where we investigate
developers in industrial contexts; moreover, we asked the participants to separate refac-
toring commits from normal tasks (i.e. adding features or fixing bugs). Therefore, we
were able to analyze refactorings in its more natural state.

11

“I choose a lazy person to do a hard job.
Because a lazy person will find an easy way to do it.”

— Bill Gates

Evaluation of Developers’
Refactoring Habits

Refactoring source code has many benefits (e.g. improving maintainability, robustness
and source code quality), but it means that less time can be spent on other imple-
mentation tasks and developers may neglect refactoring steps during the development
process. But what happens when they know that the quality of their source code needs
to be improved and they can have the extra time and money to refactor the code? What
will they do? What things will they consider the most important for improving source
code quality? What sort of issues will they address first (or last) and how will they
solve them? TIs it possible to reflect these changes on a unified quality scale? If so, are
the refactoring efforts of developers chime in with the measured metrics?

In this chapter, we assess these questions in an n vivo context, where we analyzed
the source code and measured the maintainability of six large-scale, proprietary soft-
ware systems in their manual refactoring phase. We surveyed developers during their
refactoring tasks and got insights into what their motives and habits were during the
examined period.

3.1 Developers’ Insights on Hand-written
Refactoring Tasks

One of the major goals of the Refactoring Project was to create automated tool sup-
port for refactoring tasks. To create a tool that will actually help developers in their
everyday work we decided to do a study on how they operate in normal circumstances.
This way, we could learn more about what developers think of refactoring, what they
preferences are, and what they think they want in an automated tool. Therefore, in the
initial step of the Refactoring Project we asked developers of participating companies
to manually refactor their own code.

Figure 3.1 gives a brief overview of this phase of the project. Here, we requested
developers to provide a detailed documentation of each refactoring, explaining what

13

Chapter 3. Fvaluation of Developers’ Refactoring Habits

they did and why to improve the targeted code fragment. We gave them support by
continuously monitoring their code base and automatically identifying problematic code
parts using a static code analyzer based on the Columbus technology of the University
of Szeged |25, namely the SourceMeter product of FrontEndART Ltd. |26] Companies
had to fill in a survey with questions targeting the initial identification of steps; that
is, evaluating the reports of SourceMeter looking for really problematic code fragments
and explaining in the survey why that part of the code was actually a good target for
refactoring. After identifying coding issues, they refactored each issue one-by-one and
filled out another questionnaire for each refactoring, to summarize their experiences
after improving the code fragment. There were around 40 developers involved in the
project (5-10 on average from each company) who were asked to complete the survey
and carry out the refactorings.

SourceMeter

Detected Source

Issues Code
N Log > Ak Refactoring &
= L BA) Commit g W
L L I I
Trac Source Code

Developers .
Repository

Figure 3.1. Overview of the refactoring process. SourceMeter provided a list of po-
tential problems in the code. Developers could freely choose one of these, or identify
a new one, which they fixed and committed to the version control system. They also
had to complete a survey for each refactoring in the ticketing system (Trac).

3.1.1 Survey questions

The survey consisted of two parts for each issue. The developers had to fill in the first
part before they began refactoring the code, and the second part after the refactoring.
In the first part, they asked the following questions:

e Which PMD rule violations helped you identify the issue?
e Which Bad Smells helped you to find the issue?

e Estimate how much it would take to refactor the problem.
e How big is the risk in carrying out the refactoring? (1-5)

e How do you think the refactoring will improve the quality of the whole system’s
code? (1-5)

e How do you think the refactoring will improve the quality of the current local
code segment? (1-5)

e How much do you think the refactoring will improve the current code segment?
(1-5)

14

Chapter 3. Evaluation of Developers’ Refactoring Habits

e How many files will the refactoring have an impact on?
e How many classes will the refactoring have an impact on?
e How many methods will the refactoring have an impact on?

We asked some more questions after developers had finished the refactoring task. These
were the following:

e Which PMD rule violations did the refactoring fix?

Which Bad Smells did the refactoring fix?

How much time did the refactoring task take?

Did any automated solution help you to fix the problem?
e How much of the fix for this problem could be automated? (1-5)

With most of the questions, we provided some basic options. For the first question
for example we provided a list of PMD rule violations with their names, to help the
developers answer the questions quickly. In the questions on the classes and methods
impacted, we provided different ranges, namely 1-5, 5-10, 10-25, 25-50, 50-100, 100-+.
Each question had a text field where the developers could explain their answers and
they could also suggest possible improvements and add comments.

3.1.2 Case study

RQ1: What kinds of issues did the companies find most reasonable to refac-
tor?

Our first research question focused on which issue types the companies considered the
most important to refactor. We asked the companies which indicators helped them best
in finding problematic code fragments in their systems. In our survey, companies could
select Bad Code Smells and Rule Violations as indicators on how they found the issues.

In our evaluation, we distinguish a special kind of bad smell which suggests code
clones in the system. In Figure 3.2, a distribution can be seen for the issues which
helped the companies to identify the problematic code fragments in their code. The
intersections in the figure came from the fact that developers could select more than
one indicator per issue. The reason why bad smells and clones had no elements in their
intersection was because a clone is a special kind of bad smell, as mentioned earlier.
The same applies for the intersection of the former group and the rules group (an empty
set cannot intersect anything).

When we look at the results in Figure 3.2, we see that the companies found the
majority of issues that lay in the sets of rule violations and bad smells. It can also
be seen that rule violations alone cover 85% of all the issues found. This also includes
75% of all the bad smells (because of the intersection). So the assumption here is that
rule violations are the best candidates for highlighting issues. However to verify this,
we also had to look at how many issues the companies fixed in order to choose the best
indicator of refactorings.

Figure 3.3 shows the percentage of each fixed issue found from our survey. When
we examine the ratio of fixed issues, we see that the bad smells are mostly refactored

15

Chapter 3. Fvaluation of Developers’ Refactoring Habits

bad smells N clones

0,00%V

bad smells N rules N
clones
0,00%

rules N clones
0,25%

Figure 3.2. Distribution of issue indicators

issues. However if we include the total number of issues, it is clear that rule violations
offered the most benefits.

Based on the fact that 85% of all issues were rule violations and developers mostly
fixed these issues instead of the others, in future RQs we will just focus on rule viola-
tions.

bad smells N rules N clones

bad smells N clones

clones
rules N clones [fixed %
M not fixed %
rules

bad smells N rules

bad smells

T T

0,00% 10,00% 20,00% 30,00% 40,00 50,00% 60,00%

Figure 3.3. Percentage scores of fixed issues for different problem types

16

Chapter 3. Evaluation of Developers’ Refactoring Habits

RQ2: What are those attributes of refactorings that can help in selecting
them?

The rule violations in the survey were provided by the PMD source code analyzer tool.
In our study, we categorized and aggregated these rules into groups. The groups we
used were the Rulesets taken from the PMD website [27]. The companies filled in
the survey for 961 PMD refactorings altogether. These 961 refactorings produced 71
different rule violation types over 19 rulesets.

Below, we will examine these rulesets based on different attributes. Based on our
survey questions, we created the following attributes:

number of refactorings indicates how many issues were fixed for a certain kind of
PMD or ruleset.

average and total time required tells us the total and average time that companies
spent on a refactoring. (Values are in work hours.)

estimated time shows how companies estimated the time that a refactoring operation
would take. (Values were enumerated between 1 hour and 3-4 days.)

local improvement indicates the subjective opinion of developers on how much the
local code segment was improved by the refactoring (Values are between 1-5.)

global improvement indicates the subjective opinion of developers on how much the
code improved globally. (Values are between 1-5.)

risk indicates the subjective opinion of developers on how risky the refactoring is.
(Values are between 1-5.)

impact is an aggregated number that tells us how many files/classes/methods a refac-
toring affected. (Values are enumerated between 1-100.)

priority tells us how dangerous a rule violation is, and how important it is to fix it.
The priority attribute did not come from the survey; we used the prioritisation
of the underlying toolchain. (Values lie between 1-3.)

RQ3: Which refactoring operations were the most desirable based on to the
attributes defined above?

The attributes above tell us how risky a refactoring operation is and how much time
it will usually take to fix. By combining these attributes, we can discover which rules
or rulesets are the most beneficial or riskiest; or by aggregating the first two attributes
with time required, we can see which rules will best return the effort we invested in
refactoring. Next, we investigate the number of refactorings, time required, improve-
ment and risk.

Number of refactorings Now let us examine the most obvious attribute, namely
the number of refactorings the companies performed. The results in Figure 3.4 indi-
cate that the companies dealt with almost every kind of rule violation. The majority
of refactored rule violations were found in the Design ruleset. This ruleset contains
rules that flag suboptimal code implementations, so fixing these code fragments should

17

Chapter 3. Fvaluation of Developers’ Refactoring Habits

significantly improve the software quality and perhaps even improve the overall per-
formance. The Design ruleset is followed by the Strict Exceptions, Unused Code and
Braces categories, which focuses on throwing and catching exceptions correctly, remov-
ing unused or ineffective code, and also the use and placement of braces. Some rule
violations in the following categories were also fixed in large numbers under the Basic,
Migration, Optimization, String and StringBuffer rulesets. The other rulesets scarcely
came up (like Empty Code) or not at all (like Android). This is probably due to the
fact that the projects did not contain these kinds of violations or contained only false

positives.
m Basic
H Braces
= Design
m Migration
m Optimization
' m Strict Exceptions

Figure 3.4. Distribution of refactorings by PMD rulesets

m String and StringBuffer

® Unused Code
Coupling

u Other

Coupling
4%

Average and total time required After investigating how many refactorings the
companies made, we will now examine how much time a refactoring operation took.
(Here, we consider the time the developers spent on refactoring their source code,
excluding the time they spent on testing and verifying the code.)

When we look at the total time needed for the categories in Figure 3.5, we see
that the time distribution of the refactorings shows a similar tendency to the number
of refactorings. A linear correlation can be seen between the number of refactorings
and the total time spent on them. However, other interesting things were observed
when we looked at the average time spent on the different kinds of PMD categories in
Figure 3.6. It seems as if the companies spent most of the time on average on Code
Size, Security Code Guidelines and Optimization rules. The least time was spent on
average on Braces, Import Statements and Java Beans rules (excluding those rules
where no time was spent at all). The Code Size ruleset contains rules that relate to
code size or complexity (e.g. CyclomaticComplexity, NPathComplexity), while the
Security Code Guidelines rules check the security guidelines defined by Oracle. The
latter guidelines describe violations like exposing internal arrays or storing the arrays

18

Chapter 3. Evaluation of Developers’ Refactoring Habits

W Basic

H Braces

m Design

®m Empty Code

® Java Logging

m Migration

m Optimization

m Strict Exceptions

String and StringBuffer

String and ® Unused Code

StringBuffer = Other
7%

Figure 3.5. Total refactoring durations by PMD rulesets

directly. Optimization rules focus on different optimizations that generally apply to
best practices. Reducing the complexity of the code, making the application more
robust or optimizing it takes time. Apparently, these take the most time. Removing
unused import statements or adding or removing some braces usually can be performed
quickly, but to find which independent statements should be extracted so as to reduce
the complexity is a hard task.

1,8

Code Size

Security Code Guidelines
Optimization

Empty Code

String and StringBuffer
Design

Basic

Strict Exceptions
Unused Code
Migration

Type Resolution
Controversial

Naming

Java Logging

Coupling

Clone Implementation
Braces

Import Statements

JavaBeans

Figure 3.6. Average refactoring durations by PMD Rulesets

19

Chapter 3. Fvaluation of Developers’ Refactoring Habits

Global and local improvement To learn which PMD rule violations fit the at-
tributes best, we summarized and averaged both the global and local improvement
values got from the survey. We ranked both sets of values by their position in their
data set. The average of the two former values gave us a list of the best improving
PMD rulesets. From our results, the best improvements locally and globally are given
by the Strict Fxceptions, Coupling and Basic PMD rulesets. However, rulesets con-
tain a lot of different rules, and hence the categories alone did not give us the proper
information we sought. To get further information, a per-rule statistic was required.

For the per-rule statistics, we filtered the results with those cases where the compa-
nies did fewer than 4 refactorings of a single kind of PMD rule. This ensured that only
relevant data was included in the statistics, and a single-refactored PMD rule could
not adversely affect the average values.

Table 3.1 shows a top list of the best improving PMD rule violations. The top list
was made by taking the average of the local improvements and summing the average
of global improvements, in descending order.

PMD rule violation Rank

PMD _LoC - LooseCoupling

PMD _PLFIC - PositionLiteralsFirstInComparisons
PMD CCOM - ConstructorCallsOverridableMethod
PMD _ALOC - AtLeastOneConstructor

PMD_ ATRET - AvoidThrowingRawExceptionTypes
PMD _ ULV - UnusedLocalVariable

PMD _USBFSA - UseStringBufferForStringAppends
PMD OBEAH - OverrideBothEqualsAndHashcode
PMD AICICC - AvoidInstanceofChecksInCatchClause
PMD MRIA - MethodReturnsInternal Array

LN O LN

—_

Table 3.1. Top 10 PMD rules with the best improvements

Risk Table 3.2 shows the riskiest PMD rules used to refactor based on the replies
by company experts. We observe that in most cases the riskiest refactorings are for
basic Java functionalities. The list includes rules concerning java.lang. Object’s clone,
hashCode and equals method implementation, proper catch blocks and throws defini-
tions, array copying and unused variables. All of the previous refactorings increased the
quality of the software system (by definition), but fixing these rule violations can have
some unexpected consequences. These unexpected consequences are also caused by a
previous improper implementation. Of course, if the software code had been written
properly in the first place, these unexpected results would have been appeared earlier,
and could have been fixed during the development phase.

RQ5: How can we schedule refactoring operations efficiently?

Now we will describe a way of scheduling refactoring operations. First, we will ex-
amine how the industrial partners scheduled their refactorings and then we will make
recommendations based on these observations.

20

Chapter 3. Evaluation of Developers’ Refactoring Habits

PMD rule violation Rank

PMD _ PCI - ProperClonelmplementation

PMD _ALOC - AtLeastOneConstructor

PMD _ SDTE - SignatureDeclareThrowsException
PMD _ACNPE - AvoidCatchingNPE

PMD _LoC - LooseCoupling

PMD OBEAH - OverrideBothEqualsAndHashcode
PMD AICICC - AvoidInstanceofChecksInCatchClause
PMD ULV - UnusedLocalVariable

PMD _AISD - ArrayIsStoredDirectly

PMD _ATNPE - AvoidThrowingNullPointerException

WSO WD

—_

Table 3.2. Top 10 riskiest PMD rules to refactor

How did companies schedule their refactorings? We asked the companies how
they scheduled their refactoring operations when fixing rule violations. Each of the
companies used the priority attribute that was given for each kind of rule violation, by
using the toolchain that was used to extract the rule violations. Priorities were 1, 2,
3, which indicate different levels of threat for each rule violation.

Priority 1 indicates dangerous programming flows.
Priority 2 indicates not so dangerous, but still risky or unoptimized code segments.

Priority 3 indicates violations to common programming and naming conventions.

mil
2

m3

Figure 3.7. Fix rate according to Priority

In Figure 3.7, we can see the percentage scores of all the issues that were fixed for
each priority level. They reveal that companies fixed Priority 1 issues the most and
Priority 2 issues the second most. This means that companies here opted to fix the
most threatening rule violations detected in the code.

Given these attributes, the most efficient way is to start refactoring those issues
that had Priority 1 level rule violations. To find out how the companies actually sched-
uled their refactorings, we split the refactorings into two sets. The first set contains
refactorings which were made in the first half of the project, and the other set contains
refactorings made in the second half. The results of these experiments are represented
in Figure 3.8. They tell us in percentage terms how much was fixed for each priority

21

Chapter 3. Fvaluation of Developers’ Refactoring Habits

level in the first half and second half of the project. They reveal that the companies
fixed most Priority 1 rule violations in the first half of the project and fixed most Pri-
ority 2 rules in the second half. This is consistent with what the companies told us
and they provided good feedback on how they scheduled their refactoring process.

B first half
B second half

N

0% 20% 40% 60% 80% 100%

Figure 3.8. Fixes in the first and second half according to Priority

3.1.3 Discussion

Next, we will elaborate on potential threats to validity and some other interesting
results that we obtained from our survey.

Threats to Validity

We identified some threats that can affect the construct, internal and external validity
of our results.

The first one we encountered was the subjectivity of the survey. The answers to
our survey questions were given by developers on a self-assessment basis. We did not
measure the time needed or enhancement of refactorings with any automated solution;
instead we let the developers answer the survey freely. Nevertheless, we carried out
the survey with five industrial partners and therefore with many experts, which surely
makes the results statistically relevant.

Another threat that we anticipated was that developers got ‘unlimited’ extra money
and time to do the refactorings, so we could monitor how they refactored their system
without any budget pressure. Although they had extra time and money in part of the
project, there were still limits that might affect the results and the refactoring process.

Turning to external validity, the generalizability of our results depends on whether
the selected programming language and rule violations are representative for general
applications. The Java programming language was selected in the assessment together
with the companies. These refactorings were made mostly on issues identified by PMD
rule violations, hence they were Java specific. However, most of these rules could be
generalized to abstract Object-Orientated rules, or they can be specifically defined for
other programming languages.

22

Chapter 3. Evaluation of Developers’ Refactoring Habits

Another threat is that whether fixing PMD rule violations can be viewed as refac-
toring or not. PMD refactorings are not like traditional refactoring operations that
most studies examine (e.g. pull up, push down, move method, rename method, replace
conditional with polymorphism). Despite this, Fowler |12] defined refactoring as “the
process of changing a software system in such a way that it does not alter the exter-
nal behavior of the code yet improves its internal structure.” During the project we
encountered several PMD rule violations and our general experience is that the refac-
toring of these violations does not alter external behavior, so they can by definition be
treated as refactoring.

Overall, our methods were evaluated on large-scale industrial projects, with con-
tributions from expert developers, on a big set of data, which is a rather unique case
study in the refactoring research area.

Other results

In our case study (see Section 3.1.2) we summarized our results based on research
questions addressed to experts working in five IT companies. However we ran into
several interesting cases which were worth mentioning, but could not be incorporated
into our research questions.

One of the interesting cases we found was when we searched for the longest-lasting
refactorings. We found that Company A carried out a SignatureDeclare ThrowsFz-
ception refactoring, which lasted 16 hours. The issue occurred in a method of a
widely implemented interface, and the problem was that the method threw a sim-
ple java.lang. Exception Exception-type. This is not recommended because it hides
information and it is harder to handle exceptions. The developer assigned to the issue
estimated that the work took 1-2 days, and said that the risk was high because it
impacted 10-25 files, but it was worth refactoring because the extra information they
gained after the refactoring helped improve the maintainability of the source code.

Another intriguing example was with the same search as before. We found that
Company D performed several AvoidDuplicateLiterals refactorings, which took them 7
hours on average to do; and each of the refactorings impacted on more than 100 classes.
According to the comments in the survey, they used NetBeans IDE [28] to fix these
kinds of issues. NetBeans IDE has a integrated refactoring suite that helps developers
to refactor their source code. Here, they used this suite to extract duplicated literals
to constant variables. The survey comments revealed that the refactoring suite really
helped them in this refactoring task, and it would be a great help if automated solutions
could be devised and implemented to tackle other issues as well.

3.2 Case Study on the Effects of Refactoring on Soft-
ware Maintainability

In Section 3.1 we analyzed questionnaires that the developers filled before and after they
manually refactored the code. Here, we investigate how developers decided to improve
the quality of their source code and what the real effect of the manual refactorings
was on the quality. In this study, we measured the maintainability of six selected
systems of four companies who participated in the project. We calculated the quality
for the revisions before and after the developers applied refactoring operations. We

23

Chapter 3. Fvaluation of Developers’ Refactoring Habits

showed which code smells developers decided to fix and how each refactoring changed
the quality of the systems. We examine the data set that we gathered by addressing
the following motivating research questions:

e [s it possible to recognize the change in maintainability caused by a single refac-
toring operation with a probabilistic quality model based on code metrics, coding
issues and code clones?

e Does refactoring increase the overall maintainability of a software system?

e Can it happen that refactoring decreases maintainability?

3.2.1 Methodology

In the project, the companies’ programmers were required to refactor their own code,
hence improve its maintainability, but they were free to choose how they wanted to do it.
They could freely choose any coding issues or metrics from the reported problems, and
they were also free to identify additional problems in the code by themselves. However,
the project required that they filled out the survey (in a Trac ticketing system) and that
they gave a thorough explanation on what, why and how they refactored during their
maintenance task. Besides completing the survey, we asked them to provide revision
information so we could map one refactoring to a Trac ticket and a revision in the
version control system (Subversion, Mercurial).

After the manual refactoring phase, we analyzed the selected revisions to assess the
change in the maintainability of the systems caused by refactoring commits. Figure 3.9
gives an overview of this process. It was not a requirement of the developers that they
commit only refactorings to the version control system, or that they create a separate
branch for this purpose. It was more realistic, and some developers asked us in particu-
lar to commit these changes to the trunk or development branches so they could develop
their system in parallel with the refactoring process. Hence, for each system we identi-
fied the revisions (ry,, ..., 74, ..., 71,) that were reported in the Trac system as refactoring
commits, and we analyzed all these revisions along with the revisions prior to them. As
a result, we considered the set of revisions 74, 1,74, ..., Tt,—1, 4,5 oo, Tt —1, T, , Where 1y,
is a refactoring commit and r;,_; is the revision prior to this commit, which is actually
not a reported refactoring commit.

We performed an analysis of these revisions of the source code via the QualityGate
SourceAudit tool, mentioned earlier in Section 2.2. To be able to calculate the changes
in the maintainability, we had to analyze the whole code base for each revision. That
is, a commit with a small local change may also have an impact on some other parts of
the source code. E.g., a small modification in a method may result in the appearance
of a new clone instance, or changes in coupling metric values of some other classes.
Besides analyzing the maintainability of these revisions, we collected data from the
version control system as well, like diffs and log messages.

We will now illustrate the use of a simple refactoring through a coding issue that
was actually fixed by the developers. In this example, we show the ‘Position Literals
First In Comparisons’ coding issue. In Listing 3.1, there is a Java code example with
a simple String comparison. This code works perfectly until we call the ‘printTest’
method with a null reference. By doing so, we would call a method of a null object,
and the JVM would throw a NullPointerException.

24

Chapter 3. Evaluation of Developers’ Refactoring Habits

3 | Source Code
| Repository

L
L
!)
Issue: "empty catch block"
Action: "refactoring" / / t(i)-2 / t(i)-1 / t(i) / t(i)+1] /
Fixed in revision: "t(i)"

v

Analyze refactoring (1(i))
and previous (t(i)-1) revisions

v

Maintainability Maintainability
of t(i)-1 version of {(i) version

Trac Database

-

N
b
u

QualityGate

MaintainabilityChange = Maintainability(t(i)) - Maintainability(t(i)-1)

Y

Effect of refactoring on

software maintainability

Figure 3.9. Overview of the analysis process. We identified the refactoring commits
based on the tickets in Trac, and analyzed maintainability of the revisions before/after
refactoring commits.

public class MyClass{

public static void printTest(String a){
if(a.equals("Test ")) {

System.out.println("”"This is a test!"”);

¥

¥

public static void main(Stringl[] args) {
String a = "Test";
printTest(a);
a = null;
printTest(a); // What happens?

¥

}

-
Listing 3.1. A code with a Position Literals First In Comparisons
issue

To avoid this problem, we have to compare the String literal with the variable
instead of comparing the variable with the literal. So to fix this issue, we simply swap
the literal and the variable in the code, as can be seen in Listing 3.2. Thanks to this
fix, one can safely call the ‘printTest’ method with a null object and we do not have
to worry about a null pointer exception. This and similar refactorings are easy to fix,
and with this fix we can avoid critical or even blocker errors.

25

Chapter 3. Fvaluation of Developers’ Refactoring Habits

rpublic class MyClassq
public static void printTest(String a){
if("Test"”.equals(a)) {
System.out.println(”This is a test!");
}
}
public static void main(Stringl[] args) {
String a = "Test";
printTest(a);
a = null;
printTest(a); // What happens?
}
}

-

Listing 3.2. Sample refactoring of the code in Listing 3.1

3.2.2 Overall Change of Maintainability of the Systems

Table 3.3 shows the size of the six chosen systems and the number of analyzed re-
visions including the number of refactoring commits. Recall that we determined the
refactoring revisions from the ticketing system as those revisions which were marked
by the developers as refactoring commits. In addition, we analyzed the non-refactoring
revisions prior to the refactoring revisions in order to calculate the change in main-
tainability (see Section 3.2.1). All in all, we analyzed around 2.5 million lines of code
with 732 revisions, out of which 315 were refactoring commits. Developers made 1,273
refactoring operations with these commits. Notice that the project allowed the de-
velopers to commit more refactorings together in one patch, but one commit had to
consist of the same type of refactoring operations. So one commit possibly included
the necessary code transformations to fix more Position Literals First issues, and we
did not allow it to have a different type of coding issue in the same changeset.

Table 3.3. The main characteristics of the selected systems: lines of code, total number
of analyzed revisions, number of refactoring commits, number of refactoring operations.

Analyzed Refactoring

System Company kLOC Revisions Commits Refactorings
System A Comp. L. 1,740 269 136 470
System B Comp. II. 440 180 38 78
System C Comp. III. 170 78 15 597
System D Comp. IV. 38 37 16 18
System E Comp. IV. 11 57 40 40
System F' Comp. IV. 50 111 70 70

Total 2,449 732 315 1,273

The first diagram in Figure 3.10 shows the change in the maintainability (between
each pair of refactoring and its predecessor) of System A during the refactoring period.
The diagram indicates that maintainability of the system increased over time; how-
ever, this tendency includes the normal development commits as well and not just the
refactoring commits.

The second diagram in Figure 3.10 shows a sub-period and highlights in red those
revisions that were marked as refactoring commits, while the green part indicates the
rest of the revisions (i.e, the ones preceding a refactoring commit) which were the
normal development commits. It can be seen that those commits that were marked as

26

Chapter 3. Evaluation of Developers’ Refactoring Habits

B W Quality wwj?é

oo TN B W Quality index
— ~

Figure 3.10. Maintainability of System A over the refactoring period and a selected
subperiod where we highlighted in red the changes in maintainability caused by refac-
toring commits

refactorings noticeably increased the maintainability of the system, but in some cases
the change does not seem to be significant and the maintainability remains unaltered.
However, commits of normal development sometimes increase and sometimes decrease
the maintainability with larger variance.

Table 3.4. Number of commits which increased or decreased the maintainability of the
systems

System Negative Zero Positive

System A 17 94 25
System B 3 18 17
System C 2 5 8
System D 1 7 8
System E 13 9 18
System F 8 30 32
Total 44 163 108

Table 3.4 lists the number of commits for each system which had a positive (or
negative) impact on maintainability. If a commit increased the maintainability value
it had a positive (beneficial) impact; if it decreased, it had a negative (detrimental)
impact; otherwise it did not affect the sensors of the quality model and its impact is
considered zero (neutral). As can be seen in Figure 3.11, the results show that for all
of the systems the beneficial effects outnumber the detrimental ones. Interestingly, it
also indicates that a large proportion of the commits did not have an observable impact
on maintainability. The main reason for this is that ColumbusQM does not recognize
all the coding issues that were fixed by the developers. As the developers were not
aware of the ColumbusQM model, their aim was simply to improve their own code.
This included some fixes of coding issues that were detected by the ColumbusQM only

27

Chapter 3. Fvaluation of Developers’ Refactoring Habits

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

System A
System B
System C
System D
System E
System F

B Negative = Zero M Positive

Figure 3.11. Normalized percentage scores of commits with a negative/zero/positive
impact on maintainability (negative - red, zero - gray, positive - green)

when the refactoring affected some source code metrics. (Section III elaborates on
these refactorings.)

7

6.5

6

5.5

5

4.5

4

3.5

System A System B System C System D System E System F

M Maintain. Before M Maintain. After

Figure 3.12. Maintainability of the projects before and after the refactoring period

Figure 3.12 shows the maintainability values that we measured before and after the
refactoring period of each system in question, and Table 3.5 tells us how the maintain-
ability increased or decreased for these systems. Recall that the value of maintainability
can be between 0 and 10, where 0 denotes a system with the hardest maintainability,
and 10 denotes a system that is very easy to maintain. The ‘Metrics’, ‘Antipatterns’
and ‘Coding Issues’ columns show for each system the number of different kinds of
refactorings that were fixed. Note that they could have fixed more issues with one
commit, so it might happen that the aim of a fix was to improve some metrics and
eliminate antipatterns together. The ‘“Total Impr.” column shows the difference; that

28

Chapter 3. Evaluation of Developers’ Refactoring Habits

is, the maintainability improvement at the end of the project. ‘Ref. Impr.” shows the
total value of the maintainability changes caused by refactoring commits only; hence
it shows how refactoring commits improved the maintainability.

Table 3.5. Maintainability of the systems before and after the refactoring period

System Metrics Anti- Coding Maintain. Maintain. Total Ref.

patterns Issues Before After Impr. Impr.
System A 0 0 470 5.4699 5.3193 -0.1506 -0.0030
System B 32 34 43 5.8095 5.8762 0.0667 0.0135
System C' 15 13 595 3.4629 3.7354 0.2725 0.0767
System D 3 0 17 5.4775 5.6594 0.1819 0.0151
System E 14 8 31 6.4362 6.8190 0.3828 0.0436
System F 15 11 42 6.4972 6.5926 0.0954 0.0716

We measured positive change in the maintainability of five systems out of six and
in the case of System F, 75.05% of the maintainability improvement was caused by
refactoring commits. Notice, however, that for System A, maintainability decreased
by the end of the refactoring period (it had the biggest detrimental impact ratio in
Table 3.4). Also, this system had the largest code base among the systems analyzed
and its developers decided to fix only coding issues.

3.2.3 Effect of Different Types of Refactorings on the Main-
tainability

To further investigate the changes made during the refactoring period, we will study the
impact of each type of refactoring. For each refactoring ticket, we asked the developers
to select what they wanted to improve with the commit:

e Did they try to improve a certain metric value?
e Did they try to fix an antipattern?

e Did they try to fix a coding issue?

In practice, it may happen that a developer wants to fix a coding issue and he
may improve a metric value as well in the same commit. Also, many metrics correlate
with antipatterns (e.g. large class/long method correlate with LOC). However, in the
project developers mostly handled these separately. For coding issues, we asked them
in particular to commit refactorings of only one certain kind of issue per commit. But
this also means that they were allowed to refactor more from the same kind of coding
issue in one commit.

I Metrics

Table 3.6 shows the change in maintainability caused by refactoring commits, where
the goal of the developers was to improve certain metrics. (See Table 3.7 for a detailed
description of these metrics.) The first thing that we notice here is that the number
of these refactorings (74) is very small compared to the total number of refactorings
(1,273). Tt was definitely not the primary goal of the developers to improve the metric

29

Chapter 3. Fvaluation of Developers’ Refactoring Habits

values of their systems, although we told them about all the well-known complexity,
coupling, and cohesion metrics at the package, class and method levels. One might
doubt how well trained these developers were and whether they were really familiar
with the meaning of these metrics. To eliminate this factor, for each company, we held a
training session where we introduced the main concepts of refactoring and code smells,
and then gave them an advanced introduction to metrics. Most of the participating
developers attended this training session, including junior and senior developers as well.

Table 3.6. Change in maintainability caused by commits improving metrics

Metrics # Average Min Max Deviation
NMD 1 0.005252 0.005252 0.005252 0.000000
COF 3 0.002691 0.000000 0.006546 0.003425
McCC + NOA 3 0.002299 0.002299 0.002299 0.000000
CLB 10 0.001662 -0.007803 0.017286 0.006616
NII 1 0.001645 0.001645 0.001645 0.000000
McCC 2 0.001323 0.000000 0.002647 0.001872
NA 1 0.001231 0.001231 0.001231 0.000000
LOC 38 0.001007 -0.007617 0.011233 0.003687
NUMPAR 5 0.000382 -0.000108 0.001113 0.000578
NM 1 0.000257 0.000257 0.000257 0.000000
NLE 4 0.000047 0.000047 0.000047 0.000000
NA 1 0.000000 0.000000 0.000000 0.000000
U 2 -0.000083 -0.000165 0.000000 0.000117
NOS 1 -0.000167 -0.000167 -0.000167 0.000000
NOI 1 -0.004062 -0.004062 -0.004062 0.000000

Table 3.7. Description of metrics

Abbreviation Description

NMD Number of defined methods

COF Coupling factor

McCC McCabe’s cyclomatic complexity

NOA Number of ancestors

CLB Comment lines before class/method/function
NII Number of incoming invocations

NA Number of attributes (without inheritance)
LOC Lines of code

NUMPAR Number of parameters

NM Number of methods (without inheritance)
NLE Nesting level

NA Number of attributes

U Reuse ratio (for classes)

NOS Number of statements

NOI Number of outgoing invocations

Among those refactorings which fix metrics, it can be seen that complexity metrics
(e.g. McCabe’s cyclomatic complexity and Number of parameters) and size metrics
(e.g. Lines of code) were the most familiar ones that developers intended to improve.
The Awerage column of Table 3.6 lists the average of the measured changes in the
maintainability caused by these commits. The first entry in the table shows a refactor-
ing which was performed because of the high value of the Number of defined methods

30

Chapter 3. Evaluation of Developers’ Refactoring Habits

metric. In this case, developers realized that they had similar methods in a few of their
classes (methods for serialization and deserialization). They did a Pull-up method
refactoring, which reduced the number of defined methods in the code and had a ben-
eficial impact on the maintainability. Developers also tried to decrease the Coupling
factor in their systems with Move method and Move field refactorings (second row of
the table). There were three refactorings where developers attempted to fix a class
with high complexity and bad inheritance hierarchy at the same time. In 38 cases,
developers wanted to decrease the LOC metric, and five times they fixed methods with
too many parameters. It is also interesting to observe that once they targeted the reuse
ratio (e.g. to simplify the inheritance tree) and this resulted in a decrease in main-
tainability. One explanation is that if they wanted a better reuse ratio, they probably
needed to introduce a new class (inheriting from a superclass), which might increase
the complexity or in the worst case introduce new coding issues or code clones.

IT Antipatterns

Table 3.8 shows the average of changes in maintainability when developers fixed an-
tipatterns. Some antipatterns were identified with automatic analyzers (e.g. Long
Function and Long Parameter List), but developers could spot antipatterns manually
as well and report them to the ticketing system. (Data Clumps is an example for an
antipattern identified by a developer.)

Table 3.8. Change in maintainability caused by commits fixing antipatterns

Antipattern # Average Min Max Deviation

Duplicated Code 11 0.003527 -0.007803 0.011233 0.005195
Long Function, Duplicated Code 3 0.002299 0.002299 0.002299 0.000000

Large Class Code 5 0.001586 0.000000 0.006670 0.002872
Shotgun Surgery 1 0.001526 0.001526 0.001526 0.000000
Data Clumps 1 0.001231 0.001231 0.001231 0.000000
Long Parameter List 5 0.000382 -0.000108 0.001113 0.000578
Long Function 40 -0.000084 -0.007617 0.007097 0.002703

As in the case of metrics, fixing antipatterns was not the primary concern of de-
velopers. Typically, they fixed Duplicated Code, Long Functions, Large Class Code
or Long Parameter List. Most of these antipatterns could be also identified via met-
rics. In practice, the greatest influence on the maintainability among antipatterns was
caused by fixing Duplicated Code segments. Removing code clones can be done for
example by using Extract Method, Extract Class or Pull-up Method refactoring tech-
niques. Removing duplications reduces the LOC of the system, increases reusability
and improves the overall effectiveness. Interestingly, fixing Duplicated Code sometimes
reduced maintainability, as can be seen in the Min column of Table 3.8. For instance,
in one case, it decreased the maintainability by 0.0078. Developers of Company IV
performed an Eztract Superclass refactoring on two of their classes to remove clones.
At first it was not clear why it had a detrimental effect on the maintainability because
in most of the other cases it had a beneficial effect. Further investigation showed that
they fixed the Duplicated Code, which in fact increased the maintainability as usual,
but they introduced two new OverrideBothEqualsAndHashcode coding issues, which
together had a bigger detrimental effect than the fix itself. (Fortunately, they fixed the
new coding issues in later commits.)

31

Chapter 3. Fvaluation of Developers’ Refactoring Habits

Developers fixed Duplicated Code antipatterns 11 times, Long Function with Dupli-
cated Code 3 times altogether, Large Class Code 5 times, and Long Function antipat-
tern 40 times. Fixing these antipatterns require a larger, global refactoring of the code
(e.g. using Extract Method refactoring). These global refactorings induced a larger
change in maintainability compared to others. It is also interesting that the deviation
of the effects on maintainability were the largest in the case of fixing Duplicated Code,
Large Class Code and Long Function antipatterns.

ITT Coding Issues

Tables 3.9 and 3.10 list the average of measured maintainability changes where devel-
opers fixed coding issues. The relatively big number of refactorings tells us that this
was what developers really wanted to fix when they refactored their code base. As we
previously noted, it is not clear whether a code transformation which was intended to
improve the maintainability, but slightly modifies the behavior, should be classified as
a refactoring or not. Fixing a coding issue, for instance, a null pointer exception issue
may perhaps change the execution (in a positive way), but it is questionable whether
this change (fixing an unwanted bug) should be considered a change in the observed
external functionality of the program. However, it is obvious that the purpose of fix-
ing coding issues is to improve the maintainability of the code and not to modify its
functionality. We will classify all these fixes as refactorings following the refactoring
definition of Kim et al. [24], in which they say that refactoring does not necessarily
preserve the semantics in all aspects. Nevertheless, we group the coding issues into
two groups; namely (1) issues that can be fixed via semantic preserving transforma-
tions, and (2) issues which can be fixed only via transformations which do not preserve
the semantics of the original code. The SP columns in Tables 3.9 and 3.10 show this
information.

Tables 3.9 and 3.10 show the measured average, minimum, and maximum changes
and the standard deviation. The coding issues in the rows are those issues which
had at least one patch in the manual refactoring period of any system. Some of
these coding issues are simple coding style guidelines which can be relatively easily
fixed (e.g. IfElseStmtsMustUseBraces), while there are some issues which may indi-
cate serious bugs and need to be carefully fixed (e.g. MethodReturnsInternal Array
or OverrideBothEqualsAndHashCode). Issues that are easier to fix were refactored
in larger quantities such as IntegerInstantiation and BooleanInstantiation. It is not
that surprising that these issues had a relatively low impact on maintainability; how-
ever, it is interesting to observe that some of them caused a detrimental change in the
maintainability.

The coding issue with the highest average maintainability improvement was Use-
LocaleWithCaseConversions. This issue warns the developer to use a Locale instead
of simple String.toLowerCase()/toUpperCase() calls. This avoids common problems
encountered with some locales, e.g. Turkish. The second highest average is the Un-
synchronizedStaticDateFormatter issue, where the problem is that the code contains
a static SimpleDateFormat field which is not synchronized. SimpleDateFormat is not
thread-safe and Oracle recommends separate format instances for each thread. Com-
pany IV fixed this issue by creating a new SimpleDateFormat instance to guarantee
thread-safety. However, using ThreadLocal would have provided a better solution for
both readability and performance.

In the case of the IfElseStmtsMustUseBraces issues, the reason for the detrimental

32

Chapter 3. Evaluation of Developers’ Refactoring Habits

Table 3.9. Positive maintainability changes caused by commits fixing coding issues.
(The SP column shows whether a refactoring made a semantic preserving transforma-
tion or not.)

SP Coding issue # Avg Min Max Dev
X UseLocaleWithCaseConversions 4 0.008748 0.005894 0.012439 0.002938
X UnsynchronizedStaticDateFormatter 1 0.008618 0.008618 0.008618 0.000000
v AvoidInstanceofChecksInCatchClause 5 0.003825 0.000000 0.017286 0.007549
v ExceptionAsFlowControl 1 0.003139 0.003139 0.003139 0.000000
X NonThreadSafeSingleton 1 0.002977 0.002977 0.002977 0.000000
v AvoidCatchingNPE 3 0.002341 0.001627 0.003484 0.001000
X EmptyCatchBlock 11 0.002175 0.000000 0.007559 0.002849
X OverrideBothEqualsAndHashcode 8 0.001768 0.000000 0.005922 0.004241
v EmptyIfStmt 1 0.001286 0.001286 0.001286 0.000000
v UnusedPrivateField 9 0.000729 -0.004062 0.007533 0.003016
v PreserveStackTrace 11 0.000457 -0.000389 0.001942 0.000904
X SignatureDeclareThrowsException 23 0.000348 0.000000 0.001526 0.000692
X SwitchStmtsShouldHaveDefault 4 0.000323 -0.000167 0.000642 0.000364
v UseStringBufferForStringAppends 17 0.000289 -0.009357 0.012077 0.007609
v ArraylIsStoredDirectly 2 0.000273 0.000183 0.000363 0.000127
v UnusedLocalVariable 4 0.000223 -0.000247 0.000828 0.000463
v LooseCoupling 16 0.000212 0.000000 0.002647 0.000830
v AvoidDuplicateLiterals 454 0.000121 0.000121 0.000121 0.000000
v UnnecessaryLocalBeforeReturn 43 0.000108 0.000000 0.000585 0.000459
v Unnecessary WrapperObjectCreation 118 0.000083 0.000083 0.000083 0.000000
X AvoidPrintStack Trace 32 0.000069 0.000000 0.000185 0.000304
v SimplifyConditional 39 0.000010 0.000000 0.000125 0.000061

Table 3.10. Zero or negative changes in maintainability by commits fixing coding issues.
(SP column shows whether a refactoring did a semantic preserving transformation or
not.)

