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�Code smells.�

� Martin Fowler

1
Introduction

1.1 Software Erosion

At some stage in their career every developer will encounter the code that no one
understands and that no one wants to touch in case it breaks down. But how did the
software get that bad? Presumably no one set out to make it like that. The process
that the software is su�ering from is called software erosion � the constant decay of a
software system that occurs in all phases of software development and maintenance.

The process is also known as software rot, software entropy or software decay.
However, these do not adequately capture the notion that it is forces external to the
software that are ultimately the cause of problems within the software. The software
does not actually decay, but rather su�ers from a lack of being updated with respect to
the changing environment in which it resides. However, slow deterioration of software
over time will eventually lead to performance problems and the software becoming
faulty or unusable. Erosion is not something that just happens to the code without
someone actively making changes. Rain shapes hills and mountains slowly over time
and by analogy change can shape software.

Pressure for change comes from a variety of sources. Most commonly, new features
are added to a product to increase its sales value and to satisfy their current users'
demands. Similarly, changes in the environment within which the software is deployed
happens frequently. Sometimes it is the software environment e.g. di�erent operating
system or GUI standards, and technical changes, such as adapting new coding stan-
dards. Other times, it is the hardware that changes, like di�erent architecture, better
CPUs, Wi-Fi connection instead of cable. They all have an impact on the software.

Software that is being continuously modi�ed may lose its integrity over time if
proper mitigating processes are not consistently applied. However, much software re-
quires continuous changes to meet new requirements and correct bugs, and re-engineering
software each time a change is made is rarely practical. This creates what is essentially
an evolution process for the program, causing it to depart from the original engineered
design. As a consequence of this and a changing environment, assumptions made by
the original designers may be invalidated, introducing bugs. Where the initial vision
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Chapter 1. Introduction

for the software does not allow for change, such erosion e�ects will be seen very quickly.
Stopping software erosion requires management commitment. If managers are only

interested in the short-term viability of their software projects then it is hard for
developers to �nd the time and make the e�ort to tackle the problem. This does not
excuse developers from doing what they can to �ght decay but this will inevitably make
their struggle less e�ective. With management support you can create a work culture
where stopping erosion is valued. This culture is likely to have characteristics such as
� an emphasis on regular refactoring, clear assignment of responsibilities, sharing of
architectural knowledge and work, frequent communication between the whole group.

1.2 Code Refactoring

In life, software erosion is inevitable. It is typical of software systems that they evolve
over time, so they get enhanced, modi�ed, and adapted to new requirements. As a con-
sequence, the source code usually becomes more complex, and drifts away from its orig-
inal design, hence the maintainability costs of the software increases. This is one reason
why a major part of the total software development cost (about 80%) is spent on soft-
ware maintenance tasks [10]. One solution for preventing the undesirable e�ects of soft-
ware erosion, and to improve maintainability is to perform refactoring tasks regularly.

The term refactoring was introduced in the PhD dissertation of Opdyke [11]. Refac-
toring is a kind of reorganization, and it is de�ned as �a change made to the internal
structure of software to make it easier to understand and cheaper to modify without
changing its observable behavior �. Technically, it comes from mathematics when an
expression is factored into an equivalence � the factors are cleaner ways of expressing
the same statement. Refactoring implies equivalence; the beginning and end products
must be functionally identical.

Refactoring is typically done in small steps. After each small step, the working sys-
tem's functionally is unaltered. Practitioners typically interleave bug �xes and feature
additions between these steps. So refactoring does not preclude changing functionality,
it just says that it is a di�erent activity from rearranging code. A key insight is that it
is easier to rearrange the code correctly if at the same time no change is being made its
functionality. Another is that it is easier to change functionality when the code is clean
(refactored). Practically speaking, refactoring means making code clearer and cleaner
and simpler and elegant. Or, in other words, �clean up after yourself when you code�.
Examples range from renaming a variable to introducing a method into a third-party
class which source is unavailable.

1.3 Code Smells and Anti-Patterns

The term refactoring became popular after Fowler published a catalog of refactoring
transformations [12]. These transformations were meant to �x so-called `bad smells'
(a.k.a. `code smells'). Bad smells usually indicate badly constructed and hard-to-
maintain code segments. For example, the method at hand may be very long, or it
may be a near duplicate of another similar method. Code smells are usually not bugs
� they are not technically incorrect and do not currently prevent the program from
functioning. Instead, they suggest weaknesses in design that may slow development or
increase the risk of bugs or failures in the future. Once recognized, such problems can

2



Chapter 1. Introduction

be addressed by refactoring the source code, that is transforming it into a new form
that behaves in the same way as before but it no longer `smells'. Refactoring is usually
motivated by noticing a code smell.

There are application-level code smells: duplicated code, contrived complexity;
class-level smells: feature envy, cyclomatic complexity, downcasting; and method-level
smells: too many parameters, long method. Determining what is and is not a code
smell is subjective, and varies by programming language, developer and development
methodology. There are tools such as Checkstyle, PMD and FindBugs for Java which
to automatically check for certain kinds of code smells.

The bene�t of understanding code smells is that is helps you to discover and cor-
rect the anti-patterns and bugs that are the real problems. To understand what an
anti-pattern is, we have to know �rst what a pattern is [13]. Over time, many di�erent
software developers have had to solve the same or similar problems. How many di�er-
ent developers needed to restrict user access to portions of an application? Or had to
communicate object states between threads or machines? Some developers come up
with good solutions, while others are able to solve the problem, but do it poorly or inef-
�ciently. These are patterns, and it took a while before we started giving them names.
For example, when good developers solve the problem of securing an application, most
of the time it may look like what we now call the Role Based Access Control pattern.

Anti-patterns are patterns, but they are just undesirable ones. Taking the previous
example, when bad developers solve the problem of securing an application, one may
end up with poorly-designed objects, resulting in what is called the Divergent Change
anti-pattern (or any number of others). In software engineering there are several well-
known anti-patterns, such as Spaghetti Code, Golden Hammer, The Blob, Lava Flow,
and Cut-and-Paste Programming (a non-exhaustive list).

1.4 Software Quality

�Quality software is reasonably bug or defect free, delivered on time and within budget,
meets requirements and/or expectations, and is maintainable.� [14] The quality of a
piece of software is assessed by a number of variables. These variables can be divided
into external and internal quality criteria. External quality is what a user experiences
when running the software package in its operational mode. Internal quality refers to as-
pects that are code-dependent, and that are not visible to the end-user. External qual-
ity is critical to the user, while internal quality is only meaningful to the developer. [15]

Internal quality is mainly evaluated through the analysis of the software inner struc-
ture, namely its source code. A better structure represents an easier maintainable code
and a poor structure mirrors hard-to-maintain code. Hence it is also called software
maintainability. Measuring maintainability is not a straightforward task. It is usually
done by using static analysis techniques which measure di�erent software properties,
such as size, complexity, coupling, duplicated code ratio, and the number of coding
violations or bad smells.

Maintainability has a direct connection with software evolution costs. For example,
if a system is easier to maintain, adding a new feature to it will be straightforward
because it is more changeable. Similarly, it will be safer as well, because such a system is
less error-prone and modifying existing code will be less likely to cause unwanted bugs.

Keeping software maintainability high is in everybody's interest. The users get their
new features faster and with fewer bugs, the developers have an easier job modifying the

3



Chapter 1. Introduction

code, and the company should have lower maintenance costs. Good maintainability
can be achieved via very thorough speci�cation and elaborated development plans.
However, this is very rare and only speci�c projects have the ability to do so. Because
software is always evolving, in practice, the continuous-refactoring approach seems
more feasible. This means that developers from time to time should refactor the code
to make it more maintainable. Maintenance activity like this keeps the code �fresh�
and extends its lifetime.

1.5 Goals of the Thesis

A key goal of this thesis is to contribute to the automated support of software system
maintenance. In particular, in the thesis we propose methodologies, techniques and
tools for:

1. analyzing software developers behavior during hand-written and tool-aided refac-
toring tasks;

2. evaluating the bene�cial and detrimental e�ects of refactoring on software quality;

3. adapting local-search based anti-pattern detection to model-query based tech-
niques in general, and to graph pattern matching in particular.

1.6 Research questions

This thesis research is driven by the following research questions:

RQ1: What will developers do �rst when they have given the time and money to
do refactoring tasks?

RQ2: What does an automatic refactoring tool need to meet developers require-
ments?

RQ3: How does manual and automatic-tool aided refactoring activity a�ect soft-
ware maintainability?

RQ4: Can we utilize graph pattern matching to identify anti-patterns as the starting
point of the refactoring process?

1.7 Outline of the Thesis

The thesis contains 6 chapters. This includes an introduction, a conclusion, and a
research domain chapter along with the three main chapters which discuss the results
of the thesis. The present thesis is structured as follows.

Chapter 1 provides a short introduction to the basic concepts used in the thesis.

Chapter 2 presents the research project this thesis is built on; and provides back-
ground to a few terms and technologies that we will use in later chapters.
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Chapter 3 investigates how programmers re-engineer their code base if they have
the time and extra money to improve the quality of their software systems. In
a project we worked together with �ve companies where one of the goals was to
improve the quality of some systems being developed by them. It was interesting
to see how these companies optimized their e�orts to achieve the best quality im-
provements at the end of the project. They are all pro�t-orientated companies, so
they really tried to get the best ROI in terms of software quality. To achieve it, they
had to make important decisions on what, where, when and how to re-engineer. We
investigated how developers decided to improve the quality of their source code and
what was the real e�ect of the manual refactorings on the quality. We collected this
information as experimental data and here we present our evaluation in the form
of a case study.

Chapter 4 describes the results of a case study conducted in practice to investigate
whether automated refactorings improve code quality. We introduce FaultBuster,
a refactoring toolset which is able to support automatic refactoring: identifying the
problematic code parts via static code analysis and running automatic algorithms
to �x selected code smells. We elaborate on the requirements which make a refac-
toring tool appealing to developers. We share our experiences which we learned
while working with developers who were �xing coding issues with the help of our
automated tool in an industrial case study.

Chapter 5 presents a detailed comparison of anti-pattern detection techniques.
We provide an observation of memory usage in di�erent ASG representations (ded-
icated vs. EMF); and run time performance of di�erent program query techniques.
For the latter, we evaluate four essentially di�erent solutions: (i) hand-coded visitor
queries, (ii) queries implemented in native Java code over EMF models, (iii) generic
model queries following a local search strategy and (iv) incremental model queries
using a caching technique. We compare the performance characteristics of these
query technologies by using the source code of open-source Java projects.

Chapter 6 summarizes the contributions of the thesis with respect to the above
research questions. After, the appendix contains a summary of the thesis in English
and Hungarian.

1.8 Publications

Most of the research results presented in this thesis were published in journals or pro-
ceedings of international conferences and workshops. The Corresponding publications
of the Thesis section provides a list of selected peer-reviewed publications. Table 1.1
is a summary of which publications cover which results of the thesis.

Chapter Contribution - short title Publications

3. Case study of a large-scale refactoring project [1], [2], [3]
4. An automated refactoring framework and an industrial case study [4], [5], [6], [7]
5. Benchmarking di�erent anti-pattern detection techniques [8], [9]

Table 1.1. Relation between the thesis topics and the corresponding publications.
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Here, the author should mention that although the results presented in this thesis
are his major contribution, from this point on, the term `we' will be used instead of `I'
for self-reference to acknowledge the contribution of the co-authors of the papers that
this thesis is based on.
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�Discovery consists of looking at the same thing

as everyone else and thinking something di�erent.�

� Albert Szent-Györgyi

2
Research Domain

2.1 The Refactoring Research Project

Much of the research work presented in this thesis was motivated by an R&D project
called the Refactoring Project. This two-year long project was supported by the EU
and a Hungarian national grant. The author was one of the involved researchers in
the project and the results of the thesis are connected to this project. Here, we brie�y
present the project and its goals.

The aim of the project was to develop software tools to support the `continuous
reengineering ' methodology, hence provide support to identify problematic code parts
in a system and to refactor them in order to enhance maintainability. Continuous
refactoring has many bene�ts [16], as Kerievsky says �by continuously improving the
design of code, we make it easier and easier to work with. This is in sharp contrast to
what typically happens: little refactoring and a great deal of attention paid to expediently
adding new features. If you get into the hygienic habit of refactoring continuously, you'll
�nd that it is easier to extend and maintain code� [17]. This included the development
of an automatic refactoring framework and the testing of it on the source code of the
industrial partners. Hence, we had an in vivo environment and continuous feedback
from using the tools. Moreover, the project provided the companies with a good
opportunity to refactor their code and improve its maintainability.

Table 2.1. Companies involved in the project

Company Primary domain

Company I Enterprise Resource Planning
Company II Integrated Business Management
Company III Integrated Collection Management
Company IV Speci�c Business Solutions
Company V Web-based PDF Generation

Five experienced software companies were involved in this project. They were
founded in the last two decades, and they started developing some of their systems
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before the millennium. The systems that they refactored in the project consisted of
about 2.5 million lines of code altogether, which had been written mostly in Java, and
were related to di�erent areas like ERPs (business process management), ICMs (inte-
grated collection management systems), and online PDF Generators (see Table 2.1).
By taking part in this project, they got extra budget to refactor their own source code.

2.1.1 Project design

Figure 2.1 o�ers an overview of the main stages of the project. In the �rst stage
(Analysis), we asked the companies to refactor their code manually. We gave them
support by using static code analyzers to help them identify code parts that should
be refactored in their code (anti-patterns or coding issues, for instance). We asked the
developers to provide detailed documentation of each refactoring phases, and explain
the main reasons and the steps of how they improved the code fragment in question.

Design &

DevelopmentAnalysis Application

Manual

refactoring

survey

Refactoring

Framework

IDE plugins
(Eclipse, IDEA, Netbeans)

Refactoring Algorithms

Automated

refactoring

survey

Figure 2.1. Overview of the refactoring project.

In the second stage (Design & Development), we designed and implemented a refac-
toring framework based on the results of the manual refactorings. This framework was
implemented as a server-side component that provided three types of services:

• A static source code analyzer toolset to derive low-level quality indicators that
could be used to identify refactoring candidates.

• A persistence layer above a database for storing and querying analysis data (with
a complete history).

• A set of web services capable of automatically performing various refactoring
operations to eliminate certain coding issues and generate a source code patch to
be applied on the original code base.

As can be seen from the above list, the framework not only provided refactoring
algorithms for the developers, but it also helped to identify possible targets for refac-
toring by analyzing their systems using a static source code analyzer. The tool is able
to give a list of problematic code fragments including coding issues, anti-patterns (e.g.
duplicated code, long functions) and source code elements with problematic metrics at
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di�erent levels (e.g. classes/methods with excessive complexity and classes with bad
coupling or cohesion metrics). However, the framework only supports the refactoring of
40 di�erent coding issues, so the companies were just asked to �x issues from this list.

The participating companies took part in the development of the refactoring tools as
well. One of their tasks was to develop IDE plugins for their own working environments
(Eclipse, IDEA, and Netbeans). So it was the responsibility of the framework to
perform the refactoring transformations and generate patches. The IDE plugins were
responsible for providing an interface to all the features of the framework by taking
advantage of the UI elements of the IDEs. This way, the refactoring process was
controlled by the framework and the developers worked in their familiar workspace.

In the third stage of the project (Application), the developers used the automatic
tool to refactor their code base. Over 7,800 issues got �xed, which fell into about 30
di�erent kinds of issues. Thanks to the project requirements, all the refactorings were
well documented.

Taking advantage of this controlled environment, we collected a large amount of
data during the refactoring phases. By measuring the maintainability of the given
subject systems before and after the refactorings, we got valuable insights into the
e�ect of these refactorings on large-scale industrial projects.

2.2 Measuring Source Code Maintainability

Several maintainability models exist which try to express the maintainability of a soft-
ware system numerically. Most of these models rely on the observation that the increase
of some code metrics (e.g. length of the code, or complexity) indicates a decrease in
the maintainability, hence software quality. Chidamber and Kemerer [18] de�ned sev-
eral object-oriented metrics; these de�nitions are de facto standards employed in many
studies. Gyimóthy et al. [19] validated empirically that the increase of some of the
de�ned metrics (e.g. CBO) indeed increase the probability of faults.

To calculate the absolute maintainability values of systems involved in the Refactor-
ing Project we used the ColumbusQM probabilistic software maintainability model1.
The ColumbusQM quality model is based on the ISO/IEC 25010 [21] international
standard for software product quality. Thanks to this probabilistic approach, the
model integrates the objective, measurable characteristics of the source code (e.g. code
metrics) and expert knowledge, which is usually ambiguous. At the lowest level, the
following properties are considered by the model:

• source code metrics (e.g. some C&K metrics),
• source code duplications (copy&pasted code fragments),
• coding rule violations (e.g. coding style guidelines, coding issues).

The computation of the standard's high-level quality characteristics is based on a
directed acyclic graph (DAG), whose nodes correspond to quality properties that can
be considered low-level or high-level attributes (see Figure 2.2). The nodes without
input edges are low-level nodes (sensor nodes � shown in white). These characterize a
software system from the developers' view, so their calculation is based on source code
metrics, or other source code properties (e.g. violating coding conventions). These
properties can be calculated by static source code analysis. For this analysis, we use

1A detailed description of ColumbusQM is available in the work of Bakota et al. [20]
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Figure 2.2. An overview of the attribute dependency graph of ColumbusQM [20]. Un-
�lled nodes represent the sensor nodes (code metrics, number of coding rule violations,
number of code clones, etc.) in the model. Aggregated nodes (both light and dark
gray nodes) are calculated from these sensor nodes or other aggregated nodes. They
were either de�ned by the ISO/IEC 25010 standard (dark gray) or introduced to show
other maintainability attributes (light gray).

an implementation of the ColumbusQM model, called QualityGate [22]. QualityGate
uses the free SourceMeter [23] tool, which builds an abstract semantic graph (ASG)
from the source code, and it uses this graph to calculate metrics, �nd code clones
(duplications) and to �nd coding issues such as unused code and empty catch blocks.

High-level nodes (called aggregate nodes) characterize a software system from the
end user's view. They are calculated as an aggregation of the low-level and other high-
level nodes. In addition to the aggregate nodes which are de�ned by the standard (dark
gray nodes), there are also some new ones that were introduced to show further external
maintainability attributes (light gray nodes). These nodes have input and output edges
as well. The edges of the graph show the dependencies between sensor nodes and
aggregated nodes. Evaluating all the high-level nodes is performed by an aggregation
along the edges of the graph, which is called the attribute dependency graph (ADG).

Typically, we wish to know how good or bad an attribute is in terms of maintain-
ability. We use the term goodness to express this with the help of the model. To
include some degree of uncertainty in the value of goodness, it is represented as a ran-
dom variable with a probability density function, which is called the goodness function.
The goodness function is based on the metric histogram over the code elements, as it
characterizes the system from the aspect of one metric (from one aspect). As goodness
is a relative term, it is expected to be measured by means of a comparison with other
histograms. After applying the distance function between two histograms, we get a
goodness value for the subject histogram. This value will be relative to the other his-
togram, but the goal is to be independent. Although, the result will always depend on
the histograms in the benchmark (see below), we can get a better estimate by repeating
the comparison with a larger set of systems in the benchmark. For every comparison,
we get a goodness value which can be basically regarded as a sample of a random
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variable over the range [−∞,∞]. Interpolation of the empirical density function leads
us to the goodness function of the low-level nodes. There is also a way to aggregate the
sensor nodes along the edges of the ADG. Bakota et al. [20] held an online survey, where
they asked academic and industrial experts for their opinions about the weights of the
quality attributes. The number assigned to an edge is considered to be the degree of
contribution of source goodness to target goodness. Taking into account every possible
combination of goodness values and weights, and the probability values of their result,
they de�ned a formula to compute the goodness function for each aggregate node. In
the end, the top-level node in the ADG, maintainability, will have an aggregated value
over the interval [0, 10].

As we mentioned before, each histogram gets compared to several other histograms.
In order to do this, it is necessary to have a reference database (benchmark) which
contains source code properties and histograms of numerous software systems. This
benchmark is the basis for a comparison of the software system to be evaluated. By
applying the same benchmark, quality becomes comparable among di�erent software
systems, or di�erent versions of the same system.

This quali�cation methodology is general and independent of the ADG and the votes
of the experts. But the latter is language speci�c, resulting in the need for language-
speci�c ADGs. The ADG for Java is shown in Figure 2.2, which was constructed based
on the opinions of over 50 experts. The benchmark for Java contains the analysis
results of over 100 industrial and open-source Java systems.

In chapters 3 and 4 we use QualityGate with ColumbusQM for Java to objectively
measure the maintainability of software systems.

2.3 Refactoring De�nition

After the term refactoring was introduced in the PhD dissertation of Opdyke [11],
Fowler published a catalog of refactoring transformations, where he de�ned refactoring
as �a change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior � [12]. However, there
is some controversy between researchers about how to interpret this de�nition. The
common academic reading of this de�nition is that �a function has to be semantically
equivalent before and after refactoring�. This is a strict interpretation, for example,
when a function contains a fault (i.e. crashes on a null input) it has to preserve
this behavior even after the refactoring. Kim et al. [24] found in their study that, in
practice, developers' views on refactoring usually di�er from the academic ones. They
found that developers de�ne refactoring simply as �Rewriting code to make it better in
some way.�.