SP Coding issue # Avg Min Max Dev
v AvoidSynchronized AtMethodLevel 8 0.000000 0.000000 0.000000 0.000000
v ConsecutiveLiteral Appends 1 0.000000 0.000000 0.000000 0.000000
v MethodReturnsInternal Array 8 0.000000 0.000000 0.000000 0.000000
v ReplaceHashtableWithMap 1 0.000000 0.000000 0.000000 0.000000
v UselndexOfChar 48 0.000000 0.000000 0.000000 0.000000
v UnusedModifier 31 0.000000 0.000000 0.000000 0.000000
v BooleanInstantiation 47 -0.000016 -0.000273 0.000235 0.000305
v IntegerInstantiation 84 -0.000019 -0.000247 0.000014 0.000247
v IfElseStmtsMust UseBraces 117 -0.000111 -0.000456 0.000186 0.001406
v BiglntegerInstantiation 21 -0.000156 -0.003587 0.000974 0.001110
v InefficientStringBuffering 12 -0.000264 -0.002649 0.000128 0.000846
v UnusedPrivateMethod 2 -0.000863 -0.002729 0.001002 0.002638
X AvoidCatchingThrowable 2 -0.001654 -0.003307 0.000000 0.002339
v AddEmptyString 9 -0.001833 -0.004527 0.000677 0.002117

change in maintainability is the increased number of the code lines in the modified
methods. The sensors of the maintainability model will change at a low level; that is,
the number of issues and the LOC metric. These changes will affect the higher level,
aggregated maintainability attributes like CodeFaultProneness and Comprehensibility
and also the Maintainability. A simple example of this situation is shown in listings

33

Chapter 3. Fvaluation of Developers’ Refactoring Habits

3.3 and 3.4. A simple method with 5 lines could grow to 14 lines if we apply all the
necessary refactorings. What is more, this kind of issue has only minor priority so there
is a good chance that the beneficial change in the number of issues will have a smaller
influence on the maintainability than the detrimental change caused by the increased
number of lines of code.

public static int doQuant(int n) {
if (n >= 0 && n < 86) return O0;
else if (n > 85 && n < 170) return 128;
else return 255;

}

Listing 3.3. Sample code with an IfElseStmtsMustUseBraces issue.
LOC: 5

public static int doQuant(int n) {
if ((n >= 0 && n < 86)
{
return 0;
¥
else if (n > 85 && n < 170)
{
return 128;
¥
else
{
return 255;
¥
}

-

Listing 3.4. A sample refactoring of the code in Listing 3.3. LOC:
14

In the case of InefficientStringBuffering, the reason for the detrimental change in
maintainability is also the modified number of lines of code. Listing 3.5 shows this kind
of issue in a code sample that needs to be refactored. Some of the developers decided
to fix this issue, as can be seen in Listing 3.6. This way, there were no new lines added
to the code, and the effect of the refactoring was simple; namely, one coding issue
vanished.

StringBuffer sb = new StringBuffer();

String toAppend = "blue';
sb.append("The sky ¢s" + toAppend);

Listing 3.5. A code with InefficientStringBuffering issue

StringBuffer sb = new StringBuffer();

String toAppend = "blue';
sb.append("”The sky is").append(toAppend);

Listing 3.6. A sample refactoring of the code in Listing 3.5

Other developers preferred to fix this problem, as can be seen in Listing 3.7. This
way, the issue vanishes as well, but there is a side effect. At least one new code line

34

Chapter 3. Evaluation of Developers’ Refactoring Habits

appears in the code, which again affects the lines of code metric, hence it had a slight
impact on the maintainability.

String toAppend = "blue';
StringBuffer sb = new StringBuffer();
sb.append("The sky <s'");

sb.append (toAppend);

Listing 3.7. Another way of refactoring Listing 3.5

Another interesting refactoring was the one where Company III refactored Avoid
Duplicate Literals coding issues. This kind of issue tells us that a code fragment con-
taining duplicate String literals can usually be improved by declaring the String as a
constant field. Refactoring these issues helps to eliminate dangerous duplicated strings,
which should improve stability and readability. Although this was the manual phase
of the project (where the companies could not yet use the refactoring tool that we in-
tended to develop later), we spotted an interesting commit message where Company 111
refactored this coding issue with the help of the Netbeans IDE. Netbeans was able to
assist them in finding and extracting duplicated string literals into constant fields. The
fix was simple and straightforward so we decided keep these refactorings as valuable
commits, and not to filter out them from the study. The developers eliminated 454 is-
sues in one commit which covered more than 20,000 lines of code. The quality increase
of this commit is quite large; and it improved the maintainability index of the whole
system by 0.055.

In some cases, the measured change in maintainability was 0. The reason for this
lies in a pitfall of the maintainability model, where these minor priority issues were
not taken into account by the maintainability model. Hence, when these issues were
fixed, the model did not recognize the change in the number of issues. Fixing these
issues required only small local changes that did not influence other maintainability
attributes either, so complexity and lines of code remained unaltered, for instance. As
a result, the measured change in maintainability was, apparently 0.

3.2.4 Impact of Non-Refactoring Commits

We were able to analyze the systems only in their refactoring period when developers
performed some refactoring tasks on their code. As a result, we have the analysis
data for each system before and after a refactoring commit was submitted to the
version control system. We did not analyze other commits, so we do not have analysis
data for other non-refactoring commits. However, we have some opportunities here
to study the impact of non-refactoring commits and compare them to refactorings.
We analyzed the revisions before refactoring commits to explore the maintainability
of a system between two refactoring commits. Suppose that r; and r; revisions are
consecutive refactoring commits of a system and j > 7. In this case, we analyzed the
revisions r;_1, 7;, rj_1 and r;, following the same sequence of the commits. A change
in the maintainability between the revisions (r;_q, r;) and (r;_q,r;) is caused by two
different refactoring commits, but the change in the maintainability between (r;,r;_1)
is because of several non-refactoring commits. These changes measured between two
consecutive refactoring commits, (which are caused by other, non-refactoring commits)
makes it possible to compare the impact of refactoring and non-refactoring commits.

35

Chapter 3. Fvaluation of Developers’ Refactoring Habits

Although these group together several smaller (non-refactoring) commits, we can treat
them as normal development tasks. For simplicity, we will refer to these as development
commits in the rest of this section.

It seems a reasonable assumption that refactoring commits often have a positive
effect on maintainability, but this would not be true for development commits. To
investigate this assumption, we counted the commits which increased/decreased or
had zero effect on maintainability. We use this data to study their independence with
a Pearson’s chi-square test. The input data is presented in Table 3.11.

Table 3.11. Number of refactoring and development commits which had a negative/ze-
ro/positive impact on maintainability

Commit type Negative Zero Positive

Refactoring 44 163 108
Development 63 167 139

We define the following null hypothesis: “for each commit, its effect on maintain-
ability is independent of the type of the commit (refactoring or development)”. Then
the alternative hypothesis is: “for each commit, its effect on maintainability is de-
pendent on the type of the commit (refactoring or development)”. As a result of a
chi-square test, we get a p-value of 0.2156, which is greater than the 0.05 significance
level. Hence, we accept the null-hypothesis that the type of the commit and its effect
on maintainability are independent.

Figures 3.13, 3.14, 3.15 show how the maintainability of the systems changed over
time during the refactoring period. Revision numbers are obfuscated, but their order
follows the original order of the commits. In the case of System A, developers refac-
tored four submodules of the system, and we show these submodules separately in the
diagram. The diagrams confirm that refactoring and non-refactoring results in varying
changes in the maintainability. Just as we can spot refactoring/development commits
which suddenly improve the measured values, we can spot their counterparts which
suddenly decrease these values. It is easy to see, however, that the maintainability of
the systems displayed a positive tendency in the refactoring period.

Commits in System A Commits in System B

Commit Commit

Develop + Develo
+ Refactoring . Refactgring

Modules
B F/I

0 20 B 40 60 300 350
Revision Revision

=
9]
Q.
~
o
N
ol

Maintainabili&/
Maintainability

Id
=}
S

ol

400 45(C

Figure 3.13. Maintainability of systems A and B during the refactoring period (revision
numbers have been obfuscated, but they are in their original order)

We should also note that most of the refactorings presented in our study may
be considered as small local changes and these commits are likely to have a small

36

Chapter 3. Evaluation of Developers’ Refactoring Habits

Commits in System C Commits in System D
Commit Commit
+ Develop + Develop
- Refactoring - Refactoring

w
©

[
o

—

o
©

Maintainability
w
~

Maintainability

W

:

o4

450 470 490 510 530 540 550 560
Revision Revision

Figure 3.14. Maintainability of systems C and D during the refactoring period (revision
numbers have been obfuscated, but they are in their original order)

Commits in System E Commits in System F
7.2
Commit Commit
74 + Develop | + Develop |
° - Refactoring - Refactoring
7.0
2 2
872 3
[= [=
8 g
£ £6.8
5] 5]
= =
7.0
WW"
6.6 A7
6.8 B T
580 600 620 625 650 675 . 700 725
Revision Revision

Figure 3.15. Maintainability of systems E and F during the refactoring period (revision
numbers have been obfuscated, but they are in their original order)

impact on the global maintainability. So the question arises of whether the improving
tendency is because developers take quality more into account in their new code, or
the ColumbusQM model is more sensitive to larger code changes.

Table 3.12. The average change in maintainability of refactoring commits normalized
by the change in lines of code for each system

System Maint. Change Change in LOC Maint. Change

Avg. Avg. Avg. per LOC
System A -0.000087 30.55 0.000006
System B 0.000589 24.38 0.000099
System C 0.008362 64.73 0.000163
System D 0.000837 2.56 0.000266
System E 0.000092 6.12 -0.000504
System F 0.001441 6.28 0.000677

Besides maintainability, we measured the lines of code metric of the systems. Sim-
ply from the lines of code we can see the final difference in the newly added or deleted
lines, but we cannot see the exact number of modified lines. Nevertheless, the differ-
ence in added/deleted lines is a good estimation of the size of the commit. Tables 3.12
and 3.13 show the average change in maintainability of refactoring and development
commits normalized by the change in lines of code for each system. Recall that ‘devel-

37

Chapter 3. Fvaluation of Developers’ Refactoring Habits

Table 3.13. Average change in maintainability of development commits normalized by
the change in lines of code for each system

System Maint. Change Change in LOC Maint. Change

Avg. Avg. Avg. per LOC
System A 0.009068 -117.88 -0.000001
System B 0.000693 215.69 0.000018
System C 0.005652 19.31 0.000665
System D 0.009329 -48.00 0.000365
System E 0.001922 -5.75 0.000808
System F 0.001203 12.04 0.000088

opment commits’ group together more commits. Hence, these are likely to be larger
structural changes. Table 3.14 shows the Pearson’s r correlation coefficients and p sig-
nificance levels between the change in lines of code and the change in maintainability
for all the commits of each system. These results suggest there is a strong correlation
between the size of the commit and its effect on maintainability. Hence, we should
acknowledge that the ColumbusQM model is more sensitive to larger code changes.
Still, the smaller changes of the refactoring commits had a measurable impact on the
global maintainability as well. Notice also that for some systems the correlations are
negative (also when we consider them all together). Moreover, in the case of System
D, they indicate a perfect negative linear relationship between variables. The change
in the lines of code may be negative (when they delete lines). Hence, this means that
sometimes when they remove more lines, they improve the maintainability more no-
tably. Indeed, in the case of System D, they had five commits (out of 36) where in
the ‘largest’ commit they removed 906 lines and obtained their best maintainability
improvement of 0.1679 (see the online appendix for details).

Table 3.14. Pearson’s r correlation coefficient and p significance levels between the
change in lines of code and the change in maintainability

System r P

System A -0.5 <0.01
System B 048 <0.01
System C 0.17 0.127
System D -0.99 <0.01
System £ 0.18 0.171
System F -0.07 0.432

All -0.42 <0.01

In spite of this, when Bakota et al. evaluated the ColumbusQM model [20] on
industrial software systems, they found that “the changes in the results of the model
reflect the development activities, i.e. during development the quality decreases, dur-
ing maintenance the quality increases.” Here, we studied a refactoring period and in
contrast to Bakotat et al. we found that normal development commits usually im-
proved the quality. This acknowledges that developers tended to take quality more
into account in their new code. They also mention this to us later at the end of the
project.

38

Chapter 3. Evaluation of Developers’ Refactoring Habits

3.2.5 Discussion of Motivating Research Questions

Is it possible to recognize the change in maintainability caused by a sin-
gle refactoring operation with a probabilistic quality model based on code
metrics, coding issues and code clones?

We applied the ColumbusQM maintainability model to measure changes in the main-
tainability of large-scale industrial systems before/after refactoring commits. Our mea-
surements revealed that the maintainability changes induced by refactoring operations
can be seen in most of the cases. One particular change usually caused only a small
change, which is quite natural considering that we analyzed 2.5 million lines of code
altogether, and a particular refactoring operation usually affects only a small part of
it. However, with some refactorings (mostly those involving fixing local coding issues)
the model did not display any changes in the maintainability. This was due to the fact
that these refactorings were very local, meaning that the sensors of the model did not
recognize any changes in the metric values. By fine-tuning the maintainability model,
these cases might become detectable.

Does refactoring increase the overall maintainability of a software system?

After the refactoring period, the overall maintainability of the software systems im-
proved and the maintainability model was able to measure this improvement in five
out of the six systems. Commits which fixed more coding issues had a relatively higher
impact on maintainability. Similarly, we observed in the tables that when developers
fixed more metrics or antipatterns together, they induced a bigger change compared to
others. Hence, a larger refactoring has a noticeable, positive impact on the maintain-
ability, which is measurable using static analysis techniques.

Can it happen that refactoring decreases maintainability?

Our findings reveal that some refactoring operations might have a negative impact on
the maintainability of the system, although its main purpose is to improve it. It is not
easy to decide how to fix an issue and balance its effects as it might happen that we
want to improve one maintainability attribute, but we debase others.

3.2.6 Additional Observations

Overall, based on our results and analyses, there are some additional interesting ob-
servations that deserve to be discussed further.

Developers went for the easy refactorings

Although each participating company could take their time to perform large, global
refactorings on their own code, the statistics tell us that they did not decide to do so.
They went for the easy tasks, like the small code smells, which they could fix quickly.
There might be several reasons for it, as fixing these code smells was relatively easy
compared to others. Fixing a small issue which influences just the readability does
not require a thorough understanding of the code so developers can readily see the
problem and fix it even if it was not written by themselves. In addition, testing is
easier in these cases too. Still, a larger refactoring may contain more difficulties: it

39

Chapter 3. Fvaluation of Developers’ Refactoring Habits

requires a better knowledge and understanding of the code; it must be designed and
applied more carefully; or it may happen that permission is needed to change things
across components/architecture. It remains a future research question as to which
choice is better in the long term in such a situation. Should we fix as many small
issues as we can, or perform only a few, but large, global refactorings and restructure
the code?

Developers did not refactor just to improve metrics or avoid antipatterns

Our results suggest that developers did not really want to improve the metric values
or avoid certain antipatterns in their code; they simply went for the concrete problems
and fixed coding issues. One reason that we must consider here is that developers
may not really be aware of the meaning of metrics and antipatterns. Though we are
certain that they were aware of the definition of some metrics and code smells (because
we trained them for the project), they probably had no experience in recognizing and
fixing problematic classes with bad cohesion or coupling values, for instance. They
were not maintainability experts who were experienced in studying reports of static
analyzers. This seems to tie in with the previous finding that developers went for the
low-hanging fruit, and chose the easier way of improving maintainability.

Fixing more complex design flaws (e.g. antipatterns or more complex coding
issues) might have a better impact on the maintainability

In Figure 3.16, we show the effect of the average impact of different refactoring types
(metrics, antipatterns, coding issues) on the maintainability among all the refactoring
commits, and we list the corresponding min/max/deviation values in Table 3.15. As
we saw previously, developers fixed mostly coding issues, but notice that those coding
issues which required a fix that modified the semantics of the code had a larger impact
on maintainability, just like that for antipatterns or metrics. Taking into account
how the ColumbusQM calculates maintainability, this is mainly because fixing a more
complex issue (antipattern) has a bigger impact on the full code base and not just some
local parts of it. Another observation here is that we see developers fixed the Duplicated
Code antipattern the most often, which is the number one in Martin Fowler’s dangerous
bad-smell list [12].

Table 3.15. Average, minimum and maximum impact on maintainability of different
refactoring types

Average Minimum Maximum Deviation
Types Change Change Change of Change

Metrics 0.000995 -0.007803 0.017286 0.003854
Antipattern 0.000832 -0.007803 0.011233 0.003524
Coding Issues 0.001080 -0.003307 0.012439 0.003393
Coding Issues (SP) 0.000074 -0.009357 0.017286 0.004392

Developers learned to write better code during the refactoring period

All the systems that we studied in the refactoring period displayed an improvement
in source code maintainability, even if we only take into account the revisions where

40

Chapter 3. Evaluation of Developers’ Refactoring Habits

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

Metrics

Antipattern

Coding Issues

Coding Issues (SP)

Figure 3.16. Average impact on maintainability of different refactoring types

they did not refactor the code, but just committed normal development patches. Our
analysis told us that the number of newly introduced issues in the new code decreased.
Indeed, developers admitted to us at the end of the project that they had learned a
lot from performing a static analysis and from refactoring coding issues. They had
learned how to avoid different types of potential coding issues. As a result they paid
more attention to writing better code and avoiding new issues.

3.2.7 Threats to Validity

We made our observations based on hundreds of refactoring commits in six large-
scale industrial systems. As in similar case studies which were not carried out in a
controlled environment, there are many different threats which should be considered
when we discuss the validity of our findings. Here, we give a brief overview of the most
important ones.

Size of the sample set of refactoring commits investigated

The sample set was taken from a large-scale industrial environment compared to other
studies, but it is still limited to the systems that we analyzed. With a larger sample set
of refactorings we might have an even better basis for conclusions and a more precise
view on refactorings. In the future, we intend to extend the sample set with an analysis
of automatic refactorings as well.

Maintainability analysis relies only on the Columbus Quality Model and
Java

The maintainability model is an important part of the analysis as it also determines
what we regard as an effect on maintainability of refactorings. Currently, we rely on
the ColumbusQM model with all of its advantages and disadvantages. On the positive
side this model has been published, validated and reflects the opinion of developers |20];
however, we saw in the evaluation section that the model might overlook some aspects
which would reflect some changes caused by refactorings. In particular, the model did
not deal with some low priority local coding issues. The version of ColumbusQM used
during the analysis relies on Java source code analysis. However, the same sensors
could be applied to other object-orientated languages as well.

41

Chapter 3. Fvaluation of Developers’ Refactoring Habits

Refactoring suggestions and quality analysis tool used to evaluate their
effect come from the same toolkit

The Columbus technology was used for both the refactoring suggestions and by the
quality analysis tool. That is, the toolkit thinks that the changes made according to
its own suggestions improve quality. This leads to the threat that the quality model
used the same quality indicators as it suggested earlier as refactoring opportunities.

Limitations of the project

We claim that our experiment was carried out in an in vivo industrial context. However,
this project might had unintentional effects on the study. For example, the budget for
refactoring was not ‘unlimited’ and companies minimized the efforts that they spent
on refactoring. Also, the actual state of a system, such as the size and quality of its
test suite may influence the risk that a company would like to take during refactoring.

Limitations of the static analysis

We gave support to the developers in identifying coding issues with the help of a static
analyzer. Naturally, this was a great help for them in identifying problematic code
fragments, but it might have led the developers to just concentrate on the issues we
reported. There is a risk here that by using other analyzers or by not using any at all,
we might get different results.

3.3 Related Work

Since Opdyke introduced the term refactoring in his PhD dissertation [11] and Fowler
published a catalog of refactoring ‘bad smells’ [12|, many researchers have studied
this technique to improve the maintainability of software systems. Just a few years
later, Wake [29] published a workbook on the identification of ‘smells’, and indicated
practices to recognize the most important ones and some possible ways to fix them
by applying the appropriate refactoring techniques. Five years after the appearance of
Fowler’s book, Mens et al. [30] published a survey with over 100 related papers in the
area of software refactoring.

There are several interesting topics studied today by researchers in which they
examine refactoring techniques such as program comprehension [31], impact of refac-
toring on regression testing [32], and developers’ opinions on refactoring tools [33], etc.
Among the studies, there are some which investigate the positive or negative effects of
refactorings on maintainability and software quality. However, there are only a few em-
pirical studies, especially studies that were performed on large-scale industrial systems.
Below, we will present an overview of research work related to our study.

3.3.1 Guidelines on how to apply refactoring methods

One reason why researchers study the relations between maintainability and refactoring
is to guide developers on when and how to apply refactorings.

Sahraoui et al. [34] investigated the use of object-oriented metrics to detect potential
design flaws and to suggest transformations that handle the identified problems. They
relied on a quality estimation model to predict how these transformations improve

42

Chapter 3. Evaluation of Developers’ Refactoring Habits

the overall quality. By validating their technique on some classes of a C++ project,
they showed that their approach could assist a designer/programmer by suggesting
transformations.

A visualization approach was proposed by Simon et al. [35]. Their technique was
based on source code metrics of classes and methods to help developers in identifying
candidates for refactoring. They showed that metrics can support the identification
of ‘bad smells’ and thus can be used as an effective and efficient way to support the
decision of where to apply refactoring.

Tahvildari et al. [36, 37| investigated the use of object-oriented metrics to detect
potential design flaws and suggested transformations for correcting them. They ana-
lyzed the impact of each refactoring on object-oriented metrics (complexity, cohesion
and coupling).

Yu et al. [38] adopted a process-oriented modeling framework in order to analyze
software qualities and to determine which software refactoring transformations are
most appropriate. In a case study of a simple Fortran program, they showed that
their approach was able to guide the refactoring towards high performance and code
simplicity while implementing more functionalities.

Meananeatra |39] proposed the use of filtering conditions to help developers in
refactoring identification and program element identification. They also proposed an
approach to choose an optimal sequence of refactorings.

3.3.2 Refactoring and its effect on software defects

One way researchers attempt to assess the effects of refactorings on maintainability is
to study its effects on software defects.

Ratzinger et al. [40] analyzed refactoring commits in five open-source systems writ-
ten in Java and investigated via bug prediction models the relation between refactoring
and software defects. They found an inverse correlation between refactorings and de-
fects: if the number of refactoring edits increases in the preceding time period, the
number of defects decreases.

Gorg and Weiligerber [41, 42| detected incomplete refactorings in open-source projects
and they found that incorrect refactoring edits can possibly cause bugs.

Later, Weifigerber et al. [43, 44| analyzed version histories of open-source systems
and investigated whether refactorings are less error-prone than other changes. They
found that in some phases of their projects a high ratio of refactorings was followed by
a higher ratio of bugs. They found also phases where there was no increase at all.

3.3.3 Refactoring and its effect on code metrics

Some researchers assess the effects of refactorings on source code metrics.

Stroulia and Kapoor [45] presented their experiences with a system that followed a
so-called refactoring-based development. They found that the size and coupling metrics
of their system decreased after the refactoring process.

Du Bois and Mens [46] studied the effects of selected refactorings (ExtractMethod,
EncapsulateField and PullUpMethod) on internal quality metrics such as the Number
of Methods, Cyclomatic Complexity, Coupling Between Objects and Lack of Cohesion.
Their approach is based on a formalism to describe the impact of refactorings on an
AST representation of the source code, extended with cross-references. Later, Du Bois

43

Chapter 3. Fvaluation of Developers’ Refactoring Habits

et al. [47]| proposed refactoring guidelines for enhancing cohesion and coupling metrics
and they got promising results by applying these transformations to an open-source
project. The Ph.D. thesis of Du Bois was also about the effects of refactoring on
internal and external program quality attributes [48].

3.3.4 Empirical studies on refactoring and its effects on soft-
ware quality /maintainability

Empirical studies are those which are the closest to study. However, there are only a
few large-scale empirical studies here.

Kataoka et al. [49] published a quantitative evaluation method to measure the
maintainability enhancement effect of refactorings. They analyzed a single project
and compared the coupling before and after the refactoring in order to evaluate the
degree of maintainability enhancement. They found coupling metrics were effective
for quantifying the refactoring effect and for choosing suitable refactorings. Their
validation relied on a five-year-old C++ project of a single developer.

Moser et al. [50] studied the impact of refactoring on quality and productivity.
They observed small teams working in similar, highly volatile domains and assessed the
impact of refactoring in a ‘close-to-industrial environment’. Their case study was about
a Java project with 30 Java classes having 1,770 source code statements. Their findings
indicated that refactoring not only increases software quality, but it also improves
productivity.

Ratzinger et al. [51] observed the evolution of a 500 KLOC industrial Picture
Archiving and Communication System (PACS) written in Java before and after a
change coupling-driven refactoring period. They found that after the refactoring pe-
riod, the code had low change coupling characteristics.

Demeyer [52] pointed out that refactoring is often blamed for performance reduc-
tion, especially in a C++4 context, where the introduction of virtual function calls
introduces an extra indirection via the virtual function table. He discovered, however,
that C++ programs refactored this way often run faster than their non-refactored coun-
terparts (e.g. compilers can optimize better on polymorphism than on simple if-else
statements).

Stroggylos et al. [53] assessed a similar question to ours, namely whether refactoring
improves software quality or not. They analyzed version control system logs (46 revision
pairs) of open-source projects (Apache, Log4j, MySQL connector and Hibernate core)
to detect changes marked as ‘refactoring’ and how software metrics were affected. They
found that “the expected and actual results often differ”, and although “people use
refactoring in order to improve the quality of their systems, the metrics indicate that
this process often has the opposite results.”

Alshayeb et al. [54] studied the effects of refactorings on different external qual-
ity attributes, namely adaptability, maintainability, understandability, reusability, and
testability. They analyzed a system developed by students and two open-source sys-
tems with at most 60 classes and less than 12,000 lines of code. They investigated how
C&K metrics had changed after applying refactoring techniques taken from Fowler’s
catalog and estimated their effects on the external quality attributes. They found that
refactoring did not necessarily improve these quality attributes.

Geppert et al. [55] studied the refactoring of a large legacy business communication
product where protocol logic in the registration domain was restructured. They inves-

44

Chapter 3. Evaluation of Developers’ Refactoring Habits

tigated the strategies and effects of the refactoring effort on aspects of changeability
and measured the outcomes. The findings of their case study revealed a significant
decrease in customer-reported defects and in efforts needed to make changes.

Wilking et al. [56] investigated the effect of refactoring on maintainability and mod-
ifiability through an empirical evaluation carried out with 12 students. They tested
maintainability by randomly inserting defects into the code and measuring the time
needed to fix them; and they tested modifiability by adding new requirements and
measuring the time and LOC metric needed to implement them. Their maintainabil-
ity test displayed a slight advantage for refactoring, but regarding modifiability, the
overhead of applying refactoring appeared to undermine other, positive effects.

Negara et al. [57] presented an empirical study that considered both manual and
automated refactorings. They claimed that they analyzed 5,371 refactorings applied by
students and professional programmers, but they did not provide further information
on the systems in question.

A large-scale study, with similar findings, was carried out by Murphy-Hill et al. [58|.
They applied refactorings taken from Fowler’s catalog, and their data sets spanned over
13,000 developers with 240,000 tool-assisted refactorings of open-source applications.
Our study is complementary, as we analyzed industrial systems instead of open-source
ones and we mostly dealt with coding issues instead of refactorings from the catalog.

Kolb et al. [59] reported on the refactoring of a software component called Image
Memory Handler (IMH), which was used in Ricoh’s current products of office appli-
ances. The component was implemented in C and it had about 200 KLOC. They eval-
uated software metrics of the product before and after a refactoring phase and found
that the documentation and implementation of the component had been significantly
improved, by the refactoring.

Kim et al. [60] reported on an empirical investigation of API-level refactorings.
They studied API-level refactorings and bug fixes in three large open-source projects,
totaling 26,523 revisions of evolution. They found an increase in the number of bug
fixes after API-level refactorings, but the time taken to fix bugs was shorter after
refactorings than before. In addition, they noticed that a large number of refactoring
revisions included bug fixes at the same time or were related to later bug fix revisions.
They also noticed frequent ‘floss refactoring’ mistakes (refactorings interleaved with
behavior modifying edits).

In their study, Kim et al. [24] presented a study of refactoring challenges at Microsoft
through a survey, interviews with professional software engineers and a quantitative
analysis of version history data (of Windows 7). Among several interesting findings,
their survey showed that the refactoring definition in practice seemed to differ from a
rigorous academic definition of behavior-preserving program transformations and that
developers perceived that refactoring involved substantial cost and risks.

3.3.5 Code smells and maintenance

Another topic close to ours is the effect of (fixing) code smells on maintenance problems.
Yamashita and Moonen [61] found that the effect of code smells on the overall
maintainability is relatively small. They observed 6 developers working on 4 Java
systems and only about 30% of the problems that they faced were related to files
containing code smells.
In another study, Yamashita and Counsell [62] found that code smells were not

45

Chapter 3. Fvaluation of Developers’ Refactoring Habits

good indicators for comparing the maintainability of systems differing greatly in size.
They evaluated four medium-sized Java systems using code smells and compared the

results against previous evaluations on the same systems based on expert judgment
and C&K metrics.

In a recent study, Yamashita [63] assessed the capability of code smells to explain
maintenance problems on a Java system which was examined for the presence of twelve
code smells. They found a strong connection between the Interface Segregation Prin-
ciple and maintenance problems.

Similarly, Hall et al. [64] found that some smells do indeed indicate fault-prone code
in some circumstances, but that the effects that these smells had on faults were small.
As they said, “arbitrary refactoring is unlikely to significantly reduce fault-proneness
and in some cases may increase fault-proneness’.

Ouni et al. [65] claimed that most of the existing refactoring approaches treated
the code-smells to be fixed with the same importance; and they proposed a prioritiza-
tion of code-smell correction tasks. Another prioritization approach was proposed by
Guimaraes et al. [66] based on software metrics and architecture blueprints.

Khomh et al. [67] investigated the impact of antipatterns on classes in object-
oriented systems and found that classes participating in antipatterns were more change
and fault-prone than others.

Abbes et al. [68] investigated the effect of Blob and Spaghetti Code antipatterns on
comprehension in 24 subjects and on three different systems developed in Java. Their
results showed that the occurrence of one antipattern did not significantly make its
comprehension harder, hence they recommend avoiding a combination of antipatterns
via refactoring.

D’Ambros et al. [69] studied the relationship between software defects and a number
of design flaws. They also found that, while some design flaws were more frequent, none
of them could be considered more harmful in terms of software defects.

Chatzigeorgiou et al. [70] studied the evolution of code smells in JFlex and JFreeChart.
They noticed that only a few code smells were removed from the projects and in most
cases their disappearance was not the result of targeted refactoring activities, but rather
a side-effect of adaptive maintenance.

Tsantalis et al. 71| examined refactorings in JUnit, HTTPCore, and HTTPClient.
Among several interesting findings, they found that there was very little variation in
the types of refactorings applied on test code, since most of the refactorings were about
reorganization and the renaming of classes.

Recap

In contrast to the above-mentioned studies, in ours (1) we observed a large amount
of manual refactorings (1,273 refactoring operations in 315 commits, counting also a
commit with 454 operations); (2) we studied the effect of refactorings on maintainability
in real-life, large-scale industrial systems with over 2.5 million total lines of code;
(3) these commits fixed different design flaws including code smells, antipatterns and
coding issues; (4) lastly, we applied a probabilistic quality model (ColumbusQM) which
integrates different properties of the system like metrics, clones and coding issues. Our
study was also carried out in a large-scale in vivo (industrial) environment.

46

Chapter 3. Evaluation of Developers’ Refactoring Habits

3.4 Summary

The main goal of our experiments was to learn how developers refactor in an industrial
context when they have the required resources (time and money) to do so. Our exper-
iments were carried out on six large-scale industrial Java projects of different sizes and
complexity. We studied refactorings on these systems, and we learned which kinds of
issues developers fixed the most, and which of these refactorings were best according to
certain system attributes. We investigated the effects of refactoring commits on source
code maintainability using maintainability measurements based on the ColumbusQM
maintainability model [20].

We found that developers tried to optimize their refactoring process to improve the
quality of these systems and that they preferred to fix concrete coding issues rather
than fix code smells indicated by metrics or automatic smell detectors. We claim that
the outcome of one refactoring on the global maintainability of the software product is
hard to predict; moreover, it might sometimes have a detrimental effect. However, a
whole refactoring process can have a significant beneficial effect on the maintainability,
which is measurable using a maintainability model. The reason for this is not only
because the developers improve the maintainability of their software, but also because
they will learn from the process and pay more attention to writing better maintainable
new code.

47

“If you want to make an apple pie from scratch,
you must first create the universe.”

— Carl Sagan

Challenges and Benefits of Automated
Refactoring

To decrease software maintenance cost, software development companies generally use
static source code analysis techniques. Static analysis tools are capable of finding
potential bugs, anti-patterns, coding rule violations, and they can enforce coding style
standards. Although there are several available static analyzers to choose from, they
only support issue detection. The elimination of the issues is still performed manually
by developers.

This is not a coincidence. Every developer knows that refactoring is not always
easy. Developers need to identify the piece of code that should be improved and decide
how to rewrite it. Furthermore, refactoring can also be risky; that is, the modified code
needs to be re-tested, so developers can see if they broke something. Many IDEs offer
a range of refactorings to support so-called automatic refactoring, but tools can really
able to automatically refactor code smells are still under research.

Previously, we gained insights into how developers handle hand-written refactoring
tasks and in what way it affected the maintainability of the source code. Based on the
results of the manual refactoring phase of the Refactoring Project, here we will design
a toolset that supports the automatic elimination of coding issues in Java. We will
provide this refactoring tool as an aid to developers. We shall investigate the quality-
changing effects of tool-assisted refactorings, while observing what kind of changes the
usage of the tool causes in everyday work of developers.

4.1 An Automatic Refactoring Framework for Java

Tools which support automatic refactorings often assume that programmers already
know how to refactor and they have a knowledge of the catalog of refactorings [12],
but this is usually an unreasonable assumption. As Pinto et al. found in their study
where they examine questions of refactoring tools on Stack Overflow, programmers
are usually not able to identify refactoring opportunities, because of a lack of knowl-
edge in refactoring, or a lack of understanding of the legacy code. They also claim

49

Chapter 4. Challenges and Benefits of Automated Refactoring

that “refactoring recommendations is one of the features that most of Stack Overflow
users desire (13% of them)” [33]. In another recent study, Fontana et al. compare
the capabilities of refactoring tools to remove code smells and they found only one
tool (JDeodorant) which was able to support code smell detection and then suggested
which refactoring to apply to remove the detected smells [72]. Of course, most current
tools lack this required feature to identify refactoring opportunities and to recommend
problem-specific corrections which could even be automatically performed by the tools
(or semi-automatically including some interactions with the developers).

In this section, we will introduce FaultBuster, an automatic code smell refactoring
toolset which was designed with the following goals in mind:

e to assist developers in identifying code smells that should be refactored,

e to provide problem specific, automatic refactoring algorithms to correct the iden-
tified code smells,

e to seamlessly integrate easily with the development processes via plugins of pop-
ular IDEs (Eclipse, NetBeans, IntelliJ) so developers can initiate, review, and
apply refactorings in their favorite environments.

4.1.1 Overview

Next, we will provide an overview of the structure of FaultBuster and give a short
introduction to its features.

I Problem Context

The potential users of FaultBuster are members of a development team, potentially
a developer or perhaps a quality specialist or a lead developer. Our aim was to help
them by supporting ‘continuous refactoring’ where developers prefer to make small
improvements on a regular basis instead of just adding new features over a long period
and restructuring the whole code base only when real problems arise.

Administrator Developers

)
NetBeans
plugin

Intelli) IDEA

Administrator page Administrator page of
plugin

of Jenkins Refactoring Framework

Eclipse
plugin

Swing
client

Refactoring Frgmework Services

Refactoring Framework

Jenkins l

Refactoring Framework
Web Services Interfaces

Web Engine
Refactoring
> 3 patch
Refactoring Coding issues, & #——— e
Toolchain Clones, etc. = I—yl Ii-Refactoring i

iy algorithms |
Data Sources ~ l==Smm———eo]

Version Control System
(Subversion, etc.)

Figure 4.1. Overview of the architecture of FaultBuster

50

Chapter 4. Challenges and Benefits of Automated Refactoring

For this purpose, FaultBuster was designed to periodically analyze the system in
question, report problematic code fragments and provide support to fix the identified
problems through automatic transformations (refactorings).

We notice here that most of the transformations supported by FaultBuster can be
viewed as classic refactorings which do not alter the external behavior at all, just im-
prove the internal structure of the source code. However, some of them may not fit into
the classic definition. As mentioned in Section 2.3, some of the transformations fix po-
tential bugs, which may indeed alter the behavior of the program, but not the behavior
which the developer originally intended to implement. Hence, for some transformations,
it means that we deviate slightly from the strict definition by allowing changes to the
code that fix possible bugs, but do not alter the behavior of the code in any other way.
For simplicity, we will call refactorings all the transformations of FaultBuster.

A sample refactoring of a coding rule violation (Position Literals First In Com-
parisons) can be seen in Listing 4.1. This code works perfectly until we invoke the
‘printTest’ method with a null reference that would result in a Null Pointer Fxception
(because of line 3). To avoid this, we have to compare the String literal with the vari-
able, not the variable with the literal (see Listing 4.2). This and similar refactorings are
simple, but one can avoid critical or even blocker errors by using them appropriately.

~
public class MyClass{

public static void printTest(String a){
if(a.equals("Test"”)) {
System.out.println(“This <s a test!");

}
}
public static void main(String[] args) {
String a = "Test";
printTest(a);
a = null;
printTest(a); // What happens?
}

}

Listing 4.1. A sample ‘Position Literals First In Comparisons’ issue

public class MyClass{

public static void printTest(String a){
if("Test".equals(a)) {
System.out.println("This i¢s a test!");

¥
}
public static void main(Stringl[]l args) {
String a = "Test';
printTest(a);
a = null;
printTest(a); // What happens?
}

}

Listing 4.2. Sample refactoring of Listing 4.1

IT Architecture

Figure 4.1 provides an overview of the architecture of FaultBuster. The toolset consists
of a core component called Refactoring Framework, three IDE plugins to communicate
with the framework, and a standalone Java Swing client (desktop application).

Refactoring Framework This component is the heart of FaultBuster as its main
task is to control the whole refactoring process. The framework handles the continuous

51

Chapter 4. Challenges and Benefits of Automated Refactoring

quality measurements of the source code, the identification of critical parts from the
viewpoint of refactoring, the restructuring of these parts, the measurement of quality
improvement and the support of regression tests to verify the invariance after applying
the refactorings.

In order to do so, the framework:

e Controls the analysis process and stores the results in a central database: it
periodically checks out the source code of the system from a version control system
(Subversion, CVS, Mercurial, Git), executes static analyzers (Java analyzer, rule
checker, code smell detector, etc.) and uploads the results into the database.

e Provides an interface through web services to query the results of the analyses
and to execute automatic refactoring algorithms for selected problems. After
executing the algorithms on the server side, the framework generates a patch
(diff file) and sends it back to the client.

e The analysis toolchain is controlled and can be configured through Jenkins.

e Has refactoring algorithms and the main settings of the framework are config-
urable through a web engine of the framework.

The framework was designed to be independent of the programming language. Al-
though the current implementation only supports the Java language, it can support new
languages and can be easily extended with additional refactorings. Several modules
have been integrated in the implementation of the task: well-known tools supporting
development procedures, like version control systems, project management tools, de-
velopment environments, tools supporting tests, tools measuring and qualifying source
code and automatic algorithms that implement refactorings.

IDE plugins We implemented plugins for today’s most popular development envi-
ronments for Java (Eclipse, NetBeans, IntelliJ] IDEA) and integrated them with the
framework. The goal of these plugins is to bring the refactoring activities to be imple-
mented closer to the developers.

A plugin gets a list of problems in the source code from the framework, processes
the results, and shows the critical points which detrimentally influence software quality
to the user. A developer can then select one or more problems from this list and ask for
solution(s) from the framework, which can then be visualized and (after confirmation)
applied to the code by the plugin. Lastly, the developer can make some minor changes
to it (e.g. commenting) and commit the final patch to the version control system.

When we designed the plugins, the main idea was to integrate the features offered
by the framework as much as we could into the development environment. For example,
we implemented standard features such as context assist in Eclipse. So it was a main
concern that developers could work in the environment that they were used to and
access the new features in a standard way.

Figure 4.2 shows a screenshot of the Eclipse plugin with our own wizard to set
parameters of an algorithm which fixes a Long Function issue. Figure 4.3 shows the
visualization of a patch after the execution of the algorithm.

02

Chapter 4. Challenges and Benefits of Automated Refactoring

{3y 3ava - Mlsmlmtjavalmhnadielbnqlwmtorpva Ediipse (ol x]
File Edit Source of Navigate Search Project Run Window Help
- HE- e NiH-0-A-EmE e = [
{2 Package Explorer 53 =8 Property, = B i Poblemlfo 2 = B
geEe SRR - (=ct0ri wizara oIx]
~ Type of the problem is LF:
S 3 || tong Function - Method Property Page along function smell have been]
Long Function - Method Property Page found, where the function’s
e ! weighted code size is % and
i Vol PE the function called %.
/ e
/. Name of the new method [extracted e Detais:
& \' A d / 10 P | Object-oriented programs that
T S S | e
i ir 25 = 0 understand and maintain,
Category.java { pl el A T e lot of metrics ke LOC (Lines OF
3] Categorykey.java ol ¢ Maximum parameter of the new method S = B Lade) dzgi'}fé Jgline
] ConsoleAppender.jar s how long a method or 3
DailyRolingFileApper W function is. Butin some cases
] DefaultCategoryFac < these metrics do not aive =l
DefauitThrowableRer
Dipatcher.java 7 problems: Bivek Y-8
] EnhancedPatternLay N biret
umber of prc :
S e Desaription | Project [coverage [4]
® FileAppender.java
5 B & JGN3 2 log4j 0
Hierarchy.java T = =]
J) HTMLLayout.java BZZ 4’ 7
v
<Back Next > Fish cancel | g:"g:’ 2
log4)
= log4 0

j : o

Figure 4.2. Eclipse plugin — Screenshot of a Refactoring wizard with the configuration
step of a refactoring algorithm for the Long Function smell

Ja ”s'c ORefaclnring wizard JH[=] B3
e Edit Sourc
% Refactoring - Preview
L ([&75aa
1% Package Explore L BB
Structure Compare 3] Java Structure Compare (Cannot Compare Structures) g
B logy BB bt R prien. (5
B-§8 src/malr -
5B ~
3 3] Java Source Compare ¥ [o 8 R
Il |Refactored | original
]

void parseAppenderFilters(Properties props, Str‘
s and filter options from pr|

| _void parseAppenderfilters(Properties props, String

-

B[

@[| Hashtable filters = extracted(appenderame, props| /r' y name defining the filter clas|

w0 £/ nam pairs associated to that filter

B0 final String Fiiterpratix - APPENDER_PREFIX +

s santiate filters, set f int fIdx = filterPrefix.length();

& Hashtable filters = new Hashtable(); =

B[Enumeration g = new SortedKeyEnumeratmn(f11ter5) Enumeration e = props.keys(); i

B[4 while (g.hasMoreElements()) { String name = "7; Feg

&[4 String key = (String) g.nextElement(); while (e.hasMoreElemerts(y) { =l

e | |l f AT | el |

=0

&)

B[-

&)

E-0 <Back ted s |[CFnsh || concl |

B[

I s =
. B ||] o

Figure 4.3. Eclipse plugin — Difference view of a patch after refactoring a Long Function
smell

Standalone Swing Client Besides the IDE plugins, we implemented a standalone
desktop client to communicate with the Refactoring Framework. At the beginning this
client had only testing purposes, but later it implemented all the necessary features of
the whole system, so it became a useful standalone tool of FaultBuster. The client is
able to browse the reports on problematic code fragments in the system, select problems

for refactoring, and invoke the refactoring algorithms, just like IDE plugins are able to
do.