In the following chapters we use the term �refactoring� in the form of the latter
de�nition. This perspective is closer to the Refactoring Project, where we investigate
developers in industrial contexts; moreover, we asked the participants to separate refac-
toring commits from normal tasks (i.e. adding features or �xing bugs). Therefore, we
were able to analyze refactorings in its more natural state.
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�I choose a lazy person to do a hard job.

Because a lazy person will �nd an easy way to do it.�

� Bill Gates

3
Evaluation of Developers'

Refactoring Habits

Refactoring source code has many bene�ts (e.g. improving maintainability, robustness
and source code quality), but it means that less time can be spent on other imple-
mentation tasks and developers may neglect refactoring steps during the development
process. But what happens when they know that the quality of their source code needs
to be improved and they can have the extra time and money to refactor the code? What
will they do? What things will they consider the most important for improving source
code quality? What sort of issues will they address �rst (or last) and how will they
solve them? Is it possible to re�ect these changes on a uni�ed quality scale? If so, are
the refactoring e�orts of developers chime in with the measured metrics?

In this chapter, we assess these questions in an in vivo context, where we analyzed
the source code and measured the maintainability of six large-scale, proprietary soft-
ware systems in their manual refactoring phase. We surveyed developers during their
refactoring tasks and got insights into what their motives and habits were during the
examined period.

3.1 Developers' Insights on Hand-written

Refactoring Tasks

One of the major goals of the Refactoring Project was to create automated tool sup-
port for refactoring tasks. To create a tool that will actually help developers in their
everyday work we decided to do a study on how they operate in normal circumstances.
This way, we could learn more about what developers think of refactoring, what they
preferences are, and what they think they want in an automated tool. Therefore, in the
initial step of the Refactoring Project we asked developers of participating companies
to manually refactor their own code.

Figure 3.1 gives a brief overview of this phase of the project. Here, we requested
developers to provide a detailed documentation of each refactoring, explaining what
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they did and why to improve the targeted code fragment. We gave them support by
continuously monitoring their code base and automatically identifying problematic code
parts using a static code analyzer based on the Columbus technology of the University
of Szeged [25], namely the SourceMeter product of FrontEndART Ltd. [26] Companies
had to �ll in a survey with questions targeting the initial identi�cation of steps; that
is, evaluating the reports of SourceMeter looking for really problematic code fragments
and explaining in the survey why that part of the code was actually a good target for
refactoring. After identifying coding issues, they refactored each issue one-by-one and
�lled out another questionnaire for each refactoring, to summarize their experiences
after improving the code fragment. There were around 40 developers involved in the
project (5-10 on average from each company) who were asked to complete the survey
and carry out the refactorings.

Figure 3.1. Overview of the refactoring process. SourceMeter provided a list of po-
tential problems in the code. Developers could freely choose one of these, or identify
a new one, which they �xed and committed to the version control system. They also
had to complete a survey for each refactoring in the ticketing system (Trac).

3.1.1 Survey questions

The survey consisted of two parts for each issue. The developers had to �ll in the �rst
part before they began refactoring the code, and the second part after the refactoring.
In the �rst part, they asked the following questions:

• Which PMD rule violations helped you identify the issue?

• Which Bad Smells helped you to �nd the issue?

• Estimate how much it would take to refactor the problem.

• How big is the risk in carrying out the refactoring? (1-5)

• How do you think the refactoring will improve the quality of the whole system's
code? (1-5)

• How do you think the refactoring will improve the quality of the current local
code segment? (1-5)

• How much do you think the refactoring will improve the current code segment?
(1-5)
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• How many �les will the refactoring have an impact on?

• How many classes will the refactoring have an impact on?

• How many methods will the refactoring have an impact on?

We asked some more questions after developers had �nished the refactoring task. These
were the following:

• Which PMD rule violations did the refactoring �x?

• Which Bad Smells did the refactoring �x?

• How much time did the refactoring task take?

• Did any automated solution help you to �x the problem?

• How much of the �x for this problem could be automated? (1-5)

With most of the questions, we provided some basic options. For the �rst question
for example we provided a list of PMD rule violations with their names, to help the
developers answer the questions quickly. In the questions on the classes and methods
impacted, we provided di�erent ranges, namely 1-5, 5-10, 10-25, 25-50, 50-100, 100+.
Each question had a text �eld where the developers could explain their answers and
they could also suggest possible improvements and add comments.

3.1.2 Case study

RQ1: What kinds of issues did the companies �nd most reasonable to refac-
tor?

Our �rst research question focused on which issue types the companies considered the
most important to refactor. We asked the companies which indicators helped them best
in �nding problematic code fragments in their systems. In our survey, companies could
select Bad Code Smells and Rule Violations as indicators on how they found the issues.

In our evaluation, we distinguish a special kind of bad smell which suggests code
clones in the system. In Figure 3.2, a distribution can be seen for the issues which
helped the companies to identify the problematic code fragments in their code. The
intersections in the �gure came from the fact that developers could select more than
one indicator per issue. The reason why bad smells and clones had no elements in their
intersection was because a clone is a special kind of bad smell, as mentioned earlier.
The same applies for the intersection of the former group and the rules group (an empty
set cannot intersect anything).

When we look at the results in Figure 3.2, we see that the companies found the
majority of issues that lay in the sets of rule violations and bad smells. It can also
be seen that rule violations alone cover 85% of all the issues found. This also includes
75% of all the bad smells (because of the intersection). So the assumption here is that
rule violations are the best candidates for highlighting issues. However to verify this,
we also had to look at how many issues the companies �xed in order to choose the best
indicator of refactorings.

Figure 3.3 shows the percentage of each �xed issue found from our survey. When
we examine the ratio of �xed issues, we see that the bad smells are mostly refactored
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Figure 3.2. Distribution of issue indicators

issues. However if we include the total number of issues, it is clear that rule violations
o�ered the most bene�ts.

Based on the fact that 85% of all issues were rule violations and developers mostly
�xed these issues instead of the others, in future RQs we will just focus on rule viola-
tions.
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Figure 3.3. Percentage scores of �xed issues for di�erent problem types

16



Chapter 3. Evaluation of Developers' Refactoring Habits

RQ2: What are those attributes of refactorings that can help in selecting
them?

The rule violations in the survey were provided by the PMD source code analyzer tool.
In our study, we categorized and aggregated these rules into groups. The groups we
used were the Rulesets taken from the PMD website [27]. The companies �lled in
the survey for 961 PMD refactorings altogether. These 961 refactorings produced 71
di�erent rule violation types over 19 rulesets.

Below, we will examine these rulesets based on di�erent attributes. Based on our
survey questions, we created the following attributes:

number of refactorings indicates how many issues were �xed for a certain kind of
PMD or ruleset.

average and total time required tells us the total and average time that companies
spent on a refactoring. (Values are in work hours.)

estimated time shows how companies estimated the time that a refactoring operation
would take. (Values were enumerated between 1 hour and 3-4 days.)

local improvement indicates the subjective opinion of developers on how much the
local code segment was improved by the refactoring (Values are between 1-5.)

global improvement indicates the subjective opinion of developers on how much the
code improved globally. (Values are between 1-5.)

risk indicates the subjective opinion of developers on how risky the refactoring is.
(Values are between 1-5.)

impact is an aggregated number that tells us how many �les/classes/methods a refac-
toring a�ected. (Values are enumerated between 1-100.)

priority tells us how dangerous a rule violation is, and how important it is to �x it.
The priority attribute did not come from the survey; we used the prioritisation
of the underlying toolchain. (Values lie between 1-3.)

RQ3: Which refactoring operations were the most desirable based on to the
attributes de�ned above?

The attributes above tell us how risky a refactoring operation is and how much time
it will usually take to �x. By combining these attributes, we can discover which rules
or rulesets are the most bene�cial or riskiest; or by aggregating the �rst two attributes
with time required, we can see which rules will best return the e�ort we invested in
refactoring. Next, we investigate the number of refactorings, time required, improve-
ment and risk.

Number of refactorings Now let us examine the most obvious attribute, namely
the number of refactorings the companies performed. The results in Figure 3.4 indi-
cate that the companies dealt with almost every kind of rule violation. The majority
of refactored rule violations were found in the Design ruleset. This ruleset contains
rules that �ag suboptimal code implementations, so �xing these code fragments should

17



Chapter 3. Evaluation of Developers' Refactoring Habits

signi�cantly improve the software quality and perhaps even improve the overall per-
formance. The Design ruleset is followed by the Strict Exceptions, Unused Code and
Braces categories, which focuses on throwing and catching exceptions correctly, remov-
ing unused or ine�ective code, and also the use and placement of braces. Some rule
violations in the following categories were also �xed in large numbers under the Basic,
Migration, Optimization, String and StringBu�er rulesets. The other rulesets scarcely
came up (like Empty Code) or not at all (like Android). This is probably due to the
fact that the projects did not contain these kinds of violations or contained only false
positives.

Basic
13%

Braces
13%

Design
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Figure 3.4. Distribution of refactorings by PMD rulesets

Average and total time required After investigating how many refactorings the
companies made, we will now examine how much time a refactoring operation took.
(Here, we consider the time the developers spent on refactoring their source code,
excluding the time they spent on testing and verifying the code.)

When we look at the total time needed for the categories in Figure 3.5, we see
that the time distribution of the refactorings shows a similar tendency to the number
of refactorings. A linear correlation can be seen between the number of refactorings
and the total time spent on them. However, other interesting things were observed
when we looked at the average time spent on the di�erent kinds of PMD categories in
Figure 3.6. It seems as if the companies spent most of the time on average on Code
Size, Security Code Guidelines and Optimization rules. The least time was spent on
average on Braces, Import Statements and Java Beans rules (excluding those rules
where no time was spent at all). The Code Size ruleset contains rules that relate to
code size or complexity (e.g. CyclomaticComplexity, NPathComplexity), while the
Security Code Guidelines rules check the security guidelines de�ned by Oracle. The
latter guidelines describe violations like exposing internal arrays or storing the arrays
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Figure 3.5. Total refactoring durations by PMD rulesets

directly. Optimization rules focus on di�erent optimizations that generally apply to
best practices. Reducing the complexity of the code, making the application more
robust or optimizing it takes time. Apparently, these take the most time. Removing
unused import statements or adding or removing some braces usually can be performed
quickly, but to �nd which independent statements should be extracted so as to reduce
the complexity is a hard task.
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Figure 3.6. Average refactoring durations by PMD Rulesets
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Global and local improvement To learn which PMD rule violations �t the at-
tributes best, we summarized and averaged both the global and local improvement
values got from the survey. We ranked both sets of values by their position in their
data set. The average of the two former values gave us a list of the best improving
PMD rulesets. From our results, the best improvements locally and globally are given
by the Strict Exceptions, Coupling and Basic PMD rulesets. However, rulesets con-
tain a lot of di�erent rules, and hence the categories alone did not give us the proper
information we sought. To get further information, a per-rule statistic was required.

For the per-rule statistics, we �ltered the results with those cases where the compa-
nies did fewer than 4 refactorings of a single kind of PMD rule. This ensured that only
relevant data was included in the statistics, and a single-refactored PMD rule could
not adversely a�ect the average values.

Table 3.1 shows a top list of the best improving PMD rule violations. The top list
was made by taking the average of the local improvements and summing the average
of global improvements, in descending order.

PMD rule violation Rank

PMD_LoC - LooseCoupling 1.
PMD_PLFIC - PositionLiteralsFirstInComparisons 2.
PMD_CCOM - ConstructorCallsOverridableMethod 3.
PMD_ALOC - AtLeastOneConstructor 4.
PMD_ATRET - AvoidThrowingRawExceptionTypes 5.
PMD_ULV - UnusedLocalVariable 6.
PMD_USBFSA - UseStringBu�erForStringAppends 7.
PMD_OBEAH - OverrideBothEqualsAndHashcode 8.
PMD_AICICC - AvoidInstanceofChecksInCatchClause 9.
PMD_MRIA - MethodReturnsInternalArray 10.

Table 3.1. Top 10 PMD rules with the best improvements

Risk Table 3.2 shows the riskiest PMD rules used to refactor based on the replies
by company experts. We observe that in most cases the riskiest refactorings are for
basic Java functionalities. The list includes rules concerning java.lang.Object 's clone,
hashCode and equals method implementation, proper catch blocks and throws de�ni-
tions, array copying and unused variables. All of the previous refactorings increased the
quality of the software system (by de�nition), but �xing these rule violations can have
some unexpected consequences. These unexpected consequences are also caused by a
previous improper implementation. Of course, if the software code had been written
properly in the �rst place, these unexpected results would have been appeared earlier,
and could have been �xed during the development phase.

RQ5: How can we schedule refactoring operations e�ciently?

Now we will describe a way of scheduling refactoring operations. First, we will ex-
amine how the industrial partners scheduled their refactorings and then we will make
recommendations based on these observations.
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PMD rule violation Rank

PMD_PCI - ProperCloneImplementation 1.
PMD_ALOC - AtLeastOneConstructor 2.
PMD_SDTE - SignatureDeclareThrowsException 3.
PMD_ACNPE - AvoidCatchingNPE 4.
PMD_LoC - LooseCoupling 5.
PMD_OBEAH - OverrideBothEqualsAndHashcode 6.
PMD_AICICC - AvoidInstanceofChecksInCatchClause 7.
PMD_ULV - UnusedLocalVariable 8.
PMD_AISD - ArrayIsStoredDirectly 9.
PMD_ATNPE - AvoidThrowingNullPointerException 10.

Table 3.2. Top 10 riskiest PMD rules to refactor

How did companies schedule their refactorings? We asked the companies how
they scheduled their refactoring operations when �xing rule violations. Each of the
companies used the priority attribute that was given for each kind of rule violation, by
using the toolchain that was used to extract the rule violations. Priorities were 1, 2,
3, which indicate di�erent levels of threat for each rule violation.

Priority 1 indicates dangerous programming �ows.

Priority 2 indicates not so dangerous, but still risky or unoptimized code segments.

Priority 3 indicates violations to common programming and naming conventions.

43%

34%

23%

1

2

3

Figure 3.7. Fix rate according to Priority

In Figure 3.7, we can see the percentage scores of all the issues that were �xed for
each priority level. They reveal that companies �xed Priority 1 issues the most and
Priority 2 issues the second most. This means that companies here opted to �x the
most threatening rule violations detected in the code.

Given these attributes, the most e�cient way is to start refactoring those issues
that had Priority 1 level rule violations. To �nd out how the companies actually sched-
uled their refactorings, we split the refactorings into two sets. The �rst set contains
refactorings which were made in the �rst half of the project, and the other set contains
refactorings made in the second half. The results of these experiments are represented
in Figure 3.8. They tell us in percentage terms how much was �xed for each priority
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level in the �rst half and second half of the project. They reveal that the companies
�xed most Priority 1 rule violations in the �rst half of the project and �xed most Pri-
ority 2 rules in the second half. This is consistent with what the companies told us
and they provided good feedback on how they scheduled their refactoring process.

0% 20% 40% 60% 80% 100%

first half

second half

3

2

1

Figure 3.8. Fixes in the �rst and second half according to Priority

3.1.3 Discussion

Next, we will elaborate on potential threats to validity and some other interesting
results that we obtained from our survey.

Threats to Validity

We identi�ed some threats that can a�ect the construct, internal and external validity
of our results.

The �rst one we encountered was the subjectivity of the survey. The answers to
our survey questions were given by developers on a self-assessment basis. We did not
measure the time needed or enhancement of refactorings with any automated solution;
instead we let the developers answer the survey freely. Nevertheless, we carried out
the survey with �ve industrial partners and therefore with many experts, which surely
makes the results statistically relevant.

Another threat that we anticipated was that developers got `unlimited' extra money
and time to do the refactorings, so we could monitor how they refactored their system
without any budget pressure. Although they had extra time and money in part of the
project, there were still limits that might a�ect the results and the refactoring process.

Turning to external validity, the generalizability of our results depends on whether
the selected programming language and rule violations are representative for general
applications. The Java programming language was selected in the assessment together
with the companies. These refactorings were made mostly on issues identi�ed by PMD
rule violations, hence they were Java speci�c. However, most of these rules could be
generalized to abstract Object-Orientated rules, or they can be speci�cally de�ned for
other programming languages.
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Another threat is that whether �xing PMD rule violations can be viewed as refac-
toring or not. PMD refactorings are not like traditional refactoring operations that
most studies examine (e.g. pull up, push down, move method, rename method, replace
conditional with polymorphism). Despite this, Fowler [12] de�ned refactoring as �the
process of changing a software system in such a way that it does not alter the exter-
nal behavior of the code yet improves its internal structure.� During the project we
encountered several PMD rule violations and our general experience is that the refac-
toring of these violations does not alter external behavior, so they can by de�nition be
treated as refactoring.

Overall, our methods were evaluated on large-scale industrial projects, with con-
tributions from expert developers, on a big set of data, which is a rather unique case
study in the refactoring research area.

Other results

In our case study (see Section 3.1.2) we summarized our results based on research
questions addressed to experts working in �ve IT companies. However we ran into
several interesting cases which were worth mentioning, but could not be incorporated
into our research questions.

One of the interesting cases we found was when we searched for the longest-lasting
refactorings. We found that Company A carried out a SignatureDeclareThrowsEx-
ception refactoring, which lasted 16 hours. The issue occurred in a method of a
widely implemented interface, and the problem was that the method threw a sim-
ple java.lang.Exception Exception-type. This is not recommended because it hides
information and it is harder to handle exceptions. The developer assigned to the issue
estimated that the work took 1-2 days, and said that the risk was high because it
impacted 10-25 �les, but it was worth refactoring because the extra information they
gained after the refactoring helped improve the maintainability of the source code.

Another intriguing example was with the same search as before. We found that
Company D performed several AvoidDuplicateLiterals refactorings, which took them 7
hours on average to do; and each of the refactorings impacted on more than 100 classes.
According to the comments in the survey, they used NetBeans IDE [28] to �x these
kinds of issues. NetBeans IDE has a integrated refactoring suite that helps developers
to refactor their source code. Here, they used this suite to extract duplicated literals
to constant variables. The survey comments revealed that the refactoring suite really
helped them in this refactoring task, and it would be a great help if automated solutions
could be devised and implemented to tackle other issues as well.

3.2 Case Study on the E�ects of Refactoring on Soft-

ware Maintainability

In Section 3.1 we analyzed questionnaires that the developers �lled before and after they
manually refactored the code. Here, we investigate how developers decided to improve
the quality of their source code and what the real e�ect of the manual refactorings
was on the quality. In this study, we measured the maintainability of six selected
systems of four companies who participated in the project. We calculated the quality
for the revisions before and after the developers applied refactoring operations. We
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showed which code smells developers decided to �x and how each refactoring changed
the quality of the systems. We examine the data set that we gathered by addressing
the following motivating research questions:

• Is it possible to recognize the change in maintainability caused by a single refac-
toring operation with a probabilistic quality model based on code metrics, coding
issues and code clones?

• Does refactoring increase the overall maintainability of a software system?

• Can it happen that refactoring decreases maintainability?

3.2.1 Methodology

In the project, the companies' programmers were required to refactor their own code,
hence improve its maintainability, but they were free to choose how they wanted to do it.
They could freely choose any coding issues or metrics from the reported problems, and
they were also free to identify additional problems in the code by themselves. However,
the project required that they �lled out the survey (in a Trac ticketing system) and that
they gave a thorough explanation on what, why and how they refactored during their
maintenance task. Besides completing the survey, we asked them to provide revision
information so we could map one refactoring to a Trac ticket and a revision in the
version control system (Subversion, Mercurial).

After the manual refactoring phase, we analyzed the selected revisions to assess the
change in the maintainability of the systems caused by refactoring commits. Figure 3.9
gives an overview of this process. It was not a requirement of the developers that they
commit only refactorings to the version control system, or that they create a separate
branch for this purpose. It was more realistic, and some developers asked us in particu-
lar to commit these changes to the trunk or development branches so they could develop
their system in parallel with the refactoring process. Hence, for each system we identi-
�ed the revisions (rt1 , ..., rti , ..., rtn) that were reported in the Trac system as refactoring
commits, and we analyzed all these revisions along with the revisions prior to them. As
a result, we considered the set of revisions rt1−1, rt1 , ..., rti−1, rti , ..., rtn−1, rtn , where rti
is a refactoring commit and rti−1 is the revision prior to this commit, which is actually
not a reported refactoring commit.

We performed an analysis of these revisions of the source code via the QualityGate
SourceAudit tool, mentioned earlier in Section 2.2. To be able to calculate the changes
in the maintainability, we had to analyze the whole code base for each revision. That
is, a commit with a small local change may also have an impact on some other parts of
the source code. E.g., a small modi�cation in a method may result in the appearance
of a new clone instance, or changes in coupling metric values of some other classes.
Besides analyzing the maintainability of these revisions, we collected data from the
version control system as well, like di�s and log messages.

We will now illustrate the use of a simple refactoring through a coding issue that
was actually �xed by the developers. In this example, we show the `Position Literals
First In Comparisons' coding issue. In Listing 3.1, there is a Java code example with
a simple String comparison. This code works perfectly until we call the `printTest'
method with a null reference. By doing so, we would call a method of a null object,
and the JVM would throw a NullPointerException.
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Figure 3.9. Overview of the analysis process. We identi�ed the refactoring commits
based on the tickets in Trac, and analyzed maintainability of the revisions before/after
refactoring commits.