Administrator Pages The framework has two graphical user interfaces to configure
its settings. Analysis tasks are controlled by Jenkins to periodically check out the
source code and to execute the static analyzers. These tasks can be configured through
the admin page of Jenkins. The rest of the framework can be configured through its
own admin pages. Here, it is possible to configure user profiles and set some global
parameters of the refactoring algorithms. In addition, this Ul can be used to examine
log messages and statistics of the framework.

53

Chapter 4. Challenges and Benefits of Automated Refactoring

Refactoring Algorithms We implemented automatic refactoring algorithms to fix
common code smells and bad programming practices. The input of such an algorithm is
a coding issue (with its kind and position information) and the abstract semantic graph
(ASG) of the source code generated by the SourceMeter tool (see Section 4.1.2). The
output of an algorithm is a patch (unified diff file) that will fix the selected problem.

FaultBuster implements algorithms that can solve 40 different kinds of coding issues
(see Table 4.1) in Java. Most of these algorithms solve common programming problems
like ‘empty catch block’, ‘avoid print stack trace’, ‘boolean instantiation,” while some
of them implement heuristics to fix bad code smells such as a long function, overly
complex methods or code duplications.

Some algorithms can interact with the developer because they can be parametrized.
For instance, in the case of a ‘method naming convention’ issue it is possible to ask the
developer to give a new name for the badly named method. Still, many algorithms do
not need extra information, e.g. the case of a ‘local variable could be final’ issue, the
final keyword can be simply inserted into the declaration of the variable automatically.

It is also possible to select more occurrences of the same problem type and fix them
in one go by invoking a so-called batch refactoring task. In this case, the Refactoring
Framework will execute the refactoring algorithms and will generate a patch containing
the fixes for all the selected issues. The only limit here is the boundary of the analysis,
so it is possible to select problems from any classes, packages or projects, they just
have to be analyzed beforehand by the framework.

ITT Extended Functionality

The core framework was implemented in Java as a Tomcat Web Application and it
serves the IDE plugins through web services. Refactoring algorithms were implemented
in Java using the Columbus ASG API of SourceMeter. Thanks to the Tomcat environ-
ment the toolset is platform-independent and it runs on all the supported platforms of
SourceMeter (Windows and Linux).

Refactoring Wizards The client applications of FaultBuster are only soft clients,
all functionality residing on the server side. This includes the refactoring algorithms
as well. This allows the framework to extend its support of refactoring algorithms.
Anytime an algorithm gets added or gets updated, just the server needs to be upgraded;
and the clients will instantly support the new features.

Ticketing System Because of the server-client architecture of FaultBuster many
users are able to connect to the server at the same time. To prevent concurrent modifi-
cations we introduced a state of the coding issues, which could be any of the following:

Open: A detected coding issue. Available for fixing.

Under refactoring: The coding issue is currently under refactoring by someone else.
Untested: The coding issue has been refactored but it is still untested.

Completed: The coding issue has been refactored and tested.

Committed: The coding issue has been fixed and committed to the version control
system.

e Rejected: It is not a real coding issue or the suggested fix was declined.

54

Chapter 4. Challenges and Benefits of Automated Refactoring

Table 4.1. Refactoring algorithms in FaultBuster

Local AddEmptyString
ArrayIsStoredDirectly
AvoidReassigningParameters
BooleanInstantiation
EmptylfStmt
LocalVariableCouldBeFinal
PositionLiteralsFirstInComparisons
UnnecessaryConstructor
UnnecessaryLocalBeforeReturn
UnusedImports
UnusedLocalVariable
UnusedPrivateField
UnusedPrivateMethod
UselessParentheses

Naming BooleanGetMethodName
MethodNamingConventions
MethodWithSameNameAsEnclosingClass
ShortMethodName
SuspiciousHashcodeMethodName

Interactive AvoidInstanceofChecksInCatchClause
AvoidPrintStack Trace
Avoid ThrowingNullPointerException
AvoidThrowingRawExceptionTypes
EmptyCatchBlock
LooseCoupling
PreserveStackTrace
ReplaceHashtableWithMap
ReplaceVectorWithList
SimpleDateFormatNeedsLocale
SwitchStmtsShouldHaveDefault
UseArrayListInsteadOfVector
UseEqualsToCompareStrings
UseLocaleWithCaseConversions
UseStringBufferForStringAppends

Heuristical Clone Class (experimental)
CyclomaticComplexity
ExcessiveMethodLength
LongFunction
NPathComplexity
TooManyMethods

59

Chapter 4. Challenges and Benefits of Automated Refactoring

The state of the coding issues were set by the client software automatically. This
way, developers saw which coding issues were already under refactoring and they did
not fix the same issues twice.

4.1.2 Under the Hood: Automating the Refactoring Process

Now that we have a better understanding how FaultBuster is designed we should take a
look under the hood and investigate how it actually works underneath. Throughout the
lifetime of the project we faced many challenges where we found interesting problems
and solutions to these problems which we share in the followings.

Premise To perform refactoring operations, we created a mapping between the tex-
tual output of the static analyzer and the structural representation of the source code.
This task required us to create an algorithm that takes as input a textual source code
position (i.e. start and end line) and type information (i.e. for loop) of the problematic
code segment and executes a search on the syntax tree to locate the related source code
element in the tree. To make reverse searching possible, we use a spatial database. The
database is created by transforming the source code into geometric space. Here, line
numbers and column positions from the AST are used to define areas. These areas are
used in R-trees, where area based searching is possible.

General Process Before going into detail, we should have an overview of the general
refactoring process. As Fowler defines it, refactoring is “a change made to the internal
structure of software to make it easier to understand and cheaper to modify without
changing its observable behavior” |12]. Based on this definition if we model the code as
a graph — which every compiler does — a refactoring is a (behavior preserving) trans-
formation on a graph. More specifically, it can be viewed as a transformation on the
abstract syntaz tree (AST). Executing such transformation requires three components:

e An AST as a representation of the source code.

e A transformation algorithm.

e Starting points (AST nodes) called the “origin” where the transformation algo-
rithm begins.

First, we parse the source code with a parser which builds an AST. Second, we create
a transformation algorithm that will make modifications on the AST (i.e. pull up a
method from one class to its ancestor). Next, we pick a node on the AST as the origin
where the transformation algorithm will start working (i.e. selecting the method to
pull up). After the transformation has been made, we get a modified (refactored) AST
and the refactoring is complete.

Automated Process Because our main goal was to create automated refactorings,
we extended the process with a few additional steps. These steps in the algorithm
allow us to interact with developers and to make the transformations automatically.
Our process works as follows:

56

Chapter 4. Challenges and Benefits of Automated Refactoring

Process 1

1. We create an AST representation of the source code.

2. We carry out a static analysis on the source code to find problematic code parts,
1.e. coding issues, rule violations and metric warnings. We list these issues as
suggestions to help the user find candidates for refactoring.

3. The user selects one of the issues as the target of the refactoring process.

4. Based on the type of the issue chosen by the user, a refactoring algorithm is
selected that is capable of fixing the given type of issue.

5. Based on the selected issue a proper origin node is chosen from the AST.

6. The algorithm makes the transformation and modifies the AST, while keeping
track of what modifications it made. A modified AST is then created.

7. We generate source code from the modified AST.

8. The newly refactored source code is shown to the user where he or she can test
the code and decide whether to accept or reject the refactoring.

Next, we will present these steps in greater detail and discuss our results.

4.1.3 Process Details
I Building AST

To build an AST from the source code we will use the SourceMeter [23] tool. SourceMe-
ter uses OpenJDK [73] as a backend to parse the code and build an abstract semantic
graph (ASG). ASG is an extended version of the AST with cross-edges and much
more [25]. This additional information was crucial in the automation process. Because
it allowed us to create flawless transformations which otherwise would not be possible.
Thus Step 1 of Process 1 is covered.

IT Finding Refactoring Suggestions

Choosing which part of the source code to refactor is quite hard. To improve the
maintainability of the code, one can either start optimizing for metric values or try
to eliminate anti-patterns by introducing design patterns into the code. Any of them
might be a good solution. However, we will choose coding issues as the main target of
our automated refactorings because of the experiences we gathered in Chapter 3. To
identify coding issues we shall choose the well-known PMD static source code analyzer.
It is a widely used tool among developers, especially for checking Java rule violations.
Because all of the participating project members had a Java code base, it was the
optimal choice to integrate it into the framework.

The output of PMD worked well in identifying coding issues and even in presenting
some of these to developers as refactoring suggestions. Now let us examine the sample
in Listing 4.3. In this simple example, PMD finds 9 rule violations (with default
settings). It finds issues such as missing package declaration, missing comments, short
variable names, magic numbers, and missing braces. Even in this simple sample of
code, there are many issues that can be fixed with computer assistance.

To extract the issues we will use the XML output of PMD. This file contains a list
of violations for each file with name, description, priority, and position information.
An example violation is shown in Listing 4.4. This is one taken from the list of issues

57

Chapter 4. Challenges and Benefits of Automated Refactoring

+ public class Example {

2 public static int limiter (int x) {
3 if (x > 10)

a return 10;

5 return x;

6 }

7}

-

Listing 4.3. Example code

g
<file name="Example.java">

<violation beginline="3" endline="4" begincolumn="3" endcolumn="13"
rule="IfStmtsMustUseBraces" ruleset="Braces" class="Example"
method="limiter" priority="3">
Avoid using if statements without curly braces
</violation>

</file>

Listing 4.4. PMD’s XML report

we got as output after running PMD on Listing 4.3. It clearly states that we should
use curly braces in the if statement in Line 3.

After presenting these kinds of issues to developers, they are usually able to select
one for refactoring. Thus Step 2 and Step 3 of Process 1 are covered.

ITT Selecting the Right Transformation for the Job

After the user has selected an issue, the next step is to find the right transformation.
Many researchers work on solutions to automate this process using machine learning
techniques [74-76]. However, came up with a much simpler solution. We created several
general refactoring transformations, i.e. for moving, adding, deleting, and swapping
source code elements. We created a mapping between PMD violations and the trans-
formations. For example, to fix the curly braces issue, we mapped it to an insertion
transformation where a block element will be injected below the if statement (See the
illustration in Figure 4.4). Each mapping defines different parameters based on the
type of issue. And the transformation in the former example requires an if statement
as a parameter. Thus Step 4 of Process 1 1s covered.

IV Selecting a Proper Origin

After the user has selected an issue to fix and we choose the right transformation, the
next step in the process is to pick an origin point on the AST, which we can give as
a parameter to the transformation algorithm. In other words, one has to perform a
search on the AST to find an element that matches both the description provided by
the PMD report and the type of the parameter the transformation algorithm requires.

The report provides only a few key points for a violation, i.e. a begin line and

o8

Chapter 4. Challenges and Benefits of Automated Refactoring

Figure 4.4. Simplified illustration of a refactoring on the AST of Listing 4.3.

1+ public class Example {

2 public static int limiter (int x) {
3 if (x > 10)

a return 10;

5 return x;

6 }

7}

Listing 4.5. PMD highlight

column, end line and column, class, and method. Also, the source file is available
in the file tag. If we look at the example in Listing 4.4 and the results in the
example in Listing 4.3, we get the problematic code part highlighted. The highlighted
part in Listing 4.5 shows the particular if statement that requires braces. Although
this highlighted segment is a good visual aid for the developer to help find where the
violation is, it is problematic for the computer to find nodes in the AST based on little
more than position information.

One way to address the problem is to store position information for each source
code element in the AST during the parsing process. Fortunately, SourceMeter does
this already. Now that we know the positions on the AST, we can attempt to match the
violation location information to the ones we have on the AST. It may come as no sur-
prise that a simple equality match did not work. PMD and SourceMeter have different
parsers and therefore it is quite unlikely they will have the same position information

+ public class Example {

2 public static int limiter (int x) {
3 if (x > 10)

4 return 10;

5 return Xx;

6 }

7}

Listing 4.6. SourceMeter highlight

59

Chapter 4. Challenges and Benefits of Automated Refactoring

for each and every source code element. Listing 4.6 shows the position SourceMeter
has identified for the if statement in question. Looking at both highlighted cases tells
us that a simple approximation will not suffice to get a match. To handle the problem,
we took a different direction which we call reverse AST-search.

Reverse AST-Search This notion was born when we decided to take a different
direction and start looking at the source code elements, not as just data or nodes in a
tree. In the text editor, they look like little areas or patches. Since they all have begin
and end lines and columns, they can be viewed as coordinates on a map. This led us
to the idea of transforming the source code into a geometric space.

We took line numbers and column positions from the AST and used them to define
areas. These areas form rectangles where the corner points are the begin and end
positions of the source elements. The rectangular areas are then used to build a spatial
database, where area-based queries are possible.

i) Spatial Databases and R-trees A spatial database [77] is a database that
is optimized to store and query data that represents objects defined in a geometric
space. Common database systems use indexes to quickly look up values and the way
that most databases index data is not optimal for spatial queries. Instead, spatial
databases use a spatial index to speed up database operations. To create spatial index
data, we decided to use R-trees [78].

An R-tree is a data structure where the key idea is to group together information
based on spatial data and index these groups by using their minimum bounding rect-
angles'. Next, these groups are bound together at the next level of the tree by their
minimum bounding rectangles, and so on. This way, a query cannot intersect any of
the objects contained because all the objects within a bounding rectangle occur to-
gether. The input of a search is a rectangle called a query box. Every rectangle in a
node (starting from the root node) is checked to see whether it overlaps with the search
rectangle or not. If it does, the same thing happens with its corresponding child nodes.
The search goes on recursively until all matching nodes get visited. Meanwhile, when
a leaf node is found and it overlaps with the query box it is added to the result set.

R-tree applications cover a wide spectrum, ranging from spatial and temporal to
image and video databases. In industry, it is used where multi-dimensional data needs
to be indexed. For example, a common application is in digital maps where R-trees
are used to link geographical coordinates to POIs [79].

ii) Building Spatial Index for the AST To create a spatial database for
the source code, we used the si method in Algorithm 1. The method requires C, an
AST element with position information. This might be a root node or a class node,
say. When the algorithm commences, it creates an R-tree for storing the spatial index
(Alg. 1, Line 1) and begins to traverse the descendants of the C element (Alg. I,
Line 2). Note that every kind of traversal is acceptable since the position of the
elements do not depend on each other.

For each source code element c, the algorithm takes into account their position
P; namely, start line, start column, end line, end column (Alg. 1, Line 3). Next,
using these positions rectangles are created. To be precise, it creates one, two or three

!The “R" in R-tree is for rectangle.

60

Chapter 4. Challenges and Benefits of Automated Refactoring

Algorithm 1 Building Spatial Index for the AST.
Funct si(C)
Require: C'is an AST element
1: Let Z be a new R-Tree
2: for all ¢ € descendants(C) do
3: Let Pyarey,,.» Pstart,,,» Pend,,, . Pend,,, be the position coordinates of ¢

col?

4: if Pygp,, . = Pena,,, then

5: Add rectangle { Psart,.. ., Pstart. s Pend,;,,» Pena,, } 10 Z(c)
6: else

7: Add rectangle { Pyare,,, ., Pstart;» Pstart,;,., 00} to Z(c)

8: Add rectangle {Pena,, ,0, Pena,, .. Pena,, } to Z(c)

9: if Pena,,,. — Pstart,,, > 1 then

10: Add rectangle {Pyqe,, . + 1,0, Popg,, — 1,00} to Z(c)
11: end if

12: end if

13: end for

14: return Z

rectangles, depending on the length of the current source element. If the element
position is confined to a single line, one rectangle is created (Alg. 1, Line 5), which
is a line on the 2D plane. In the case of multiple lines, we have a multiline element,
which is an element that starts at a line in a column, and it ends in another line in a
column. All positions between these two positions are part of the element. For example,
in Listing 4.6 the if statement is a two-line element and the highlight indicates the
positions belonging to the statement. To handle this, we create two rectangles. The
first line has no end column (Alg. 1, Line 7), and the second begins at zero (Alg. 1,
Line 8). If there more lines between them, we create a rectangle that covers all the
space between the two lines (Alg. 1, Line 10).

Fach time a rectangle is created it is added to the R-Tree with a binding to the
AST element. This way when the spatial query function starts running, we will get
AST elements instead of rectangles. Once all the descendant source code elements get
visited, we can return the resulting R-tree, and the spatial index is ready.

When we tested the algorithm in the example in Listing 4.3, we got the search space
shown in Listing 4.7. Note that every node that has multiple lines are separated into
more rectangles, like the if statement.

iili) The Search Algorithm Once we have built our spatial index, we can
use it to locate a node in the AST based on position information. We created a
method that uses inputs such as the ASG from SourceMeter, the parameter type of
the transformation, and the violation position from the PMD report in order to search
the geometric space. The Reverse AST-search Algorithm (rasta for short) is listed in
Algorithm 2 below.

The purpose of the algorithm is to find the source code element that is highlighted
in the PMD report. The function begins by creating a list of the source code element
candidates. Next, it builds a spatial index with the C' AST parameter (Alg. 2, Line 2).
The newly constructed index is used in the next step to query the candidates. As
mentioned earlier, the spatial database requires a rectangle, called the query box as

61

Chapter 4. Challenges and Benefits of Automated Refactoring

r

Rect (1, 1), (1, INF) Class

Rect (2, 0), (6, INF) Class

Rect (7, 0), (7, 2) = Class

Rect (2, 2), (2, INF) = Method

Rect (3, 0), (5, INF) = Method

Rect (6, 0), (6, 3) = Method

Rect (2, 16), (2, 19) PrimitiveTypeExpression
Rect (2, 28), (2, 33) Parameter

Rect (2, 28), (2, 31) = PrimitiveTypeExpression
Rect (2, 35), (2, INF) = Block

Rect (3, 0), (5, INF) = Block

Rect (6, 0), (6, 3) = Block

Rect (3, 3), (3, INF) = If

Rect (4, 0), (4, 14) = If
Rect (3, 6), (3, 14) = ParenthesizedExpression
Rect (3, 7), (3, 13) = InfixExpression

Rect (3, 7), (3, 8) = Identifier

Rect (3, 11), (3, 13) = IntegerLiteral
Rect (4, 4), (4, 14) = Return

Rect (4, 11), (4, 13) = IntegerLiteral
Rect (5, 3), (5, 12) = Return

Rect (5, 10), (5, 11) = Identifier

Listing 4.7. Search space for the example in Listing 4.3 with the rectangles and the
type of their referred source code element

62

Chapter 4. Challenges and Benefits of Automated Refactoring

Algorithm 2 The reverse AST-search algorithm.
Funct rasta(C, P, t)

Require: C'is an AST element

Require: P is a position

Require: t is a type
1: Set the candidate list R := {}
2: Compute si(C)
3: Let S be the set of all AST nodes whose have intersecting rectangles with P
4: for all s € S do

5. if type(s) is t then

6

7

8

9

Store sin R
end if
: end for
: return R

a search parameter. The query box in our case is the “highlight” from the PMD’s
output. We use this box to ask the R-tree which previously added rectangles intersect
with the parameter. The R-tree returns with a set of AST nodes whose rectangles
satisfied the query (Alg. 2, Line 3). As an example, Listing 4.7 shows which source
code elements (highlighted lines) remain after the query has been performed with the
Rect (3,3) (4,13) box as the parameter.

Even with a small sample like Listing 4.7, the resulting set of the query can be
quite big. To narrow the result set we use the third parameter, namely the type of the
input parameter of the refactoring transformation, to filter the results (Alg. 2, Line 5).
The filtering is achieved by going through the result set and by inserting only those
source code elements onto the candidate list whose type matches (actually, whose type
is compatible with) the input type. After the filtering, the candidate list is returned
as the result of the function.

Going on the example in Listing 4.7, we have to filter the result set with the input
parameter type of the refactoring transformation. In Section III we identified this
source code element type as an if statement. Even from a quick glance, we can see
that there are two rectangles where their type is an if statement. Since both of the
two rectangles refer to the same if element, the algorithm terminates. We have found
an origin where the refactoring transformation can begin its operation.

iv) Heuristics As we saw previously, the best case scenario is when the algo-
rithm ends up having only a single element in the list of candidates. This happens
when the result set has only one source code element with the type of parameter. In
this case, it is evident which element was highlighted as the source of the violation.
Nevertheless, there are times when the candidate list has multiple source code elements
of the same type. In such cases, we have to select the proper element as the origin,
otherwise the refactoring will be executed wrongly.

To remove ambiguity we decided to use a “distance” measure to find the best candi-
date. We defined the distance as the number of characters between the position of the
source code element and the highlight. More specifically, on one hand, it is a metric
of the number of characters between the start position (line and column) of the source
code element and the start position (line and column) of the highlight. On the other

63

Chapter 4. Challenges and Benefits of Automated Refactoring

hand, it is the number of characters between the end position (line and column) of the
element and the end position (line and column) of the highlight. The distance is just
the sum of the two. To calculate this value we use the original source file where the
exact number of characters could be measured.

This method allows us to select the proper source code element from the list of
candidates in almost every case. Still, there is a certain mathematical probability that
the calculated distances will be equal for all candidates. However, because the chance
of this event is astronomically small (it never even happened once in our exhaustive
testing period, see Section 4.2), we chose to notify the user with a message that the
refactoring failed because of ambiguity.

v) Alternative Method The algorithm above uses two-dimensional informa-
tion to back-propagate code smells to AST elements and handles code as lines and
columns. However, source code can be viewed as a linear sequence of characters as
well. Here, a simple one-dimensional data structure and interval operations could re-
place the fairly complicated two-dimensional approach. Despite this mechanism being
seemingly simpler, it would require different input data. Both the given inputs — the
AST and PMD - work with two-dimensional data. This would mean that we would ei-
ther require the source file as input or the AST and PMD must provide one-dimensional
data.

e The latter requirement would be needed from both tools to replace position in-
formation with char-sequence index or store it as additional data. This new data
would cause an increase both in the processing time and storage space for the
tools for information that probably no one else will ever use. Still, if char-sequence
index data is available as input, the one-dimensional approach is preferable.

e The former requirement would introduce an additional parameter to the algo-
rithm; namely, the original source file. In the case where source code is given it is
possible to handle the text as one-dimensional data and map the source code el-
ements to char-sequence indexes. However, this approach has several drawbacks.
First, every search would need to read the source file, which is an i/o intensive
task. Next, the mapping of two dimensional data to character sequence indexes
would have to consider whitespace. For example, when reading a tab character
from the file, the algorithm has to know it is 2, 4, 8 (or other) characters long.
Both parsers could have mixed tab size settings, which would make the mapping
difficult. This would also affect the two-dimensional approach, but since a line
just contains only a few tabs it easier to match the source code elements in a line
than in the entire file.

The reverse AST-search algorithm works only with an AST and PMD’s report as input.
These tools and inputs are treated as third-party from the algorithm’s point-of-view.
Since these inputs contain two-dimensional data and source code is not available, the
one-dimensional approach would not suffice. Nevertheless, from the point-of-view of
the refactoring process, the source file is given; but we still choose the two-dimensional
approach because it provides more accurate matches in real-life scenarios.

vi) Summary The reverse AST-search algorithm enabled us to select the proper
origin, which is a source code element in the AST that is the input of the refactoring
transformation later on. Thus Step & of Process 1 is covered.

64

Chapter 4. Challenges and Benefits of Automated Refactoring

+ public class Example {

2 public static int limiter (int x) {
3 if (x > 10) {

a return 10;

5 +

6 return x;

7 }

st

.

Listing 4.8. Refactored code

V Executing the Refactoring

Now that we have covered each preceding step, we have all the components and we are
ready to perform the refactoring. As mentioned earlier in Section III, the refactoring
algorithms are defined as smaller, multiple generic transformations. The type of the
PMD violation determines which transformation(s) will be executed. There are some
complex cases where a simple transformation will not suffice and fixing them will require
multiple operations.

In order to fix the missing curly braces (the issue in Listing 4.3), the transformation
inserts a block statement into the then clause of the if statement and rewires every
former member of the then clause to make a member of the block statement. See
Figure 4.4 as an illustration of a process like this.

Once the refactoring transformation completes its operations, a new, modified,
issue-free AST is created. Thus Step 6 of Process 1 is covered.

VI Generating Source Code and Creating Diffs

In the previous step, we completed the refactoring at the model level. Even though the
refactoring process came to an end, there is one more thing to do. Because our main
goal is to assist developers, the next task is to translate the AST back to source code
where they can readily interpret the changes.

Generating Source Code The source code generation is realized by systematically
going through the AST and writing code to a text file according to the underlining
source code element. For example, if we start at a file, if there is a package declaration
we write the package keyword following the name of the package and a semicolon to
close the statement. This is followed by import statements and so on. The generation
goes on until every source code element is visited and the code is fully reconstructed
from the AST.

In the case of the example in Listing 4.3, after the refactoring transformation we get
the code shown in Listing 4.8. As expected, both curly braces appeared and therefore
the return statement got a block around it. As a consequence, the PMD rule violation
got fixed, and our code maintainability improved. Thus Step 7 of Process 1 is covered.

Keeping Track of Modifications Previously, we showed how to fully reconstruct
the code from the AST. However, generating the whole code base is unnecessary. It
is sufficient to recreate only those code segments where the changes occurred. There

65

Chapter 4. Challenges and Benefits of Automated Refactoring

are, however, multiple ways to reduce the amount of generated code. An easy solution
would be to create only those files which were affected by the refactoring. Our only
concern, in this case, was that our code generation cannot reproduce exactly (100%)
equivalent source code. This happens because though SourceMeter stores source code
element positions and even comments, it does not store data concerning whitespaces
and indentation. Despite this, we created the source code generator in such a way that
it “pretty prints” the code, but what is considered “pretty” is subjective. For example,
in Listing 4.8 the beginning bracket is positioned after the method declaration, but
someone may prefer it to be on the next line. On one hand, it is possible to make this
configurable. On the other hand, there are other remaining issues, such as whether
there are two spaces between the public and the static keywords or whether they
should be written in separate lines.

To reduce the former anomalies, we sought to minimize generation even within
files themselves. Our approach keeps track of which nodes are modified and at what
level when the refactoring operation is running. We mark those nodes that get, for
instance, inserted, deleted, or swapped. Furthermore, we mark those nodes which we
visited during the operation but did not modify them. For example, in Listing 4.8 we
put a block statement into the then clause of the if statement and rewired the former
content (the return) of the then clause as a statement of the block node. We marked
this block statement as inserted, and the return as unmodified. The latter was required
because marking a node is a recursive operation which will mark the entire subtree of
that node as well. By marking the return statement as unmodified we will leave this
subtree untouched and bring about efficiency benefits.

Keeping track of modifications allowed the generator to only modify those places
where it was necessary. Only the new or modified source code elements get generated,
and every other part of the source code gets copied from the original source file. In the
example, this works in the following way. The generator starts traversing the refactored
AST from root to bottom, in a preorder strategy. When it finds unmodified nodes, it
just copies the source code from the original file into the refactored file. This is based
on the position information stored in the AST. This goes on until it finds a modified
node in this case, an inserted block statement. Next, it generates the block statement.
More precisely, it generates only the starting bracket, because there are still unvisited
descendants of the block node in the AST. When the traversal goes to the next child,
it finds an unmodified node again. It does so the same way as before, it copies the
code from the original source code, but this time it will insert the copied code with
an increased indent because the generator keeps track of the fact that we are now in
a block statement. After every descendant has been visited and copied, we return to
the leave-visit for the block statement. The generator inserts the closing bracket into
the right place, and a visit continues. Since every other node is unmodified, everything
else is copied, and the generation is complete.

Generating just the required code parts created nearly the same code as the original,
with most indentation and whitespaces in the right place. This was an important
request from developers because interviews showed that they did not want to bother
with fixing the indentation (see Section 4.3.3).

Creating Diffs As soon as the generation process ended, it became possible to
present the refactored code to the developers. However, reviewing entire unannotated
files is not a welcomed idea by developers. Since this is the output of an automated pro-

66

Chapter 4. Challenges and Benefits of Automated Refactoring

--- Example.java (original)
+++ Example.java (refactored)
©@ -1,7 +1,8 @@
public class Example {
public static int limiter(int x) {

- if (x > 10)
+ if (x > 10) {
return 10;
+ }
return x;
}
}

Listing 4.9. Output diff file

cess, users would probably like to check what changes the automation process will apply.

To meet the need of the users, we will only show their a patch (unified diff file) as
output. This patch file contains the differences between the refactored source file and
the original one. This enables the developer to review what changes the automation
process made on the code. Besides this, it allows the user to make a decision at the
end of the process of whether to accept or reject the suggested refactoring. If it is the
former, the user can apply the diff on the original source code, and this will transform
it into the refactored code. Thus Step 8 of Process 1 is covered.

For example, Listing 4.9 lists the diff file for the refactoring of the example in
Listing 4.3. Note that this shows which lines are marked for deletion (starting with a
“-”) and which ones are marked as added (starting with a “+”).

4.1.4 Discussion
I Performance

Our refactoring tool was implemented in Java. One of the requirements for our tool
was for it to be responsive from a user perspective. This required that we to optimize
each step for speed. The most important optimization we preformed was with the
Reverse AST-search algorithm.

Building the spatial database for the whole system was an unnecessary overhead.
To reduce the search space, we built the spatial index based on the issue the user had
selected. The rule violation has information about which source file it is in. Only
these file elements were added to the R-tree and it greatly reduced the search space.
As a comparison, building the entire search space on a PC? for the log4j® project took
221 ms and used 46 MB of memory, while building only one file took 53 ms and memory
used was less than a kilobyte.

Further optimizations helped to speed up the process as well. For example, the
the filtering step moved a few steps ahead in the order of the execution of the Reverse
AST-search algorithm. Filtering was applied while building the search space. Only
those AST nodes were added to the R-tree where the type of node matched the type

2Intel i7 3.40 GHz with 8 GB ram.
3http://logging.apache.org/log4j/1.2

67

http://logging.apache.org/log4j/1.2

Chapter 4. Challenges and Benefits of Automated Refactoring

of refactoring transformation parameter. This way, executing a single search operation
takes less than a millisecond.

The above improvements besides some other tweaks made our tool quick and this
appealed to developers. We did not make detailed measurements of the tool’s perfor-
mance in our studies, but in general the tool performed well.

IT Threats to Validity

We have identified a few validity threats that might affect the the internal and external
validity of our results. Here, we discuss the validity of our findings.

Usage of Java We have only considered Java as the target of our actions. Some
of the other languages may require different approach. Nevertheless, our process is
readily adaptable to most text-based programming languages.

Application of a Third-Party Tool We provided support to the developers in
identifying coding issues with a third-party static analyzer, namely PMD. Naturally,
this was a great help in identifying problematic code fragments, but it might have
introduced many unnecessary steps during the refactoring process. There is a risk
here that by using other analyzers or by using our own, we might skip the AST-search
part. For example, if we were to develop our own issue finder tool (see Section 5),
we could directly report the AST node where the problem is located. However, our
process makes our refactoring tool independent of a single third-party static analyzer.
The way, it is constructed makes it capable of switching to another analyzer with only
minor modification.

4.2 Evaluating the Connection between Automatic
Refactorings and Maintainability

By definition, the intention of developers with refactoring is to improve comprehen-
sibility, maintainability, hence the overall quality of the source code. However, there
is a disagreement in the literature as to whether it truly improves quality or not.
In Section 3.2 we investigated this phenomenon and found that in most of the cases
refactoring improved the overall maintainability of the systems in most cases.

Here, we investigate how automatic refactorings change maintainability. We asked
developers to do refactorings on their systems with the previously introduced Refac-
toring Framework called Faultbuster. To study this situation, we address the following
questions:

e Does automatic refactoring increase the overall maintainability
of a software system?

e What is the impact of different automatic refactoring types on
software maintainability?

e What is the impact of different automatic refactoring types on
the code metrics used in the maintainability model?

68

Chapter 4. Challenges and Benefits of Automated Refactoring

4.2.1 Methodology

We gathered our research data in a similar way how we did with the manual refactorings
(see Section 3.2.1). However, there are some differences. Figure 4.5 provides a brief
overview of the automatic refactoring phase of the project.

We started by identifying possible targets for refactoring by analyzing their systems
(Step 1). During the measurement period, the framework supported the refactoring of
21 different coding issues, so the companies were asked to fix issues from this list?.

Refactoring

Developers Framework

7. Fill survey

Issues

?) F 2. Detected
il

3. Use IDE to select
refactoring [candidates : 1. Source

............................ Y ¥
IDE plugins
-
- 2 3 | |
= = = _-T"‘,_ 6. Refactoring }_L _J
Commit \ |
Eclipse MetBeans InteliJ IDEA
plugin plugin plugin Source _CDdE
Repository

Figure 4.5. Overview of the refactoring process

It was a project requirement for the developers to refactor their own code, hence
improve its maintainability, but — just like before — they were free to select how they
went through it. So was the choice of the developers as to what kind of coding issues
they should fix with the help of the framework. The process of fixing a coding issue
was to apply the appropriate refactoring operation offered by the framework through
the developers’ standard development environment. The FaultBuster plugins were able
to load from the framework and to present in the IDEs all the detected coding issues
that the developers were able to refactor with the help of the tool (Step 2). To apply
a refactoring operation, the developers selected an issue from the code and called the
refactoring service through the IDE plugins (Step 8). After gathering all the required
information from the plugin, a request was sent to the Refactoring Framework to
perform the refactoring step on the code (Step 4).

After a refactoring operation was carried out on the ASG, the framework re-
generated the transformed source code. The generated patch was sent back to the
IDE plugins in which the developers were able to preview the modifications (with the
help of the built-in diff viewers of the IDEs) before they applied it (Step). Of course,
the developers had the opportunity to discard the changes if they were not satisfied

4After developers started using the tool regularly, they asked us to support more and more coding
issues, and in the end, FaultBuster supported 40 issue types (as described in Section 4.1).

69

Chapter 4. Challenges and Benefits of Automated Refactoring

with the resulting refactored code. In that case, no changes were made in the code
base. Note, that the framework allowed fixing multiple issues at once, but this type of
batch refactorings had to be of the same type (for example, the framework was able
to fix hundreds of PositionLiteralsFirstInComparisons issues in one patch, but mixing
issues was not supported). If the presented patch got accepted, the developers applied
them on the current code base and performed a commit to upload the refactored code
into the source code repository (Step 6).

Besides applying concrete refactorings, the project required that the companies fill
out a survey (which we collected with the IDE plugins) after each refactoring and give
an explanation on what and why they refactored during their work session (Step 7).
The survey contained revision-related information as well, so we could relate one refac-
toring to a revision in the version control systems.

After this refactoring phase, we analyzed the marked revisions and investigated the
change in the maintainability of the systems caused by refactoring commits. Figure 4.6
gives an overview of this analysis. As before, it was not a requirement from the devel-
opers that they commit only refactorings to the version control system, or that they
create a separate branch for this purpose. What was a requirement though is that a
commit containing refactoring operations could not contain other code modifications.
Hence, for each system we could identify the revisions (ry,, ..., 74, ..., 1) that were
reported in the surveys collected by the Refactoring Framework after refactoring com-
mits, and we analyzed all these revisions with the revisions prior to them. As a result,
we chose for a system the set of revisions 7y, 1,7, ..., Tt;—1, Tt;, -5 Tt,—1, Tt,, Where 7y, is
a refactoring commit and r;,_; is the revision prior to this commit.

We performed the analysis of these revisions with QualityGate SourceAudit de-
scribed in Section 2.2. If a commit contained more than one refactoring of the same
type — because the framework supported a way of bulk fixing the issues — we calculated
the average amount of maintainability changes of a refactoring type by dividing the
maintainability change brought about by the whole commit by the number of actual
refactorings contained in it. Everywhere in this chapter, if we deal with maintainability
change caused by a refactoring type, we use the average values of these changes. This
is of course a small threat to validity, as there is no guarantee that all the fixed issues
in various places in the code will affect the maintainability in the same way. However,
all the refactorings were performed by an automatic framework which resulted in very
similar (though due to the possible manual steps not necessarily the same) fixes for
the issues, therefore the chances that these refactorings had different impacts on main-
tainability is minimal. Besides analyzing the maintainability of the above revisions, we
gathered data from the version control system as well, such as diffs and log messages.

4.2.2 Results

Following the process described in Section 4.2.1, the companies performed a large num-
ber of automatic refactorings on their own code base using the Refactoring Framework
developed within the project. They uploaded almost 4,000 refactorings to the source
code repositories with more than 1,000 commits altogether (see Table 4.2). We ana-
lyzed 4 projects of 4 different companies and collected data according to the method
depicted in Figure 4.6. That is, we calculated all the maintainability changes brought
about by refactoring commits and aggregated the data at various levels. As the main-
tainability model used takes the number of coding issues into account (see Figure 2.2)

70

Chapter 4. Challenges and Benefits of Automated Refactoring

//
/ t[|)-2 t(i)-1 t(i) / t(i)+1f /
\ /

efactoring commits
were explicitly
marked in the
refactoring surveys

] Source Code
Repository

Analyze refactoring (t(i))
and previous (t(i)-1) revisions

Refactoring
Framework

QualityGate
SourceAudit

Quality Quality
of t{i)-1 version of t(i) version

QualityChange = Quality(t(i)) - Quality(t(i)-1)

Effect of refactoring on
software quality

Figure 4.6. Overview of the analysis process

and the Refactoring Framework supports the refactoring of such coding issues, one
might induce that it is trivial that upon refactoring the maintainability of code will in-
crease. Nonetheless, fixing an issue might cause code changes that lead to e.g. changes
in code clones, new coding issues, or changes in metrics. So it is far from trivial to
predict the complex effect of refactorings on code maintainability. What is more, the
task that the Refactoring Framework includes some semi-automatic steps, thus devel-
opers are able to configure the same refactoring operations somewhat differently. For
example, fixing an EmptyCatchBlock issue begins with three options, namely a) add
logger; b) use printStackTrace(); and ¢) leave a comment, where selecting one option
may introduce new options (e.g.: comment text and logger kind).

Table 4.2. Selected projects

Company Project kLOC Analyzed Refactoring Refactorings

revisions commits
Company I Project A 1,119 299 217 1,444
Company II Project B 962 868 449 1,306
Company III Project C 206 1,313 316 404
Company IV~ Project D 780 200 66 682
Total 3,067 2,680 1,048 3,836

First, we show how the sum of all refactoring related maintainability changes turned
out to be for the various projects. Next, we will dig a bit deeper into the data to find

71

Chapter 4. Challenges and Benefits of Automated Refactoring

out what the average impact of the individual refactoring types is on software main-
tainability. Then, we will go even one step further to explore the effect of refactoring
types on software maintainability at the level of code metrics.

I Effect of Automatic Code Refactoring on Software Maintainability

The data presented in Table 4.3 can bring us closer to find the answer to our first ques-
tion. The rows of the table contain an overview of the quality properties of 4 systems of
4 companies participating in the automatic refactoring phase of the project. The Cod-
ing Issues column shows the overall number of issues that were fixed by (semi)automatic
refactoring in a particular system. The Maintainability Before and Maintainability Af-
ter columns contain the maintainability values of the systems before and after the
automatic refactoring phase, calculated as described in Section 2.2 (0 is the worst
value, 10 is the best). The total improvement (Total Impr.) column reflects the dif-
ference between the maintainability values before and after the automatic refactoring
phase, hence if this value is negative, the overall maintainability of the system has
decreased during the refactoring phase, while a positive difference means a maintain-
ability improvement. Note that the companies were allowed to perform any kind of
code modifications during this phase, not just refactorings, so this value represents the
combined effect of all the code changes on the system maintainability. The next col-
umn, refactoring improvement (Ref. Impr.), is the code improvement achieved solely
by refactorings. This is calculated as the sum of the maintainability changes caused
by commits containing refactoring operations only (i.e. sum of the maintainability
differences between refactoring and prior commits). The last column (Ref. Impr. %)
is simply the ratio of the refactoring and total improvement values. Its intuitive mean-
ing would be the amount of code improvement caused by refactoring commits. Bigger
values than 100% may occur, which mean that the effect of refactorings is higher than
the overall effect of all the code changes; however, this effect might be positive and
negative as well.

In total, in 3 out of 4 cases the overall system maintainability values increased
during the refactoring phase. In these 3 projects, the net effect of refactoring commits
was also positive, meaning that the automatic refactoring phase increased the main-
tainability of the code. The only exception is Project A, where both the overall system
maintainability and the net effect of refactoring commits were detrimental. But even
in this case only a fraction (i.e. 80%) of the maintainability decrease was caused by
the refactoring commits. This finding is more or less in line with the results of the
manual refactoring phase of the project where we found that in most cases refactoring
improved the overall maintainability of the systems with only a few minor exceptions.
In the case of tool-aided refactoring, this finding also holds true for 3 projects out of 4.