� �
public class MyClass{

public static void printTest(String a){

if(a.equals("Test")) {

System.out.println("This is a test!");

}

}

public static void main(String [] args) {

String a = "Test";

printTest(a);

a = null;

printTest(a); // What happens?

}

}� �
Listing 3.1. A code with a Position Literals First In Comparisons
issue

To avoid this problem, we have to compare the String literal with the variable
instead of comparing the variable with the literal. So to �x this issue, we simply swap
the literal and the variable in the code, as can be seen in Listing 3.2. Thanks to this
�x, one can safely call the `printTest' method with a null object and we do not have
to worry about a null pointer exception. This and similar refactorings are easy to �x,
and with this �x we can avoid critical or even blocker errors.
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� �
public class MyClass{

public static void printTest(String a){

if("Test".equals(a)) {

System.out.println("This is a test!");

}

}

public static void main(String [] args) {

String a = "Test";

printTest(a);

a = null;

printTest(a); // What happens?

}

}� �
Listing 3.2. Sample refactoring of the code in Listing 3.1

3.2.2 Overall Change of Maintainability of the Systems

Table 3.3 shows the size of the six chosen systems and the number of analyzed re-
visions including the number of refactoring commits. Recall that we determined the
refactoring revisions from the ticketing system as those revisions which were marked
by the developers as refactoring commits. In addition, we analyzed the non-refactoring
revisions prior to the refactoring revisions in order to calculate the change in main-
tainability (see Section 3.2.1). All in all, we analyzed around 2.5 million lines of code
with 732 revisions, out of which 315 were refactoring commits. Developers made 1,273
refactoring operations with these commits. Notice that the project allowed the de-
velopers to commit more refactorings together in one patch, but one commit had to
consist of the same type of refactoring operations. So one commit possibly included
the necessary code transformations to �x more Position Literals First issues, and we
did not allow it to have a di�erent type of coding issue in the same changeset.

Table 3.3. The main characteristics of the selected systems: lines of code, total number
of analyzed revisions, number of refactoring commits, number of refactoring operations.

System Company kLOC
Analyzed Refactoring

Refactorings
Revisions Commits

System A Comp. I. 1,740 269 136 470
System B Comp. II. 440 180 38 78
System C Comp. III. 170 78 15 597
System D Comp. IV. 38 37 16 18
System E Comp. IV. 11 57 40 40
System F Comp. IV. 50 111 70 70

Total 2,449 732 315 1,273

The �rst diagram in Figure 3.10 shows the change in the maintainability (between
each pair of refactoring and its predecessor) of System A during the refactoring period.
The diagram indicates that maintainability of the system increased over time; how-
ever, this tendency includes the normal development commits as well and not just the
refactoring commits.

The second diagram in Figure 3.10 shows a sub-period and highlights in red those
revisions that were marked as refactoring commits, while the green part indicates the
rest of the revisions (i.e, the ones preceding a refactoring commit) which were the
normal development commits. It can be seen that those commits that were marked as
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Figure 3.10. Maintainability of System A over the refactoring period and a selected
subperiod where we highlighted in red the changes in maintainability caused by refac-
toring commits

refactorings noticeably increased the maintainability of the system, but in some cases
the change does not seem to be signi�cant and the maintainability remains unaltered.
However, commits of normal development sometimes increase and sometimes decrease
the maintainability with larger variance.

Table 3.4. Number of commits which increased or decreased the maintainability of the
systems

System Negative Zero Positive

System A 17 94 25
System B 3 18 17
System C 2 5 8
System D 1 7 8
System E 13 9 18
System F 8 30 32
Total 44 163 108

Table 3.4 lists the number of commits for each system which had a positive (or
negative) impact on maintainability. If a commit increased the maintainability value
it had a positive (bene�cial) impact; if it decreased, it had a negative (detrimental)
impact; otherwise it did not a�ect the sensors of the quality model and its impact is
considered zero (neutral). As can be seen in Figure 3.11, the results show that for all
of the systems the bene�cial e�ects outnumber the detrimental ones. Interestingly, it
also indicates that a large proportion of the commits did not have an observable impact
on maintainability. The main reason for this is that ColumbusQM does not recognize
all the coding issues that were �xed by the developers. As the developers were not
aware of the ColumbusQM model, their aim was simply to improve their own code.
This included some �xes of coding issues that were detected by the ColumbusQM only
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Figure 3.11. Normalized percentage scores of commits with a negative/zero/positive
impact on maintainability (negative - red, zero - gray, positive - green)

when the refactoring a�ected some source code metrics. (Section III elaborates on
these refactorings.)
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Figure 3.12. Maintainability of the projects before and after the refactoring period

Figure 3.12 shows the maintainability values that we measured before and after the
refactoring period of each system in question, and Table 3.5 tells us how the maintain-
ability increased or decreased for these systems. Recall that the value of maintainability
can be between 0 and 10, where 0 denotes a system with the hardest maintainability,
and 10 denotes a system that is very easy to maintain. The `Metrics', `Antipatterns'
and `Coding Issues' columns show for each system the number of di�erent kinds of
refactorings that were �xed. Note that they could have �xed more issues with one
commit, so it might happen that the aim of a �x was to improve some metrics and
eliminate antipatterns together. The `Total Impr.' column shows the di�erence; that

28



Chapter 3. Evaluation of Developers' Refactoring Habits

is, the maintainability improvement at the end of the project. `Ref. Impr.' shows the
total value of the maintainability changes caused by refactoring commits only; hence
it shows how refactoring commits improved the maintainability.

Table 3.5. Maintainability of the systems before and after the refactoring period

System Metrics
Anti- Coding Maintain. Maintain. Total Ref.

patterns Issues Before After Impr. Impr.

System A 0 0 470 5.4699 5.3193 -0.1506 -0.0030
System B 32 34 43 5.8095 5.8762 0.0667 0.0135
System C 15 13 595 3.4629 3.7354 0.2725 0.0767
System D 3 0 17 5.4775 5.6594 0.1819 0.0151
System E 14 8 31 6.4362 6.8190 0.3828 0.0436
System F 15 11 42 6.4972 6.5926 0.0954 0.0716

We measured positive change in the maintainability of �ve systems out of six and
in the case of System F, 75.05% of the maintainability improvement was caused by
refactoring commits. Notice, however, that for System A, maintainability decreased
by the end of the refactoring period (it had the biggest detrimental impact ratio in
Table 3.4). Also, this system had the largest code base among the systems analyzed
and its developers decided to �x only coding issues.

3.2.3 E�ect of Di�erent Types of Refactorings on the Main-
tainability

To further investigate the changes made during the refactoring period, we will study the
impact of each type of refactoring. For each refactoring ticket, we asked the developers
to select what they wanted to improve with the commit:

• Did they try to improve a certain metric value?

• Did they try to �x an antipattern?

• Did they try to �x a coding issue?

In practice, it may happen that a developer wants to �x a coding issue and he
may improve a metric value as well in the same commit. Also, many metrics correlate
with antipatterns (e.g. large class/long method correlate with LOC). However, in the
project developers mostly handled these separately. For coding issues, we asked them
in particular to commit refactorings of only one certain kind of issue per commit. But
this also means that they were allowed to refactor more from the same kind of coding
issue in one commit.

I Metrics

Table 3.6 shows the change in maintainability caused by refactoring commits, where
the goal of the developers was to improve certain metrics. (See Table 3.7 for a detailed
description of these metrics.) The �rst thing that we notice here is that the number
of these refactorings (74) is very small compared to the total number of refactorings
(1,273). It was de�nitely not the primary goal of the developers to improve the metric
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values of their systems, although we told them about all the well-known complexity,
coupling, and cohesion metrics at the package, class and method levels. One might
doubt how well trained these developers were and whether they were really familiar
with the meaning of these metrics. To eliminate this factor, for each company, we held a
training session where we introduced the main concepts of refactoring and code smells,
and then gave them an advanced introduction to metrics. Most of the participating
developers attended this training session, including junior and senior developers as well.

Table 3.6. Change in maintainability caused by commits improving metrics

Metrics # Average Min Max Deviation

NMD 1 0.005252 0.005252 0.005252 0.000000
COF 3 0.002691 0.000000 0.006546 0.003425
McCC + NOA 3 0.002299 0.002299 0.002299 0.000000
CLB 10 0.001662 -0.007803 0.017286 0.006616
NII 1 0.001645 0.001645 0.001645 0.000000
McCC 2 0.001323 0.000000 0.002647 0.001872
NA 1 0.001231 0.001231 0.001231 0.000000
LOC 38 0.001007 -0.007617 0.011233 0.003687
NUMPAR 5 0.000382 -0.000108 0.001113 0.000578
NM 1 0.000257 0.000257 0.000257 0.000000
NLE 4 0.000047 0.000047 0.000047 0.000000
NA 1 0.000000 0.000000 0.000000 0.000000
U 2 -0.000083 -0.000165 0.000000 0.000117
NOS 1 -0.000167 -0.000167 -0.000167 0.000000
NOI 1 -0.004062 -0.004062 -0.004062 0.000000

Table 3.7. Description of metrics

Abbreviation Description

NMD Number of de�ned methods
COF Coupling factor
McCC McCabe's cyclomatic complexity
NOA Number of ancestors
CLB Comment lines before class/method/function
NII Number of incoming invocations
NA Number of attributes (without inheritance)
LOC Lines of code
NUMPAR Number of parameters
NM Number of methods (without inheritance)
NLE Nesting level
NA Number of attributes
U Reuse ratio (for classes)
NOS Number of statements
NOI Number of outgoing invocations

Among those refactorings which �x metrics, it can be seen that complexity metrics
(e.g. McCabe's cyclomatic complexity and Number of parameters) and size metrics
(e.g. Lines of code) were the most familiar ones that developers intended to improve.
The Average column of Table 3.6 lists the average of the measured changes in the
maintainability caused by these commits. The �rst entry in the table shows a refactor-
ing which was performed because of the high value of the Number of de�ned methods
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metric. In this case, developers realized that they had similar methods in a few of their
classes (methods for serialization and deserialization). They did a Pull-up method
refactoring, which reduced the number of de�ned methods in the code and had a ben-
e�cial impact on the maintainability. Developers also tried to decrease the Coupling
factor in their systems with Move method and Move �eld refactorings (second row of
the table). There were three refactorings where developers attempted to �x a class
with high complexity and bad inheritance hierarchy at the same time. In 38 cases,
developers wanted to decrease the LOC metric, and �ve times they �xed methods with
too many parameters. It is also interesting to observe that once they targeted the reuse
ratio (e.g. to simplify the inheritance tree) and this resulted in a decrease in main-
tainability. One explanation is that if they wanted a better reuse ratio, they probably
needed to introduce a new class (inheriting from a superclass), which might increase
the complexity or in the worst case introduce new coding issues or code clones.