Table 4.3. Quality changes of the selected projects

Company — Coding Maint. Maint. Total Ref. Ref.
Project Issues Before After Impr. Impr. Impr. %
Comp I - Proj A 1,444 4.449238 4.411970 -0.037268 -0.029822 80
Comp 1I - Proj B 1,306 6.039320 6.072320 0.032999 0.032999 100
Comp IIT — Proj C 404 4.132307 4.258933 0.126627 0.144507 114
Comp IV - Proj D 682 6.158691 6.161626 0.002935 0.003142 107

72

Chapter 4. Challenges and Benefits of Automated Refactoring

1 60T 8000000 LT | d9re 6600000 0¢ | 1 60T 8000000 €IT |0 0 0 spuadd y3ur13g10J10gngIuriiges)
L0FT #£0000°0 ¥ | 0 0 0149z¢ 8010000 810 0 0 SUOISIOAUO)ISR) I A\O[RI0TIS)
11 0 ¢ | 1leey €8z0000 91| {180T 2000000 62 | 0 0 0 POYIONOYRALIIPOSTU)
11 0 ¥|o0 0 014901 000000 9¢ | 0 0 0 PRLIoYRATIJpOsIUN)
0 0 01]489T 000000 0¢ | L ¥T'T 2100000 e | o 0 0 9[qBLIRA [R20TPasnU()
1860 200000°0- ¢S€1 |1 0 et |41 0 671 | 0 0 0 TLINJOYDI0FOL[@IOTATRSSOIIU)
1190 2¥0000'0- OF | T66°0 0LT000°0- L | 4€10 €20000°0- 1% | L0OT0 240000°0- S€OT I03ONIISUO) ATRSSOOIUU ()
ler't 0100000 ¢c | Lget 02000070 ¥ | $ 61T 9100000 OLT | O 0 0 JNeJo (JRARHP[NOYSSIMISYIIIMG
11 0 8¢ | LT 0 L1 | 4201 10000000 TFT | O 0 0 9[ed0TSpedNyeULIo JoYR (Jo[dwIg
11 0 8| 1660 T00000°0- ¥Z |{FOT £00000°0 06 | 0 0 0 QORI JDRIGOAIOSI
L0LT 09000070 6|4909 TEHO000 ¢ | lerT ¥20000°0 9z | €€ FIT0000 607 | suostreduro)UTISIIS[RINITUOINSOJ
11 0 6| 4cot 7000000 12|11 0 g0 0 0 SUOTIULAUO) FUTWIR N POYIDN
11 0 G| 4.18T1 #20000°0 ¢ | L¥PI'T GI0000°0 A 0 0 Jungyrhyduy
11T #$0000°0 0¢ | L €v2 0820000 T | 1 89°'T 8500000 0z | 0 0 0 yporgyore) Ayduy
11 0 641 0 T41 0 GeI | 0 0 0 auIre N POIdJA joHueajoog
11 0 910 0 0]4€9T 900000 ¢|o0 0 0 | sedATuondooxyme SuIMoIY] ploAy
0 0 0] 4egL 0%5000°0 S A | 0 0T | 0 0 0 | uor3dadXFI0YUIO (NN SUIMOIY T, PIOAY
11 0 01T | 4 80T 2000000 ¥AT | L gT'T 0100000 0g |0 0 0 SI9}ouUIreIe J3UTUSISSLOY PIOAY
0 0 04121 1900000 ¢l 0 LT |0 0 0 9DRIT YIRIGIULI JPIOAY
0 0 01]4dge1T¢ ¥81000°0 ¢ | 4181 2200000 e |0 0 0 Apoeriqporojgsiderry
11 0 0Lz | 41 0 1|41 0 0T | 0 0 0 Suingfydwygppy
ornjea Sae # | orjex Sae # | orjex Sae # | orjex Sae #

 29eloag D joeloag q 10eloxg Vv 108loag odAJ, enssy Surpo)

SONSST UTPOD SULI0)IRJoI AQ POsTed soSueyd Aend) §'§ 9[qr],

73

Chapter 4. Challenges and Benefits of Automated Refactoring

The seemingly negative results of Project A could be explained by a very project
specific factor. The system which suffers from maintainability decrease belongs to a
company where developers performed only two different types of refactorings, namely
PositionLiteralsFirstinComparisons and UnnecessaryConstructor. Their motivation
might have been that these refactorings required only local changes (i.e. they were
low hanging fruits), therefore they were easier to manage and test the code after the
modification. However, the effect of this limited set of refactoring types is completely
different from a more balanced set of refactorings (see Table 4.4).

The results of the other three companies support this hypothesis, as they performed
a much wider range of refactoring tasks, and the maintainability of their systems in-
creased in all cases. In the case of Project C and Project D, it is even true that
the refactoring commits caused a larger increase in the maintainability than the overall
increase at the end of the phase, which means that code modifications other than refac-
torings decreased the maintainability. In the UnnecessaryConstructor line of Table 4.4,
we can see that all the values are negative, meaning that this type of refactoring caused
a maintainability decrease in each and every system. Taking into consideration the fact
that out of the two types of refactoring performed by Company I, UnnecessaryCon-
structor was the absolute dominant by its number, it is now clear that the overall
decrease in the maintainability of their system can be credited to this single type of
refactoring. It is an interesting question of why removing an UnnecessaryConstructor
decreases the maintainability, which we elaborate on in Section II.

To summarize, we observe that the overall effect of the automatic refactoring phase
tends to be positive, and the small bias is caused by the dominant number of a single
type of refactoring (i.e. UnnecessaryConstructor) in Project A.

ITI Impact of Automatic Refactoring Types on Software Maintainability

During the automatic refactoring period, developers fixed different kinds of coding is-
sues, which had different effects on software maintainability. In Table 4.4 we show for
each system the number of fixed coding issues (column ‘#’) and its average maintain-
ability change (column ‘avg’) credited to the various kinds of coding issue types the
developers fixed (semi)automatically. As the maintainability change of a single commit
measured on the scale of 0 to 10 is extremely small, we also added a column to the table
(column ‘ratio’) that reflects the number of times this change was bigger or smaller
compared to an average maintainability change caused by a non-refactoring commit.
We refer to this number as nonRefactAvg in the following, and its value is 0.00005.
The 1 means that the actual change is bigger than the average maintainability change
of the non-refactoring commits, while | means a worse effect than the average. Please
note that the average maintainability change of the non-refactoring commits is nega-
tive, so a maintainability decrease may still be marked with 1 (meaning that the actual
maintainability degradation is smaller than that of an average commit). For example,
a ratio of 1.68 T means that the actual maintainability improvement is greater than
the average non-refactoring commit by 1.68 times of the absolute value of the average
change:
avg = nonRefact Avg + ratio * [nonRe fact Avg|

This is why a neutral change value (i.e. 0) is marked with 1 1, as 0 is better than the
average maintainability change of non-refactoring commits, which is negative.
We can readily see that Company I fixed only 2 types of coding issues in Project

74

Chapter 4. Challenges and Benefits of Automated Refactoring

A, as we already pointed it out in the previous section. The other companies fixed a
wider range coding issues, 21 types altogether. The results indicate that in 55% of the
cases refactoring increased the overall maintainability of the system, while it decreased
the maintainability in only 10% of the cases (shown in bold). In 35% of the cases it
did not cause any noticeable difference in maintainability measured by the model (i.e.
the model was insensitive to the change). If we compare the results with the average
maintainability changes of non-refactoring commits, we can see that only one value
caused a larger maintainability decrease than an average non-refactoring commit. So
even in those few cases where a refactoring type caused a maintainability decrease, it
was much smaller than an average maintainability degradation introduced by a commit
containing no refactorings. Also, the largest maintainability increases caused by some
refactoring types are more than 7 times bigger than the average decrease caused by
non-refactoring commits.

Looking closer at the results, we can see that fixing the UnnecessaryConstructor
coding issue decreased the maintainability in each case. This issue occurs when a
constructor is not necessary; i.e., when there is only one constructor, it is public,
has an empty body, and takes no arguments. The automatic refactoring algorithm
simply deleted these constructors. Intuitively, the maintainability of the source code
should have been increased because we deleted unnecessary code and decreased the
lines of code metric as well. However, ColumbusQM is not directly affected by the
system size as it could lead to false conclusions like larger systems are necessarily
harder to maintain, so the code reduction itself would not justify a maintainability
increase anyway. Instead of the mere sizes of the systems, the maintainability model
relies on the distribution of the method lengths. In this particular case the method
length distribution is shifted towards the direction of longer methods as a lot of “good
quality” code/methods got deleted. The removed constructors consisted of just a few
lines, had no coding issues, had small complexity and they did not refer to other classes.
Therefore, a maintainability decrease occur upon deleting such good quality methods
due to the shift in the distribution of metric values like length, complexity or number
of parameters of the remaining methods.

There are two other issues where the maintainability of a system decreased for some
of the projects. One issue is the UnnecessaryLocalBeforeReturn that caused a decrease
in maintainability for Project D. In this case the automatic refactoring algorithm simply
inlined the value of the local variable into the return statement (which resulted in a line
deletion as well). This should have increased the maintainability because it reduces
the method length and removes a coding issue from the source code. However, it did
not change the maintainability or it even decreased it (albeit the decrease was very
small compared to other changes). Investigation of this phenomena revealed that a
single change in lines of code or in the number of minor (low-priority) rule violations
is so small that it has no noticeable effect. What is more, in some cases fixing these
issues introduced code clones as well (the only difference between two methods was the
unnecessary local variable) which immediately decreased the measured maintainability.

The other issue causing a maintainability decrease is PreserveStackTrace in Project
C. The typical fix of this issue is to add the root exception as a second parameter to the
constructor of the newly thrown exception. However, Company III could not apply this
strategy as their own exception classes did not override this two parameter constructor.
So instead of the usual fix, they instantiated a new exception in a local variable, called
its initCause() method with the root exception and threw the new exception. Besides

75

Table 4.5. Ratios of quality changes

on individual metrics level

Chapter 4. Challenges and Benefits of Automated Refactoring

Coding Issue Pri. #| AD |CBO| CC McCC| NII NLE [NOA| PAR Maint.
+ -+ e e s e e - -+ -
AddEmptyString P3 421|0 0[0 0[0 00 0|0 0 0[0 0[0 0|0 0|0 0[0 0 0 0[0 0
ArraylIsStoredDirectly P2 35[0 ofo 0]o 0[o o|o 0 0[0 0[0 0|0 0|0 0[0 0 0 0]0.97 0
AvoidPrintStackTrace P2 20/|0 0[0 00 00 0|0 0 0[0 0[0 0|0 0|0 0[0 0 0 0[0.05 0
AvoidReassigningParameters P3 214{0 00 0j0 0.11j0 0|0 0 o[o 0(0.12 0j0 0]0 0[0 0 0 0[0.29 0.02
AvoidThrowingNullPointerExcept. P1 13(0 0[0 0[0 00 0|0 0 0 0[0 0[0 0|0 0|0 0/0. 0 0 0(0.23 0
AvoidThrowingRawExceptionTypes P2 9|0 00 0J0 0|0 0[0 0 0 0]0 0[0 0|0 0|0 0]0 0 0 0]0.11 0
BooleanGetMethodName P3 135|0 0|0 0|0 0[0 o[o 0 0 0[0 0[0 0|0 0|0 0[0 0 0 0[0 0
EmptyCatchBlock P1 64(0 0[0 0[0.050.06/0 0|0 0 0 0l0 0[0 0|0 0|0 0lo 0 13 0(0.91 0.02
EmptyIfStmt P2 42(0 ofo 0]o 0{o o|o 0 0 o[o 0[0 oo oo 0[o 0 0 0[0.1 0.02
MethodNamingConventions P3 32|10 0[0 00 00 0|0 0 0 0[0 0[0 0|0 0|0 0[0 0 0 0(0.03 0
PositionLiteralsFirstInComparisons P1 449|0 0{0 0/0.020.02(0 0|0 0 0 0[0 0[0 0|0 00 (){0) 0 0 0]0.88 0
PreserveStackTrace P2 1220 0[0 0[0.01 0.03|/0 0|0 0 0 00 0.02|0 0|0 0|0 0[0 0 0 0[0.25 0.06
SimpleDateFormatNeedsLocale P3 216|0 0{0 0/0.040.010 0|0 0 0 o[o 0[0 oo ofo 0[o 0 0 0[0.1 0.01
SwitchStmtsShouldHaveDefault P2 240|0 0[0 0[0.01 0.01|0 0|0 0 0 0[0 0[0 0|0 0[0 0/0. 0 0 0]0.4 0.01
UnnecessaryConstructor P31,123|0.130.02(0 0[0 0.08|0 0|0 0 0 0.16]0.01 0.21}0 0.14(0 0|0 0 13 0]0.04 0.73
UnnecessaryLocalBeforeReturn P3 297|0 010 010 0.1|0 0|0 0 010 0]0 010 0]0 0]0 010 0 0 010 0.1
UnusedLocalVariable P2 62|10 0[0 0[0 00 0|0 0 0[0 0[0 0[0 0|0 0|0 0[0 0 0 0[0.15 0
UnusedPrivateField P2 40[0 0(0.03 0|0 0[o o|o 0 0[0 0[0 0[0 0|0 0|0 0[0 0 0 0[0.03 0
UnusedPrivateMethod P2 40/|0 0[0.03 0|0 0.05/0 0[O 0 0[0 0[0 0[0.05 0|0 0[0.08 0|0 0 0 0(0.1 0.05
UseLocaleWithCaseConversions P1 101|0 0|0 0|0 00 ofo 0 0[0 0[0 0[0 0|0 00 0|0 0 0 0]0.86 0
UseStringBufferForStringAppends P2 160|0 0[0 0[0 00 0|0 0. 0[0 0[0 0[0 0|0 0|0 0[0 0 0 0.01(0.26 0

76

Chapter 4. Challenges and Benefits of Automated Refactoring

the additional lines, the fix also introduced a new incoming call to the initCause()
method of the exception objects. All these decrease the maintainability, which slightly
outweigh the positive effect of removing a coding issue.

All in all, the results indicate that despite the seemingly counter-intuitive effects
of fixing some issues, refactoring different types of coding issues usually increase code
maintainability.

ITT TImpact of Automatic Code Refactoring on Code Metrics

Table 4.5 shows all the sensor nodes (internal quality properties) of the ColumbusQM
ADG (see Figure 2.2), and the overall maintainability of a system as well. Sensor
nodes represent goodness values of source code metrics. In the table we list two ratios
for each sensor node. A ratio is the number of coding issue fixes when the refactoring
caused a positive (column ‘+’) or negative (column ‘') change to the goodness value
of the current sensor, divided by the number of all refactorings (positive, negative, and
zero change). The values larger than 0.5 are highlighted in bold. The table also shows
the priority (column Pri.) for each coding issue according to a scale between 1-3, and
describes how dangerous an issue is (P1 — critical, P2 — major, P3 — minor).

The goal of the project was to increase the maintainability of the software systems.
The column ‘Maint. +’ shows the ratio of how many times a refactoring increased
the overall maintainability of a system. For example, 0.86 means that UseLocale With-
CaseConversions fixes had a positive impact on maintainability in 86% of the cases.
The column ‘Maint. —” shows the ratio of how many times a refactoring decreased the
overall maintainability of a system. Looking at the same line again, we see that the
value is 0, which means that fixing this type of issues did not decrease the maintain-
ability. The remaining 14% did not affect the maintainability in either a positive or
negative way.

Looking at these values, we can see that fixing coding issues generally increases the
overall maintainability. However, there are a few issue types which did not change the
maintainability at all, or they even decreased it. Increases happened mostly because
of the expected behavior of the maintainability model, namely, decreasing the number
of coding issues in the source code improves maintainability and stability, hence the
quality. This behavior can be observed mainly in the P1, P2, P8 columns (the numbers
of coding issues with different priorities, respectively). For example, ArraylsStoredDi-
rectly did not change any other sensors, just the number of P2 coding issues and this
increased the maintainability in each case. Still, this pattern cannot be applied to
every row in the table. For example AddEmptyString, BooleanGetMethodName coding
issues increased the goodness of P3 sensor in 6-7% of the cases but we cannot see any
increase in maintainability. This is because the positive effect of P& sensor was so small
that it increased the overall maintainability to such a small amount that it is lost due
to rounding errors.

An interesting observation can be made on the EmptyCatchBlock where besides the
91% improvement of PI, one can see a 13% decrease in the P2 sensor. A closer look
into this case told us that in some automatic EmptyCatchBlock refactorings developers
choose to solve the issue with “put an e.printStackTrace() call into the catch block” op-
tion for the refactoring algorithm which resolved the EmptyCatchBlock but introduced
a new AvoidPrintStackTrace issue at the same time.

Another compelling case is the AwoidReassigningParameters issue which has a
definitive improvement in the logical lines of code (LLOC) and nesting level (NLE)

77

Chapter 4. Challenges and Benefits of Automated Refactoring

sensors. Fixing this reassignment involved removing some code parts that reduced
the code lines and sometimes the complexity (i.e. the maximal nesting level) of the
projects. Besides reducing the number of coding issues, these improvements caused a
maintainability increase in 29% of the cases. However, in 2% of the cases, we observed
a maintainability decrease. This is because in 11% of the cases the removal of some
code parts resulted in new code clones (CC), hence two or more code parts differed
only in the removed statements. So the effect of this refactoring is not easy to predict,
but in the majority of the cases we observed a maintainability increase.

UnusedPrivateField increased the goodness of the CBO sensor in 3% of the cases
but it did not affect any of the other sensors. This happened mostly because of the
small number of fixes and also because it sometimes introduced UnusedImports coding
issues as well.

Section 1I explained why UnnecessaryLocalBeforeReturn coding issue decreased
maintainability. Table 4.5 shows that the introduction of code clones (CC) had a
bigger effect on maintainability than the fixes of the P& issue. Similarly, Unneces-
saryConstructor is also referred to in Section II and its precise effects can be seen in
Table 4.5. Almost every sensor is affected by this coding issue fix, but this is mainly
because of the large number of refactorings.

In summary, we observe that fixing coding issues by automatic refactorings does not
have a significant impact on metrics in most of the cases, mainly because the changes
are local. However, some fixes have an effect on metrics one would not think of at first
glance.

4.2.3 Threats to Validity

Even in a case study which was carried out in a controlled environment, there are
many different threats which should be considered when we discuss the validity of our
observations. Here, we give a brief overview of the most important ones.

Heterogeneity of the commits

As we were interested in the effect of particular refactoring types on software main-
tainability, we filtered out those commits that contained different types of refactorings.
Although the number of such commits was relatively low, it is obviously a loss of in-
formation. Additionally, when a commit contained multiple refactoring operations of
the same type, we had to use the average of the maintainability changes to estimate
the effect of an individual refactoring operation. This is also a threat to validity, as
the same refactorings may have a different impact on the same system. However, its
likelihood is minimal, as all the refactorings have been carried out (semi)automatically,
and this resulted in very similar type of modifications in the code.

Maintainability analysis relies only on the ColumbusQM maintainability
model

The maintainability model is an important part of the analysis as it also determines
what we consider as an “effect on maintainability” of refactorings. Currently we rely
on Columbus@QM with all of its advantages and disadvantages. On the positive side
this model has been published, validated and reflects the opinion of developers [20];

78

Chapter 4. Challenges and Benefits of Automated Refactoring

however, we saw that the model might miss some aspects that would reflect some
changes caused by refactorings.

Limitations of the project

We claim that our experiment was carried out in an in vivo industrial context. However,
this project might had unintentional effects on the study. For example, as in the manual
phase, the budget for refactoring was not “unlimited” and some companies were looking
for fixes that required the smallest amount of extra effort. A good example of this is
Company I, who really just performed two such types of refactorings.

Limitations of the supported refactoring types

The supported automatic refactorings focus on fixing 21 different coding issues. It is
only a fraction of the possible and widely used set of refactoring operations, therefore
our overall conclusions are limited to these type of refactorings. However, most of these
refactorings are simple yet powerful tools for improving the code structure agreed by
all the companies involved in the project.

4.3 Analysis of Developers’ Opinions on Refactoring
Automation

There are several challenges which should be kept in mind during the design and
development phases of a refactoring tool, and one is that developers have several ex-
pectations that are quite hard to satisfy. To address this, during the manual phase we
asked developers what they thought about refactoring automation. Developers pro-
vided us with several recommendations in the manual phase (How did they refactor?
Do they think that it is possible to automate their steps? If yes, how would they
automate them?). Then, they gave us feedback on the resulting implementations (We
asked them how they used it and how much it helped them in their everyday work.).
Besides our experiences, we also examined their opinions.

Here, we present and summarize the opinions of the developers and the several
challenges we faced on how to automate refactoring transformations.

4.3.1 What developers think about refactoring automation?

Throughout the manual refactoring and the automatic refactoring phases, we asked
developers to fill out surveys for the refactoring operations they had carried out. For
each refactoring commit, they had to fill out a survey that contained questions targeting
the initial identification steps, and they also had to explain why, how, and what they
modified in their code. There were around 40 developers involved in this phase of the
project (5-10 per company). The questions related to our study were the following:

o How difficult would it be to automate your manual refactoring for the issue?
(1 - very easy, 5 - very hard) + explanation

e How much did the automated refactoring help in your task? (1 - no help at
all, 5 - great help) + explanation

79

Chapter 4. Challenges and Benefits of Automated Refactoring

I Manual refactorings

During the manual refactoring phase of the project, developers refactored their code-
base manually, and they filled out a survey for each refactoring. We had an online Trac
system for this purpose, and whenever they opened a ticket for an issue, they had to
explain why they found it problematic, and answer some more questions. Similarly, we
asked them some further questions when they closed the ticket after they had finished
the refactoring.

Among these questions, they had to rate on a scale of 1 to 5 (1 - very easy, 5 - very
hard) how difficult it would be to automate the manual refactoring. Along with this
number, they had to justify their answer.

Table 4.6. Developers’ feedback on how hard it would be to automate refactoring
operations

Num. of Replies Avg Med Dev Num. of Types
430 2.06 1 1.23 61

The developers completed the survey for 430 tickets, as can be seen in Table 4.6.
Our results tell us that developers gave responses for 61 different kinds of coding issues
(actually we showed them around 220 different kinds of coding issues). Figure 4.7 shows
the histogram of their replies. As can be seen, most of the refactorings were rated with
smaller values, which means that they were optimistic about the automation: they
thought that most of the coding issues could be easily fixed through automated trans-
formations. However, they also identified some cases where they thought that the
automation would be hard to realize. Notice also that Table 4.6 also supports this ob-
servation, as the average value is around 2 and the median is 1. Table 4.7 lists the coding
issues and the level of difficulty of their automation based on feedback of the developers.

Table 4.7. How difficult the refactoring automation of coding issues is according to
developers

Aut. Coding Issues
Very Hard (5) AvoidInstanceofChecksInCatchClause, ExceptionAsFlowControl, EmptyIfStmt
Hard (4) SwitchStmtsShouldHaveDefault, AvoidCatchingThrowable, MethodReturnsInternal Array

UseStringBufferForStringAppends, AvoidSynchronized AtMethodLevel, SignatureDeclareThrowsEx-

Medium (3)

malParameter, UseLocaleWithCaseConversions, UnsynchronizedStaticDateFormatter

ception, AvoidCatchingNPE, AbstractClassWithoutAbstractMethod, ConsecutiveLiteralAppends,
LooseCoupling, NonThreadSafeSingleton, ReplaceHashtableWithMap, SystemPrintln, UnusedFor-

EmptyCatchBlock, OverrideBothEqualsAndHashcode, PreserveStackTrace, UnnecessaryLocalBe-
foreReturn, AtLeastOneConstructor, UnusedPrivateField, UnusedPrivateMethod, AvoidThrow-
Easy (2) ingRawExceptionTypes, UnusedLocalVariable, AvoidDuplicateLiterals, AvoidDeeplyNestedIfStmts,
AddEmptyString, AvoidField NameMatchingTypeName, ArrayIsStoredDirectly, AbstractNaming, Im-

mutableField, OnlyOneReturn, UnnecessaryConstructor, Unnecessary WrapperObjectCreation

AvoidPrintStackTrace, UnusedImports, UselIndexOfChar, InefficientStringBuffering, IntegerInstanti-
ation, MethodArgumentCouldBeFinal, CyclomaticComplexity, BooleanInstantiation, BigIntegerIn-

Very Easy (1)

stantiation, BeanMembersShouldSerialize, CollapsibleIfStatements, CompareObjectsWithEquals,
IfElseStmtsMustUseBraces, LocalVariableCouldBeFinal, SimplifyConditional, ShortVariable, Uncom-

mentedEmptyMethod, UnnecessaryFinalModifier, UnusedModifier, UnnecessaryReturn, Variable-

NamingConventions

80

Chapter 4. Challenges and Benefits of Automated Refactoring

250

200 +—

150 -+

100 -+

: - I

1-very 2 3 4 5 -very
easy hard

Figure 4.7. Histogram of the answers given for " How difficult would it be to automate
your manual refactoring for the issue?”

IT Automated refactorings

Based on the observations of the manual period, we started to develop the automated
refactoring tool. When we began the development of the tool, we selected the refactor-
ing transformations for implementation based on the earlier feedback of the developers.
Also, we asked the companies to provide us with a list of coding issues (with priorities)
that they wanted to fix in the automated phase so that we could concentrate on the
most desired ones. After gathering the lists, we ranked each coding issue by the values
the companies provided us. Then we created a ranked list of the coding issues that
most of the companies wanted at the top, and the coding issues that nobody wanted
at the end. Interestingly, the resulting list contained many issues that were no longer
considered during the manual phase, most probably because the companies fixed all
occurrences of some issue types so they were not interested in the automation of these.

We started implementing the refactoring algorithms based on this ordered list. We
developed automatic refactoring solutions for 42 different coding issues. The supported
list of coding issues consisted of 22 different issue types that were considered during
the manual period plus 20 new ones.

During the automatic refactoring stage, we asked the developers to once again
document their refactorings. This time, we incorporated the survey into our tool that
asked them to fill it out after each refactoring transformation. This way, we gathered
over 1,700 answers for 30 coding issue types (see Table 4.8).

Table 4.8. Total help factor survey

Num. of Replies Avg Med Dev Num. of Types
1,726 3.05 3 1.23 31

In the automatic phase, we asked developers about how much the automated refac-
toring solution assisted them in their refactoring task. They had to give a value between
1 and 5 here as well. A 5 meant that the automation helped a lot, while a 1 meant that

81

Chapter 4. Challenges and Benefits of Automated Refactoring

700

600
500

400
300

200

1-no help 2 3 4 5 - great
at all help

Figure 4.8. Histogram of the answers given for the question “How much did the auto-
mated refactoring help in your task?”

it did not help at all (or it even made the situation worse). As we see in Table 4.8, the
average of the replies was around three. In Figure 4.8, the distribution of the responses
can be seen in a histogram. This tells us that developers were generally satisfied with
the automated refactoring solutions, and they gave a score of 4 in many cases.

Actually, if we consider all the transformations where the given value is greater
than 1 (these are the transformations that the developers said were a help), we find
that all the refactorings made the tasks of developers easier or faster, except for two
cases. This can be seen in Figure 4.9, where we can see the degree of help for each
kind of coding issue. The points stand for the average help of a refactoring solution
and the bars around them indicate the standard deviation.

Every refactoring algorithm for a coding issue got a value above 1, except the
LooseCoupling and the MethodNamingConventions coding issues. In their explana-
tions, the developers said they found that fixing one issue had a communication over-
head that sometimes made it easier for them to refactor the code manually in the IDE
instead. However, this overhead might be negligible if they fix more issues together.
For example, the refactoring solution for MethodNamingConventions issue suggests a
better name for a method (e.g. if a method name starts with an uppercase letter
it recommends the same name beginning with a lowercase letter). After the devel-
oper accepted the refactoring suggestion, they had to wait until our tool applied the
modification. This could take a few seconds because of the server-client architecture.

Upon examining Figure 4.9 again, we realized that when we consider not only
the average but also the standard deviation for each coding issue, we can classify the
following 5 refactoring types as ‘sometimes bad’: LongFunction, CyclomaticComplexity,
UseStringBufferForStringAppends, UselessParentheses, TooManyMethods.

The developers explained these as follows. The UselessParentheses issue fell into
the same category as the former two; it is faster to do it manually in some cases.
The LongFunction and CyclomaticComplexity issue fixing refactoring solutions used
an extract method refactoring algorithm where the algorithm applied a heuristic to
find parts of the code that can be extracted to satisfy the requirement by the issue, to
reduce the length of the method or to reduce the complexity of it. The main problem

82

Chapter 4. Challenges and Benefits of Automated Refactoring

4.5

3.5

25

1.5

83

SUOIIUBAUO)SUIWENPOYIDIA|
Bujdnojasoo

spoyiaNAuenoo]
S959YIUIRJSSa|asN
spuaddy3uli1sio44a4ng3uliisasn
Anxajdwo)onewodA)
d3e4}oBISIULIdPIOAY

uonpun4suol
9|ed07spaaNIewWIo{dIegaldwis
sadA] uonndaoxgmeySuimoay] pioay
d|qeliep|ed07pPAsSNUN
}ne42ganeHPINOYSSIWISYIUMS
wisyAdws
u4niayalojag|edoiAiessadauun
Auxajdwo)yiedN
uo13dadx3433ul0d||NNSUIMOIY | PIOAY
9SNE|DYI1BIU|SHI9YDJ03OUBISU|PIOAY
SusAiydwippy

PI3!49pPIH
%20|gouAsulagisnA3|gelieAd1leIS|BUIJUON
J030NnJ43suU0DAIBSSIIDUUN
90BJ])J81SaNIDSAId
POYIaINRIBALIdPasSNUN
Aj3oa41gpaJoissiAensy
Y18UapOYIdINBAISSDIXT
3o0|gydiredArdwy
si91pweled3uiudisseayplony
|eul4agp|no)a|qelieA|ed0T
aWEeNPOYI3NIDUES|00g
pI3i491eALIdpasnun

suosedwo)uj3sii4S|ela11uo}ISOd

Figure 4.9. How much the automated refactoring solution assisted the developers (5 - great help, 1 - no help at all)

Chapter 4. Challenges and Benefits of Automated Refactoring

with this algorithm was that it was hard for developers to fathom how it worked. They
simply preferred to do it manually instead of using the tools. The TooManyMethods
issue suffered from the same problem, but in this case the underlying algorithm was
‘extract class’. Developers’ notes on the UseStringBufferForStringAppends issue show
that although they were satisfied with the semantic aspect of the algorithm, many
formatting problems arose.

4.3.2 Did automation increase developers productivity?

Previously, we found that the automatic tool helped in the everyday work of developers
in most cases. We also found in some cases that time was a relevant factor in considering
a refactoring a help or not. Here, we will examine whether tool-assistance increases
developer productivity.

In the questionnaire we drew up during the automatic period we asked developers
how much time it took to finish a refactoring with tool-assistance; and how much time
it would have taken doing the refactoring manually. We got replies to this question
for approximately 7,800 refactorings by the end of the project. Figure 4.10 represents
the survey data. Here, we observe how many times faster a tool-assisted refactoring is
compared to a manual one on average. The light-gray bar below the number 1 shows
when the manual and automatic refactoring takes roughly the same time. When a tool-
assisted refactoring is slower than doing it manually it is on the left-hand side of the bar,
otherwise it is on the right-hand side. Colors also represent slower refactorings with
red, faster ones with green, and when they take about the same time with orange bars.

We found that automated solutions in average are 1.7 times faster than manual
ones. However, as Figure 4.10 shows how the difference for particular coding issue
types vary. For example, there are six cases where manual methods are faster. A closer
look on the slower issues reveals that it ties up with the observations discussed in the
previous section. Simpler fixes are faster to make in the IDEs manually because of the
server-client architecture of FaultBuster. However, the results also indicate that there
are cases where the automatic technique was 3-5 times faster. One of the reasons why
such an increase in speed was achieved is because these coding issues are refactored
in batches. For example, the UnusedConstructor coding issue was 90% of the times
executed in a batch together with 10 issues of the same type.

4.3.3 Lessions Learned

Thanks to the Refactoring Project, during the development of FaultBuster, we had
chance to get immediate feedback from potential users of the tool in all stages of its
development (starting from the design phases to the last testing phases of the project).

During the design phase of the tool we consulted regularly with the developers
of the participating companies concerning the refactoring transformations which they
wanted to be available in the final product. Throughout the initial meetings it became
clear that they wanted ready solutions for their actual problems, particularly for those
which were easily understandable for the developers and by solving them, they could
gain the most in terms of increasing the maintainability of their products. However,
they did not really provide us with a concrete list of the issues that they wanted us
to deal with. In addition, most of the developers said that before the project they
had not used any refactoring tools except the ones provided by their IDEs. Therefore,

84

Chapter 4. Challenges and Benefits of Automated Refactoring

95eI9AR UO 9DURISISSB-[00) M SULI0)DRJOI B OP 0} J1 SeM I9)SeJ Yonuwl MO "OT F oInsr

5953Y1UIR4SSI|ASN
spuaddy8ulisiodiayngsulinsasn
POYISAIPIBALIgPasNUN
3|gelieA[RDOTPASNUN
uinjayalojag|eaoiAiessadauun
1019nJ35U0DAIRSSDIBUUN
spoylaNAuep 00
3INeJ3Q3ABHP|NOYSSIUISYIUMS
9|ed07spasNIeWIO{legajdwis
20BI])}ORISANIRSAI
suosliedwo)ujIsli4s|ea1 uonisod
AuxajdwodyiedN
SUOIIUBAUODSUIWENPOYISA
|eul§3gp|noJ3|qerieA|ed0
Buidnojasooq
418Ua7pOYI3AI9AISSIIXT

JunsyArdwy

320]gyoiediidw3
AuxajdwononewopAy
aweNpoyIsNIeDUEdj00g
sadAuondaoxameySuimoayl ploay
u011da2X3431Ul0d||NNSUIMOIY] PIOAY
sia19weledsuludisseayplony
30BJ|}ORISIULJPIONY
ApoasgpaioissiAensy
3SNE|HYIIBDUSHIBYDJOSIURISU|PIOAY
Susiidwappy

uonoungsuol

PI3143pIH
320|gouAsulagIsNIANB|qeLIEAdIIRIS|EUIJUON

85

Chapter 4. Challenges and Benefits of Automated Refactoring

we started implementing transformation algorithms to fix coding rule violations which
were very common in their projects. Soon, when we provided the companies with the
first prototype versions for testing, they started to send us lots of other issue types and
refactoring algorithms that they wanted to be supported in the new releases. Among
the desired refactorings, there were some more complex ones too like eliminating long
or complex methods. In the end, we also implemented an algorithm that eliminates
clones (code duplications) from the source code.

At the end of the project, we can indeed say, that FaultBuster performed well and
was tested exhaustively by the companies. The companies participating in the project
performed around 6,000 refactorings altogether which fixed over 11,000 coding issues.
Interviews with the developers showed that they found the everyday work with the
tool really helpful in many situations and they intended to keep using it in the future.

We gathered a lot of experience on how to design and implement such a tool, and
also on the final usability of FaultBuster, which we will briefly summarize below.

I Challenges in how to automate refactoring transformations

Precise syntax tree Without a doubt, a key consideration of refactoring transfor-
mations is to have a precise representation of the source code. One can model the source
code as an abstract syntazx tree (AST) to perform different (graph) transformations on
it. Transformations can be just as good as the underlying representation is, so we
found it necessary to have an accurate and complete AST. As an illustration, consider
a rename method refactoring. Here, we do not simply change the method name, but
a) we have to check that the new name does not conflict with other method names in
the same scope (e.g. parent and child classes); b) we have to check for disambiguation
in other classes where the method is invoked; ¢) and then, when it passes the former
two checks we are allowed to rename the method and all of its invocations to the new
name. To do this, we have to analyze all the dependencies, and potentially include
external ones as well.

Regenerate (only the) modified code After the transformations on the AST, we
have to apply the changes to the source code. To do this, we have to (re)generate the
source code from the AST (at least, and preferably only for the modified code parts).
It is also advisable not to introduce unnecessary changes to the other parts of the code.

Code formatting The process of code generation requires some indentation and
code formatting as well. It is usually hard for the users to specify formatting rules,
and hence it is also hard to regenerate a code formatted exactly as the user would like
to see it. This was one of the most difficult challenges we could not fully overcome,
and this caused the most dissatisfaction among developers. However, based on our
experiences, developers mostly accepted this limitation if they found the refactoring to
be semantically correct and they had to reformat the code only a bit manually (e.g.,
they could easily do this in the IDE automatically).

Patch generation As the last step after the transformation, we generated a diff
(difference file or patch) between the old source code and the new one. Then we
sent this diff file to the IDE where the developers could decide to accept or reject the
modification.

86

Chapter 4. Challenges and Benefits of Automated Refactoring

Code clone elimination Another interesting experience was that the developers
eagerly wanted to eliminate code duplications (code clones). By the end of the project,
we developed an experimental algorithm that was able to refactor code clones via ex-
tract method and extract class refactoring transformations. Note that automated code
clone detection is a hot research topic as well [80], especially code clone elimination. It
is quite a challenge to come up with a good solution for this issue.

II What makes a refactoring operation good or bad?

Precise problem detection Developers only wanted recommendations made for
real faults or optimization opportunities, and they wanted to avoid false positives.
Looking at false recommendations takes time, and it does not bring any benefit to the
project. Besides false positive issues, they also wished to avoid true negative issues. As
a common use case, they said they wanted to remove all the occurrences of a certain
type of issue. Reporting only some occurrences would give them a false sense of security.

Understandability of the transformations Refactorings with a good and easy-
to-comprehend description were more popular among the developers. Unlike those
refactoring solutions that required more parameters or were harder to understand,
developers rarely used these and gave worse scores in the survey.

Performance It was important to carry out the modifications quickly, or at least
quicker than could be done manually.

Batch refactorings One way to improve efficiency is by supporting the refactoring
of several issues at the same time. With the automated tool, developers were able to
fix many issues of the same type all at once (we called this batch refactoring). This
batch-refactoring process made refactoring tasks a lot faster. For example, they were
able to fix all occurrences of UnusedConstructor issues with a press of a button. This
option was beloved by developers, and batch refactorings got better scores in the survey.
However, we did not allow batch refactoring of all the issues. We had to implement
some restrictions in this process because we observed that developers tended to accept
these refactorings without checking the result of the automated refactoring operations.
This was flattering because it meant that they trusted the algorithm and its results.
Nonetheless, we did not want them to blindly accept the refactorings. Therefore, we
only allowed the refactoring of one type of issue at a time, and we only allowed it for
some simpler refactorings. This way we guaranteed that they had to check complex
refactorings (e.g. extract class) and ensured that simpler ones ran faster.

Comment handling Comments are integral parts of the source code, and sometimes
they are closely related to source code elements. From these transformation, developers
expected that they would also be able to handle these situations. For instance, a
refactoring that removes an unused constructor should remove the comment before
the constructor as well. Similarly, in some cases they asked us to generate simple
comments.

87

Chapter 4. Challenges and Benefits of Automated Refactoring

4.4 Related Work

Related Tools

Since the introduction of the term ‘refactoring’ [11], many researchers studied it [30]
as a technique, e.g., to improve source code quality |48, 81|, and many tools were im-
plemented providing different features to assist developers in refactoring tasks. Fault-
Buster is a refactoring tool to detect and remove code smells, i.e., in this section,
we shall give an overview of tools which have similar capabilities, or are related to
FaultBuster through some specific features.

In a recent study, Fontana et al. examined refactoring tools to remove code smells
[72]. They evaluated the following tools: Eclipse [82], IntelliJ] IDEA [83], JDeodor-
ant [84], and RefactorIT [85]. In the case of JDeodorant, they say that this “is the only
software currently available able to provide code smell detection and then to suggest
which refactoring to apply to remove the detected smells.” To evaluate the other refac-
toring tools, they relied on the code smell identification of iPlasma [86] and inCode [87].

In an earlier study, Pérez et al. also identified smell detection and automatic cor-
rections as an open challenge for the community, and proposed an automated bad smell
correction technique based on the generation of refactoring plans [88].

As regards detecting bad smells, there are many static analyzers available to auto-
matically identify programming flaws, like the products of Klocwork Inc. [89] or Cover-
ity Inc. [90] These tools are sometimes able to identify serious programming flaws (e.g.
buffer overflow or memory leak problems) that might lead to critical or blocker prob-
lems in the system. There are open source or free solutions as well, such as PMD [27],
FindBugs [91], CheckStyle [92] for Java, and the Code Analysis features and FxCop in
Visual Studio [93]. These tools usually implement algorithms to detect programming
flaws, but fixing the identified issues remains the task of the developers.

The DMS Software Reengineering Toolkit [94] product of Semantic Designs Inc. has
a ‘program transformation engine’ which allows the tool to perform code generation
and optimization, and makes it able to remove duplicated code (with CloneDR).

There are many IDEs available with automatic refactoring capabilities and they
support typical code restructurings (e.g. renaming variables, classes) and some com-
mon refactorings from the Fowler catalog. For instance, IntelliJ IDEA was one of the
first IDEs to implement these techniques and it is able to support many languages
(e.g. PHP, JavaScript, Python), not just Java, which it was originally designed for.
Eclipse and NetBeans also implement similar algorithms. However, neither of these
IDEs support the automatic refactoring of programming flaws. And there are many
plugins available to extend their refactoring capabilities, such as ReSharper [95] and
CodeRush [96] for .NET.

Compared to these tools, the above all lack the feature of scanning the code and
suggesting which refactorings to perform, which is one of the main strengths of Fault-
Buster. JDeodorant, as an Eclipse plug-in, is the only tool that has a similar capability,
as it is able to identify four kinds of bad smells (namely ‘Feature Envy’, ‘State Check-
ing’, ‘Long Method’” and ‘God Class’), and refactor them by using a combination of 5
automatic refactoring algorithms. FaultBuster is more general in a way, as it allows
the refactoring of coding issues (see Table 4.1) and it has plug-in support for IntelliJ
and NetBeans too (besides Eclipse).

Another good feature of FaultBuster is its ability to effectively perform a large set
of refactorings (i.e. batch refactorings) together on a large code base. The lack of tools

38

Chapter 4. Challenges and Benefits of Automated Refactoring

available that can handle a massive Java code base and provide a large class of useful
refactorings also motivated the development of refactoring tools like Refaster [97] from
Google [98].

Related Studies

Since the term ‘refactoring’ was introduced [11, 12|, many researchers have studied
its role in software development. Some studies estimate that about 70-80% of all
structural changes in the code are due to refactorings [99, 100], which clearly indicates
its importance in software evolution. Mens et al. published a survey to provide an
extensive overview of research work in the area of software refactoring [30] and cited
over 100 studies. However, the popularity of the topic has been increasing recently.

Automation techniques can support the regular task of refactoring and they are
intensively studied by researchers. Ge et al. implemented the BeneFactor tool which
detects developers’ manual refactoring and reminds them that automation is available,
then it completes the refactoring automatically [101, 102|. Vakilian et al. proposed a
compositional paradigm for refactoring (automate individual steps and let programmers
manually compose the steps into a complex change) and implemented a tool to support
it. Henkel et al. implemented a framework which captures and replays refactoring
actions [103]|. Jensen et al. used genetic programming for automated refactoring and
the introduction of design patterns [104]. Also, there are many approaches available to
support specific refactoring techniques, such as extract method [105, 106|, refactoring
to design patterns [84] and clone refactoring [107].