II Antipatterns

Table 3.8 shows the average of changes in maintainability when developers �xed an-
tipatterns. Some antipatterns were identi�ed with automatic analyzers (e.g. Long
Function and Long Parameter List), but developers could spot antipatterns manually
as well and report them to the ticketing system. (Data Clumps is an example for an
antipattern identi�ed by a developer.)

Table 3.8. Change in maintainability caused by commits �xing antipatterns

Antipattern # Average Min Max Deviation

Duplicated Code 11 0.003527 -0.007803 0.011233 0.005195
Long Function, Duplicated Code 3 0.002299 0.002299 0.002299 0.000000
Large Class Code 5 0.001586 0.000000 0.006670 0.002872
Shotgun Surgery 1 0.001526 0.001526 0.001526 0.000000
Data Clumps 1 0.001231 0.001231 0.001231 0.000000
Long Parameter List 5 0.000382 -0.000108 0.001113 0.000578
Long Function 40 -0.000084 -0.007617 0.007097 0.002703

As in the case of metrics, �xing antipatterns was not the primary concern of de-
velopers. Typically, they �xed Duplicated Code, Long Functions, Large Class Code
or Long Parameter List. Most of these antipatterns could be also identi�ed via met-
rics. In practice, the greatest in�uence on the maintainability among antipatterns was
caused by �xing Duplicated Code segments. Removing code clones can be done for
example by using Extract Method, Extract Class or Pull-up Method refactoring tech-
niques. Removing duplications reduces the LOC of the system, increases reusability
and improves the overall e�ectiveness. Interestingly, �xing Duplicated Code sometimes
reduced maintainability, as can be seen in the Min column of Table 3.8. For instance,
in one case, it decreased the maintainability by 0.0078. Developers of Company IV
performed an Extract Superclass refactoring on two of their classes to remove clones.
At �rst it was not clear why it had a detrimental e�ect on the maintainability because
in most of the other cases it had a bene�cial e�ect. Further investigation showed that
they �xed the Duplicated Code, which in fact increased the maintainability as usual,
but they introduced two new OverrideBothEqualsAndHashcode coding issues, which
together had a bigger detrimental e�ect than the �x itself. (Fortunately, they �xed the
new coding issues in later commits.)
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Developers �xed Duplicated Code antipatterns 11 times, Long Function with Dupli-
cated Code 3 times altogether, Large Class Code 5 times, and Long Function antipat-
tern 40 times. Fixing these antipatterns require a larger, global refactoring of the code
(e.g. using Extract Method refactoring). These global refactorings induced a larger
change in maintainability compared to others. It is also interesting that the deviation
of the e�ects on maintainability were the largest in the case of �xing Duplicated Code,
Large Class Code and Long Function antipatterns.

III Coding Issues

Tables 3.9 and 3.10 list the average of measured maintainability changes where devel-
opers �xed coding issues. The relatively big number of refactorings tells us that this
was what developers really wanted to �x when they refactored their code base. As we
previously noted, it is not clear whether a code transformation which was intended to
improve the maintainability, but slightly modi�es the behavior, should be classi�ed as
a refactoring or not. Fixing a coding issue, for instance, a null pointer exception issue
may perhaps change the execution (in a positive way), but it is questionable whether
this change (�xing an unwanted bug) should be considered a change in the observed
external functionality of the program. However, it is obvious that the purpose of �x-
ing coding issues is to improve the maintainability of the code and not to modify its
functionality. We will classify all these �xes as refactorings following the refactoring
de�nition of Kim et al. [24], in which they say that refactoring does not necessarily
preserve the semantics in all aspects. Nevertheless, we group the coding issues into
two groups; namely (1) issues that can be �xed via semantic preserving transforma-
tions, and (2) issues which can be �xed only via transformations which do not preserve
the semantics of the original code. The SP columns in Tables 3.9 and 3.10 show this
information.

Tables 3.9 and 3.10 show the measured average, minimum, and maximum changes
and the standard deviation. The coding issues in the rows are those issues which
had at least one patch in the manual refactoring period of any system. Some of
these coding issues are simple coding style guidelines which can be relatively easily
�xed (e.g. IfElseStmtsMustUseBraces), while there are some issues which may indi-
cate serious bugs and need to be carefully �xed (e.g. MethodReturnsInternalArray
or OverrideBothEqualsAndHashCode). Issues that are easier to �x were refactored
in larger quantities such as IntegerInstantiation and BooleanInstantiation. It is not
that surprising that these issues had a relatively low impact on maintainability; how-
ever, it is interesting to observe that some of them caused a detrimental change in the
maintainability.

The coding issue with the highest average maintainability improvement was Use-
LocaleWithCaseConversions. This issue warns the developer to use a Locale instead
of simple String.toLowerCase()/toUpperCase() calls. This avoids common problems
encountered with some locales, e.g. Turkish. The second highest average is the Un-
synchronizedStaticDateFormatter issue, where the problem is that the code contains
a static SimpleDateFormat �eld which is not synchronized. SimpleDateFormat is not
thread-safe and Oracle recommends separate format instances for each thread. Com-
pany IV �xed this issue by creating a new SimpleDateFormat instance to guarantee
thread-safety. However, using ThreadLocal would have provided a better solution for
both readability and performance.

In the case of the IfElseStmtsMustUseBraces issues, the reason for the detrimental
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Table 3.9. Positive maintainability changes caused by commits �xing coding issues.
(The SP column shows whether a refactoring made a semantic preserving transforma-
tion or not.)

SP Coding issue # Avg Min Max Dev

7 UseLocaleWithCaseConversions 4 0.008748 0.005894 0.012439 0.002938
7 UnsynchronizedStaticDateFormatter 1 0.008618 0.008618 0.008618 0.000000
3 AvoidInstanceofChecksInCatchClause 5 0.003825 0.000000 0.017286 0.007549
3 ExceptionAsFlowControl 1 0.003139 0.003139 0.003139 0.000000
7 NonThreadSafeSingleton 1 0.002977 0.002977 0.002977 0.000000
3 AvoidCatchingNPE 3 0.002341 0.001627 0.003484 0.001000
7 EmptyCatchBlock 11 0.002175 0.000000 0.007559 0.002849
7 OverrideBothEqualsAndHashcode 8 0.001768 0.000000 0.005922 0.004241
3 EmptyIfStmt 1 0.001286 0.001286 0.001286 0.000000
3 UnusedPrivateField 9 0.000729 -0.004062 0.007533 0.003016
3 PreserveStackTrace 11 0.000457 -0.000389 0.001942 0.000904
7 SignatureDeclareThrowsException 23 0.000348 0.000000 0.001526 0.000692
7 SwitchStmtsShouldHaveDefault 4 0.000323 -0.000167 0.000642 0.000364
3 UseStringBu�erForStringAppends 17 0.000289 -0.009357 0.012077 0.007609
3 ArrayIsStoredDirectly 2 0.000273 0.000183 0.000363 0.000127
3 UnusedLocalVariable 4 0.000223 -0.000247 0.000828 0.000463
3 LooseCoupling 16 0.000212 0.000000 0.002647 0.000830
3 AvoidDuplicateLiterals 454 0.000121 0.000121 0.000121 0.000000
3 UnnecessaryLocalBeforeReturn 43 0.000108 0.000000 0.000585 0.000459
3 UnnecessaryWrapperObjectCreation 118 0.000083 0.000083 0.000083 0.000000
7 AvoidPrintStackTrace 32 0.000069 0.000000 0.000185 0.000304
3 SimplifyConditional 39 0.000010 0.000000 0.000125 0.000061

Table 3.10. Zero or negative changes in maintainability by commits �xing coding issues.
(SP column shows whether a refactoring did a semantic preserving transformation or
not.)

SP Coding issue # Avg Min Max Dev

3 AvoidSynchronizedAtMethodLevel 8 0.000000 0.000000 0.000000 0.000000
3 ConsecutiveLiteralAppends 1 0.000000 0.000000 0.000000 0.000000
3 MethodReturnsInternalArray 8 0.000000 0.000000 0.000000 0.000000
3 ReplaceHashtableWithMap 1 0.000000 0.000000 0.000000 0.000000
3 UseIndexOfChar 48 0.000000 0.000000 0.000000 0.000000
3 UnusedModi�er 31 0.000000 0.000000 0.000000 0.000000
3 BooleanInstantiation 47 -0.000016 -0.000273 0.000235 0.000305
3 IntegerInstantiation 84 -0.000019 -0.000247 0.000014 0.000247
3 IfElseStmtsMustUseBraces 117 -0.000111 -0.000456 0.000186 0.001406
3 BigIntegerInstantiation 21 -0.000156 -0.003587 0.000974 0.001110
3 Ine�cientStringBu�ering 12 -0.000264 -0.002649 0.000128 0.000846
3 UnusedPrivateMethod 2 -0.000863 -0.002729 0.001002 0.002638
7 AvoidCatchingThrowable 2 -0.001654 -0.003307 0.000000 0.002339
3 AddEmptyString 9 -0.001833 -0.004527 0.000677 0.002117

change in maintainability is the increased number of the code lines in the modi�ed
methods. The sensors of the maintainability model will change at a low level; that is,
the number of issues and the LOC metric. These changes will a�ect the higher level,
aggregated maintainability attributes like CodeFaultProneness and Comprehensibility
and also the Maintainability. A simple example of this situation is shown in listings
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3.3 and 3.4. A simple method with 5 lines could grow to 14 lines if we apply all the
necessary refactorings. What is more, this kind of issue has only minor priority so there
is a good chance that the bene�cial change in the number of issues will have a smaller
in�uence on the maintainability than the detrimental change caused by the increased
number of lines of code.� �

public static int doQuant(int n) {

if ( n >= 0 && n < 86) return 0;

else if (n > 85 && n < 170) return 128;

else return 255;

}� �
Listing 3.3. Sample code with an IfElseStmtsMustUseBraces issue.
LOC: 5

� �
public static int doQuant(int n) {

if ( n >= 0 && n < 86)

{

return 0;

}

else if (n > 85 && n < 170)

{

return 128;

}

else

{

return 255;

}

}� �
Listing 3.4. A sample refactoring of the code in Listing 3.3. LOC:
14

In the case of Ine�cientStringBu�ering, the reason for the detrimental change in
maintainability is also the modi�ed number of lines of code. Listing 3.5 shows this kind
of issue in a code sample that needs to be refactored. Some of the developers decided
to �x this issue, as can be seen in Listing 3.6. This way, there were no new lines added
to the code, and the e�ect of the refactoring was simple; namely, one coding issue
vanished.� �

String toAppend = "blue";

StringBuffer sb = new StringBuffer ();

sb.append("The sky is" + toAppend );� �
Listing 3.5. A code with Ine�cientStringBu�ering issue

� �
String toAppend = "blue";

StringBuffer sb = new StringBuffer ();

sb.append("The sky is"). append(toAppend );� �
Listing 3.6. A sample refactoring of the code in Listing 3.5

Other developers preferred to �x this problem, as can be seen in Listing 3.7. This
way, the issue vanishes as well, but there is a side e�ect. At least one new code line
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appears in the code, which again a�ects the lines of code metric, hence it had a slight
impact on the maintainability.