There seems to be, however, disagreement among researchers as to whether refac-
toring truly improves software maintainability or not. Stroulia and Kapoor [45] inves-
tigated how metrics were affected and found that size and coupling metrics of their
system decreased after the refactoring process. Du Bois and Mens [46] studied the
effects of refactoring on internal quality metrics based on a formalism to describe the
impact of a representative number of refactorings on an AST representation of the
source code. Du Bois wrote his dissertation after studying the effects of refactoring
on internal and external program quality attributes [48] and earlier Du Bois et al. [47]
proposed refactoring guidelines for enhancing cohesion and coupling metrics; they got
promising results by applying these transformations to an open-source project. Kataoka
et al. [49] provided a quantitative evaluation method to measure the maintainability
enhancement effect of refactorings. Yu et al. [38] adapted a modeling framework in
order to analyze software qualities to determine which software refactoring transfor-
mations were the most appropriate. Moser et al. [50] studied the impact on quality and
productivity as they observed small teams working in similar, highly volatile domains
and assessed the impact of refactoring in a close to industrial environment. Their re-
sults indicate that refactoring not only increases software quality, but also improves
productivity. One of the few industrial case studies that investigated the typical use
and benefits of refactorings was carried out by Kim et al. [108] at Microsoft. Their
survey revealed that the refactoring definition in practice was not confined to a rigorous
definition of semantics-preserving code transformations and that developers perceived
that refactoring involves substantial cost and risks. They found that the top 5 percent
of preferentially refactored modules in Windows 7 experience a greater reduction in
the number of inter-module dependencies and several complexity measures but they
increase the size of more than the remaining 95 percent. This indicates that measuring

89

Chapter 4. Challenges and Benefits of Automated Refactoring

the impact of refactoring requires multi-dimensional assessment.

A large-scale study was carried out by Murphy-Hill et al. [58] where they studied
manual refactorings from Fowler’s catalog, and their data set spans over 13,000 de-
velopers with 240,000 tool-assisted refactorings of open-source applications. Similarly,
Negara et al. [57] presented an empirical study that considered both manual and au-
tomated refactorings. They reported that they analyzed 5,371 refactorings applied by
students and professional programmers, but they did not provide more information
about the systems in question.

Most of the above studies were performed on either several small projects and/or
open-source systems, which is one important difference compared to our study, as we
examined a large amount of automatic refactorings on proprietary software. Another
difference is that we used the ColumbusQM to objectively measure changes in the
maintainability, while earlier studies relied just on internal code metrics. It allows us
to compare different refactorings and draw conclusions which might help developers in
planning refactoring tasks or inspire research projects.

4.5 Summary

In this chapter, we summarized our experiences of the automatic refactoring period
of the Refactoring Project. We sought to develop automated refactorings and for this
purpose we designed FaultBuster, an automated refactoring framework. We presented
an automated process for refactoring coding issues. We used the output of a third-party
static analyzer to find refactoring suggestions. We created an algorithm that is capable
of locating a source code element in an AST based on textual position information.
The algorithm transforms the source code into a searchable geometric space by building
a spatial database.

We had to take into account several expectations of the developers when we de-
signed and implemented the automatic refactoring tools. Among several challenges
of the implementation, we identified some quite important ones, such as performance,
indentation, formatting, understandability, precise problem detection, and the neces-
sity of a precise syntax tree. Some of these have a strong influence on the usability
of a refactoring tool, hence they should be considered early in the design phase. We
made an exhaustive evaluation, which confirmed that our approach can be adapted to
a real-life scenario, and it provides viable results.

We made interesting observations about the opinions of the developers who utilized
our tools. The results showed that they found most of the manual refactorings of coding
issues easily implementable via automatic transformations. Also, when we implemented
these transformations and observed the automated solutions, we found that almost all
refactoring types helped them to improve their code.

Employing the QualityGate SourceAudit tool, we analyzed the maintainability
changes caused by the different refactoring tasks. Our analysis revealed that out of the
supported coding issue fixes, all but one type of refactoring operation had a consistent
and traceable positive impact on the software systems in the majority of cases. Here,
3 out of the 4 companies involved achieved a more maintainable system at the end of
the refactoring phase. We observed however that the first company preferred low-cost
modifications, therefore they performed only two types of refactorings from which re-
moving unnecessary constructors had a controversial effect on maintainability. Another
observation was that it was sometimes counter productive to just blindly apply the au-

90

Chapter 4. Challenges and Benefits of Automated Refactoring

tomatic refactorings without taking a closer look at the proposed code modification.
It happened several times that the automatic refactoring tool asked for user input to
be able to select the best refactoring option, but developers used the default settings
because this was easier. Some of these refactorings then introduced new coding issues,
or failed to effectively remove the original issue. So human factor is still important,
but the companies were able to achieve a measurable increase in maintainability just
by applying automatic refactorings.

Last but not least, this study shed light on some important aspects of measuring
software maintainability. Some of the unexpected effects of refactorings (like the detri-
mental effect of removing unnecessary constructors on maintainability) are caused by
the special features of the applied maintainability model.

The fact that developers tested the tool on their own products provided a real-world
test environment. Thanks to this context, the implementation of the toolset was driven
by real, industrial motivation and all the features and refactoring algorithms were
designed to fulfill the requirements of the participating companies. We implemented
refactoring algorithms for 40 different coding issues, mostly for common programming
flaws. By the end of the project the companies refactored their systems with over 5
million lines of code in total and fixed over 11,000 coding issues. FaultBuster gave
a complex and complete solution that allowed them to improve the quality of their
products and to incorporate continuous refactoring into their development processes.

91

“We cannot solve our problems with the same
thinking we used when we created them.”

— Albert Einstein

Applications of Model-Queries in
Anti-Pattern Detection

In the detection of coding anti-patterns, the starting point of the refactoring process
is to provide developers with problematic points in the source code. Developers then
decide how to handle the issues they found. During the Refactoring Project, first
developers investigated the list of reported anti-patterns and manually addressed the
problems. Based on these experiences, the actual needs of partners were evaluated,
and a refactoring framework was implemented with support for anti-pattern detection
and guided automated refactoring with IDE integration.

In FaultBuster we used a third-party coding rule violation detection tool called
PMD (see Section 4.1.2). PMD is a widely used, open-source static analyzer tool in
the Java community. It has been integrated into SonarQube [109] and has its own
Eclipse plugin. At the time of the development this seemed like a good solution with
many benefits. Then, it quickly became clear that achieving our goals using PMD has
some drawbacks. First, as we mentioned in Section 4.1.3, we had to implement the
Reverse AST-search Algorithm to find the problematic source code elements in the
AST. Second, on several occasions PMD did not provide precise problem highlights,
as in Listing 4.5. Third, the reports of developers indicated (see Section 4.3.3) that in
many cases the suggested coding issues are not real problems (false positives) and that
there are several instances where it lacks the power to identify real ones (true negatives).

In this chapter, we focus on the detection of coding anti-patterns. In order to
create a superior detection tool, we will investigate the costs and benefits of using the
popular industrial Eclipse Modeling Framework (EMF') as an underlying representation
of program models processed by four different general-purpose model query techniques
based on native Java code, OCL evaluation and (incremental) graph pattern matching.
We will provide an in-depth comparison of these techniques on the source code of 28
Java projects using anti-pattern queries taken from refactoring operations in different
usage profiles. Our results reveal that general purpose model queries can outperform
hand-coded queries by 2-3 orders of magnitude, with the trade-off of an increase in
memory consumption and model load time of up to an order of magnitude.

93

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

5.1 Motivation

In the Refactoring Project, the original plan was to use the Columbus ASG of SourceMe-
ter as the program representation together with its API to implement queries, since
the APT offers program modification functionality for implementing refactorings as well.
However, queries for finding anti-patterns and the actual modifications can be sepa-
rated. Our work builds on this separation to investigate the performance of various
query solutions. Our aim was to include generic, model-based solutions in the com-
parison. Generic solutions offer flexibility and additional features like change notifica-
tion support in the EMF and reusable tools and algorithms, like supporting high-level
declarative query definitions [110, 111]. Such features could reduce the effort needed
to define refactorings as well.

In the following, we investigate two viable options for developing queries for refac-
torings: (1) execute queries and transformations by developing Java code working
directly on the ASG; and (2) create the EMF representation of the ASG and use
EMF models with generic model-based tools. Several years ago, we found that typical
modeling tools were able to handle only middle-sized program graphs [112]. We now
re-exam this question and assess whether model-based generic solutions have evolved
to compete with hand-coded Java-based solutions. We seek answers to questions like:
What are the main factors that affect the performance of anti-pattern detection (like
the representation of program models, their handling and traversing)? What size of
programs can be handled (in terms of memory and runtime) with various solutions?
Does incremental query execution lead to a better performance?

We should add that while we present our study on program queries in a refactoring
context, our results can be applied in other areas as well. For instance, program queries
are applied in several scenarios in maintenance and evolution from design pattern
detection to impact analysis; furthermore, we think that real-life case studies are first-
class drivers of improvement of model-driven tools and approaches.

5.2 Technological Overview

In this section, we first give a brief overview on program queries. First, we will show
how to represent Java programs as an ASG or EMF model, then present the graph
pattern formalism and use it to capture various anti-patterns.

5.2.1 Introduction to Program Queries

Program queries play a central role in various software maintenance and evolution tasks.
Refactoring, an example of such tasks, seeks to change the source code of a program
without altering its behavior in order to improve its readability, maintainability, or to
detect and eliminate coding anti-patterns. After identifying the location of the problem
in the source code, the refactoring algorithm applies predefined operations to fix the
issue. In practice, the identification step is frequently defined by program queries, while
the manipulation step is captured by program transformations.

Advanced refactoring and reverse engineering tools (like the Columbus framework [25])
first construct an Abstract Semantic Graph (ASG) as a model from the source code of
the program, which enhances the traditional Abstract Syntax Tree with semantic edges
for method calls, inheritance, type resolution, etc. In order to handle large programs,

94

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

the ASG is typically stored in a highly optimized in-memory representation. Moreover,
program queries are captured as hand-coded programs traversing the ASG driven by a
visitor pattern, which may require a lot of development and maintenance effort.

Models used in model-driven engineering (MDE) are uniformly stored and manip-
ulated in accordance with a metamodeling framework, such as the Eclipse Modeling
Framework (EMF'), which offers advanced tooling features. Essentially, EMF automat-
ically generates a Java API, model manipulation code, notifications for model changes,
persistence layer in XMI, and simple editors and viewers (and many more) from a do-
main metamodel, which can significantly speed up the development of EMF-compliant
domain-specific tools.

EMF models are frequently post-processed by advanced model query techniques
based on graph pattern matching that exploits different strategies such as local search
[113] and incremental evaluation [114]. Some of these approaches can be scaled up for
large models with millions of elements in forward engineering scenarios, but up to now,
no systematic investigation has been carried out to demonstrate if they can be efficiently
applied as a program query technology. If this is the case, then advanced tooling offered
by the EMF could be readily used by refactoring and program comprehension tools
without drawbacks.

5.2.2 Managing Models of Java Programs
I Abstract Semantic Graph for Java

The Java analyzer of the Columbus reverse engineering framework is found in SourceMe-
ter and it is used to get program models from the source code (similarly as for the C++
language [25, 115]). The ASG contains all information that is in a typical AST ex-
tended with semantic edges (e.g., call edges, type resolution, overrides). It is designed
primarily for reverse engineering purposes [116, 117] and it conforms to our Java meta-
model.

In order to keep the models of large programs in memory, the ASG implementation
is heavily optimized for low memory consumption, e.g., handling all model elements
and String values in a central store to avoid storing duplicate values. However, these
optimizations are hidden behind an API interface.

In order to assist the processing aspect of the model (e.g., executing a program
query), the ASG API supports visitor-based traversal [118]. These visitors can be
used to process each element on-the-fly during traversal, without manually coding the
(usually preorder) traversal algorithm.

Example 1 To illustrate the use of the ASG, we present a short Java code snippet
and its model representation in Figure 5.1. The code consists of a public method called
equals with a single parameter, together with a call of this method using a Java variable
srcVar. The corresponding ASG representation is depicted in Figure 5.1b, omitting type
imformation and boolean attribute values such as the final flags for readability.

The method is represented by a NormalMethod node that has the name equals and
public accessibility attribute. The method parameter is represented by a Parameter
node with the name attribute other, and it is connected with the method using a
parameter reference.

The call of this method is represented by a MethodInvocation node that is connected
to the method node by an invokes reference. The variable the method is executed

95

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

public boolean equals(Object other) {...}

// Code inside another method
// The wariable ’srclVar’ is defined locally
srcVar.equals("source”);

(a) Java Code Snippet

NormalMethod invokes g Method)
name: “equals” Invocation
. accessibility: public -
operand argument
parameter
Parameter ‘ Identifier ‘ ‘ StringLiteral ‘
name: “other”

name: “srcVar” value: “source”

(b) ASG Representation

Figure 5.1. ASG Representation of Java Code

on is represented by an Identifier node via an operand reference. Lastly, an argument
reference connects a StringLiteral node describing the "source” value.

IT Java Application Models in EMF

Metamodeling in the EMF Metamodeling is a fundamental part of modeling lan-
guage design as it allows the structural definition (e.g., abstract syntax) of modeling
languages. The EMF provides a Java-based representation of models with various fea-
tures, such as notification, persistence, and generic, reflective model handling. These
common persistence and reflective model handling capabilities enable the development
of generic (search) algorithms that can be executed on any given EMF-based instance
model, regardless of its metamodel.

The model handling code is generated from a metamodel defined in the Ecore meta-
modeling language together with higher level features such as editors. The generator
work-flow is highly customizable, e.g., allowing the definition of additional methods.

The main elements of the Ecore metamodeling language are the following: EClass
elements define the types of objects; EAttribute extend EClasses with attribute values
while EReference objects present directed relations between EClasses.

Example 2 As an illustration, we present a small subset of the Java ASG metamodel
realized in the FEcore language in Figure 5.2 that focuses on method invocations depicted
n Figure 5.1. The metamodel was designed to provide an equivalent representation
of the ASG of the Columbus framework in the EMF, both at the model level and the
generated Java API. The entire metamodel consists of 142 EClasses with 46 EAttributes
and 102 EReferences.

The NormalMethod and Parameter EClasses are both elements of the metamodel that
can be referenced from Java code by name. This is represented by generalization rela-
tions (either direct or indirect) between them and the NamedDeclaration EClass. This
way, both inherit all the EAttributes of the NamedDeclaration, such as the name and the
accessibility controlling the visibility of the declaration.

96

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

H Expression#]
(from expr)

[NamedDeclaration

argument
= accessibility : AccessibilityKind

=1 jsStatic : EBoolean 0..x

= isFinal : EBoolean 0..1 A

T name : EString operand

A H unary [# H Literal [#]
(from expr) (from expr)

overrides Q MethodDeclaration | ¢ 1

0..* | & isAbstract : EBoolean
invokes
parameter
[Parameter e [NormalMethod E Methodinvocat[#h H Identifier [7] H stringLitera®]
" | = issynchronized : EBoolean (from expr) (from expr) (from expr)
= name : EString = value : EString

Figure 5.2. A Subset of the Ecore Model of the Java ASG

Similarly, the EClasses MethodInvocation, Identifier and StringLiteral are part of
the Ezpression elements of Java. Instead of attribute definitions, the MethodInvocation
is linked to other EClasses using three EReferences: (1) the EReference invokes points
to the referred MethodDeclaration; (2) the argument selects a list of expressions to be
used as the arguments of the called methods, and (3) the inherited operand EReference
selects an expression representing the object the method is called on.

Notes on Columbus Compatibility The Java implementation of the Java ASG
of the Columbus Framework and the generated code from the EMFEF metamodel use
similar interfaces. This makes it possible to create a combined implementation that
supports the advanced features of the EMF, such as the change notification support
or reflective model access, and it remains compatible with the existing analysis algo-
rithms of the Columbus Framework by generating an EMF implementation from the
Java interface specification.

However, there are also some key differences between the two interfaces that should
be addressed. The most important difference lies in multi-valued reference semantics,
where the EMF disallows having two model elements connected multiple times using the
same reference type, while the Columbus ASG occasionally relies on such features. To
maintain compatibility, the EMF implementation is extended with proxy objects, which
ensure the uniqueness of references. The implementation hides the presence of these
proxies from the ASG interface while the EMF-based tools can navigate through them.

Other minor changes range from different method naming conventions for boolean
attributes to defining additional methods to traverse multi-valued references. All of
them are handled by generating the standard EMF implementation together with the
Columbus compatibility methods.

5.2.3 Definition of Model Queries using Graph Patterns

Graph patterns [110] are a declarative, graph-like formalism representing a condition (or
constraint) to be matched against instance model graphs. This formalism is usable for
various purposes in model-driven development, such as defining model transformation
rules and defining general purpose model queries including model validation constraints.

97

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

‘ H ‘ invokes Qperand_ 1
- leftO d kind
| eltDperan n { m: NormalMethod } op: Literal JI

{ lit: StringLiteral J [k: OperatorKind }

value = “”

case name = “equals”

check count
matches == 1

= o ——

[defCase: Default |

arg: StringlLiteral

check(k == PlusOperator)

[—— - argument : Expression
(a) Switch w/o (b) Catch Problem (¢) Concatenation to (d) String Literal as Com-
Default Empty String pare Parameter

== ———

[bl: block } |[ref: Identifier } ===

body parameteTre??rsﬁ _par?meﬁr m: NormalMethod

jP: Package

name = “java”

- |

S . 5 o I name = “main”
member left: Expression % kiQpeiatorkind { m: NormalMethod 1 isStatic = true I

m=————n —— o = = — - — —
IP: Package lue = “” Q
B type .:ED right : NullLiteral |l | parameter parameterll l returnType !
P T oam o 1 [m: NormaIMethod} h [mu NormaIMethod} ||{ rEx: Expression I
b
member type: CITassType | overrides H overrides || type |
ers1o -
wef 1 { m2: NormalMethod } ‘ [mz: NormalMethod } I| type: VoidType 1
name = “String” check(k == EqualTo || k == NotEqualTo) 1 || |
(e) String Compare without Equals Method (f) Unused Parameter

count matches == 1

[== ——
[: Statement } 1 try: Try]
&n,
{ statement | handlerl
bl: Block } | [s : Handler J
)
& parameter
Is

h : Handler iC [sv : Variable J
check(h !=5) ste: ExpressionType s k: OperatorKind
= : Iteration] [: SwitchLabel } [: Handler —= Logi
[T oo

stet : ClassType

refersTo

conditionals = iterations = cases = handlers =
count matches count matches | count matches count matches conditionals = count matches

|
1
1
|
|
I
hasType |
|
I
1
1
|
I

{ ht : Class]—P[st: Class
. complexity = ifs + conditionals + iterations + cases + handlers + conditionals
superClass check (complexity > 10)

(g) Avoid Rethrow (h) Cyclomatic Complexity

Figure 5.3. Graph Pattern Representation of the Search Queries

Here, we give only a brief overview of the concepts, and for more detailed, formal
definitions see [119].

A graph pattern consists of structural constraints prescribing the interconnection
between the nodes and edges of a given type and ezpressions to define attribute con-
straints. These constraints can be illustrated by a graph where the nodes are classes
from the metamodel, while the edges prescribe the required connections of the selected
types between them.

Pattern parameters are a subset of nodes and attributes interfacing the model el-
ements interesting from the perspective of the pattern user. A match of a pattern is
a tuple of pattern parameters that fulfills all the following conditions: (1) it has the
same structure as the pattern; (2) it satisfies all structural and attribute constraints;
and (3) it does not satisfy any NAC.

Complex patterns may reuse other patterns by applying different types of pattern
composition constraints. A (positive) pattern call identifies a subpattern (or called pat-
tern) that is used as an additional set of constraints to meet, while negative application

98

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

conditions (NAC) describes the cases where the original pattern is not valid. Next,
match set counting constraints are used to calculate the number of matches a called
pattern has, and use them as a variable in attribute constraints. Pattern composition
constraints can be illustrated as a subgraph of the graph pattern.

When evaluating the results of a graph pattern, any subset of the parameters can
be bound to model elements or attribute values that the pattern matcher will handle
as additional constraints. This allows reuse of the same pattern in different scenarios,
such as checking whether a set of model elements fulfills a pattern, and it lists all
matches of the model.

Example 3 Figure 5.3 captures all the search problems from section 5.3 as graph pat-
terns. Here, we will only discuss the String Literal as Compare Parameter problem
(5.3d) in detail, and all other patterns can be interpreted in a similar way.

The pattern consists of five nodes called inv, m, op and arg, representing the model el-
ements of the types MethodInvocation, NormalMethod, Literal, Ezpression and Stringliteral,
respectively. The distinguishing (blue) formatting for the node inv means that it is the
parameter of the pattern.

In addition to the type constraints, node m shall also fulfill an attribute constraint
(“equals”) on its name attribute. The edges between the nodes inv and m (and for arg)
represent a typed reference between the corresponding model elements. However, as
the node op is included in a NAC block (depicted by a dotted red box), the edge operand
means that either no operand should be given or the operand must not point to a Literal
typed node.

Finally, to ensure that the invoked method has only a single parameter, the number
of arqguments are counted. The highlighted part of the pattern formulates a subpattern
consisting of the arguments of the MethodInvocation, and the number of these subpattern
matches is checked to be 1. This kind of checking could also be expressed using a NAC
block describing a different parameter, but the use of match counting is easier to read.

After matching this pattern to the model from Figure 5.1, the result will be a set
containing a single element, namely the MethodInvocation instance.

5.3 Experiment Setup

In the first round of experiments we selected six types of anti-patterns based on the
feedback of project partners and formalized them as model queries. The diversity of
the problems was among the most important selection criteria, resulting in queries
that varied both in complexity and programming language context ranging from sim-
ple traverse-and-check queries to complex navigation queries potentially with negative
conditions. Here, we briefly and informally describe these refactoring problems and
the related queries used in our case study.

Switch without Default Missing default case has to be added to the switch. Related
query: We traverse the whole graph to find Switch nodes without a default case.

Catch Problem In a catch block there is an instanceof check, for the type of the
catch parameter. Instead of the instanceof check a new catch block has to be added
for the checked type and the body of the conditional has to be moved there. Related

99

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

query: We search for identifiers on the left hand side of the instance0f operator and
check whether they point to the parameters of the containing catch block.

Concatenation to Empty String When a new String is created starting with
a number, usually an empty String is added from the left of the number to force
the int to String conversion, because there is no int + String operator in Java. A
much better solution is to convert the number using the String.value0f () method first.
Related query: We search for empty string literals, and check the type of the containing
expression. If the container expression is an infix expression, then we also make sure
that the string is located at the left hand side of the expression and the kind of the
infix operator is the String concatenation (“+7).

String Literal as Compare Parameter When a String variable is compared with
a String literal using the equals() method, it is unsafe to have the variable on the left
hand side. Changing the order makes the code safe (by avoiding null pointer exception)
even if the String variable to be compared is null. Related query: We search for all
method invocations with the name "equals". Afterwards, we check that their single
parameter is a string literal.

String Compare without Equals Method This refactoring was mentioned earlier.
Related query: We search for the == operator and check whether the left hand side
operand is of type java.lang.String. We have to check the right hand side operand as
well: in case of null we cannot use the method call. In fact, it is not necessary because
in this case the comparison operator is the right choice.

Unused Parameter When unused parameters remain in the parameter list they
usually can be removed from the source code itself. Related query: We search for
the places in the method body where parameters are used. However, there are specific
cases when removing a parameter that is not used in the method body results in errors,
such as (1) when the method has no body (interface or abstract method); (2) when the
method is overridden by or overrides other methods; and (3) in public static void main
methods.

After the first round of our experiments described in [120], it turned out that all
antipatterns could be effectively evaluated by our selection of tools. In order to find
the limits of the approaches, we selected two additional, more complex antipatterns
that required additional capabilities.

Avoid Rethrowing Exception The catch block is unnecessary if the exception
handling code only re-throws the caught exception without further actions. We look
for a thrown exception in the catch block and check whether the thrown exception is the
same (or descendant) as the caught one. However, simply rethrowing the exception is
valid, if a specific exception is to be handled externally, while a more generic exception
handler block is responsible for managing a superclass of the caught exception. This
antipattern requires a transitive closure calculation for the inheritance hierarchy as a
new feature.

100

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

Cyclomatic Complexity Cyclomatic complexity measures the number of linearly
independent paths through a program’s source code, usually calculated for a function
as the number of decision points +1. A highly complex code (e.g. assessed using the
cyclomatic complexity metric) tends to be difficult to test and maintain and it tends
to have more defects. The pattern requires counting various types of program elements
within a method body. This calculation relies on counting model elements together
with simple arithmetic operations and extensive traversal around the containment hi-
erarchy. To have the same validation format, we shall list the methods with cyclomatic
complexity higher than 10.

5.4 Program Queries Approaches

Now, we give a brief overview of the possible approaches for implementing anti-pattern
detection as program queries. First, a visitor-based search approach is described, fol-
lowed by two different graph-pattern based approaches (both supported by the EMF-
INCQUERY), and then we will use the OCL language to describe the query problems.

5.4.1 Manual Search Code

The ASG representation allows one to traverse the Java program models using the
visitor [118] design pattern that can form the basis of the search operations.

Visitor-based searches are easy to implement and maintain if the traversed rela-
tions are based on containment references, and require no custom setup before exe-
cution. However, as the order of the traversal is determined outside the visitor, non-
containment references are required to be traversed manually, typically with nested
loops. Alternatively, traversed model elements and references can be indexed, and in
a post-processing step these indexes can be evaluated for efficient query execution. In
both cases, significant programming effort is needed to achieve efficient execution.

Example 4 The results of the String Literal as Compare Parameter (5.8d) pattern
can be calculated by collecting all MethodInvocation instances from the model, and then
executing three local checks whether the invoked method is called equals, if it has an
arqgument with a type of Stringliteral, and if it is not invoked on a Literal operand.

Figure 5.4 presents (a simplified) Java implementation of the visitor. A single visit
method is used as a start for traversing all MethodInvocation instances from the model,
and checking the attributes and references of the invocation. It is possible to delegate
the checks to different visit methods, but then the visitor has to track and combine the
status of the distributed checks to present the results that are difficult to implement
in a sound and efficient way.

The ASG does not initially contain reverse edges in the model. It provides an API
to generate these extra edges in a second pass after loading the model, but this requires
extra time and memory. As the subject queries in this study could be implemented
without these extra resources, to keep the memory footprint low, we prefer not to
generate them.

101

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

public class CompareParameterVisitor extends Visitor {

//4 set to store results
private Set<MethodInvocation> invocations
= new HashSet <MethodInvocation>();

@Q0verride

public void visit(MethodInvocation node) {
super.visit(node);
//Checking invoked method name and number of parameters
if ("equals"”.equals(node.getInvokes().getName ())

&% node.getArgument ().size() == 1) {
//Node argument
Expression argument = node.getArgument (0);
//Node operand
Expression operand = node.getOperand();

//Type checking for argument
if (argument instanceof StringlLiteral
//NAC checking for operand
&% !(operand instanceof Literal)) {
//Result found
invocations.add(node);

Figure 5.4. Visitor for the String Literal as Compare Parameter Problem

5.4.2 Graph Pattern Matching with Local Search Algorithms

Local search based pattern matching (LS) is commonly used in graph transformation
tools [121-123], which commences the match process from a single node and extends
it in a step-by-step fashion with the neighboring nodes and edges following a search
plan. From a single pattern specification multiple search plans can be calculated [113],
hence the pattern matching process starts with a plan selection based on the input
parameter binding and model-specific metrics.

A search plan consists of a totally ordered list of extend and check operations.
An extend operation binds a new element in the calculated match (e.g., by matching
the target node along an edge), while check operations are used to validate the con-
straints between the already bounded pattern elements (e.g., attribute constraints or
whether an edge runs between two matched nodes). If an operation fails, the algorithm
backtracks; and if all operations are executed successfully, a match is found.

Some extend operations, such as finding the possible source nodes of an edge and
iterating over all elements of a certain type might be very expensive to execute during
a search, but this cost can be reduced by the use of an incremental model indexer,
such as the EMF-INCQUERY Base!. This kind of indexer can be set up while loading
the model, and then updating it on model changes using the notification mechanism
of the EMF. If no such indexing mechanism is available (e.g., because of its memory
overhead), the search planner algorithm should consider these operations with higher
costs, and provide alternative plans.

Example 5 To find all String Literals appearing as parameters of equals methods,
a T-step search plan given in Table 5.1 was used. First, all NormalMethod instances

'https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/API/BaseIndexer

102

https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/API/BaseIndexer

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

Table 5.1. Search Plan for the String Literal Compare Pattern

Operation Type Notes
1: Find all m that m C NormalMethod Extend Iterate
2: Attribute test: m.name=="equals" Check
3: Find inv that inv.invokes — m Extend Backward
4: Count of inv.argument — argis 1 Check Called Plan
5: Find arg that inv.argument — arg Extend Forward
6: Instance test: arg C StringLiteral Check
7: Find op that inv.operand — op Extend Forward
8: NAC analysis: op ¢ Literal Check Called plan
I7NormaIMethod invokes | Method ‘
(2 Jname: “equals” Invocation
F accessibility: public ~
I B operand (& | argument
parameter -—
Parameter () \dentifier ‘ (. stringliteral ‘
. name:“other” | | name: “srcVar” value: “source”

Figure 5.5. Executing the Search Plan

are iterated over to check for their name. Then a backward navigation operation is
executed to find all the corresponding method invocations to check its argument and
operand references. In the last step, a NAC check is executed by starting a new plan
execution for the negative subplan, but this time only looking for a single solution.

Figure 5.5 shows the execution of the search plan on the simple instance model
wntroduced previously. In the first step, the NormalMethod 1s selected, then its name at-
tribute is validated, followed by the search for the MethodInvocation. At this point,
following the argument reference ensured that only a single element was available, then
the StringLiteral was found and checked. Lastly, the operand reference is followed, and
a NAC check is executed using a different search plan.

It should be mentioned here that the search begins with listing all NormalMethod ele-
ments as opposed to the visitor-based implementation, which starts with the MethodInvocations.
This was motivated by the observation that in a typical Java program there are more
method invocations than method definitions, so starting this way would likely result in
fewer traversed search states, while still finding the same results in the end. However,
this optimization relies on having an index which allows cheap backward navigation dur-
ing pattern matching for step 3 (unlike the ASG based solution where this information
is not available without an extra traversal).

5.4.3 Incremental Graph Pattern Matching using the Rete al-
gorithm

Incremental pattern matching [114, 124| is an alternative pattern matching approach
that explicitly caches matches. This makes the results available at any time without an
additional search, but the cache needs to be incrementally updated whenever changes
are made to the model.

The Rete algorithm [125], which is well-known in rule-based systems, was efficiently

103

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

adapted to several incremental pattern matchers [126-128|. The algorithm uses an
extended incremental caching approach that not only indexes the basic model elements,
but it also indexes partial matches of a graph pattern that enumerates the model
element tuples that satisfy a subset of the graph pattern constraints. These caches are
organized in the graph structure called a Rete network, which can be incrementally
updated during model changes.

The input nodes of Rete networks represent the index of the underlying model
elements. The intermediate nodes execute basic operations like filtering, projection,
and join, on other Rete nodes (either input or intermediate) they are connected to,
and store the results. Afterwards, the match set of the entire pattern is available as an
output (or production) node.

When the network is initialized, the initial match set is calculated and the input
nodes are set up to react to the model changes. When receiving a change notification,
an update token is released on each of their outgoing edges. Upon receiving such a
token, a Rete node determines how (or whether) the set of stored tuples will change,
and releases update tokens on its outgoing edges. This way, the effects of an update
will propagate through the network, eventually influencing the result set stored in the
production nodes.

Example 6 To illustrate a Rete-based incremental pattern matching, we first depict
the Rete network of the String Literal as Compare Parameter pattern in Figure 5.6.

Normal ‘ ‘ Method String ‘ ‘ Expression ‘ ‘ Literal
Method Invocation Literal P

JOI n join join
invokes argument operand
name N

——

equals, inv, source, srcVar

Figure 5.6. Rete Network for the String Literal Compare Pattern

The network consists of five input nodes that store the instances of the types NormalMethod,

MethodInvocation, Stringliteral, Ezpression and Literal, respectively. The input nodes
are coupled by join nodes that calculate the list of elements connected by invokes,
argument and operand Teferences, respectively. As both ends have already been enu-
merated in the parent nodes, both forward and backward references can be calculated
efficiently. The invoked method list (output of the invokes join node) is filtered by the
name attribute of Methods, while the argument lists are filtered for one per call. The
NAC checking is executed by removing the elements with Literal types from the result
of the operand join. Then, all partial matches are joined together to form the resulting
matches.

104

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

context MethodInvocation:

def: stringlLiteralAsCompareParameter : Boolean =
self.invokes.name = ’equals’
and self.arguments -> exists(oclIsKindOf(StringLiteral))
and self.arguments -> size() = 1

and not self.operand.oclIsKind0f(Literal)

Figure 5.7. The OCL Expression of the String Literal as Compare Parameter Problem

It should be stressed that the Rete node, such as the MethodInvocation in the example,
can be used in multiple join operations; in such cases the final join is responsible for
filtering out the unwanted duplicates (for a selected variable).

5.4.4 Model Queries with OCL

OCL [111] is a standardized, pure functional model validation and query language
for defining expressions in the context of a metamodel. The language itself is very
expressive, exceeding the expressive power of first order logic by offering constructs
such as collection aggregation operations (sum(), etc.). The rest of the section gives a
basic overview of OCL expressions, and for a more detailed description of the possible
elements consult the specification [111].

Variables of an OCL expression refer to instance model elements and a set of basic
types including strings, various number formats and different kinds of collections. For
these types, built-in operations are defined such as comparison operators and member-
ship testing.

Furthermore, OCL expressions are compositional, allowing one to define sub-expressions
in more complex expressions, including the 1et expression for defining additional vari-
ables, the if expression for implementing conditions and iterator expressions that eval-
uate subexpressions on all members of a collection.

Each OCL expression is valid in a context, described as a metamodel type. The OCL
standard allows the definition of multiple context variables, but OCL implementations
often just support a single one.

Example 7 To illustrate the capabilities of OCL, Figure 5.7 formulates the String
Literal as Compare Parameter problem as an OCL query. This query can be evaluated
starting from a MethodInvocation context variable, which is referred to throughout the
query as self.

The query is described as the conjunction of 4 different sub-expressions:

1. It 1s checked whether the target of the invocation has a name attribute with the
value of ’equals’. The type of the invoked call is not checked, as based on the
metamodel it is known to be correct.

2. It is checked whether the list of arguments contains an element that has the type of
(StringLiteral). The ezists operation is one of the iterator operations that detects
whether any member of the collection satisfies the condition.

3. It is checked whether the size of the arquments collection is exactly 1.

4. Lastly, the operand type is checked not to be Literal.

105

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

OCL expressions can be evaluated as a search of the model, where the corresponding
search plan is encoded in the expression itself. This makes the manual optimizations
of the queries possible, but it requires a detailed understanding of the instance, meta-
models, and the underlying OCL engine.

5.5 Measurement Context

To provide a context for our performance evaluation, next we will describe the exe-
cuted measurements of this experiment. This includes a detailed evaluation of all our
instance models and queries using different complexity metrics and the description of
our measurement process. The selection of metrics was motivated by earlier results
of [129] where the values of different metrics are compared with the execution time of
different queries.

The use of metrics helps us to identify which queries/models are more difficult for
the selected tools. And it also allows us to compare both the models and the queries
with other available performance benchmarks.

5.5.1 Java Projects

The approaches were evaluated on a test set of 28 open-source projects. The projects
are sized between 1kLOC and 2M LOC, and used in various scenarios. The list of
projects include the ArgoUML editor, the Apache CloudStack infrastructure manager
tool, the Eclipse Platform, the Google Web Toolkit (GWT) library, the Tomcat Java
application server, the SVNKit Subversion client, the online homework system WeB-
WorK, and the Weka data mining software, and many others. Table 5.2 contains the
full list of projects and their analyzed versions (and projects where snapshots were used
are marked in the table).

To compare these models, Table 5.2 shows different metrics that characterize them,
including their size in terms of lines of code and in terms of number of nodes, edges
and attributes of the graph representation, the number of metamodel types used and
the indegree and outdegree of the graph nodes. The graph structure of all models are
similar: they use about 90-100 of the types specified in the metamodel, and the average
indegree and outdegree is 3. The big numbers in the maximum indegree column are
related to the representation of the Java type system: a few types, such as String or
int are referred to many times throughout the code.

In the remainder of the section, only the results related to the programs larger than
100k LOC" are presented, as they still represent a wide range of Java applications, and
in the case of smaller models the specific differences between the tools are much smaller
(but similar to those presented here)?.

5.5.2 Query Complexity

The antipatterns used different approaches in the various tools, resulting in different
query complexity in each case. To compare them, Table 5.3 describes the complexity of
queries implemented in the various tools. We have selected lists complexity measures for

2For a detailed test result containing all the models and raw measurement data visit our website:
http://incquery.net/publications/extended-program-query-comparison

106

http://incquery.net/publications/extended-program-query-comparison

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

Table 5.2. Model Metrics

Node Edge Attribute | Type Avg/Max Avg/Max

Version LOC Count Count Count Count InDegree OutDegree
ArgoUML 0.35.1 (*) 1745161002 129 | 2973258 | 6895018 100 3 72 230 3| 445
CloudStack 4.1.0 1369952] 5390662 | 16478 218 | 36 650 136 100| 3,1 631140(3,1 1198
Eclipse 3.0.0 2294146 | 8403914 | 26 254 507 | 58 219 100 97| 3,1 1245390 | 3,1| 1958
Frinika 0.5.1 64 828 429407 | 1292961 | 3065383 99 3 54286 3| 844
GWT 2.3.0 1078630|3219239 | 9986705 | 22 364 819 101} 3,1] 392098 3,1| 1206
Hibernate 3.5.0 773166 | 2444419 | 7563207 | 16 789 330 102| 3,1 193769 3,1| 522
Jackrabbi 2.8 5904201765882 | 534143112 145662 100| 3| 271217 3| 708
Java DjVu 0.8.06 23570 129068 372444 926 653 92| 2,9 26918 | 2,9/ 1026
javax.usb 1.0.1 1161 12 231 32388 89 399 83| 2,6 969 | 2,6/ 148
JFreechart 1.2.0 327865| 865148 | 2663967 | 6022410 93] 3,1 50658 | 3,1| 445
JML 1.0b3 10 159 72 598 212 544 520 599 94| 2,9 4908 | 2,9| 221
JTransforms 24 38400 295 009 945643 | 2053900 80| 3,2| 117775| 3,2| 217
Makumba 0.8.1.9 65065| 378204 1127797 | 2637424 98| 3 62 717 3| 445
OpenEJB 452 5753631785660 | 5428385| 12377185 101 3| 152624 3| 540
Physhun 0.5.1 4935 36 962 108 888 263 091 86| 2,9 2944 29| 148
ProteinShader 0.9.0 22 651 137 416 391322 997 679 88| 2,8 9654 2,8 445
Qwicap Guess | 1.4b24 443 7903 21222 59 069 85| 2,7 918 | 2,7| 107
Robocode 1.5.4 28245| 204362 599 556 | 1500298 97| 2,9 17323 2,9| 445
sdedit 3.0.5 14717 | 145453 413998 | 1075471 97] 2,8 12643 2,8| 445
Stendhal 0.75.1 105411| 667142 | 2037645 4688300 98| 3,1 49556 | 3,1| 445
Struts2 1.4.0 274092 927163 2849021 | 6452090 100| 3,1 95272 | 3,1| 620
Superversion 2.0b8 29282 | 238842 705875| 1731692 94| 3,0 2041 3,0 445
SVNKit 1.3.0.5847| 114189 698753 | 2203436 4843209 93] 3,2 57987 | 3,2| 272
Tomcat 8.0.0 (*) 4595791 1338601 | 4084668 | 9302681 102| 3,1 116637(3,1| 620
WebWork 2.2.7 46208 | 285372 853724 | 2018672 951 3 36 439 3| 445
Weka 3.7.10 (*) 2055371615637 | 4989653 | 11259543 99| 3,1| 216651 3,1 550
Xalan 2.7 349681 708445 2093338 | 4937831 93] 3 87 447 3| 445
Xins 2.2a2 21698 164 989 472003 | 1193822 89| 2,9 15169 2,9 445

Table 5.3. Query Complexity Metrics

Visitor Query OCL

LOC | CC|Param. |Variables |Edges |Attr. |Calls INEG|MC
catch 78| 14 4 6 3 0 1 o 9
concatenate 32| 8 6 8 3 1 3 0 4
constant compare 39| 10 6 11 5 0 2l 2 7
no default switch 53(11 2 3 1 0 o 1 2
string compare 56| 15 10 17 10 1 7 2| 15
unused parameter 88| 21 11 19 8 0 6 1] 21
avoid rethrow 210| 54 11 24 12 0 2 1] 23
cyclomatic complexity | 114| 22 23 40 5 2 9| 7| 34

107

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

the different formalisms to understand how query complexity varies with the different
approaches.

In the case of visitors, we calculate the lines of Java code required together with
its cyclomatic complexity. The six original queries were written in less than 100 lines
of code and had a cyclomatic complexity of 10-20. The two new queries were more
complex both in terms of lines of code and cyclomatic complexity.

For graph patterns, we rely on metrics defined in [129]: the number of query vari-
ables and parameters, the number of edge and attribute constraints, the number of sub-
pattern calls and the combined number of negative pattern calls and match counters
NEG. Tt should be added that the metrics were not calculated from the graphical no-
tation of Figure 5.3, but their implementation in the EMF-INCQUERY, where different
subpatterns were created to facilitate reuse both at the design level and during run-
time. A subpattern call introduces new variables for the parameters of the subpattern
that are the same as some parameters at their call site; this might lead to an increased
number of variables compared to the number of edge and attribute constraints.

To measure the complexity of OCL queries, we used a minimum complexity (MC)
metric presented in [130] that is based on calculating or estimating the number of
model elements visited during the execution of its search, where multiple visits of the
same element accounts as different ones. However, the metric definition relies on the
model structures; and in order to have a model-independent metric, estimates need to
be provided for the models.