� �
String toAppend = "blue";

StringBuffer sb = new StringBuffer ();

sb.append("The sky is");

sb.append(toAppend );� �
Listing 3.7. Another way of refactoring Listing 3.5

Another interesting refactoring was the one where Company III refactored Avoid
Duplicate Literals coding issues. This kind of issue tells us that a code fragment con-
taining duplicate String literals can usually be improved by declaring the String as a
constant �eld. Refactoring these issues helps to eliminate dangerous duplicated strings,
which should improve stability and readability. Although this was the manual phase
of the project (where the companies could not yet use the refactoring tool that we in-
tended to develop later), we spotted an interesting commit message where Company III
refactored this coding issue with the help of the Netbeans IDE. Netbeans was able to
assist them in �nding and extracting duplicated string literals into constant �elds. The
�x was simple and straightforward so we decided keep these refactorings as valuable
commits, and not to �lter out them from the study. The developers eliminated 454 is-
sues in one commit which covered more than 20,000 lines of code. The quality increase
of this commit is quite large; and it improved the maintainability index of the whole
system by 0.055.

In some cases, the measured change in maintainability was 0. The reason for this
lies in a pitfall of the maintainability model, where these minor priority issues were
not taken into account by the maintainability model. Hence, when these issues were
�xed, the model did not recognize the change in the number of issues. Fixing these
issues required only small local changes that did not in�uence other maintainability
attributes either, so complexity and lines of code remained unaltered, for instance. As
a result, the measured change in maintainability was, apparently 0.

3.2.4 Impact of Non-Refactoring Commits

We were able to analyze the systems only in their refactoring period when developers
performed some refactoring tasks on their code. As a result, we have the analysis
data for each system before and after a refactoring commit was submitted to the
version control system. We did not analyze other commits, so we do not have analysis
data for other non-refactoring commits. However, we have some opportunities here
to study the impact of non-refactoring commits and compare them to refactorings.
We analyzed the revisions before refactoring commits to explore the maintainability
of a system between two refactoring commits. Suppose that ri and rj revisions are
consecutive refactoring commits of a system and j > i. In this case, we analyzed the
revisions ri−1, ri, rj−1 and rj, following the same sequence of the commits. A change
in the maintainability between the revisions (ri−1, ri) and (rj−1,rj) is caused by two
di�erent refactoring commits, but the change in the maintainability between (ri,rj−1)
is because of several non-refactoring commits. These changes measured between two
consecutive refactoring commits, (which are caused by other, non-refactoring commits)
makes it possible to compare the impact of refactoring and non-refactoring commits.
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Although these group together several smaller (non-refactoring) commits, we can treat
them as normal development tasks. For simplicity, we will refer to these as development
commits in the rest of this section.

It seems a reasonable assumption that refactoring commits often have a positive
e�ect on maintainability, but this would not be true for development commits. To
investigate this assumption, we counted the commits which increased/decreased or
had zero e�ect on maintainability. We use this data to study their independence with
a Pearson's chi-square test. The input data is presented in Table 3.11.

Table 3.11. Number of refactoring and development commits which had a negative/ze-
ro/positive impact on maintainability

Commit type Negative Zero Positive

Refactoring 44 163 108
Development 63 167 139

We de�ne the following null hypothesis: �for each commit, its e�ect on maintain-
ability is independent of the type of the commit (refactoring or development)�. Then
the alternative hypothesis is: �for each commit, its e�ect on maintainability is de-
pendent on the type of the commit (refactoring or development)�. As a result of a
chi-square test, we get a p-value of 0.2156, which is greater than the 0.05 signi�cance
level. Hence, we accept the null-hypothesis that the type of the commit and its e�ect
on maintainability are independent.

Figures 3.13, 3.14, 3.15 show how the maintainability of the systems changed over
time during the refactoring period. Revision numbers are obfuscated, but their order
follows the original order of the commits. In the case of System A, developers refac-
tored four submodules of the system, and we show these submodules separately in the
diagram. The diagrams con�rm that refactoring and non-refactoring results in varying
changes in the maintainability. Just as we can spot refactoring/development commits
which suddenly improve the measured values, we can spot their counterparts which
suddenly decrease these values. It is easy to see, however, that the maintainability of
the systems displayed a positive tendency in the refactoring period.
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Figure 3.13. Maintainability of systems A and B during the refactoring period (revision
numbers have been obfuscated, but they are in their original order)

We should also note that most of the refactorings presented in our study may
be considered as small local changes and these commits are likely to have a small
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Figure 3.14. Maintainability of systems C and D during the refactoring period (revision
numbers have been obfuscated, but they are in their original order)

● ● ●
● ●

● ● ● ●

● ● ● ●

●
● ● ● ●

●
● ●

● ●
●

●
● ●

● ● ●
● ●

● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

6.8

7.0

7.2

7.4

580 600 620
Revision

M
ai

nt
ai

na
bi

lit
y

Commit

●

Develop
Refactoring

Commits in System E

●●● ●●●●●●●● ● ●●●●●

●
●●●●●●●●●●●●●

●●
●

●
●●●●●●

●●●
●●●●

●●●●●●●●●●●
●

● ●●●●

●●● ● ●●
●

●
●● ●●●●●●●●

● ● ●●●

6.6

6.8

7.0

7.2

625 650 675 700 725
Revision

M
ai

nt
ai

na
bi

lit
y

Commit

●

Develop
Refactoring

Commits in System F

Figure 3.15. Maintainability of systems E and F during the refactoring period (revision
numbers have been obfuscated, but they are in their original order)

impact on the global maintainability. So the question arises of whether the improving
tendency is because developers take quality more into account in their new code, or
the ColumbusQM model is more sensitive to larger code changes.

Table 3.12. The average change in maintainability of refactoring commits normalized
by the change in lines of code for each system

System
Maint. Change Change in LOC Maint. Change

Avg. Avg. Avg. per LOC

System A -0.000087 30.55 0.000006
System B 0.000589 24.38 0.000099
System C 0.008362 64.73 0.000163
System D 0.000837 2.56 0.000266
System E 0.000092 6.12 -0.000504
System F 0.001441 6.28 0.000677

Besides maintainability, we measured the lines of code metric of the systems. Sim-
ply from the lines of code we can see the �nal di�erence in the newly added or deleted
lines, but we cannot see the exact number of modi�ed lines. Nevertheless, the di�er-
ence in added/deleted lines is a good estimation of the size of the commit. Tables 3.12
and 3.13 show the average change in maintainability of refactoring and development
commits normalized by the change in lines of code for each system. Recall that `devel-
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Table 3.13. Average change in maintainability of development commits normalized by
the change in lines of code for each system

System
Maint. Change Change in LOC Maint. Change

Avg. Avg. Avg. per LOC

System A 0.009068 -117.88 -0.000001
System B 0.000693 215.69 0.000018
System C 0.005652 19.31 0.000665
System D 0.009329 -48.00 0.000365
System E 0.001922 -5.75 0.000808
System F 0.001203 12.04 0.000088

opment commits' group together more commits. Hence, these are likely to be larger
structural changes. Table 3.14 shows the Pearson's r correlation coe�cients and p sig-
ni�cance levels between the change in lines of code and the change in maintainability
for all the commits of each system. These results suggest there is a strong correlation
between the size of the commit and its e�ect on maintainability. Hence, we should
acknowledge that the ColumbusQM model is more sensitive to larger code changes.
Still, the smaller changes of the refactoring commits had a measurable impact on the
global maintainability as well. Notice also that for some systems the correlations are
negative (also when we consider them all together). Moreover, in the case of System
D, they indicate a perfect negative linear relationship between variables. The change
in the lines of code may be negative (when they delete lines). Hence, this means that
sometimes when they remove more lines, they improve the maintainability more no-
tably. Indeed, in the case of System D, they had �ve commits (out of 36) where in
the `largest' commit they removed 906 lines and obtained their best maintainability
improvement of 0.1679 (see the online appendix for details).

Table 3.14. Pearson's r correlation coe�cient and p signi�cance levels between the
change in lines of code and the change in maintainability

System r p

System A -0.5 <0.01
System B 0.48 <0.01
System C 0.17 0.127
System D -0.99 <0.01
System E 0.18 0.171
System F -0.07 0.432

All -0.42 <0.01

In spite of this, when Bakota et al. evaluated the ColumbusQM model [20] on
industrial software systems, they found that �the changes in the results of the model
re�ect the development activities, i.e. during development the quality decreases, dur-
ing maintenance the quality increases.� Here, we studied a refactoring period and in
contrast to Bakotat et al. we found that normal development commits usually im-
proved the quality. This acknowledges that developers tended to take quality more
into account in their new code. They also mention this to us later at the end of the
project.

38



Chapter 3. Evaluation of Developers' Refactoring Habits

3.2.5 Discussion of Motivating Research Questions

Is it possible to recognize the change in maintainability caused by a sin-
gle refactoring operation with a probabilistic quality model based on code
metrics, coding issues and code clones?

We applied the ColumbusQM maintainability model to measure changes in the main-
tainability of large-scale industrial systems before/after refactoring commits. Our mea-
surements revealed that the maintainability changes induced by refactoring operations
can be seen in most of the cases. One particular change usually caused only a small
change, which is quite natural considering that we analyzed 2.5 million lines of code
altogether, and a particular refactoring operation usually a�ects only a small part of
it. However, with some refactorings (mostly those involving �xing local coding issues)
the model did not display any changes in the maintainability. This was due to the fact
that these refactorings were very local, meaning that the sensors of the model did not
recognize any changes in the metric values. By �ne-tuning the maintainability model,
these cases might become detectable.

Does refactoring increase the overall maintainability of a software system?

After the refactoring period, the overall maintainability of the software systems im-
proved and the maintainability model was able to measure this improvement in �ve
out of the six systems. Commits which �xed more coding issues had a relatively higher
impact on maintainability. Similarly, we observed in the tables that when developers
�xed more metrics or antipatterns together, they induced a bigger change compared to
others. Hence, a larger refactoring has a noticeable, positive impact on the maintain-
ability, which is measurable using static analysis techniques.

Can it happen that refactoring decreases maintainability?

Our �ndings reveal that some refactoring operations might have a negative impact on
the maintainability of the system, although its main purpose is to improve it. It is not
easy to decide how to �x an issue and balance its e�ects as it might happen that we
want to improve one maintainability attribute, but we debase others.