Here, we calculate a lower bound of this metric by underestimating the number of
visited model elements while mentioning that each OCL expression or operation will be
evaluated with at most one model element that is related to the number of conditions
to be evaluated. This way, it is possible to get a lower bound of the complexity for
instance models that have at least one single result for the query.

The complexity of the queries over the different approaches behave in a similar way
in almost every case except for the following three: (i) the no default switch case uses the
simplest pattern and an OCL query, while in the case of visitors, (ii) the concatenation
case uses the simplest visitor. (iii) Conversely, the calculation of eyclomatic complexity
is clearly the most complex query in the graph patterns formalism and OCL, while its
visitor is much simpler than the avoid rethrow. We think that this difference is based
on the fact that the calculation of cyclomatic complexity needs only the traversal of
the containment hierarchy that visitors excel in.

5.5.3 Measurement process

All the measurements were executed on a dedicated Linux-based server with 32 GB
RAM running Java 7. On the server, the Java ASG of the Columbus Framework was
installed along with the EMF-INCQUERY (supporting graph pattern matching using
both the local search and the Rete-based incremental approaches) and the Eclipse
OCL [131] tool.

All the program queries were implemented as both visitors for the ASG (by a
Columbus expert from the University of Szeged) and as graph patterns (by a model
query expert from the Budapest University of Technology and Economics) - who was
a different reviewer from the original implementer of the query. In the case of OCL
expressions, we relied on our previous experience in comparing model query tools [129],
where OCL experts were asked to verify the created queries. Visitors were executed on

108

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

both model representations, while the graph patterns (both for local search-based and
incremental queries) and the OCL queries were evaluated on the EMF representation.
In order to also be able to understand use cases where multiple queries are executed
together, indexes were built for all queries. In every case, the time to load the model
from its serialized form and the time to execute the program query were measured
together with the maximum heap size usage.

The query implementations were manually verified to return the same values for
all the tools in three ways. First, (1) the specifications created were reviewed to fulfill
the original, textual specifications. Then, (2) in a selection of smaller programs all
instances were manually compared to return exactly the same issues. Lastly, (3) for
each model, the number of issues found was reported and compared.

Every program query was executed ten times, and the standard deviation of the
results was verified. Afterwards, we averaged the time and memory results without
the smallest and the largest values. In order to minimize the interference between the
different runs, for the execution of a model, tool and query a new JVM was created
and ran in isolation. Also, all the measurements were performed with a 10 minute
timeout: when loading the model, initializing and executing the query took more than
the timeout, the measurement was treated as a failed one. The time to start up and
shut down the JVM was not included in the measurement results.

5.6 Measurement Results

To compare the performance characteristics of the different program query techniques,
next we will present the detailed performance measurement results.

5.6.1 Load Time and Memory Usage

Figure 5.4a shows the time required to load the models in seconds. As our measure-
ments suggested that the model load time was practically independent of the query
selection, we will only provide an aggregated result table. The only exception to this
rule is the cyclomatic complerity pattern with incremental pattern matching: here
we found that indexing the transitive closure of the containment hierarchy was pro-
hibitively expensive both in terms of load time and memory usage. For this reason,
we executed two sets of measurements: (1) one without initializing the cyclomatic
complezity pattern (INC), and (2) another that also included this pattern (INC-CC).

Figure 5.8 shows the detailed load time and memory usage measurements for the
Jackrabbit tool in box plots; and the diagrams for the other cases were similar. In
general, the diagrams reveal that the repeated measurements of the test cases in general
have very small differences, except in a few cases, and there are large differences when
comparing the results of different techniques.

It can be seen that the load time is 3-4 times longer when using an EMF-based
implementation over the manual Java ASG, and further increases can be seen when
initializing the pattern matchers for local search and incremental queries. The two-
phase load algorithm for the EMF model (EMF case), and the time to set up the
indexes (local search) and partial matches (Rete) may account for these increases. As
OCL does not use any specific index, no additional load overhead over the EMF visitor
implementation was measured.

109

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

Table 5.4. Measurement Results

(a) Load Time (in seconds) (b) Memory Usage (in MB)
[[A6 [emf [oa [s T inc T inccc] [ase T emr T oa] LS | INC | iNnccc |
CloudStack| 27,5+ 0,6 | 115+ 3,2 115+ 1,8 |156 + 3,0 343+ 5,9 NA CloudStack | 2189 + 0,47 | 3503 + 1,39 | 3925+ 38 |4017 + 2,7 10414 + 58,88 NA

ecipse | 41,72 07 [169+ 253|171 25236+ 32 (4702 41 | NA | [ccipse | 253 + 0c6 [4054 & 187 [a6a1s 39 [a7as & 1648 [17750s 15593 | wA |
[Frecchart | 56 02| 21+ 04| 21 04| 302 05| 44 12 [277+ 70 |
Stendhal | 44+ 01| 172 05| 172 0.4 232 04| 36+ 1,2 [239+ 117 | [stenahal | 109+ 006| 229 051 | 4315 36 | 460+ 126,2| 3383+ G885 | 7783+ 629 |
stuis2 | 57 0.1 23+ 04| 232 04 322 06| 4o+ L [292+ 67 |[stutsz | 159+ 003] 3595 271 | 4795 26 | 5215 29 | asoas 7027 |1neav s 160 |
weka | 04 02] 38+ 07] 372 03] 52+ 04[111+ 24 [526+ 295 | [Weka | 290+ 007| 6162 608 | 6152 151| 6952 106 | 34272 120357+ 1377]

(c) Query Execution Time (in seconds)

o> 8 = = S o> 2 . S

< |BE| ElEe|3slog|wtladlEs 55| E el tleg| £

] g2 g |2 8|€L|52e 8|3 € 0o £ 9 g (888 < 2l E S

S lse| 5§ |EE|S5|8s|sE|lEE|s3 sa| § |2 El3 HAEHEE

S|8E| S |55|5F|"E|%§|5E|5E $E| & (58| Elcsc|38

sS § o o8 = o S| €3 z8S s o o|8 5] S| €3

-] © -]
o ASG 5,3 7,6 6,0 5,5 53 5,9 54/ 6,0 16%
E EMF 3,9 5,0 3,7 3,7 4,1 4,0 3,6 4,4 15%
3 (ocL 6,2| 90,7 6,8 90 6,6 7,1 7,4 NA 6%

3

8 LS 0,13| 81,50 0,55| 0,28 0,02 0,26/ 1,09 0,76] 24%,

1,6 21 1,7 1,8/ 16| 1,7/ 15
0,9 1,2 10 10 10 10 09
150 10,1 1,7, 22| 12| L5 1,8
0,03| 4,64| 0,16 0,09 0,01 0,05 0,19
0,010| 0,011| 0,010(0,013| 0,012| 0,010 0,012

Stendhal

46| 39 45 39 51
2,7 26| 24 27 23
3,7 60 33 43| 37
0,23(0,13/ 0,02 0,10 0,30
0,009| 0,011| 0,011| 0,010(0,010

Hibernate

JFreeChart

INC] 0,009| 0,010 0,010 0,012 0,012 0,010 0,012| 0,012 23%

110

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

8 Load Time — Jackrabbit
o - -
-] pg 7y
Lovn)
»
N
[0}
g 8_ 4+ - - & - - %=
=4
gl
g = - - - e - - -
- —e e A - - R - -
S_ - = += - - - - -
1 1 1 1 1 1 1 1
S
5§ & & ¢ § & ¢ 3
@) c o = = o
© o Q & n = e e
—_ [J) @
= @ o = = o =
o (&S] [&] > (&) S
S c = © o) o
@) < © c ©
) 8 S = a5}
2 8 a9
c
o
38 5
Jackrabbit
(a) Load Time (in seconds)
Memory Usage — Jackrabbit
- = - = - = =
o
/\O_
0s
>
N—r
S
(6 rS o - - rs £ -
»
)
ey
(e} =]
€S . L
%’ ‘_| - - - - - -
1 1 1 1 1 1 1 1
S~
S 2 2 Q S = o 5]
= < @© © = o © k)
S @ @ = = £ = =
o L IS |7 5 S S
E 8 8 = = 8 &
3 & £ & > &
() G "q__) c ko]
3 =
+— O e} @
)] o *(7; 0
c c >
o c
© =]
Jackrabbit

Figure 5.8. Distribution of Load Time and Memory Usage of the Jackrabbit Project

(b) Memory Usage (in MB)

111

Type

£ ASG

= EMF
E0CL
LS
E5INC
£INC-CC

Type

I ASG
EHEMF

= 0CL
LS
E34INC
EIINC-CC

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

A similar increase can be seen for the memory usage in Figure 5.4b. Here, the
EMF representation uses about twice as much memory, while the incremental engine
may require an additional 10-15 times more memory to store its partial result caches
compared with the ASG. When adding the cyclomatic complerity pattern as well, an
additional increase in memory usage is observed, resulting in a memory exhaustion for
the largest models (over 500kLOC, or 1.7M graph nodes).

The smaller memory footprint of the Java ASG representation is the result of model-
specific optimizations that are not applicable in generic EMF models. The additional
increase for local search and Rete-based pattern matchers is mostly due to the index
and partial match set sizes, respectively. Like load times, the use of OCL does not
result in a change in memory usage compared with the EMF model.

The memory footprint increase of the cyclomatic complexity pattern is probably
caused by the indexing of the transitive closure of the parent relation. As every model
element has a parent and the containment hierarchy is usually deep, this transitive
closure may alone become several times the size of the entire model, making it very
expensive to index. Despite this, the containment hierarchy can be effectively traversed
using search operations, hence the other approaches can handle this query much better.

Generally speaking, neither for load times nor memory usage was the standard
deviation of the results significant compared with the other values, with the notable
exception of the load time of the Jackrabbit tool with INC-CC, and the SVNKit appli-
cations memory usage with INC. The first one can be explained with garbage collection,
as the memory usage was close to the 25 GB limit. For the latter, we have no clear
explanation; however as we have witnessed no other fluctuations of this size, we think
that it was caused by a temporary issue that occurred during our measurements.

5.6.2 Search Time

Figure 5.4c presents the search time measurements (and uses NA if the measurement
timed out). For each model and each program query the average search time is listed
first. Furthermore, in Figure 5.9, we highlighted the results of the Jackrabbit project
in a box plot, where there are only minimal differences between any two different
executions of the same case, similar to load and search times.

Both visitor implementations performed similarly, producing similar execution times
for queries, but they increased with model size as they traverse the entire model to find
the results. The time differences between the ASG and EMF visitors were mainly the
results of the memory optimizations of the original ASG implementation that avoided
storing the same values multiple times, but required additional indirections during the
model traversal. The reverse navigation option is not used in our measurements.

The local search and Rete based solutions provide a two-to-three orders of mag-
nitude faster query execution, achieved by replacing the model traversal by calls to a
pre-populated (and incrementally updated) index. Also, the search time of incremental
queries is largely independent of model size, while in the case of local search it increases
more slowly than in the case of the visitor executions. As the search times for INC
queries were exactly the same regardless whether the cyclomatic complerity query was
loaded or not, their rows were merged in the table.

The execution of OCL queries include a traversal of the model together with ad-
ditional search operations, making the search slower than the visitor implementations.
An exception to this is the unused parameter query: in this case the search opera-

112

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

Search Time — Jackrabbit

ASG EMF OCL

<

oA

—

-.--A——_-.— __._

]
—~O
(2
~
(O]
£
= LS INC
e
O -
T o
a)c;_
U)\—l

-t
1 . -—
o
¥‘=;===='é=

Case

catch
£3 complexity
EJ concatenate
EJ constantcompare
E2 nodefaultswitch
E rethrow
stringcompare
unusedparameter

Figure 5.9. Distribution of Search Times for the Jackrabbit Project

113

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

tion timed out every time. This is most likely caused by the usage of the alllnstances
function that is used to find the source of an edge without reverse navigation options.

In addition, as seen in Figure 5.4c, the execution time of visitor implementations
increases linearly. This is in line with our expectations, as visitors have to traverse
the entire model during the search. In spite of this, the search time for incremental
queries are roughly the same for all queries, as the search simply means returning the
results. In most of our patterns, the local search is an order of magnitude slower than
incremental queries. However, the concatenation pattern (see Figure 5.3¢) runs just as
slow as the visitors in this regard. This is in line with our earlier experience [132| with
different pattern matching strategies that the execution performance for local search
techniques depends on the query complexity and the model structure.

To validate the results, for each program and tool combination we have the max-
imum standard deviation in percentage terms of their corresponding search time. In
most cases, the standard deviation is low; only 9 rows contain deviations over 20%. As
our measurements have revealed time differences of orders of magnitude, these differ-
ences do not invalidate our conclusions drawn from the analysis.

5.7 Evaluation of Usage Profiles

Following the evaluation of the raw measurement data, we will now explain how the
different approaches were compared in various usage profiles, and we will summarize
our findings. Then we will discuss the different threats to validity, and the ways they
were handled.

5.7.1 Usage Profiles

In order to compare the approaches, we calculated the total time required to exe-
cute program queries for three different usage profiles, namely one-time, commit-time,
and save-time analysis. The profiles were selected by estimating the daily number of
commits and file changes for a small development team.

One-time analysis consists of loading the model and executing each program query
in a batch mode. In case the analysis needs to be repeated, the model is reloaded. In
our measurements, this mode is represented by a load operation followed by a single
query evaluation.

Commit-time analysis can be used in a program analysis server that keeps the
model in-memory, and on each commit, it is updated as opposed to be reloaded, and
then it re-executes all queries. In our case, this mode is represented by a load operation
followed by 10 query evaluations.

Save-time analysis is executed whenever the programmer saves a file in the IDE,
and then the IDE either executes the analysis itself, or notifies the analysis server. It is
similar to commit-time analysis, but it is executed more often. In our measurements,
this mode is represented by a load operation followed by 100 query evaluations.

5.7.2 Usage Profile Analysis

We calculated the execution times for the search profiles for all the projects by con-
sidering the time to load the models (Figure 5.4a), and increasing it by 1, 10 and

114

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

100 times the search time of six queries one after another, respectively. As the un-
used parameter and cyclomatic complezity query could not always be executed in OCL

and the incremental matcher, respectively, to keep the results comparable, they were
excluded from this calculation.

HELoad Time EQuery Time

CloudStack ArgoUML Eclipse

Hibernate Jackrabbit JFreeChart OpenEJB Stendhal SVNKit Struts2 Tomcat Weka Xalan

400

300

Time (s)

200

100

| GWT
IIII IIIII IIIII l.l.l IIIII =unll -==nll I.l.l IIIII .III =munll

o |

LS-

OLANO OLANO OLAN0 QLANO OLANO OLAN0 OLANO OLAN0 OL-AN0 OLAN0 OLAN0 OL-AN0 OLAN0 OLIN0

N=0-1Z =01z =012 =01z =012 =012 =012 =012 =0-1Z2 =012 O=0-1Z =01z N=0-1Zz =012

<wO = «<wlO = «<wO = <wO = <uwlO = <woO =~ <woO = <wlO = «<wO = <wO = <wO =~ <woO = <woO = <wo =
(a) One-time

CloudStack ArgoUML Eclipse GWT Hibernate Jackrabbit JFreeChart OpenEJB Stendhal SVNKit Struts2 Tomcat Weka Xalan

Time (s)

(b) Commit time

CloudStack ArgoUML Eclipse Gwr Hibernate Jackrabbit JFreeChart OpenEJB Stendhal SVNKit Struts2 Tomcat Weka Xalan
Q

=]

=]

©

o
=3
L5

o
£
[=

o

=]

o

«

!

(c) Save time

Figure 5.10. Execution Time over Models

Figure 5.10 shows our measured values for total execution times on the various
usage profiles from two points of view. We included detailed graphs for the selected

models where load times and query times can be observed (note the differences in the
time axis).

115

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

The results indicate that albeit the visitor approaches execute queries more slowly,
as there are no additional data structures initialized, the lower load time makes this
approach very effective for one-time, batch analysis. However, as all visitors are im-
plemented separately, as to execute all of them would require six model traversals;
reducing this would provide a further time advantage of this solution over the local
search based ones. This issue could be managed by combining all the queries in a
single visitor, thus increasing its complexity. Still, visitors behave worse regarding the
run time in the case of a repeated analysis: the mean time for executing 100 searches
increased from 32 to 1967 seconds for the ASG-based implementation (and from 62 to
1257 when executed over EMF).

OCL queries behave in a similar way to visitor-based searches. Here, no indexing
is used, but the model is traversed during search. Executing a single query is more
expensive than executing a single visitor, and during the measurements nothing is
shared between the different executions, making the mean one-time execution time of
the six queries 71 seconds (almost the same as the result of the local search based
pattern matcher), repeating it a hundred times is done in 2204 seconds (slower than
the ASG version). However, selecting an OCL execution mode that evaluates multiple
OCL queries during a single traversal where possible might significantly reduce the total
search time, and help make this approach a viable alternative to hand-coded visitors.

The local search based approach is noticeably faster than visitor-based solutions
with memory usage and initialization time penalties introduced by the use of caching.
The mean execution times range from 69 to 171 seconds. These properties make the
approach work very well in the Commit-time analysis profile, and other profiles with
a moderate amount of queries. However, if a bad search plan is selected for a query,
such as in the case of the Concatenation to Empty String pattern, its execution time
may become similar to the visitor-based implementations.

The incremental, Rete-based pattern matching approach provides instantaneous
model query times, as the results are always available in a cache. This makes such an
algorithm powerful for repeatedly executed analysis scenarios, such as the Save-time
analysis profile (mean time: 131 seconds, the lowest from all approaches). However, to
initialize the caches, a lengthy preparatory phase is required and it makes this technique
the slowest for one-time analysis scenarios (mean time: 394 seconds).

If the save-time analysis profile is used and the required memory of the incremental
approach cannot be met, the complementing local search matcher can be used and it
still has a performance advantage over the visitor-based solutions. Also, by moving
the analysis to a distributed, cloud-based system, it is possible to manage even larger
models using the incremental approach [133].

Next, we evaluated how execution times varied when increasing the model size.
Figure 5.11 shows the analysis time using different tools over the model size in each
usage profile and it adds linear trend lines to compare the rate of increase. We found
that our findings were consistent over different models: regardless of the model size,
the same relative ordering can be observed in the case of each profile.

5.7.3 Lessons Learned

From a memory consumption perspective, the manually optimized ASG excels while
providing a fast query execution for the one-time usage profile. However, a generic
model implementation, such as EMF, may be a viable alternative when additional

116

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

Type — ASG -+ EMF -~ OCL-+-LS = INC

®
=
o
g
)
[0
£
'_O,
¥ : 7 N ¥ 2 s =
- 0 0 0 [Ts] 0 Y] 0
. > e S - o
Size (LOC)
(a) One-time Usage Profile
o
S
e} L}
B
Py .
= | gg%ﬁ
st g
.
%
¥ ¥ ¥ ¥ ¥ ¥ s s
=1 n] o o 75} I}
- - ! S S0
Size (LOC)
(b) Commit time Usage Profile
o
o
(=]
-
)
(v}
£8
=
(=}
-
¥ ¥ ¥ ¥ ¥ ¥ s s
— o 5} 7] 15} Lo 3] 0
=1 <] Q S 3
Size (LOC)

(c) Save time Usage Profile

Figure 5.11. Execution Time with regards to Model Sizes

117

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

features of these frameworks are used and the doubled memory usage is acceptable.
Furthermore, the use of generic model implementations means generic query approaches
can become an alternative for manually coded searches based on usage profiles:

e Batch solutions, such as the Eclipse OCL implementation have minimal addi-
tional memory requirements while their performance is similar to that of manu-
ally written visitors.

e Full incremental solutions, such as the Rete-based pattern matcher of the EMF-
INCQUERY, provide results instantaneously even after model changes, making it
beneficial for recurring queries and evolving source code, to meet their memory
requirements.

e The local search implementation of the EMF-INCQUERY uses an incremental
indexer to speed up search implementations, achieving query evaluation times
that are orders of magnitude faster than non-indexed solutions, but with a lower
memory consumption. This result is in line with the idea of hybrid pattern
matching [132], where incremental and search-based approaches complement each
other for better performance characteristics.

Both the OCL and the graph pattern formalism provide a higher-level specification
of program queries, resulting in a more compact query description compared to manu-
ally coding visitors, and in our subjective experience, they are easier to understand and
reduce query development time. Advanced features, such as the computation of tran-
sitive closures, are also supported, further reducing the length of query descriptions.

Regardless of the modeling technology, optimizing the queries, either for perfor-
mance or memory consumption, may require a deep understanding of the behavior of
the underlying algorithms. In some cases, this means a complete reformulation of the
query. For instance, in the case of the catch problem, the pattern description requires
an inverse navigation between the catch parameters and its references, while the visitor
implementation traverses the containment subtree instead.

We have also identified cases where one of the selected tools works noticeably better
or worse than the other candidates:

e If inverse relations are not modeled, some queries in OCL cannot be implemented
efficiently (e.g. without iterating all instances of a type). Not surprisingly, adding
the inverse relations increases the memory usage of the model.

e Navigating the containment hierarchy (especially transitively) requires a huge
amount of memory with the Rete-based incremental approach, as it requires
storing many model element-ancestor pairs in the memory.

e Visitor-based solutions can very effectively traverse the containment hierarchy.
In the case of the cyclomatic complexity calculation, this is the main reason why
the visitor implementations outperform all the others.

In addition, as a rule of thumb, we have created a simplified representation (see
Figure 5.12) based on the lessons we learned from the results in a form of a decision
model to choose the more suitable tools for the different usage scenarios. The figure
servers as a supplementary guide to aid the understanding of our observations above,
but it is not a complete presentation of our results.

118

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

Legend

{ Usage Scenario }
{ Begin }

{ Query Complexity }

A, .

) External Constraint }

No, Java. ___Onetime /ow many times do you
Prefer OCL? <]
execute your queries?
Suggested Method
Yes Many times
A, A,

raph pattern
Are reverse edges OCL Awhat is your preference \matching_ / How often do you
Yes \raversable in your model of query technology? run your queries?

Does your query need
to traverse subtrees?

Normal
constraints

Are you constrained
by memory?

Severely
constrained

A,

No
EMF)< ”" Does your system No
Yes \ already rely on EMF?

I

Figure 5.12. Decision Model (Simplified Representation)

Y

In the refactoring project, the implemented FaultBuster refactoring framework (pre-
sented in Chapter 4) applies the one-time scenario as the usage scenario was planned
for the ASG which does not support incremental model updates. In addition, a large,
4M LOC proprietary program has been refactored, so the decision during this project
was to keep the ASG and the one-time approach. From this research, we may conclude
that generic solutions are viable alternatives and by using an incremental tool setup a
huge performance gain can be achieved when sufficient memory is available.

5.7.4 Threats to Validity

We have identified several validity threats that can affect the construct, the internal
and external validity of our results. The first is the low construct validity.

Low construct validity may threaten the results of various usage profiles, as the
results do not include the time required to update the indexes and Rete networks on
model changes. However, based on the previous measurement results related to EMF-
INCQUERY [128], we think that such slowdowns are negligible in cases where the change
size is small compared to that of the model.

Furthermore, in the case of very large heap sizes (over 10 GB) the garbage col-
lection of JVM instances may block the program execution for several minutes in a
non-deterministic way. To make the measurements reproducible, the JVM instances
were allocated their maximum heap size during startup instead of gradually extending
it as needed.

We tried to mitigate internal validity threats by comparing the measurements when
we changed only one measurement parameter at a time. For example, the EMF im-
plementation of the Java ASG makes it possible to differentiate between the changes

119

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

caused by different internal model representations by comparing the different model
representations using the same search algorithm first, then we compare the EMF-based
visitor with generic pattern matching solutions.

An important threat in a study to compare various methods is that the evaluation
is carried out through actual implementations. The decisions in the implementation
may affect the overall outcome and the judgement of the choice of method. To reduce
this threat, the implementation can be performed by experts of the given technologies.
Hence, the same query is implemented in a slightly different way in each method
depending on the features of the methods like the availability of reverse edges.

Note that the authors are not experts of the OCL tools, and, the metamodel it-
self does not favor the structure expected by OCL. However, as we have found that
OCL performs comparably to the visitor-based implementations, it is clearly a viable
alternative to manually coded searches.

As regards external validity, the generalizability of our results largely depends on
whether the selected program queries and models are representative for general applica-
tions. The queries were selected prior to the projects and scenarios. These refactorings
were emphasized by project partners and were selected to cover several aspects of
transformations.

The selected open-source projects differ in size and characteristics — including com-
putational intensive programs, applications with heavy network and file access and
with a graphical user interface. Moreover, the projects were selected from the testbed
of the Columbus Java static analyzer and ASG builder program where the aim was to
cover a wide range of Java language constructs.

As for projects from different programming languages, they require a corresponding
metamodel and instance models. The Columbus framework itself provides metamodels
and code analyzers for creating these models for various languages, such as C/C++,
C# or RPG, and these metamodels can be ported similarly to the EMF. However,
a further evaluation may be needed to validate whether the results still hold, as the
properties of these program models may differ significantly.

Another issue is the selection of model query tools. Although several other tools are
available, based on the results of over a decade of research on efficient graph pattern
matching techniques, we think that other pattern matcher tools should provide similar
results to either our local search or incremental measurements.

In our work, we used Java-based tools and the EMF framework so that the results
of the tools could be compared. Despite this, the investigated tools support additional
languages. For example, the Columbus API is available in C++, and OCL tools
are available for different modeling formalisms and languages. The EMF-INCQUERY
framework has been implemented in Java and focuses on EMF models; however the
language and runtime are also being adapted to different formalisms such as RDF and
the metamodeling core of MPS.

OCL queries expect that a context object will be selected from the environment
and expressions can be evaluated from this point. However, the standard does not
specify how to select this context object, and different OCL tools support varying
query execution modes. Such modes include the Impact Analyzer of the Eclipse OCL
tool [131], which tracks model changes and just recomputes those results that rely on
the modified model elements; or the model invariant formulation that can evaluate
multiple boolean queries in parallel. In order to be able to measure the execution
times of single queries, we selected all possible context objects by traversing the entire

120

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

source model. To evaluate the effects of choosing a different context selection strategy
or execution mode, additional measurements are needed.

Overall, our results were similar for all the models and queries, so we think our
results should generalize well to other program queries and models, as far as the memory
requirements of indexing or Rete building are met.

5.8 Related Work

In our comparison, we evaluated solutions that are specific to program models and
generic methods not restricted to the domain of program models. Now, we present
related research in two groups starting from generic to program model-specific solutions.

5.8.1 Software Analysis Using Generic Modeling Techniques

Program queries are a common use case for modeling and model transformation tech-
nologies including transformation tool contests. The program refactoring case of the
GraBaTs Tool Contest 2009 [134] and the program understanding case of the Transfor-
mation Tool Contest 2011 [135] rely on a program query evaluation followed by some
transformation rules, focusing on the applicability of modeling tools for refactoring and
reverse engineering. In 2011, six tools were entered in the contest (GreTL, VIATRAZ2,
Edapt, MOLA, GrGen.NET and Henshin), some of them were EMF-based, others re-
lied on a different metamodeling approach, and for each tool the tasks were executed
in a few seconds (albeit sometimes after costly model import operations). This work
extends these results by comparing the costs of using generic modeling environments
to manually optimized refactoring models; and extends the performance comparisons
with a larger pool of real-world software models and the use of different model queries.

The refactoring case was reused in [136] to select a query engine for a model repos-
itory, but, its performance evaluations did not consider incremental cases.

A series of refactoring operations were defined as graph transformation rules by
Mens et al. [137], and they were also implemented for both the Fujaba Tool Suite
and the AGG graph transformation tools. Although the study presents the graph
transformations that are useful as an efficient description of refactoring operations, no
performance measurements were included. The Fujaba Tool Suite was also used to find
design pattern applications [138]. As a Java model representation, the abstract syntax
tree of the used parser generator was used, and the performance of the queries were
also evaluated.

The Java Model Parser and Printer (JaMoPP) project [139] provides a different
EMF metamodel for Java programs. It was created to directly open and edit Java
source files using EMF-based techniques, and the changes were written back to the
original source code. Despite this, the EMF model of the JaMoPP project does not
support any existing model query or refactoring approaches, and every program query
or refactoring is to be reimplemented to execute it over the JaMoPP models. This
approach was used in [140], and it relies on the Eclipse OCL tool together with a
display of the identified issues in the Eclipse IDE.

The EMF Smell and EMF Refactor projects [141] allow one to find design smells
and execute refactorings over EMF models based on the graph pattern formalism. As
Java programs can be translated into EMF models, this also permits the definition and
execution of program queries.

121

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

One key difference between our experiment and the above-mentioned related stud-
ies is that we compare the performance characteristics of hand-coded and model-based
query approaches.

When comparing the performance of the different approaches, an additional factor
needs to be considered. Namely, as there are multiple different (sometimes not even
EMF-based) metamodels used to describe Java applications, further measurements are
required to evaluate the effects of a metamodel selection. However, we think that our
test setup is general enough to handle the large set of tools, approaches and queries
proposed by these studies.

The train benchmark described in [128] concentrates on on measuring the perfor-
mance of incremental model query approaches. It relies on synthetic models scalable to
any model size, and defines both query and model manipulation steps to measure the
real impact of query re-evaluation. The author of [129] attempted to predict the query
evaluation performance based both on metrics of models and queries. In our work,
we applied these metrics on real-world models to evaluate the query engine instead of
synthetic models, and while our results were quite similar, a more detailed comparison
is required to analyze their usefulness.

5.8.2 Software Analysis Designed for Program Models

Several tools are available for detecting coding issues in Java programs. The closest
solutions to our ASG+Visitor method are, for example, the PMD checker [27] and
FrontEndART’s FaultHunter [142], which in fact is built on the top of the Columbus
ASG. These applications can be integrated into IDEs as plug-ins, and they can be
extended with the searches implemented in Java code or in a higher level language,
such as XPath queries in PMD. PMD provides rules for a great variety of coding
problems, but the given model and query API is not as flexible as the solutions used
in this research. The main usage scenario of these tools is to run the checkers once on
(any version of) the source code and find coding issues. Unfortunately, they do not
support incremental model updates yet.

In contrast to generic solutions, there are several systems that support (meta) mod-
eling and querying especially program models. FAMIX [143] is a language-independent
meta-model for representing procedural and object-oriented code, used in the Moose
reverse engineering environment [144]. The MOOSE environment provides query pos-
sibilities in Smalltalk. The authors claim that their approach is not Smalltalk specific
and it can be applied Java as well. The Rascal [145] metaprogramming language is
designed for source code analysis and manipulation. Its analysis features are based on
relational calculus, relation algebra and logic programming systems. Its tool support
includes an Eclipse-based IDE, and the language provides Java integration. For any
task not (readily) expressible in RASCAL, one may use Java method bodies inside Ras-
cal functions. These solutions use their own meta model to represent Java programs,
unlike solutions in our study, where the Columbus meta model is used via the EMF.
Nevertheless, these tools are candidates for comparative research in the future.

In addition, several approaches allow one to define program queries using logical
programming, such as the JTransformer [146] using Prolog clauses, the SOUL ap-
proach [147] that relies on logic metaprogramming, and CodeQuest [148], which is
based on Datalog. However, none of these offer a comparison with hand-coded query
approaches. The DECOR methodology [149] provides a high-level domain-specific lan-

122

Chapter 5. Applications of Model-Queries in Anti-Pattern Detection

guage for evaluating program queries. It was evaluated in terms of performance on 11
open-source projects, including the Eclipse project. It took around one hour to find its
defined smells. These results are difficult to compare to ours, as the evaluated queries
are different (and some of them are more complex than the ones defined here), but
they are described in enough detail to extend our environment. However, evaluating
the effects of representation and tool selection is problematic, as neither the model rep-
resentation, implementation structure nor the used programming language is shared
between the different approaches.

A key advantage of our approach is the ability to select the query evaluation strategy
based on the required usage profile. Additionally, it is possible to re-use the existing
program query implementations while using a high-level, graph pattern-based definition
for the new queries.

5.9 Summary

In this chapter, we evaluated different query approaches for locating anti-patterns for
refactoring Java programs. In a traditional setup, an optimized Abstract Semantic
Graph was built by SourceMeter, and it was processed by hand-coded visitor queries.
In contrast, an EMF representation was built for the same program model which has
various advantages from a tooling perspective. Furthermore, anti-patterns were identi-
fied by generic, declarative queries in different formalisms evaluated with an incremental
and a local-search based strategy.

Our experiments that were carried out on 28 open source Java projects of varying
size and complexity demonstrated that encoding ASG as an EMF model results in an up
to 2-3 fold increase in memory usage and an up to 3-4 fold increase in model load time,
while incremental model queries provided a better run time compared to hand-coded
visitors with a 2-3 order of magnitude faster execution, at the cost of an additional
increase in memory consumption by a factor of up to 10-15. Following this, we provided
a detailed comparison of the different approaches and this made it possible to select
one over the other based on the required usage profile and the expressive capabilities
of the queries.

To sum up, we emphasize the expressiveness and concise formalism of pattern
matching solutions over hand-coded approaches. They offer a quick implementation
and an easier way to experiment with queries together with different available execution
strategies. However, depending on the usage profile, their performance is comparable
even with 2,000,000 lines of code.

123

“You can’t connect the dots looking forward;
you can only connect them looking backwards.”

— Steve Jobs

Conclusions

In this thesis we discuss different topics to support the ‘continuous refactoring' of
software systems. Now, we shall summarize our contributions and draw some pertinent
conclusions. We will answer our research questions and elaborate on the main lessons
we learned.

6.1 Summary of the thesis contributions

In general, the results presented indicate that refactoring should and can be automated
via computer assistance. Developers are receptive to tools that suggest refactoring op-
portunities. They welcome tools even more when these are capable of providing solu-
tions as well. We also showed that refactoring is a good practice in programming, and
when performed continuously it has beneficial effects on measurable software main-
tainability. We provided a detailed comparison of different approaches to locate anti-
patterns for refactoring Java programs. In addition, we identified several challenges
of implementing an automated refactoring tool. Our recommendations may serve as a
guideline for others who face similar challenges when designing and developing auto-
matic refactoring tools that meet the high expectations of today’s developers.

We should add here that the studies presented in the study are closely connected to
the Refactoring Research Project. The project provided us with a good opportunity to
do research in real-life industrial environment. This motivated us to carry out studies
on more practical topics. The project spawned a lot of research papers over the years.
Many of them were presented at international conferences, including the one ([8]) that
won the best paper award at the IEEE CSMR-WCRE 2014 Software Evolution Week,
Antwerp, in Belgium, February 3-6, 2014.

Now, we will restate our initial research questions and answer them one by one.

125

Chapter 6. Conclusions

RQ1: What will developers do first when they have given the time and
money to do refactoring tasks?

Our studies contain valuable insights into what developers do. Throughout our ex-
periments, we collected 1,273 refactorings in the manual phase and at the end of the
automatic phase we got about 6,000 tool-aided refactorings. We observed developers in
a large, in vivo, industrial context while doing hand-written and automatic refactoring
tasks.

In Chapter 3, we found that developers tend to fix coding rule violations more
often than anti-patterns or metric value violations. We learned that they optimized
the refactoring process and started fixing more serious issues first. Although keeping
priority a concern, they kept choosing those issues which were easier to fix. Our
interviews with the developers and our analysis of the evolution of their system revealed
that by the end of the project developers had learned to write better code.

We continued our research in Chapter 4 by providing developers with an automatic
refactoring tool. We learned that they are optimistic about automation and they
thought that automated solutions could increase their efficiency. Developers thought
that most of the coding issues could be easily fixed via automated transformations.
This trust manifested itself when we noticed that sometimes they just blindly applied
the automatic refactorings without taking a closer look at the proposed code modifi-
cation. It happened several times that the automatic refactoring tool asked for user
input to be able to select the best refactoring option, but developers used the default
settings because it was easier. Partners were generally satisfied with the automated
refactoring solutions and they enthusiastically asked us to extend its support with new
types of fixable coding issues. We found that their most loved feature was batch refac-
toring — where they could fix several issues at once — because it greatly increased their
productivity.

RQ2: What does an automatic refactoring tool need to meet developers
requirements?

The manual phase of the Refactoring Project told us that developers seek to fix coding
issues. We also learned that developers do not like switching between their normal
development activities and a refactoring tool, and therefore the tool has to be integrated
into their IDEs. Our results suggest that one of the most important features of a
refactoring tool is to provide refactoring recommendations (i.e. what to refactor and
how). This requires precise problem detection to avoid false positive matches. We
found that the refactoring transformations have to be transparent and well documented
because we noticed that developers tended to use simpler refactorings because they
lacked the understanding of more complex ones (e.g. clone extraction). An interesting
find was that the partner companies often demanded different solutions for the same
coding issue. This tied in with developers requests to allow some parametrization of
refactoring algorithms. To fulfill the latter two requirements a fully-automated method
did not suffice. Instead, a semi-automatic solution was necessary. Besides the control
over the refactoring algorithms, developers wanted to have a decision in the end as
well, whether to accept or reject the suggested fix. Here, developers can compare the
original and the refactored version of the code; and they can run unit and integration
tests on the system before accepting a fix. What is more, what developers would like
from the refactoring transformation is to use correct code formatting, identification,

126

Chapter 6. Conclusions

and to modify it as little code as possible. They also asked for comment handling, such
as removing comments with remove method refactoring.

Based on the former guidelines, in Chapter 4, we introduced FaultBuster, an auto-
matic refactoring toolset. FaultBuster has two special properties that makes it unique
among other tools. First, it is designed as a server-client refactoring framework which
has built in issue management that ensures that no issues are fixed by different devel-
opers at the same time. Second, it allows programmers to fix multiple coding issues at
once, in so-called batches. FaultBuster’s main target is coding rule violations and code
smells. Under the hood, it uses a well-defined automated refactoring process to perform
transformations on the program model. This model includes the Reverse AST-search
Algorithm which maps coding issues to source code elements.

RQ3: How does manual and automatic-tool aided refactoring activity affect
software maintainability?

We identified lots of refactoring commits throughout the project. First, it was 315 in
the manual phase (Chapter 3) and later, 1,048 in the automatic phase (Chapter 4).
By employing the QualityGate SourceAudit tool (which implements the ColumbusQM
quality model), we analyzed the maintainability changes induced by the different refac-
toring tasks. By measuring the maintainability of the involved subject systems before
and after the refactorings, we got valuable insights into the effect of these refactorings
on large-scale industrial projects.

We learned that the outcome of one refactoring on the global maintainability of
the software product is hard to predict; moreover, it might sometimes actually have
a detrimental effect. Generally speaking, though a whole refactoring process can have
a significant beneficial effect on the measurable maintainability. We found that fixing
anti-patterns have larger positive effect on quality than fixing either coding issues
or metric values. In addition, our study shed light on some important aspects of
measuring software maintainability. Some of the unexpected effects of refactorings
(like the detrimental effect of removing unnecessary constructors on maintainability)
are caused by the special features of the maintainability model applied.

Our results do not suggest significant differences between manual and automatic-
tool aided refactoring activity from the maintainability point of view. If refactoring is
a way to either software heaven or hell, automated refactoring is just a faster way of
getting there.

RQ4: Can we utilize graph pattern matching to identify anti-patterns as
the starting point of the refactoring process?

In Chapter 5, we investigated the costs and benefits of using the popular industrial
Eclipse Modeling Framework (EMF) as an underlying representation of program models
processed by four different general-purpose model query techniques based on native
Java code, OCL evaluation and (incremental) graph pattern matching. We provided
an in-depth comparison of these techniques on the source code of 28 Java projects using
anti-pattern queries taken from refactoring operations in different usage profiles.

Our main finding is that advanced generic model queries over EMF models can run
several orders of magnitude faster than dedicated, hand-coded techniques. However,
this performance gain is offset by an up to 10-15 fold increase in memory usage (in the
case of full incremental query evaluation) and an up to 3-4 fold increase in the model

127

Conclusions

load time for EMF based tools and queries, compared to native Columbus results.
Hence the best strategy should be planned in advance, depending on how many times
the queries should be evaluated after loading the model from scratch. This is why, any
of these four techniques is sufficient for creating an anti-pattern detection tool that is
capable of identifying refactoring suggestions.

128

Bibliography

Corresponding publications of the Thesis

[1]

2]

3]

4]

[5]

(6]

Géabor Sztke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimodthy. “A Case Study
of Refactoring Large-Scale Industrial Systems to Efficiently Improve Source
Code Quality”. In: Computational Science and Its Applications - ICCSA 201/
- 14th International Conference, Guimaraes, Portugal, June 30 - July 3, 2014,
Proceedings, Part V. 2014, pp. 524-540. DOI: 10.1007/978-3-319-091566-3_37.
URL: http://dx.doi.org/10.1007/978-3-319-09156-3_37.

Géabor Sz6ke, Gabor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyiméthy.
“Bulk Fixing Coding Issues and Its Effects on Software Quality: Is It Worth
Refactoring?” In: 14th IEEFE International Working Conference on Source Code
Analysis and Manipulation, SCAM 201/, Victoria, BC, Canada, September 28-
29, 2014. 2014, pp. 95-104. DOL: 10.1109/SCAM.2014.18. URL: http://dx.
doi.org/10.1109/SCAM.2014.18.

Géabor Sz6ke, Gabor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyiméthy.
“Empirical Study on Refactoring Large-Scale Industrial Systems and Its Effects
on Maintainability”. In: Journal of Systems and Software (2016). 1SSN: 0164-
1212. DOI: http://doi.org/10.1016/j . jss.2016.08.071. URL: http:
//www.sciencedirect.com/science/article/pii/S0164121216301558.

Géabor Széke, Csaba Nagy, Lajos Jeno Fiilép, Rudolf Ferenc, and Tibor Gy-
imothy. “FaultBuster: An automatic code smell refactoring toolset”. In: 15th
IEEFE International Working Conference on Source Code Analysis and Manipu-
lation, SCAM 2015, Bremen, Germany, September 27-28, 2015. 2015, pp. 253—
258. DOI: 10.1109/SCAM.2015.7335422. URL: http://dx.doi.org/10.1109/
SCAM.2015.7335422.

Géabor Sz6ke, Csaba Nagy, Péter Heged(is, Rudolf Ferenc, and Tibor Gyimo6thy.
“Do automatic refactorings improve maintainability? An industrial case study”.
In: 2015 IEEE International Conference on Software Maintenance and FEvolu-
tion, ICSME 2015, Bremen, Germany, September 29 - October 1, 2015. 2015,
pp. 429-438. DOI: 10.1109/ICSM.2015.7332494. URL: http://dx.doi.org/
10.1109/ICSM.2015.7332494.

Géabor Szdéke. “Automating the Refactoring Process”. In: Acta Cybernetica 23.2
(2017), pp. 715-735. DOI: http://doi.org/10.14232/actacyb.23.2.2017.16.
URL: http://cyber.bibl.u-szeged.hu/index.php/actcybern/article/
view/4022.

129

https://doi.org/10.1007/978-3-319-09156-3_37
http://dx.doi.org/10.1007/978-3-319-09156-3_37
https://doi.org/10.1109/SCAM.2014.18
http://dx.doi.org/10.1109/SCAM.2014.18
http://dx.doi.org/10.1109/SCAM.2014.18
https://doi.org/http://doi.org/10.1016/j.jss.2016.08.071
http://www.sciencedirect.com/science/article/pii/S0164121216301558
http://www.sciencedirect.com/science/article/pii/S0164121216301558
https://doi.org/10.1109/SCAM.2015.7335422
http://dx.doi.org/10.1109/SCAM.2015.7335422
http://dx.doi.org/10.1109/SCAM.2015.7335422
https://doi.org/10.1109/ICSM.2015.7332494
http://dx.doi.org/10.1109/ICSM.2015.7332494
http://dx.doi.org/10.1109/ICSM.2015.7332494
https://doi.org/http://doi.org/10.14232/actacyb.23.2.2017.16
http://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4022
http://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4022

Conclusions

7l

8]

9]

Géabor Szoke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimo6thy. “Designing and
Developing Automated Refactoring Transformations: An Experience Report”.
In: IEEFE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume
1. 2016, pp. 693-697. DOT: 10.1109/SANER.2016.17. URL: http://dx.doi.
org/10.1109/SANER.2016.17.

Zoltan Ujhelyi, Akos Horvath, Daniel Varro, Norbert Istvan Csiszar, Gabor
Sz6ke, Laszlo Vidacs, and Rudolf Ferenc. “Anti-pattern detection with model
queries: A comparison of approaches”. In: 201/ Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering,
CSMR-WCRE 2014, Antwerp, Belgium, February 3-6, 2014. 2014, pp. 293-302.
DOI: 10.1109/CSMR-WCRE.2014.6747181. URL: http://dx.doi.org/10.1109/
CSMR-WCRE.2014.6747181.

Zoltan Ujhelyi, Gabor Széke, Akos Horvath, Norbert Istvan Csiszar, Laszlo
Vidacs, Déaniel Varro, and Rudolf Ferenc. “Performance comparison of query-
based techniques for anti-pattern detection”. In: Information & Software Tech-
nology 65 (2015), pp. 147-165. DOI: 10.1016/j.infsof .2015.01.003. URL:
http://dx.doi.org/10.1016/j.infsof.2015.01.003.

References

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. “Characteristics
of application software maintenance”. In: Communications of the ACM 21.6
(1978), pp. 466-471.

William F Opdyke. “Refactoring object-oriented frameworks”. PhD thesis. Uni-
versity of Illinois, 1992.

Martin Fowler. Refactoring: Improving the Design of Erzisting Code. Addison-
Wesley Longman Publishing Co., Inc., 1999. 1SBN: (0-201-48567-2.

Andrew Koenig. “Patterns and antipatterns”. In: The patterns handbook: tech-
niques, strategies, and applications 13 (1998), p. 383.

ISTQB Exam Certification - What is Software Quality?
http://istqbexamcertification.com/what-is-software-quality/. (Vis-
ited on 03/28/2016).

Olivier Coudert - What is software quality?
http : //www . ocoudert . com/blog /2011 /04 /09 /what - is - software -
quality/. (Visited on 03/28/2016).

T. Bakota, P. Hegedus, G. Ladanyi, P. Kortvelyesi, R. Ferenc, and T. Gyimothy.
“A cost model based on software maintainability”. In: Proc. of the 28th IFEE
Int. Conference on Software Maintenance (ICSM2012). 2012, pp. 316-325.

Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.
ISBN: 0321213351.

Shyam R Chidamber and Chris F Kemerer. “A metrics suite for object oriented
design”. In: IEEE Transactions on Software Engineering 20.6 (1994), pp. 476
493. DOT: 10.1109/32.295895.

130

https://doi.org/10.1109/SANER.2016.17
http://dx.doi.org/10.1109/SANER.2016.17
http://dx.doi.org/10.1109/SANER.2016.17
https://doi.org/10.1109/CSMR-WCRE.2014.6747181
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747181
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747181
https://doi.org/10.1016/j.infsof.2015.01.003
http://dx.doi.org/10.1016/j.infsof.2015.01.003
http://istqbexamcertification.com/what-is-software-quality/
http://www.ocoudert.com/blog/2011/04/09/what-is-software-quality/
http://www.ocoudert.com/blog/2011/04/09/what-is-software-quality/
https://doi.org/10.1109/32.295895

Conclusions

[19]

[20]

[21]

22]
[23]
[24]

[25]

[26]
27]
28]

[29]
[30]

[31]

[32]

[33]

Tibor Gyiméthy, Rudolf Ferenc, and Istvan Siket. “Empirical validation of
object-oriented metrics on open source software for fault prediction”. In: IFEE
Transactions on Software Engineering 31.10 (2005), pp. 897-910. DOI: 10.1109/
TSE.2005.112.

Tibor Bakota, Péter Hegedts, Péter Kortvélyesi, Rudolf Ferenc, and Tibor
Gyimo6thy. “A Probabilistic Software Quality Model”. In: Proceedings of the
2011 27th IEEFE International Conference on Software Maintenance. ICSM ’11.
IEEE, 2011, pp. 243-252. 1SBN: 978-1-4577-0663-9. DOI: 10.1109/icsm.2011.
6080791.

ISO/IEC. ISO/IEC 25000:2005. Software Engineering — Software product Qual-
ity Requirements and Evaluation (SQuaRE) — Guide to SQuaRE. 1SO/IEC,
2005.

The QualityGate Homepage. URL: http://quality-gate.com/.
FrontEndART Ltd. SourceMeter. URL: https://www.sourcemeter. com.

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. “A Field
Study of Refactoring Challenges and Benefits”. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software FEngi-
neering. FSE ’12. Cary, North Carolina: ACM, 2012, 50:1-50:11. 1SBN: 978-1-
4503-1614-9.

Rudolf Ferenc, Arpad Beszédes, Mikko Tarkiainen, and Tibor Gyiméthy. “Colum-
bus — Reverse Engineering Tool and Schema for C++". In: Proceedings of the
18th International Conference on Software Maintenance (ICSM 2002). Mon-
tréal, Canada: IEEE Computer Society, Oct. 2002, pp. 172-181.

FrontEndART Software Ltd. URL: http://www.frontendart.com.
PMD. PMD website. URL: https://pmd.github.io/.

Oracle Corporation. NetBeans IDE. https : //netbeans . org/. (Visited on
05/16/2013).

William C. Wake. Refactoring Workbook. 1st ed. Addison-Wesley Longman Pub-
lishing Co., Inc., 2003. 1SBN: 0321109295.

Tom Mens and Tom Tourwé. “A survey of software refactoring”. In: IEEFE Trans-
actions on Software Engineering 30.2 (2004), pp. 126-139.

Bart Du Bois, Serge Demeyer, and Jan Verelst. “Does the "Refactor to Un-
derstand" Reverse Engineering Pattern Improve Program Comprehension?” In:
Proceedings of the Ninth European Conference on Software Maintenance and
Reengineering. CSMR ’05. IEEE Computer Society, 2005, pp. 334-343. ISBN:
0-7695-2304-8.

N. Rachatasumrit and Miryung Kim. “An empirical investigation into the im-
pact of refactoring on regression testing”. In: Software Maintenance (ICSM),
2012 28th IEEE International Conference on. 2012, pp. 357-366.

Gustavo H. Pinto and Fernando Kamei. “What Programmers Say About Refac-
toring Tools?: An Empirical Investigation of Stack Overflow”. In: Proceedings of
the 2013 ACM Workshop on Workshop on Refactoring Tools. WRT ’13. Indi-
anapolis, Indiana, USA: ACM, 2013, pp. 33-36. ISBN: 978-1-4503-2604-9.

131

https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.1109/icsm.2011.6080791
https://doi.org/10.1109/icsm.2011.6080791
http://quality-gate.com/
https://www.sourcemeter.com
http://www.frontendart.com
https://pmd.github.io/
https://netbeans.org/

Conclusions

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Houari A Sahraoui, Robert Godin, and Thierry Miceli. “Can metrics help to
bridge the gap between the improvement of oo design quality and its automa-
tion?” In: Proc. of Int. Conference on Software Maintenance. IEEE. 2000, pp. 154—
162.

Frank Simon, Frank Steinbruckner, and Claus Lewerentz. “Metrics based refac-
toring”. In: Proc. of the Fifth European Conference on Software Maintenance
and Reengineering. IEEE. 2001, pp. 30-38.

Ladan Tahvildari and Kostas Kontogiannis. “A metric-based approach to en-
hance design quality through meta-pattern transformations”. In: Proc. of the

Seventh Furopean Conference on Software Maintenance and Reengineering. IEEE.
2003, pp. 183-192.

Ladan Tahvildari, Kostas Kontogiannis, and John Mylopoulos. “Quality-driven
software re-engineering”. In: Journal of Systems and Software 66.3 (2003), pp. 225~
239.

Yijun Yu, John Mylopoulos, Eric Yu, Julio Cesar Leite, Linda Liu, and Erik
D’Hollander. “Software refactoring guided by multiple soft-goals”. In: Proc. of
the 1st Workshop on Refactoring: Achievements, Challenges, and Effects, in con-
gunction with the 10th WCRE conference 2003. IEEE Comp. Soc. 2003, pp. 7—
11.

Panita Meananeatra. “Identifying Refactoring Sequences for Improving Software
Maintainability”. In: Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE 2012. Essen, Germany: ACM,
2012, pp. 406-409. 1SBN: 978-1-4503-1204-2.

Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. “On the Relation of
Refactorings and Software Defect Prediction”. In: Proceedings of the 2008 In-
ternational Working Conference on Mining Software Repositories. MSR. ’08.
Leipzig, Germany: ACM, 2008, pp. 35-38. ISBN: 978-1-60558-024-1.

Carsten Gorg and Peter Weikigerber. “Error Detection by Refactoring Recon-
struction”. In: Proceedings of the 2005 International Workshop on Mining Soft-
ware Repositories. MSR, ’05. St. Louis, Missouri: ACM, 2005, pp. 1-5. ISBN:
1-59593-123-6.

Carsten Gorg and Peter Weifigerber. “Error Detection by Refactoring Recon-
struction”. In: SIGSOFT Softw. Eng. Notes 30.4 (May 2005), pp. 1-5. ISSN:
0163-5948.

Peter Weifsgerber and Stephan Diehl. “Identifying Refactorings from Source-
Code Changes”. In: Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE ’06. IEEE Computer Society,
2006, pp. 231-240. 1SBN: 0-7695-2579-2.

Peter Weiftgerber and Stephan Diehl. “Are Refactorings Less Error-prone Than
Other Changes?” In: Proceedings of the 2006 International Workshop on Mining
Software Repositories. MSR ’06. Shanghai, China: ACM, 2006, pp. 112-118.

Eleni Stroulia and Rohit Kapoor. “Metrics of refactoring-based development:
An experience report”. In: Proc. of the 7th Int. Conf. on Object-Oriented Infor-
mation Systems (O0IS2001). Springer, 2001, pp. 113-122.

132

Conclusions

[46] Bart Du Bois and Tom Mens. “Describing the impact of refactoring on internal
program quality”. In: Proc. of the Int. Workshop on FEwvolution of Large-scale
Industrial Software Applications. 2003, pp. 37-48.

[47] Bart Du Bois, Serge Demeyer, and Jan Verelst. “Refactoring-improving coupling
and cohesion of existing code”. In: Proc. of the 11th Working Conference on
Reverse Engineering. IEEE. 2004, pp. 144-151.

[48] Bart Du Bois. “A Study of Quality Improvements by Refactoring”. PhD thesis.
University of Antwerp, 2006.

[49] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. “A quantitative
evaluation of maintainability enhancement by refactoring”. In: Proc. of the Int.
Conference on Software Maintenance. IEEE. 2002, pp. 576-585.

[50] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-
ancarlo Succi. “Balancing Agility and Formalism in Software Engineering”. In:
ed. by Bertrand Meyer, Jerzy R. Nawrocki, and Bartosz Walter. Springer-Verlag,
2008. Chap. A Case Study on the Impact of Refactoring on Quality and Pro-
ductivity in an Agile Team, pp. 252-266. 1SBN: 978-3-540-85278-0.

[51] Jacek Ratzinger, Michael Fischer, and Harald Gall. “Improving Evolvability
Through Refactoring”. In: SIGSOFT Softw. Eng. Notes 30.4 (May 2005), pp. 1-
5.

[52] Serge Demeyer. “Refactor conditionals into polymorphism: what’s the perfor-
mance cost of introducing virtual calls?” In: Proc. of the 21st IEEE Int. Con-
ference on Software Maintenance, 2005. ICSM’05. IEEE. 2005, pp. 627-630.

[53] Konstantinos Stroggylos and Diomidis Spinellis. “Refactoring—Does It Improve
Software Quality?” In: Proc. of the 5th Int. Workshop on Software Quality. IEEE
Comp. Soc. 2007, p. 10.

[54] Mohammad Alshayeb. “Empirical Investigation of Refactoring Effect on Soft-
ware Quality”. In: Inf. Softw. Technol. 51.9 (Sept. 2009), pp. 1319-1326.

[55] Birgit Geppert, Audris Mockus, and Frank Rossler. “Refactoring for Change-
ability: A Way to Go?” In: Proceedings of the 11th IEEE International Software
Metrics Symposium. METRICS ’05. IEEE Computer Society, 2005, pp. 13—.
ISBN: (0-7695-2371-4.

[56] D. Wilking, U. F. Kahn, and S. Kowalewski. “An empirical evaluation of refac-
toring”. eng. In: e-Informatica Software Engineering Journal Vol. 1, nr 1 (2007),
pp. 27-42.

[57] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny
Dig. “A Comparative Study of Manual and Automated Refactorings”. In: Proc.
of the 277th European Conference on Object-Oriented Programming (ECOOP2013).
Montpellier, France: Springer-Verlag, 2013, pp. 552-576. 1SBN: 978-3-642-39037-
1.

[58] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. “How We Refac-
tor, and How We Know It”. In: Proc. of the 31st Int. Conference on Software
Engineering (ICSE2009). TEEE Comp. Soc., 2009, pp. 287-297. 1SBN: 978-1-
4244-3453-4.

133

Conclusions

[59]

[60]

[61]

[62]

[63]

[64]

[65]

|66]

[67]

|68

[69]

Ronny Kolb, Dirk Muthig, Thomas Patzke, and Kazuyuki Yamauchi. “Refactor-
ing a Legacy Component for Reuse in a Software Product Line: A Case Study:
Practice Articles”. In: J. Softw. Maint. Evol. 18.2 (Mar. 2006), pp. 109-132.
ISSN: 1532-060X.

Miryung Kim, Dongxiang Cai, and Sunghun Kim. “An Empirical Investigation
into the Role of API-level Refactorings During Software Evolution”. In: Pro-
ceedings of the 33rd International Conference on Software Engineering. ICSE
'11. ACM Press, 2011, pp. 151-160. 1SBN: 978-1-4503-0445-0. DOT: 10 . 1145/
1985793.1985816.

Aiko Yamashita and Leon Moonen. “To What Extent Can Maintenance Prob-
lems Be Predicted by Code Smell Detection? - An Empirical Study”. In: Inf.
Softw. Technol. 55.12 (Dec. 2013), pp. 2223-2242. 1sSN: 0950-5849.

Aiko Yamashita and Steve Counsell. “Code smells as system-level indicators of
maintainability: An empirical study”. In: Journal of Systems and Software 86.10
(2013), pp. 2639 —2653. 1SSN: 0164-1212.

Aiko Yamashita. “Assessing the Capability of Code Smells to Explain Mainte-
nance Problems: An Empirical Study Combining Quantitative and Qualitative
Data”. In: Empirical Softw. Engg. 19.4 (Aug. 2014), pp. 1111-1143. 1SSN: 1382-
3256.

Tracy Hall, Min Zhang, David Bowes, and Yi Sun. “Some Code Smells Have a
Significant but Small Effect on Faults”. In: ACM Trans. Softw. Eng. Methodol.
23.4 (Sept. 2014), 33:1-33:39. 15SN: 1049-331X.

Ali Ouni, Marouane Kessentini, Slim Bechikh, and Houari Sahraoui. “Prioritiz-
ing Code-smells Correction Tasks Using Chemical Reaction Optimization”. In:
Software Quality Control 23.2 (June 2015), pp. 323-361. 1SSN: 0963-9314.

Everton. Guimaraes, Alessandro Garcia, Eduardo Figueiredo, and Yuanfang
Cai. “Prioritizing Software Anomalies with Software Metrics and Architecture
Blueprints: A Controlled Experiment”. In: Proceedings of the 5th International
Workshop on Modeling in Software Engineering. MiSE '13. San Francisco, Cal-
ifornia: IEEE Press, 2013, pp. 82-88. 1SBN: 978-1-4673-6447-8.

Foutse Khomh, Massimiliano Di Penta, Yann-Gaél Guéhéneuc, and Giuliano
Antoniol. “An Exploratory Study of the Impact of Antipatterns on Class Change-
and Fault-proneness”. In: Empirical Softw. Engg. 17.3 (June 2012), pp. 243-275.
ISSN: 1382-3256.

Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.
“An Empirical Study of the Impact of Two Antipatterns, Blob and Spaghetti
Code, on Program Comprehension”. In: Proceedings of the 2011 15th Euro-
pean Conference on Software Maintenance and Reengineering. CSMR ’11. IEEE
Computer Society, 2011, pp. 181-190. 1SBN: 978-0-7695-4343-7.

Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. “On the Impact of
Design Flaws on Software Defects”. In: Proceedings of the 2010 10th Interna-
tional Conference on Quality Software. QSIC ’10. IEEE Computer Society, 2010,
pp. 23-31. 1SBN: 978-0-7695-4131-0.

134

https://doi.org/10.1145/1985793.1985815
https://doi.org/10.1145/1985793.1985815

Conclusions

[70]

[71]

[72]

73]
[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

Alexander Chatzigeorgiou and Anastasios Manakos. “Investigating the Evolu-
tion of Code Smells in Object-oriented Systems”. In: Innov. Syst. Softw. Eng.
10.1 (Mar. 2014), pp. 3-18. 1SSN: 1614-5046.

Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. “A Mul-
tidimensional Empirical Study on Refactoring Activity”. In: Proceedings of the
2013 Conference of the Center for Advanced Studies on Collaborative Research.
CASCON "13. Ontario, Canada: IBM Corp., 2013, pp. 132-146.

Francesca Arcelli Fontana, Marco Mangiacavalli, Domenico Pochiero, and Marco
Zanoni. “On Experimenting Refactoring Tools to Remove Code Smells”. In:
Scientific Workshop Proceedings of the XP2015. XP 15 workshops. Helsinki,
Finland: ACM, 2015, 7:1-7:8. 1ISBN: 978-1-4503-3409-9. DOI: 10.1145/2764979.
2764986.

Oracle Corporation. OpenJDK website: hitp://openjdk.java.net/.

Mark Harman and Laurence Tratt. “Pareto Optimal Search Based Refactoring
at the Design Level”. In: Proceedings of the 9th Annual Conference on Genetic
and FEwvolutionary Computation. GECCO ’07. London, England: ACM, 2007,
pp. 1106-1113. 1SBN: 978-1-59593-697-4. DOI: 10.1145/1276958.1277176. URL:
http://doi.acm.org/10.1145/1276958.1277176.

Mark O’Keeffe and Mel O Cinnéide. “Search-based refactoring for software main-
tenance”. In: Journal of Systems and Software 81.4 (2008). Selected papers from
the 10th Conference on Software Maintenance and Reengineering (CSMR 2006),
pp. 502 —516. 18SN: 0164-1212. DOT: http://dx.doi.org/10.1016/j. jss.
2007.06.003. URL: http://www.sciencedirect.com/science/article/pii/
50164121207001409.

A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi. “Search-based refactor-
ing: Towards semantics preservation”. In: Software Maintenance (ICSM), 2012
28th IEEE International Conference on. 2012, pp. 347-356. DOI: 10. 1109/
ICSM.2012.6405292.

Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial databases: with ap-
plication to GIS. Morgan Kaufmann, 2001.

Antonin Guttman. “R-trees: A Dynamic Index Structure for Spatial Searching”.
In: Proceedings of the 1984 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’84. Boston, Massachusetts: ACM, 1984, pp. 47-57.
ISBN: (0-89791-128-8. DOI: 10.1145/602259.602266. URL: http://doi.acm.
org/10.1145/602259.602266.

Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos, and Y. Theodoridis. R-
Trees: Theory and Applications. Advanced Information and Knowledge Pro-
cessing. Springer London, 2010. 1SBN: 9781846282935. URL: https://books .
google.hu/books?id=1mu099DNIUWC.

Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. “The Vision of Software
Clone Management: Past, Present, and Future (keynote paper)”. In: Proc. of
CSMR-WCRE. IEEE. 2014, pp. 18-33.

Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-oriented reengi-
neering patterns. Elsevier, 2002.

135

https://doi.org/10.1145/2764979.2764986
https://doi.org/10.1145/2764979.2764986
https://doi.org/10.1145/1276958.1277176
http://doi.acm.org/10.1145/1276958.1277176
https://doi.org/http://dx.doi.org/10.1016/j.jss.2007.06.003
https://doi.org/http://dx.doi.org/10.1016/j.jss.2007.06.003
http://www.sciencedirect.com/science/article/pii/S0164121207001409
http://www.sciencedirect.com/science/article/pii/S0164121207001409
https://doi.org/10.1109/ICSM.2012.6405292
https://doi.org/10.1109/ICSM.2012.6405292
https://doi.org/10.1145/602259.602266
http://doi.acm.org/10.1145/602259.602266
http://doi.acm.org/10.1145/602259.602266
https://books.google.hu/books?id=1mu099DN9UwC
https://books.google.hu/books?id=1mu099DN9UwC

Conclusions

[82]
[83]

[84]

[85]

[36]

87]

38

[39]
[90]
[91]
[92]

(93]

[94]

[95]
[96]
[97]

98]

The Eclipse Project. Eclipse Java development tools (JDT). http : / /wuw .
eclipse.org/jdt/. (Visited on 05/16,/2013).

JetBrains. IntelliJ IDEA — The Java and Polyglot IDE. http://wuw. jetbrains.
com/idea/. (Visited on 05/16,/2013).

Aikaterini Christopoulou, E. A. Giakoumakis, Vassilis E. Zafeiris, and Vasiliki
Soukara. “Automated Refactoring to the Strategy Design Pattern”. In: Informa-
tion and Software Technology 54.11 (Nov. 2012), pp. 1202-1214. 18SN: 0950-5849.
DOI: 10.1016/j.infsof.2012.05.004.

Refactorlt.
http://sourceforge.net/projects/refactorit/. 2008.

iPlasma.

http://loose . upt . ro/reengineering/research/iplasma. (Visited on
05/16,/2013).

inCode.

http://www.intooitus.com/products/incode. (Visited on 05/16/2013).

Javier Pérez and Yania Crespo. “Perspectives on Automated Correction of Bad
Smells”. In: Proceedings of the Joint International and Annual ERCIM Work-
shops on Principles of Software Evolution (IWPSE) and Software Fvolution
(Evol) Workshops. IWPSE-Evol '09. Amsterdam, The Netherlands: ACM, 2009,
pp- 99-108. 1SBN: 978-1-60558-678-6. DOI: 10.1145/1595808.1595827.

Klocwork Inc. Klocwork Insight. http: //www . klocwork . com/. (Visited on
05/16/2013).

Coverity. Coverity Static Analysis Verification Engine. http://www.coverity.
com/. (Visited on 05/16/2013).

FindBugs. — Find Bugs in Java Programs. http://findbugs . sourceforge.
net/. (Visited on 05/16,/2013).

Checkstyle. — static code analysis tool. http : //checkstyle . sourceforge .
net/. (Visited on 05/16,/2013).

FxCop.
https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80) .aspx.
(Visited on 05/16/2013).

DMS Software Reengineering Toolkit.
http://www.semdesigns.com/products/DMS/DMSToolkit . html. (Visited on
05/16/2013).

ReSharper.

http://www.jetbrains.com/resharper/. (Visited on 05/16/2013).

CodeRush.
https://www.devexpress.com/products/coderush/. (Visited on 05/16,/2013).

Refaster.
https://github.com/google/Refaster. (Visited on 05/16,/2013).

Louis Wasserman. “Scalable, Example-based Refactorings with Refaster”. In:
Proceedings of the 2013 ACM Workshop on Workshop on Refactoring Tools.
WRT ’13. Indianapolis, Indiana, USA: ACM, 2013, pp. 25-28. ISBN: 978-1-
4503-2604-9. DOI: 10.1145/2541348.2541355.

136

http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
https://doi.org/10.1016/j.infsof.2012.05.004
http://sourceforge.net/projects/refactorit/
http://loose.upt.ro/reengineering/research/iplasma
http://www.intooitus.com/products/incode
https://doi.org/10.1145/1595808.1595827
http://www.klocwork.com/
http://www.coverity.com/
http://www.coverity.com/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
http://www.semdesigns.com/products/DMS/DMSToolkit.html
http://www.jetbrains.com/resharper/
https://www.devexpress.com/products/coderush/
https://github.com/google/Refaster
https://doi.org/10.1145/2541348.2541355

Conclusions

[99]

[100]

[101]

|102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

Zhenchang Xing and Eleni Stroulia. “Refactoring Practice: How It is and How
It Should Be Supported - An Eclipse Case Study”. In: Proc. of the 22nd IEEE
Int. Conference on Software Maintenance (ICSM2006). IEEE Comp. Soc., 2006,
pp- 458-468. 1SBN: 0-7695-2354-4. DOI: 10.1109/ICSM.2006.52.

Danny Dig and Ralph Johnson. “The Role of Refactorings in API Evolution”. In:
Proc. of the 21st IEEE Int. Conference on Software Maintenance (ICSM2005).
IEEE Comp. Soc., 2005, pp. 389-398. 1SBN: 0-7695-2368-4. DOT: 10.1109/ICSM.
2005.90.

Xi Ge and Emerson Murphy-Hill. “BeneFactor: A Flexible Refactoring Tool for
Eclipse”. In: Proc. of the ACM Int. Conference Companion on Object Oriented

Programming Systems Languages and Applications Companion (OOPSLA2011).
Portland, Oregon, USA: ACM, 2011, pp. 19-20. 1SBN: 978-1-4503-0942-4.

Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. “Reconciling Manual and
Automatic Refactoring”. In: Proc. of the 34th Int. Conference on Software FEn-
gineering (ICSE2012). IEEE Press, 2012, pp. 211-221. 1SBN: 978-1-4673-1067-3.

Johannes Henkel and Amer Diwan. “CatchUp!: Capturing and Replaying Refac-
torings to Support API Evolution”. In: Proc. of the 27th Int. Conference on
Software Engineering (ICSE2005). St. Louis, MO, USA: ACM, 2005, pp. 274-
283. ISBN: 1-58113-963-2. DOI: 10.1145/1062455.1062512.

Adam C. Jensen and Betty H.C. Cheng. “On the Use of Genetic Program-
ming for Automated Refactoring and the Introduction of Design Patterns”. In:
Proc. of the 12th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO02010). Portland, Oregon, USA: ACM, 2010, pp. 1341-1348. ISBN:
978-1-4503-0072-8. DOI: 10.1145/1830483.1830731.

Asger Feldthaus and Anders Moller. “Semi-automatic Rename Refactoring for
JavaScript”. In: SIGPLAN Not. 48.10 (Oct. 2013), pp. 323-338. 1SSN: 0362-1340.
DOI: 10.1145/2544173.2509520.

Danilo Silva, Ricardo Terra, and Marco Tulio Valente. “Recommending Auto-
mated Extract Method Refactorings”. In: Proc. of the 22nd Int. Conference on
Program Comprehension (ICPC2014). Hyderabad, India: ACM, 2014, pp. 146
156. 1SBN: 978-1-4503-2879-1. DOT: 10.1145/2597008.2597141.

Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. “Active Support for Clone
Refactoring: A Perspective”. In: Proc. of the 2013 ACM Workshop on Work-
shop on Refactoring Tools (WRT2013). Indianapolis, Indiana, USA: ACM, 2013,
pp. 13-16. 1SBN: 978-1-4503-2604-9. DOI: 10.1145/2541348.2541352.

Miryung Kim, T. Zimmermann, and N. Nagappan. “An Empirical Study of
Refactoring Challenges and Benefits at Microsoft”. In: IEFE Transactions on
Software Engineering 40.7 (2014), pp. 633-649. 1sSN: 0098-5589.

SonarQube Homepage. URL: https://www.sonarqube.org/.

Géabor Bergmann, Zoltan Ujhelyi, Istvan Rath, and Déaniel Varré. “A Graph
Query Language for EMF Models”. In: Theory and Practice of Model Trans-
formations. Vol. 6707. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2011, pp. 167-182. 1SBN: 978-3-642-21731-9. DOI: 10.1007/978-3-
642-21732-6_12.

137

https://doi.org/10.1109/ICSM.2006.52
https://doi.org/10.1109/ICSM.2005.90
https://doi.org/10.1109/ICSM.2005.90
https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1145/1830483.1830731
https://doi.org/10.1145/2544173.2509520
https://doi.org/10.1145/2597008.2597141
https://doi.org/10.1145/2541348.2541352
https://www.sonarqube.org/
https://doi.org/10.1007/978-3-642-21732-6_12
https://doi.org/10.1007/978-3-642-21732-6_12

Conclusions

[111]

[112]

[113]

114]

[115]

|116]

[117]

[118]

[119]

|120]

[121]

[122]

Object Constraint Language Specification (Version 2.3.1). http://www . omg .
org/spec/0CL/2.3.1/. Object Management Group. 2012.

Laszlo Vidacs. “Refactoring of C/C++ Preprocessor Constructs at the Model
Level”. In: Proceedings of the 4th International Conference on Software and Data
Technologies (ICSOFT 2009). Sofia, Bulgaria, 2009, pp. 232-237.

Gergely Varro, Frederik Deckwerth, Martin Wieber, and Andy Schiirr. “An Algo-
rithm for Generating Model-Sensitive Search Plans for EMF Models”. In: Theory
and Practice of Model Transformations. Vol. 7307. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, pp. 224-239. ISBN: 978-3-642-30475-0.
DOI: 10.1007/978-3-642-30476-7_15.

G. Bergmann, A. Okrés, I. Rath, D. Varré, and G. Varr6. “Incremental pattern
matching in the VIATRA transformation system”. In: Proceedings of 3rd Inter-

national Workshop on Graph and Model Transformation (GRaMoT 2008). 30th
International Conference on Software Engineering. ACM, 2008, pp. 25-32.

Laszlo Vidacs, Arpad Beszédes, and Rudolf Ferenc. “Columbus Schema for
C/C++ Preprocessing”. In: Proceedings of the 8th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2004). Tampere, Finland: IEEE
Computer Society, Mar. 2004, pp. 75-84.

Lars Hamann, Laszl6 Vidacs, Martin Gogolla, and Mirco Kuhlmann. “Abstract
Runtime Monitoring with USE”. In: Proceedings of the 16th European Confer-
ence on Software Maintenance and Reengineering (CSMR 2012). Szeged, Hun-
gary: IEEE Computer Society, 2012, pp. 549-552. DOT: 10.1109/CSMR..2012.73.

L. Schrettner, L.J. Fiilop, R. Ferenc, and T. Gyimé6thy. “Visualization of soft-
ware architecture graphs of Java systems: managing propagated low level depen-
dencies”. In: Proceedings of the 8th International Conference on the Principles
and Practice of Programming in Java (PPPJ 2010). New York, NY, USA: ACM,
2010, 148-157. 1SBN: 978-1-4503-0269-2. DOI: http://doi.acm.org/10.1145/
1852761.1852783.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995. 1SBN: (0-201-63361-2.

Gébor Bergmann. “Incremental Model Queries in Model-Driven Design”. Ph.D.
dissertation. Budapest: Budapest University of Technology and Economics, 2013.

Zoltan Ujhelyi, Akos Horvath, Daniel Varro, Norbert Istvan Csiszar, Gabor
Sz6ke, Léaszlé Vidacs, and Rudolf Ferenc. “Anti-pattern detection with model
queries: A comparison of approaches”. In: Proceedings of IEEE Conference on
Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE
2014), 2014 Software Evolution Week. 2014, pp. 293-302. DOT: 10.1109/CSMR-
WCRE.2014.6747181.

U. Nickel, J. Niere, and A. Ziindorf. “Tool demonstration: The FUJABA en-
vironment”. In: Proceedings of the 22nd International Conference on Software
Engineering (ICSE 2000). Limerick, Ireland: ACM Press, 2000, pp. 742-745.

The ATLAS Transformation Language. http://www.eclipse.org/atl. AT-
LAS Group. 2014.

138

http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/
https://doi.org/10.1007/978-3-642-30476-7_15
https://doi.org/10.1109/CSMR.2012.73
https://doi.org/http://doi.acm.org/10.1145/1852761.1852783
https://doi.org/http://doi.acm.org/10.1145/1852761.1852783
https://doi.org/10.1109/CSMR-WCRE.2014.6747181
https://doi.org/10.1109/CSMR-WCRE.2014.6747181
http://www.eclipse.org/atl

Conclusions

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Rubino Geifl, GernotVeit Batz, Daniel Grund, Sebastian Hack, and Adam Sza-
lkowski. “GrGen: A Fast SPO-Based Graph Rewriting Tool”. English. In: Graph
Transformations. Vol. 4178. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006, pp. 383-397. 1SBN: 978-3-540-38870-8. DOI: 10.1007/11841883_
27. URL: http://dx.doi.org/10.1007/11841883_27.

David Hearnden, Michael Lawley, and Kerry Raymond. “Incremental Model
Transformation for the Evolution of Model-Driven Systems”. English. In: Model
Driven Engineering Languages and Systems. Vol. 4199. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2006, pp. 321-335. 1SBN: 978-3-540-
45772-5. DOI: 10.1007/11880240_23. URL: http://dx.doi.org/10.1007/
11880240_23.

Charles L. Forgy. “Rete: A fast algorithm for the many pattern/many object
pattern match problem”. In: Artificial Intelligence 19.1 (Sept. 1982), pp. 17-37.
1SSN: 0004-3702. DOT: 10.1016/0004-3702(82)90020-0.

Drools - The Business Logic integration Platform. http://www. jboss.org/
drools. 2014.

AmirHossein Ghamarian, Arash Jalali, and Arend Rensink. “Incremental pat-

tern matching in graph-based state space exploration”. In: Electronic Commu-
nications of the EASST 32 (2011).

Zoltan Ujhelyi, Gabor Bergmann, Abel Hegediis, Akos Horvath, Benedek Izso,
Istvan Rath, Zoltan Szatmari, and Daniel Varro. “EMF-IncQuery: An integrated
development environment for live model queries”. In: Science of Computer Pro-
gramming 98, Part 1.0 (2015). Fifth issue of Experimental Software and Toolk-
its (EST): A special issue on Academics Modelling with Eclipse (ACME2012),
pp. 80-99. 1SSN: 0167-6423. DOI: http://dx.doi.org/10.1016/j.scico.
2014.01.004. URL: http://www.sciencedirect.com/science/article/pii/
S50167642314000082.

Benedek Izs6, Zoltan Szatmari, Gabor Bergmann, Akos Horvath, and Istvan
Rath. “Towards Precise Metrics for Predicting Graph Query Performance”. In:
2013 IEEE/ACM 28th International Conference on Automated Software Engi-
neering (ASE 2013). Silicon Valley, CA, USA: IEEE, 2013, pp. 412-431. por:
10.1109/ASE.2013.6693100.

Jordi Cabot and Ernest Teniente. “A metric for measuring the complexity of
OCL expressions”. In: Proceedings of the Model Size Metrics Workshop @ MoD-
ELS 2006. 2006.

Eclipse OCL Project. MDT-OCL website. https://projects.eclipse.org/
projects/modeling.mdt.ocl. 2014.

Akos Horvath, Gabor Bergmann, Istvan Réth, and Daniel Varré. “Experimen-
tal assessment of combining pattern matching strategies with VIATRA2”. En-
glish. In: International Journal on Software Tools for Technology Transfer 12.3-4
(2010), pp. 211-230. 1SSN: 1433-2779. DOIL: 10.1007/510009-010-0149-7. URL:
http://dx.doi.org/10.1007/s10009-010-0149-7.

139

https://doi.org/10.1007/11841883_27
https://doi.org/10.1007/11841883_27
http://dx.doi.org/10.1007/11841883_27
https://doi.org/10.1007/11880240_23
http://dx.doi.org/10.1007/11880240_23
http://dx.doi.org/10.1007/11880240_23
https://doi.org/10.1016/0004-3702(82)90020-0
http://www.jboss.org/drools
http://www.jboss.org/drools
https://doi.org/http://dx.doi.org/10.1016/j.scico.2014.01.004
https://doi.org/http://dx.doi.org/10.1016/j.scico.2014.01.004
http://www.sciencedirect.com/science/article/pii/S0167642314000082
http://www.sciencedirect.com/science/article/pii/S0167642314000082
https://doi.org/10.1109/ASE.2013.6693100
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://doi.org/10.1007/s10009-010-0149-7
http://dx.doi.org/10.1007/s10009-010-0149-7

Conclusions

133

[134)

[135]

[136]

[137]

138

[139]

[140]

[141]

Géabor Szarnyas, Benedek 1zs6, Istvan Rath, Dénes Harmath, Gabor Bergmann,
and Déniel Varré. “IncQuery-D: A Distributed Incremental Model Query Frame-
work in the Cloud”. English. In: Model-Driven Engineering Languages and Sys-
tems. Vol. 8767. Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 653-669. 1SBN: 978-3-319-11652-5. DOI: 10.1007/978-3-
319-11653-2_40. URL: http://dx.doi.org/10.1007/978-3-319-11653-
2_40.

Javier Pérez, Yania Crespo, Berthold Hoffmann, and Tom Mens. “A case study
to evaluate the suitability of graph transformation tools for program refactor-
ing”. English. In: International Journal on Software Tools for Technology Trans-
fer 12.3-4 (2010), pp. 183-199. 1sSN: 1433-2779. DOT: 10.1007/s10009-010-
0153-7y.

Tassilo Horn. “Program Understanding: A Reengineering Case for the Trans-
formation Tool Contest”. In: Proceedings Fifth Transformation Tool Contest,
Ziirich, Switzerland, June 29-30 2011. Vol. 74. Electronic Proceedings in Theo-
retical Computer Science. Open Publishing Association, 2011, pp. 17-21. DOI:
10.4204/EPTCS.74.3.

Javier Espinazo Pagan and Jesiis Garcia Molina. “Querying large models effi-
ciently”. In: Information and Software Technology 56.6 (2014), pp. 586 —622.
ISSN: 0950-5849. DOI: http://dx .doi.org/10.1016/j . infsof . 2014 .
01.005. URL: http://www.sciencedirect . com/science/article/pii/
50950584914000160.

Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. “Formalizing
refactorings with graph transformations”. In: Journal of Software Maintenance
and Evolution: Research and Practice 17.4 (2005), pp. 247-276. 1SSN: 1532-0618.
DOT: 10.1002/smr . 316.

Jorg Niere, Wilhelm Schifer, Jorg P. Wadsack, Lothar Wendehals, and Jim
Welsh. “Towards pattern-based design recovery”. In: Proceedings of the 24th In-
ternational Conference on Software Engineering. (ICSE 2002). Orlando, Florida:
ACM, 2002, pp. 338-348. 1SBN: 1-58113-472-X. DOIL: 10.1145/581339.581382.

Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende.
“Closing the Gap between Modelling and Java”. English. In: Software Language
Engineering. Vol. 5969. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, pp. 374-383. 1SBN: 978-3-642-12106-7. DOI: 10.1007/978-3-
642-12107-4_25. URL: http://dx.doi.org/10.1007/978-3-642-12107-
4_25.

Mirko Seifert and Roland Samlaus. “Static Source Code Analysis using OCL”.
en. In: Electronic Communications of the EASST 15.0 (Jan. 2008). 1SSN: 1863-
2122. URL: http://journal.ub.tu-berlin.de/eceasst/article/view/174
(visited on 06/15/2014).

Thorsten Arendt and Gabriele Taentzer. “Integration of Smells and Refactorings
Within the Eclipse Modeling Framework”. In: Proceedings of the Fifth Workshop
on Refactoring Tools. (WRT 2012). Rapperswil, Switzerland: ACM, 2012, pp. 8
15. 1SBN: 978-1-4503-1500-5. DOI: 10 . 1145 /2328876 . 2328878. URL: http:
//doi.acm.org/10.1145/2328876.2328878.

140

https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1007/978-3-319-11653-2_40
http://dx.doi.org/10.1007/978-3-319-11653-2_40
http://dx.doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1007/s10009-010-0153-y
https://doi.org/10.1007/s10009-010-0153-y
https://doi.org/10.4204/EPTCS.74.3
https://doi.org/http://dx.doi.org/10.1016/j.infsof.2014.01.005
https://doi.org/http://dx.doi.org/10.1016/j.infsof.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0950584914000160
http://www.sciencedirect.com/science/article/pii/S0950584914000160
https://doi.org/10.1002/smr.316
https://doi.org/10.1145/581339.581382
https://doi.org/10.1007/978-3-642-12107-4_25
https://doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://journal.ub.tu-berlin.de/eceasst/article/view/174
https://doi.org/10.1145/2328876.2328878
http://doi.acm.org/10.1145/2328876.2328878
http://doi.acm.org/10.1145/2328876.2328878

Conclusions

[142]

[143]

[144]

[145]

|146]

[147]

[148]

[149]

FrontEndART Software Ltd. SourceMeter module: FaultHunter. http://www.
frontendart.com/. 2014. (Visited on 2014).

Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. “Why Unified Is not
Universal”. In: «UML»’99 — The Unified Modeling Language. Vol. 1723. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1999, pp. 630-644. ISBN:
978-3-540-66712-4. DOT: 10.1007/3-540-46852-8_44.

Stéphane Ducasse, Tudor Girba, Adrian Kuhn, and Lukas Renggli. “Meta-
environment and executable meta-language using Smalltalk: an experience re-
port”. In: Software & Systems Modeling 8.1 (2009), pp. 5-19. 1SSN: 1619-1366.
DOI: 10.1007/810270-008-0081-4.

P. Klint, T. van der Storm, and J. J. Vinju. “Rascal: A Domain Specific Lan-
guage For Source Code Analysis And Manipulation”. In: Proceedings of IEEE
International Working Conference on Source Code Analysis and Manipulation

(SCAM 2009). IEEE, 2009, pp. 168-177.

Daniel Speicher, Malte Appeltauer, and Giinter Kniesel. “Code Analyses for
Refactoring by Source Code Patterns and Logical Queries”. In: Proceedings of
the 1st Workshop on Refactoring Tools (WRT 2007). 2007, pp. 17-20.

Coen De Roover, Carlos Noguera, Andy Kellens, and Vivane Jonckers. “The
SOUL tool suite for querying programs in symbiosis with Eclipse”. In: Proceed-
wngs of the 9th International Conference on Principles and Practice of Program-
ming in Java. (PPPJ 2011). Kongens Lyngby, Denmark: ACM, 2011, pp. 71-80.
ISBN: 978-1-4503-0935-6. DOI: 10.1145/2093157.2093168.

Elnar Hajiyev, Mathieu Verbaere, and Oege Moor. “codeQuest: Scalable Source
Code Queries with Datalog”. In: ECOOP 2006 — Object-Oriented Programming.
Vol. 4067. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006,
pp. 2-27. 1ISBN: 978-3-540-35726-1. DOI: 10.1007/11785477_2.

N. Moha, Y. Guéhéneuc, L. Duchien, and A. Le Meur. “DECOR: A Method
for the Specification and Detection of Code and Design Smells”. In: Software
Engineering, IEEE Transactions on 36.1 (2010), pp. 20-36. 1SSN: 0098-5589.
DOI: 10.1109/TSE.2009.50.

This research was supported by the EU-funded Hungarian national grant
GINOP-2.3.2-15-2016-00037 titled “Internet of Living Things”.

141

http://www.frontendart.com/
http://www.frontendart.com/
https://doi.org/10.1007/3-540-46852-8_44
https://doi.org/10.1007/s10270-008-0081-4
https://doi.org/10.1145/2093157.2093168
https://doi.org/10.1007/11785477_2
https://doi.org/10.1109/TSE.2009.50

Appendices

143

PMD rule violations

The following pages contain descriptions of rule violations from the official PMD web-
site |27]. Only those violations are listed here, which are mentioned in the thesis.

AddEmptyString

Finds empty string literals which are being added. This is an inefficient way to convert
any type to a String.

+ String s = "" + 123; // bad
:» String t = Integer.toString(456); // ok

ArraylIsStoredDirectly

Constructors and methods receiving arrays should clone objects and store the copy.
This prevents that future changes from the user affect the internal functionality

1+ public class Foo {
2 private String [] x;
3 public void foo (String [] param) {

4 // Don’t do this, make a copy of the array at least
5 this.x = param;

6 }

7}

AtLeastOneConstructor

Each class should declare at least one constructor.

+ public class Foo {
2 // mno constructor! not good!

s}

145

PMD rule violations

AvoidCatchingNPE

Code should never throw NPE under normal circumstances. A catch block may hide
the original error, causing other more subtle errors in its wake.

~
+ public class Foo {

2 void bar() {

3 try {

s // do something

5 } catch (NullPointerException npe) {
6 }

7 }

s}

AvoidCatchingThrowable

This is dangerous because it casts too wide a net; it can catch things like OutOfMem-
oryError.

g
+ public class Foo {

2 public void bar() {

3 try {

s // do something

5 } catch (Throwable th) { //Should not catch
throwable

6 th.printStackTrace () ;

7 }

8 }

s

AvoidDuplicateLiterals

Code containing duplicate String literals can usually be improved by declaring the
String as a constant field.

1+ public class Foo {

2 private void bar () {

s buz ("Howdy") ;

s buz ("Howdy") ;

5 buz ("Howdy") ;

6 buz ("Howdy") ;

7 }

8 private void buz(String x) {3}
o

AvoidInstanceofChecksInCatchClause

Each caught exception type should be handled in its own catch clause.

146

PMD rule violations

+ try { // Avoid this

2 // do something

s } catch (Exception ee) {

s if (ee instanceof IO0Exception) {
5 cleanup () ;

6 }

7}

s try { // Prefer this:
o // do something
o } catch (IOException ee) {

1 cleanup () ;
12 }
AvoidPrintStackTrace

Avoid printStackTrace(); use a logger call instead.

p
1 class Foo {

2 void bar () {

3 try {

. // do something

5 } catch (Exception e) {
6 e.printStackTrace () ;
7 }

8 }

s}

AvoidReassigningParameters

Reassigning values to parameters is a questionable practice. Use a temporary local
variable instead.

~
+ public class Foo {

2 private void foo(String bar) {
3 bar = "something else";

s }

s}

AvoidSynchronized AtMethodLevel

Method level synchronization can backfire when new code is added to the method.
Block-level synchronization helps to ensure that only the code that needs synchroniza-
tion gets it.

1+ public class Foo {
2 // Try to avoid this
3 synchronized void foo () {

147

PMD rule violations

. }
5 // Prefer this:
6 void bar() {

7 synchronized (this) {
5 }
5 }
10 F
- J

AvoidThrowingNullPointer Exception

Avoid throwing a NullPointerException - it is confusing because most people will as-
sume that the virtual machine threw it. Consider using an Illegal ArgumentException

instead; this will be clearly seen as a programmer-initiated exception.
s 1

1+ public class Foo {

> void bar() {

3 throw new NullPointerException();
s }

s}

AvoidThrowingRawExceptionTypes

Avoid throwing certain exception types. Rather than throw a raw RuntimeFException,

Throwable, Exception, or Error, use a subclassed exception or error instead.

()
+ public class Foo {

2 public void bar() throws Exception {
3 throw new Exception();

s }

s}

BigIntegerInstantiation

Don’t create instances of already existing BigInteger (BigInteger.ZERO, Biglnteger.ONE)
and for 1.5 on, BigInteger. TEN and BigDecimal (BigDecimal.ZERO, BigDecimal.ONE,
BigDecimal. TEN)

+ public class Test {
2 public static void main(String[] args) {
3 BigInteger bi=new Biglnteger (1);
s BigInteger bi2=new BigInteger ("0");
5 BigInteger bi3=new BigInteger (0.0) ;
6 BigInteger bi4;
7 bi4 = new BigInteger (0);
8 }
s}
. J

148

PMD rule violations

BooleanGetMethodName

Looks for methods named ’getX()” with 'boolean’ as the return type. The convention
is to name these methods "isX()’.

+ public boolean getFoo(); // bad

> public boolean isFoo(); // ok

s public boolean getFoo(boolean bar);
checkParameterizedMethods=true

// ok,

unless

BooleanInstantiation

Avoid instantiating Boolean objects; you can reference Boolean. TRUE, Boolean. FALSE,
or call Boolean.valueOf() instead.

~
+ public class Foo {

2

3

Boolean bar =
Boolean bar

Boolean buz

new Boolean("true") ;
= Boolean.TRUE;

// just do a

Boolean.valueOf (false);

// just do a

Boolean buz = Boolean.FALSE;

ConsecutivelLiteral Appends

Consecutively calling StringBuffer.append with String literals

~

1+ public class Foo {

2 private void bar () {

3 StringBuffer buf = new StringBuffer ();

s buf . append ("Hello") .append (" ") .append("World"); //
bad

5 buf . append ("Hello World");//good

6 }

7}

ConstructorCallsOverridableMethod

Calling overridable methods during construction poses a risk of invoking methods on
an incompletely constructed object and can be difficult to discern. It may leave the
sub-class unable to construct its superclass or forced to replicate the construction pro-
cess completely within itself, losing the ability to call super(). If the default constructor
contains a call to an overridable method, the subclass may be completely uninstan-
tiable. Note that this includes method calls throughout the control flow graph - i.e., if
a constructor Foo() calls a private method bar() that calls a public method buz(), this
denotes a problem.

1

2

public class SeniorClass {
public SeniorClass (){

149

PMD rule violations

3 toString(); //may throw NullPointerException if
overridden
: }
5 public String toString(){
6 return "IAmSeniorClass";
7 }
s}
o public class JuniorClass extends SeniorClass {
10 private String name;
1 public JuniorClass (){
12 super () ; //Automatic call leads to
NullPointerException
13 name = "JuniorClass'";
14 }
15 public String toString (){
16 return name.toUpperCase ();
17 }
18 }
=
EmptyCatchBlock

Empty Catch Block finds instances where an exception is caught, but nothing is done.
In most circumstances, this swallows an exception which should either be acted on or
reported.

~

+ public void doSomething () {

2 try {
3 FileInputStream fis = new FileInputStream("/tmp/
bugger") ;
. } catch (IOException ioe) {
5 // mnot good
6 }
7}
EmptyIfStmt

Empty If Statement finds instances where a condition is checked but nothing is done
about it.

+ public class Foo {

2 void bar(int x) {
3 if (x == 0) {

s // empty!

5 }

6 }

7

150

PMD rule violations

ExceptionAsFlowControl

Using Exceptions as flow control leads to GOTOish code and obscures true exceptions
when debugging.

1

2

11

12

13

public class Foo {
void bar () {
try {
try A
} catch (Exception e) {
throw new WrapperException(e);
// this is essentially a GOTO to the
WrapperException catch block
}
} catch (WrapperException e) {
// do some more stuff

by

IfElseStmtsMustUseBraces

Avoid using if..else statements without using curly braces.

public void doSomething () {
// this is OK
if (foo) x++;
// but this is not
if (foo)
x=x+1;
else
x=x-1;

InefficientStringBuffering

Avoid concatenating non literals in a StringBuffer constructor or append().

~
1

2

3

public class Foo {
void bar () {

// Avoid this

StringBuffer sb=new StringBuffer("tmp = "+System.
getProperty("java.io.tmpdir"));

// use instead something like this

StringBuffer sb = new StringBuffer("tmp = ");

sb.append (System.getProperty("java.io.tmpdir"));

151

PMD rule violations

IntegerInstantiation

In JDK 1.5, calling new Integer() causes memory allocation. Integer.valueOf() is more
memory friendly.

1+ public class Foo {
2 private Integer i = new Integer(0); // change to
Integer i = Integer.valueOf (0);

LocalVariableCouldBeFinal

A local variable assigned only once can be declared final.

p
1+ public class Bar {

2 public void foo () {

s String a = "a"; //if a will not be assigned again it
is better to do this:

4 final String b = "b";

5 }

s }

LooseCoupling

Avoid using implementation types (i.e., HashSet); use the interface (i.e, Set) instead.

p
+ import java.util.ArrayLlist;

» import java.util.HashSet;

s public class Bar {

s // Use List instead

5 private ArraylList list = new Arraylist();
6 // Use Set instead

7 public HashSet getFoo () {

8 return new HashSet () ;

5 }

MethodNamingConventions

Method names should always begin with a lower case character, and should not contain
underscores.

1+ public class Foo {
2 public void fooStuff () {
s }

152

PMD rule violations

MethodReturnsInternal Array

Exposing internal arrays directly allows the user to modify some code that could be

critical. Tt is safer to return a copy of the array.
(1

+ public class SecureSystem {
2 UserData [] ud;
3 public UserData [] getUserData() A
4 // Don’t return directly the internal array, return
a copy
5 return ud;
6 }
7}
- J

MethodWithSameNameAsEnclosingClass

Non-constructor methods should not have the same name as the enclosing class.

[, public class MyClass {)
2 // this is bad because it is a method
3 public void MyClass () {}
4 // this is DK because it is a constructor
5 public MyClass () {}
s

NonThreadSafeSingleton

Non-thread safe singletons can result in bad state changes. Eliminate static singletons if
possible by instantiating the object directly. Static singletons are usually not needed as
only a single instance exists anyway. Other possible fixes are to synchronize the entire
method or to use an initialize-on-demand holder class (do not use the double-check

idiom). See Effective Java, item 48.
e I
1+ private static Foo foo = null;

2

s //multiple simultaneous callers may see partially
initialized objects

« public static Foo getFoo() {

5 if (foo==null)

6 foo = new Foo();
7 return foo;
st

OverrideBothEqualsAndHashcode

Override both public boolean Object.equals(Object other), and public int Object.hashCode(),
or override neither. Even if you are inheriting a hashCode() from a parent class, con-
sider implementing hashCode and explicitly delegating to your superclass.

153

PMD rule violations

+ // this is bad

» public class Bar {

3 public boolean equals(Object o) {
. // do some comparison

5 }

s // and so is this

s public class Baz {

10 public int hashCode () {

1 // return some hash value

12 }

13 }

14

s // this is OK

s public class Foo {

17 public boolean equals(Object other) {

18 // do some comparison

19 }

20 public int hashCode () {

21 // return some hash value
22 }

23 }

PositionLiteralsFirstInComparisons

Position literals first in String comparisons - that way if the String is null you won’t
get a NullPointerException, it’ll just return false.

p
1+ class Foo {

2 boolean bar(String x) {

3 return x.equals("2"); // should be "2".equals(x)
s }

s}

PreserveStackTrace

Throwing a new exception from a catch block without passing the original exception
into the new exception will cause the true stack trace to be lost, and can make it
difficult to debug effectively.

+ public class Foo {
2 void good () {

3 try{

s Integer.parselnt("a");
5 } catch(Exception e){

6 throw new Exception(e);

154

PMD rule violations

10

11

12

13

14

15

16

}
void bad() {
tryA{
Integer .parselnt("a");
} catch(Exception e){
throw new Exception(e.getMessage());

+

ProperClonelmplementation

Object clone() should be implemented with super.clone().

1

2

3

4

5

class Foof{
public Object clone (){
return new Foo(); // This 1is bad

3

ReplaceHashtableWithMap
Consider replacing this Hashtable with the newer java.util.Map

f

1

2

3

4

5

public class Foo {
void bar () {
Hashtable h = new Hashtable () ;

ReplaceVector WithList

Consider replacing Vector usages with the newer java.util. ArrayList if expensive thread-
safe operation is not required.

-

1

2

3

4

5

public class Foo {
void bar() {
Vector v = new Vector ();

ShortMethodName

Detects when very short method names are used.

1

2

public class ShortMethod {
public void a(int i) { // Violation

155

PMD rule violations

SignatureDeclareThrowsException

It is unclear which exceptions that can be thrown from the methods. It might be
difficult to document and understand the vague interfaces. Use either a class derived
from RuntimeException or a checked exception.

{ + public void methodThrowingException() throws Exception {}
2}

SimpleDateFormatNeedsLocale

Be sure to specify a Locale when creating a new instance of SimpleDateFormat.

(1
+ public class Foo {

2 // Should specify Locale.US (or whatever)
3 private SimpleDateFormat sdf = new SimpleDateFormat ("
pattern");

SimplifyConditional

No need to check for null before an instanceof; the instanceof keyword returns false
when given a null argument.

1+ class Foo {
2 void bar(0Object x) {
3 if (x != null && x instanceof Bar) {
. // just drop the "x != null" check
5 }
s }
7}
\§ J

SuspiciousHashcodeMethodName

The method name and return type are suspiciously close to hashCode(), which may

mean you are intending to override the hashCode() method.
(7

1+ public class Foo {

2 public int hashcode () {

3 // oops, this probably was supposed to be hashCode
. }

156

PMD rule violations

SwitchStmtsShouldHaveDefault

Switch statements should have a default label.

1

public class Foo {
public void bar () A
int x = 2;
switch (x) A
case 2: int j =

}

8;

UnnecessaryConstructor

This rule detects when a constructor is not necessary; i.e., when there’s only one
constructor, it’s public, has an empty body, and takes no arguments.

1

2

3

public class Foo {
public Foo () {3}
}

UnnecessaryLocalBeforeReturn

Avoid creating unnecessarily local variables.

~

public class Foo {
public int foo () {

int x = doSomething();

return x; // instead,

just ’return doSomething();’

Unnecessary WrapperObjectCreation

Parsing method should be called directly instead.

1

2

3

public int convert(String s) {

int 1, 12;

i = Integer.valueOf(s).intValue(); // this wastes an

object

i = Integer.parselnt(s); //

this is better

i2 = Integer.valueOf(i).intValue(); // this wastes an

object

i2 = i; // this is better

157

PMD rule violations

10 String s3 = Integer.valueOf (i2).toString(); // this
wastes an object

1 s3 = Integer.toString(i2); // this is better

12

13 return 1i2;

14}

UnsynchronizedStaticDateFormatter

SimpleDateFormat is not synchronized. Sun recomends separate format instances for
each thread. If multiple threads must access a static formatter, the formatter must be
synchronized either on method or block level.

+ public class Foo {

2 private static final SimpleDateFormat sdf = new
SimpleDateFormat () ;

s void bar() {

4 sdf . format () ; // bad

5 }

6 synchronized void foo () {

7 sdf . format (); // good

8 }

s }
- J
UnusedImports

Avoid unused import statements.

+ // this is bad
» import java.io.File;
s public class Foo {}

UnusedLocalVariable

Detects when a local variable is declared and/or assigned, but not used.
(7

1+ public class Foo {

2 public void doSomething() {
3 int i = 5; // Unused

s }

UnusedModifier

Fields in interfaces are automatically public static final, and methods are public ab-
stract. Classes or interfaces nested in an interface are automatically public and static
(all nested interfaces are automatically static). For historical reasons, modifiers which
are implied by the context are accepted by the compiler, but are superfluous.

158

PMD rule violations

+ public interface Foo {

2 public abstract void bar(); // both abstract and
public are ignored by the compiler

3 public static final int X = 0; // public, static, and
final all ignored

4 public static class Bar {} // public, static ignored

5 public static interface Baz {} // ditto

s
7 public class Bar {
s public static interface Baz {} // static ignored
I
-
UnusedPrivateField

Detects when a private field is declared and/or assigned a value, but not used.

+ public class Something {
2 private static int FO0 = 2; // Unused

3 private int i = 5; // Unused
4 private int j = 6;
5 public int addOne () {
6 return j++;
7 }
s}
UnusedPrivateMethod

Unused Private Method detects when a private method is declared but is unused.

+ public class Something {
2 private void foo() {} // unused
s}

UseArrayListInsteadOfVector

ArrayList is a much better Collection implementation than Vector.

p
+ public class SimpleTest extends TestCase {

2 public void testX () {

3 Collection ¢ = new Vector ();

4 // This achieves the same with much better
performance

5 // Collection ¢ = new ArrayList();

6 }

7}

159

PMD rule violations

UseEqualsToCompareStrings

Using '=="or ’!="to compare strings only works if intern version is used on both sides

N
1+ class Foo {

2 boolean test(String s) A

3 if (s == "one") return true; //Bad
. if ("two".equals(s)) return true; //Better
5 return false;
6 }
7}
UselndexOfChar

Use String.indexOf(char) when checking for the index of a single character; it executes

faster.
' N

1+ public class Foo {
2 void bar () {
3 String s = "hello world";
4 // avoid this
5 if (s.index0f("d") {}
6 // instead do this
7 if (s.index0f(’d’) {}
8 }
s
UselessParentheses

Sometimes expressions are wrapped in unnecessary parentheses, making them look like
a function call.

1+ public class Foo {
2 boolean bar () {
3 return (true);

UseLocaleWithCaseConversions

When doing a String.toLowerCase()/toUpperCase() call, use a Locale. This avoids
problems with certain locales, i.e. Turkish.

1+ class Foo {

> // BAD
s 1if (x.toLowerCase().equals("1list")) ...
4 /*

5 This will not match "LIST" when in Turkish 1locale
6 The above could be

160

PMD rule violations

10

11

12

13

if (x.toLowerCase(Locale.US).equals("1list"))
or simply

if (x.equalsIgnoreCase("1list"))

* /

// GOOD

String z = a.tolLowerCase(Locale.EN);
}

UseStringBufferForString Appends

Finds usages of += for appending strings.

1

public class Foo {
void bar () {

String a;
a = "foo'":
a += " bar";

// better would be:
// StringBuffer a = new StringBuffer ("foo");
// a.append (" bar);

161

Summary

At some stage in their career every developer eventually encounters the code that no
one understands and that no one wants to touch in case it breaks. But how did the
software become so bad? Presumably no one set out to make it like that. The process
that the software is suffering from is called software erosion — the constant decay of a
software system that occurs in all phases of software development and maintenance.

Software erosion is inevitable. It is typical of software systems that they evolve
over time, so they get enhanced, modified, and adapted to new requirements. As a
side-effect the source code usually becomes more complex, and drifts away from its
original design, then the maintainability costs of the software increases. This is one
reason why a major part of the total software development cost (about 80%) is spent
on software maintenance tasks [10]. One solution to prevent the detrimental effects
of this software erosion, and to improve the maintainability is to perform refactoring
tasks regularly.

The term refactoring became popular after Fowler published a catalog of refactoring
transformations [12|. These transformations were meant to fix so-called ‘bad smells’
(a.k.a. ‘code smells’). Bad smells indicate badly constructed and hard-to-maintain
code segments. For example, the method at hand may be very long, or it may be a
near duplicate of another nearby method. The benefit of understanding code smells is
to help one discover and correct the anti-patterns and bugs that are the real problems.
Eliminating these issues should help one to create quality software.

Keeping software maintainability high is in everybody’s interest. The users get their
new features faster and with fewer bugs, the developers have an easier job modifying the
code, and the company should have lower maintenance costs. Good maintainability can
be achieved via very detailed specification and elaborated development plans. However,
this is very rare and only specific projects have the ability to do so. Because software is
always evolving, in practice, the continuous-refactoring approach seems more feasible.
This means that developers should from time to time refactor the code to make it more
maintainable. A maintenance activity like this keeps the code "fresh” and hopefully
extends its lifetime.

A key goal of this thesis is to contribute to the automated support of software system

163

Summary

maintenance. More specifically, the thesis seeks to propose methodologies, techniques
and tools for:

e analyzing software developers behavior during hand-written and
tool-aided refactoring tasks;

e cvaluating the beneficial and detrimental effects of refactoring on
software quality;

e adapting local-search based anti-pattern detection to model-query
based techniques in general, and to graph pattern matching in par-
ticular.

Evaluation of Developers’ Refactoring Habits

The aim of our experiments was to learn how developers refactor in an industrial
context when they have the required resources (time and money) to do so. Our ex-
periments were carried out on six large-scale industrial Java projects of different sizes
and complexity. We studied refactorings on these systems, and learned which kinds
of issues developers fixed the most, and which of these refactorings were best accord-
ing to certain attributes. We investigated the effects of refactoring commits on source
code maintainability using maintainability measurements based on the ColumbusQM
maintainability model [20].

We found that developers tried to optimize their refactoring process to improve the
quality of these systems and that they preferred to fix concrete coding issues rather
than fix code smells suggested by metrics or automatic smell detectors. We think that
the outcome of one refactoring on the global maintainability of the software product
is hard to predict; moreover, it might sometimes have a detrimental effect. However,
a big refactoring process can have a significant beneficial effect on the maintainability,
which is measurable using a maintainability model. The reason for this is not only
because the developers improve the maintainability of their software, but also because
they will learn from the process and pay more attention to writing more maintainable
new code in the future.

Challenges and Benefits of Automated Refactoring

Here, we sought to develop automated refactorings and for this purpose we designed
FaultBuster, which is an automated refactoring framework. We presented an auto-
mated process for refactoring coding issues. We used the output of a third-party static
analyzer to find refactoring suggestions, then we created an algorithm that was capable
of locating a source code element in an AST based on textual position information.
The algorithm transforms the source code into a searchable geometric space by building
a spatial database.

We had to take into account several expectations of the developers when we de-
signed and implemented the automatic refactoring tools. Among several challenges
of the implementation, we identified some quite important ones, such as performance,
indentation, formatting, understandability, precise problem detection, and the neces-
sity of a precise syntax tree. Some of these have strong influence on the usability of a

164

Summary

refactoring tool, hence they should be considered early on the design phase. We per-
formed an exhaustive evaluation, which confirmed that our approach can be adapted
to a real-life scenario, and it provides viable results.

We made interesting observations about the opinions of the developers who utilized
our tools. The results showed that they found most of the manual refactorings of coding
issues easily implementable via automatic transformations. Also, when we implemented
these transformations and observed the automated solutions, we found that almost all
refactoring types helped them to improve their code.

Employing the QualityGate SourceAudit tool, we analyzed the maintainability
changes caused by the different refactoring tasks. The analysis revealed that out of the
supported coding issue fixes, all but one type of refactoring operation had a consistent
and traceable positive impact on the software systems in the majority of cases. Three
out of the four companies got reached a better maintainable system at the end of the
refactoring phase. We observed however, that the first company preferred low-cost
modifications, hence they performed only two types of refactorings from which remov-
ing unnecessary constructors had a controversial effect on maintainability. Another
observation was that it was sometimes counter productive to just blindly apply the
automatic refactorings without taking a closer look at the proposed code modification.
On several occasions it transpired that the automatic refactoring tool asked for user
input to be able to select the best refactoring option, but developers used the default
settings because this was easier. Some of these refactorings then introduced new coding
issues, or failed to effectively remove the original issue. So human factor is still impor-
tant, but the companies were able to achieve a measurable increase in maintainability
just by applying automatic refactorings.

Last but not least, this study shed light on some important aspects of measuring
software maintainability. Some of the unexpected effects of refactorings (like the neg-
ative impact of removing unnecessary constructors on maintainability) are caused by
the special features of the maintainability model applied.

The fact that developers tested the tool on their own products provided a real-world
test environment. Thanks to this context, the implementation of the toolset was driven
by real, industrial motivation and all the features and refactoring algorithms were
designed to fulfill the requirements of the participating companies. We implemented
refactoring algorithms for 40 different coding issues, mostly for common programming
flaws. By the end of the project the companies refactored their systems with over 5
million lines of code in total and fixed over 11,000 coding issues. FaultBuster gave a
complex and complete solution for them to improve the quality of their products and
to implement continuous refactoring to aid their development processes.

Model-Queries in Anti-Pattern Detection

We evaluated different query approaches for locating anti-patterns for refactoring Java
programs. In a traditional setup, an optimized Abstract Semantic Graph was built
by SourceMeter, and processed by hand-coded visitor queries. In contrast, an EMF
representation was built for the same program model which has various advantages from
a tooling perspective. Furthermore, anti-patterns were identified by generic, declarative
model-queries in different formalisms evaluated with an incremental and a local-search
based strategy.

165

Summary

Our experiments that were carried out on 28 open source Java projects of different
size and complexity demonstrated that encoding ASG as an EMF model results in an
up to 2-3 fold increase in memory usage and an up to 3-4 fold increase in model load
time, while incremental model queries provided a better run time compared to hand-
coded visitors with 2-3 orders of magnitude faster execution, at the cost of an increase
in memory consumption by a factor of up to 10-15. In addition, we provided a detailed
comparison between the different approaches that enabled them to select one over the
other based on the required usage profile and the expressive capabilities of the queries.

To sum up, we emphasize the expressiveness and concise formalism of pattern
matching solutions over hand-coded approaches. They offer a quick implementation
and an easier way to experiment with queries together with different available execution
strategies; however, depending on the usage profile, their performance is comparable
even on 2,000,000 lines of code.

166

Osszefoglalo

A karrierje egy pontjan minden programozé szembesiil egy olyan kodrészlettel aminek
miikodését senki sem érti és senki sem szeretne hozzanytlni, nehogy véletlen elrontsa.
A kérdés az, hogy hogyan keletkezett ez a siralmas kodrészlet. FeltételezhetGen senki
sem Onszantabol irta ilyenre. Sokkal valészintibb, hogy a programunk a szoftver erozic
aldozata, amely a szoftver egész életciklusara — legyen az fejlesztés vagy karbantartas
— jellemz6 folyamatos hanyatlas.

A szoftver erédzioja elkeriilhetetlen. Egy szoftverrendszer folyamatosan fejlédik az
id6 mulasaval: 1j funkciok keriilnek bele, korabbi funkciok modosulnak vagy tiinnek el;
egyszoval igazodik az 1j igényekhez és kornyezethez. Ezek velejaroja, hogy a forraskod
altalaban bonyolultabb lesz és egyre inkadbb eltdvolodik a kezdeti allapotatol. Kovet-
kezményképp megné a szoftver karbantartasanak koltsége. Ez is nagyrészt hozzajarul
ahhoz, hogy a szoftverfejlesztési koltségek nagyobb része (kb. 80%) a karbantartasra
megy el [10]. A koltségek csokkentéséhez redukalni kell a szoftvererozio okozta hatast,
és novelni kell a karbantarthatosagot rendszeresen végrehajtott refaktoring miiveletek
segitségével.

A refaktoring kifejezés aztan valt népszeriivé, hogy Fowler publikilta katalogusat a
refaktoring atalakitasokrol [12]. Ezen atalakitasok célja az ugy nevezett "biizl6" kodok
helyrehozasa. Itt a "biizI6" sz6 a nehezen karbantarthaté vagy rosszul megkonstruélt
kodrészekre utal. Ilyen példéul, ha egy metdédus nagyon hosszi, vagy ha egy meto-
dus szinte méasolta egy masiknak. Az ilyen "biizl6" szerkezetek megértése segitséget
nydjt, hogy felfedjiink hibakat és antimintakat, amik a valés problémékat jelentik a
szoftverben. Ezek kiiktatdsa jobb min&ségi szoftvert eredményez.

Mindenki kozos érdeke, hogy a szoftver karbantarthatdésaga megmaradjon kénnyt-
nek. A felhasznalok igy hamarabb kapnak 1j funkcidkat, melyekben kevesebb hiba
lesz. FEmellett a fejlesztGknek is egyszertibb dolguk lesz a koéd modositasaval, és a
fejleszt&cégeknek is csokken a karbantartasra koltott koltségiik. Jo karbantarthatosa-
got nagyon részletes specifikicidval és alaposan kidolgozott tervekkel lehet a legjob-
ban elérni. Azonban olyan helyzetek nagyon ritkan ado6dnak, ahol ezek a feltételek
teljesiilnek. Mivel a legtobb szoftverre inkabb a allando fejlédés jellemzd, ezért a gya-
korlatban az idérél-idére torténd folyamatos refaktoring hatékonyabbnak bizonyult a

167

Osszefoglald

konnyti karbantarthatdsig szinten tartasara. A tevékenység okan a kod "friss" marad
és megnovekedik az élettartama.

Jelen tézis célja, hogy elGsegitse a szoftverrendszerek karbantartasat automatizalas-
sal. Kivaltképpen olyan modszertanok, technolégidk és eszkozok kidolgozasaval foglal-
kozik, amik az alabbi témakorokre terjednek ki:

o SzoftverfejlesztGk viselkedésének elemzése kézzel irott és gépi refaktoring
tevékenységek kozben.

e A refaktoring szoftver mindGségre gyakorolt pozitiv és negativ hatasanak
kiértékelése.

e Lokalis-keresésre épiil§ antiminta felismerés atdolgozasa modellalapt tech-
nologiara altalanos és grafillesztéses modszerekkel.

Szoftverfejleszt6k tevékenységeinek elemzése

Kisérleteink {6 motivacioja, hogy kideritsiik miképpen refaktoralnak a fejleszték ipari
kornyezetben abban az esetben ha rendelkezésiikre all minden sziikséges erdforras (pénz
és id6) ehhez. A felmérésiinket hat olyan nagymeéretii, ipari, Java projekten végeztiik
melyek kiilonboznek méretben és komplexitasban. A rendszereken folytatott refakto-
ringok tanulményozasa kozben megfigyeltiik mely tipusi hibdkat javitjik a fejlesztok
leginkabb és mely refaktoringok bizonyultak a legjobbnak bizonyos szempontok alap-
jan. Megvizsgaltuk a refaktoring kommitok forraskod mindségre gyakorolt hatasat a
ColumbusQM minéség modell segitségével [20].

A vizsgédlat soran azt talaltuk, hogy a fejleszték megprobaltak optimalizalni a re-
faktoring folyamatukat és el6szor inkabb konkrét kodolasi szabalysértéseket kezdték el
javitani, mintsem metrikdk vagy antiminta detektorok <al sugallt problémékat. To-
vabbi elemzések azt mutattik, hogy egy refaktoring hatésa a szoftver termék globalis
karbantarthatosagra nehezen megitélhets. Néha el6fordulnak olyan esetek is, ahol egy
refaktoring rontja a globalis karbantarthatésagot. Azonban maga a refaktoring folya-
mat hosszabb idére kivetitett hatasa jelentds javuléssal jarhat a szoftver mindségre,
amely ki is mutathaté a min&ség modell segitségével. Ennek oka nem csak a karban-
tartasi munkalatok végzése, hanem hogy a folyamat soran a fejleszt6k megtanulnak
egyre karbantarthatobb kodot irni.

Automatikus refaktoralas el6nyeinek és hatranyainak
vizsgalata

Kisérletink kivitelezéséhez sziikségiink volt automatikusan végrehajthat6é refaktorin-
gok kifejlesztésére. Ebbdl kifolyolag alkottuk meg a FaultBuster nevii, automatikus
refaktoring keretrendszert, amely képes szamos kodolasi hiba eltiintetésére automati-
kus refaktoring mtveletek végrehajtasaval. A FaultBuster alapjaként szolgéld folya-
matot részleteiben bemutattuk. A folyamat sorédn felhasznaltunk egy harmadik fél-
t6l szarmazé statikus elemzét, amely refaktoring lehet&ségeket javasol. Létrehoztunk
egy algoritmust, ami képes a forraskod elemek megtalalasara a sajat elemzési fankban
pusztan szovegpozicid adatok alapjan. Az algoritmus atalakitja a forraskddot kereshets
geometriai térbe azaltal, hogy épit egy térbeli adatbazist.

168

Osszefoglald

A keretrendszer tervezése soran a fejleszt6k tobb elvarasat is figyelembe kellett ven-
niink: a teljesitményt, eredmény kod formézasat és tagolasat, a folyamat érthetdségeét,
és a kijavitando probléma preciz detektalasat. A felsoroltak koziil tobb is komoly ki-
hatassal van a refaktoring eszkdz hasznalhatosagara és ezért mar a tervezéi folyamat
elejétdl fogva szamolni kellett veliik. A fejlesztés befejeztével atfogd kiértékelésnek
vetettiik ald az eszkozt, amely alatamasztotta, hogy a médszer alkalmazhat6 a gyakor-
latban is és lathato eredményekkel szolgal.

A kiértékelés soran tobb érdekes visszajelzést kaptunk az eszkoziinket hasznalo fej-
leszt6ktol. Egyrészt kideriilt, hogy a résztvevék szerint konnyen implementéalhatok az
altaluk végzett kézi refaktoringok automatikusan mikods atalakitasokka. Masrészt
az is megallapithatd, hogy az implementalt automatikus megoldasok szinte minden
esetben segitettek nekik a forraskodjuk tovabbfejlesztésében.

A QualityGate SourceAudit eszkozének alkalmazasaval megvizsgaltuk a karban-
tarthatosagbeli értékeket kiillonboz6 refaktoring miiveletek el6tt és utan. Az elemzés
kimutatta, hogy egy kivételével minden FaultBuster altal tamogatott kodolasi sza-
balysértés kijavitasa nyomon kdvethetGen pozitiv hatéssal volt a szoftver rendszerek
mingségére. A kisérletben résztvevd négy partnercég koziil harom szamszeriisithets-
en jobban karbantarthaté rendszerrel fejezte be a projektet a refaktoring fazis végén.
Ugyanakkor, azt is észre vettiik, hogy az egyik cég kizarolag koltséghatékony atalakita-
sokat keresett, és ezért csak két fajta refaktoringot hajtott végre. Ezek koziil az egyik
a nem-hasznélt konstruktorok eltavolitdsa volt, amely gyakran negativ hatassal van a
karbantarthatosédgra. Egy mésik megfigyelés pedig arra enged kovetkeztetni, hogy a
felkinalt gépi refaktoringok vakon valé elfogadéasa legtobbszor célszertitlen. Gyakran
el6fordult, hogy amikor a refaktoring eszkoz a felhasznalotol kérte, hogy vélassza ki a
szerinte a helyzethez legmegfelel6bb refaktoring beallitast, akkor a fejlesztGk lustasag
miatt az alapbeallitasokat valasztottak, ahelyett, hogy komolyabban attanulméanyoztak
volna a helyzetet. Ezért néhany ilyen refaktoring nem orvosolta az eredeti problémat,
sGt, néha egészen 1j kodolési hibdkat vezetett be. Tehét az emberi oldal még itt is fontos
tényezs, de ennek ellenére is sikeriilt a partnercégeknek jelentGsebb javulast elGidézni
a szoftveriik minGségében csak azaltal, hogy gépi refaktoringokat alkalmaztak.

A kutatasunk ravilagitott néhany érdekességre a szoftver karbantarthatdsag méré-
sével kapcsolatban is. Példaul, hogy a refaktoringok par nem vart kovetkezménye (mint
az, hogy a nem-hasznalt konstruktorok torlése negativ hatassal van a karbantarthato-
sagra) az alkalmazott mingségmodell kiilonlegessége.

A FaultBuster fejlesztéséhez nagyon jo teszt kdrnyezetet biztositott, hogy a eszkozt
a fejlesztGk a sajat valos rendszereiken teszteléték élesben. Ennek a kornyezetnek héla
az eszkoz tovabbfejlesztését valos, ipari célok motivaltak és minden képessége és refak-
toring algoritmusa gy lett megtervezve, hogy kielégitse a projektben résztvevs cégek
igényeit. A kutatas soran olyan refaktoring algoritmusokat fejlesztettiink ki, amelyek
képesek 40 kiilonbo6z6 fajta tipikus kédolasi hiba kijavitasara. A projekt végeztével a
partnercégek refaktoraltik az Gsszesen t6bb, mint 5 millié kodsorbol 4ll6 kddbazisukat,
és tobb, mint 11,000 szabalysértést eliminaltak. A FaultBusterrel a cégek kaptak egy
megoldést, amivel elGsegithetik a szoftvereik minGségének javulasat és segitségével be
tudjak épiteni a folyamatos-refaktoralas modszertanat az fejlesztési folyamataikba.

169

Osszefoglald

Modell-alaptt médszerek az antiminta detektalasban

Ebben a fejezetben tobbfajta forrdskod-elem keres6 modszert értékeltiink ki. E mod-
szerek segitségével refaktoralhaté antimintakat detektalhatunk a kodbézisunkban. Ko-
rabbi kisérleteink soran hagyoményosan egy optimalizalt absztrakt szemantikus grafot
épitettiink fel a SourceMeter segitségével, melyet kés6bb kézzel irt vizitor lekérdezé-
sekkel dolgoztuk fel. A kutatas soran megnéztiik, hogy mennyiben valtozik a telje-
sitménye a lekérdezéseknek, ha az alatta fekvs reprezentaciot lecseréljik EMF-re. Az
EMF tamogatasnak hala, kiprobalhattuk miben valtozik a teljesitmény, ha atirjuk a
lekérdezéseket modell-alapt kérdéseké, kiilonb6z6 formalizacioval, mind inkrementélis,
mind pedig lokalis-keresés alapt stratégiakkal.

A kisérleteinket 28 darab kiilonb6z6 méretii és komplexitasi, nyilt forraskoda Java
projekten végeztiik el. Eredményeink azt mutatjak, hogy az EMF-be kodolt modellt
2-3-szoros memoriandvekedés és koriilbeliil 3-4-szeres modell betdltési id6 jellemzi. Az
inkrementalis modell lekérdezések futésideje 2-3 nagységrenddel gyorsabb volt, mint a
kézzel kodolt lekérdezéseké, de ez egy tovabbi 10-15-sz6r0s memoriandvekedéssel jart.
Az eredményekrél egy részletes Gsszehasonlitast készitettiink, aminek segitségével egy-
szertibben elddnthetd, hogy sajat projektiink tulajdonsigaihoz melyik modszer valasz-
tésa a legkifizet6dSbb.

170

	Preface
	Introduction
	Software Erosion
	Code Refactoring
	Code Smells and Anti-Patterns
	Software Quality
	Goals of the Thesis
	Research questions
	Outline of the Thesis
	Publications

	Research Domain
	The Refactoring Research Project
	Project design

	Measuring Source Code Maintainability
	Refactoring Definition

	Evaluation of Developers' Refactoring Habits
	Developers' Insights on Hand-written Refactoring Tasks
	Survey questions
	Case study
	Discussion

	Case Study on the Effects of Refactoring on Software Maintainability
	Methodology
	Overall Change of Maintainability of the Systems
	Effect of Different Types of Refactorings on the Maintainability
	Impact of Non-Refactoring Commits
	Discussion of Motivating Research Questions
	Additional Observations
	Threats to Validity

	Related Work
	Guidelines on how to apply refactoring methods
	Refactoring and its effect on software defects
	Refactoring and its effect on code metrics
	Empirical studies on refactoring and its effects on software quality/maintainability
	Code smells and maintenance

	Summary

	Challenges and Benefits of Automated Refactoring
	An Automatic Refactoring Framework for Java
	Overview
	Under the Hood: Automating the Refactoring Process
	Process Details
	Discussion

	Evaluating the Connection between Automatic Refactorings and Maintainability
	Methodology
	Results
	Threats to Validity

	Analysis of Developers' Opinions on Refactoring Automation
	What developers think about refactoring automation?
	Did automation increase developers productivity?
	Lessions Learned

	Related Work
	Summary

	Applications of Model-Queries in Anti-Pattern Detection
	Motivation
	Technological Overview
	Introduction to Program Queries
	Managing Models of Java Programs
	Definition of Model Queries using Graph Patterns

	Experiment Setup
	Program Queries Approaches
	Manual Search Code
	Graph Pattern Matching with Local Search Algorithms
	Incremental Graph Pattern Matching using the Rete algorithm
	Model Queries with OCL

	Measurement Context
	Java Projects
	Query Complexity
	Measurement process

	Measurement Results
	Load Time and Memory Usage
	Search Time

	Evaluation of Usage Profiles
	Usage Profiles
	Usage Profile Analysis
	Lessons Learned
	Threats to Validity

	Related Work
	Software Analysis Using Generic Modeling Techniques
	Software Analysis Designed for Program Models

	Summary

	Conclusions
	Summary of the thesis contributions

	Bibliography
	Author's publications
	References

	Appendices
	PMD rule violations
	Summary
	Összefoglaló