3.2.6 Additional Observations

Overall, based on our results and analyses, there are some additional interesting ob-
servations that deserve to be discussed further.

Developers went for the easy refactorings

Although each participating company could take their time to perform large, global
refactorings on their own code, the statistics tell us that they did not decide to do so.
They went for the easy tasks, like the small code smells, which they could �x quickly.
There might be several reasons for it, as �xing these code smells was relatively easy
compared to others. Fixing a small issue which in�uences just the readability does
not require a thorough understanding of the code so developers can readily see the
problem and �x it even if it was not written by themselves. In addition, testing is
easier in these cases too. Still, a larger refactoring may contain more di�culties: it
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requires a better knowledge and understanding of the code; it must be designed and
applied more carefully; or it may happen that permission is needed to change things
across components/architecture. It remains a future research question as to which
choice is better in the long term in such a situation. Should we �x as many small
issues as we can, or perform only a few, but large, global refactorings and restructure
the code?

Developers did not refactor just to improve metrics or avoid antipatterns

Our results suggest that developers did not really want to improve the metric values
or avoid certain antipatterns in their code; they simply went for the concrete problems
and �xed coding issues. One reason that we must consider here is that developers
may not really be aware of the meaning of metrics and antipatterns. Though we are
certain that they were aware of the de�nition of some metrics and code smells (because
we trained them for the project), they probably had no experience in recognizing and
�xing problematic classes with bad cohesion or coupling values, for instance. They
were not maintainability experts who were experienced in studying reports of static
analyzers. This seems to tie in with the previous �nding that developers went for the
low-hanging fruit, and chose the easier way of improving maintainability.

Fixing more complex design �aws (e.g. antipatterns or more complex coding
issues) might have a better impact on the maintainability

In Figure 3.16, we show the e�ect of the average impact of di�erent refactoring types
(metrics, antipatterns, coding issues) on the maintainability among all the refactoring
commits, and we list the corresponding min/max/deviation values in Table 3.15. As
we saw previously, developers �xed mostly coding issues, but notice that those coding
issues which required a �x that modi�ed the semantics of the code had a larger impact
on maintainability, just like that for antipatterns or metrics. Taking into account
how the ColumbusQM calculates maintainability, this is mainly because �xing a more
complex issue (antipattern) has a bigger impact on the full code base and not just some
local parts of it. Another observation here is that we see developers �xed the Duplicated
Code antipattern the most often, which is the number one in Martin Fowler's dangerous
bad-smell list [12].

Table 3.15. Average, minimum and maximum impact on maintainability of di�erent
refactoring types

Average Minimum Maximum Deviation

Types Change Change Change of Change

Metrics 0.000995 -0.007803 0.017286 0.003854
Antipattern 0.000832 -0.007803 0.011233 0.003524

Coding Issues 0.001080 -0.003307 0.012439 0.003393
Coding Issues (SP) 0.000074 -0.009357 0.017286 0.004392

Developers learned to write better code during the refactoring period

All the systems that we studied in the refactoring period displayed an improvement
in source code maintainability, even if we only take into account the revisions where
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Figure 3.16. Average impact on maintainability of di�erent refactoring types

they did not refactor the code, but just committed normal development patches. Our
analysis told us that the number of newly introduced issues in the new code decreased.
Indeed, developers admitted to us at the end of the project that they had learned a
lot from performing a static analysis and from refactoring coding issues. They had
learned how to avoid di�erent types of potential coding issues. As a result they paid
more attention to writing better code and avoiding new issues.

3.2.7 Threats to Validity

We made our observations based on hundreds of refactoring commits in six large-
scale industrial systems. As in similar case studies which were not carried out in a
controlled environment, there are many di�erent threats which should be considered
when we discuss the validity of our �ndings. Here, we give a brief overview of the most
important ones.

Size of the sample set of refactoring commits investigated

The sample set was taken from a large-scale industrial environment compared to other
studies, but it is still limited to the systems that we analyzed. With a larger sample set
of refactorings we might have an even better basis for conclusions and a more precise
view on refactorings. In the future, we intend to extend the sample set with an analysis
of automatic refactorings as well.

Maintainability analysis relies only on the Columbus Quality Model and
Java

The maintainability model is an important part of the analysis as it also determines
what we regard as an e�ect on maintainability of refactorings. Currently, we rely on
the ColumbusQM model with all of its advantages and disadvantages. On the positive
side this model has been published, validated and re�ects the opinion of developers [20];
however, we saw in the evaluation section that the model might overlook some aspects
which would re�ect some changes caused by refactorings. In particular, the model did
not deal with some low priority local coding issues. The version of ColumbusQM used
during the analysis relies on Java source code analysis. However, the same sensors
could be applied to other object-orientated languages as well.
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Refactoring suggestions and quality analysis tool used to evaluate their
e�ect come from the same toolkit

The Columbus technology was used for both the refactoring suggestions and by the
quality analysis tool. That is, the toolkit thinks that the changes made according to
its own suggestions improve quality. This leads to the threat that the quality model
used the same quality indicators as it suggested earlier as refactoring opportunities.

Limitations of the project

We claim that our experiment was carried out in an in vivo industrial context. However,
this project might had unintentional e�ects on the study. For example, the budget for
refactoring was not `unlimited' and companies minimized the e�orts that they spent
on refactoring. Also, the actual state of a system, such as the size and quality of its
test suite may in�uence the risk that a company would like to take during refactoring.

Limitations of the static analysis

We gave support to the developers in identifying coding issues with the help of a static
analyzer. Naturally, this was a great help for them in identifying problematic code
fragments, but it might have led the developers to just concentrate on the issues we
reported. There is a risk here that by using other analyzers or by not using any at all,
we might get di�erent results.

3.3 Related Work

Since Opdyke introduced the term refactoring in his PhD dissertation [11] and Fowler
published a catalog of refactoring `bad smells' [12], many researchers have studied
this technique to improve the maintainability of software systems. Just a few years
later, Wake [29] published a workbook on the identi�cation of `smells', and indicated
practices to recognize the most important ones and some possible ways to �x them
by applying the appropriate refactoring techniques. Five years after the appearance of
Fowler's book, Mens et al. [30] published a survey with over 100 related papers in the
area of software refactoring.

There are several interesting topics studied today by researchers in which they
examine refactoring techniques such as program comprehension [31], impact of refac-
toring on regression testing [32], and developers' opinions on refactoring tools [33], etc.
Among the studies, there are some which investigate the positive or negative e�ects of
refactorings on maintainability and software quality. However, there are only a few em-
pirical studies, especially studies that were performed on large-scale industrial systems.
Below, we will present an overview of research work related to our study.

3.3.1 Guidelines on how to apply refactoring methods

One reason why researchers study the relations between maintainability and refactoring
is to guide developers on when and how to apply refactorings.

Sahraoui et al. [34] investigated the use of object-oriented metrics to detect potential
design �aws and to suggest transformations that handle the identi�ed problems. They
relied on a quality estimation model to predict how these transformations improve
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the overall quality. By validating their technique on some classes of a C++ project,
they showed that their approach could assist a designer/programmer by suggesting
transformations.

A visualization approach was proposed by Simon et al. [35]. Their technique was
based on source code metrics of classes and methods to help developers in identifying
candidates for refactoring. They showed that metrics can support the identi�cation
of `bad smells' and thus can be used as an e�ective and e�cient way to support the
decision of where to apply refactoring.

Tahvildari et al. [36, 37] investigated the use of object-oriented metrics to detect
potential design �aws and suggested transformations for correcting them. They ana-
lyzed the impact of each refactoring on object-oriented metrics (complexity, cohesion
and coupling).

Yu et al. [38] adopted a process-oriented modeling framework in order to analyze
software qualities and to determine which software refactoring transformations are
most appropriate. In a case study of a simple Fortran program, they showed that
their approach was able to guide the refactoring towards high performance and code
simplicity while implementing more functionalities.

Meananeatra [39] proposed the use of �ltering conditions to help developers in
refactoring identi�cation and program element identi�cation. They also proposed an
approach to choose an optimal sequence of refactorings.

3.3.2 Refactoring and its e�ect on software defects

One way researchers attempt to assess the e�ects of refactorings on maintainability is
to study its e�ects on software defects.

Ratzinger et al. [40] analyzed refactoring commits in �ve open-source systems writ-
ten in Java and investigated via bug prediction models the relation between refactoring
and software defects. They found an inverse correlation between refactorings and de-
fects: if the number of refactoring edits increases in the preceding time period, the
number of defects decreases.

Görg andWeiÿgerber [41, 42] detected incomplete refactorings in open-source projects
and they found that incorrect refactoring edits can possibly cause bugs.

Later, Weiÿgerber et al. [43, 44] analyzed version histories of open-source systems
and investigated whether refactorings are less error-prone than other changes. They
found that in some phases of their projects a high ratio of refactorings was followed by
a higher ratio of bugs. They found also phases where there was no increase at all.

3.3.3 Refactoring and its e�ect on code metrics

Some researchers assess the e�ects of refactorings on source code metrics.
Stroulia and Kapoor [45] presented their experiences with a system that followed a

so-called refactoring-based development. They found that the size and coupling metrics
of their system decreased after the refactoring process.

Du Bois and Mens [46] studied the e�ects of selected refactorings (ExtractMethod,
EncapsulateField and PullUpMethod) on internal quality metrics such as the Number
of Methods, Cyclomatic Complexity, Coupling Between Objects and Lack of Cohesion.
Their approach is based on a formalism to describe the impact of refactorings on an
AST representation of the source code, extended with cross-references. Later, Du Bois
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et al. [47] proposed refactoring guidelines for enhancing cohesion and coupling metrics
and they got promising results by applying these transformations to an open-source
project. The Ph.D. thesis of Du Bois was also about the e�ects of refactoring on
internal and external program quality attributes [48].

3.3.4 Empirical studies on refactoring and its e�ects on soft-
ware quality/maintainability

Empirical studies are those which are the closest to study. However, there are only a
few large-scale empirical studies here.

Kataoka et al. [49] published a quantitative evaluation method to measure the
maintainability enhancement e�ect of refactorings. They analyzed a single project
and compared the coupling before and after the refactoring in order to evaluate the
degree of maintainability enhancement. They found coupling metrics were e�ective
for quantifying the refactoring e�ect and for choosing suitable refactorings. Their
validation relied on a �ve-year-old C++ project of a single developer.

Moser et al. [50] studied the impact of refactoring on quality and productivity.
They observed small teams working in similar, highly volatile domains and assessed the
impact of refactoring in a `close-to-industrial environment'. Their case study was about
a Java project with 30 Java classes having 1,770 source code statements. Their �ndings
indicated that refactoring not only increases software quality, but it also improves
productivity.

Ratzinger et al. [51] observed the evolution of a 500 KLOC industrial Picture
Archiving and Communication System (PACS) written in Java before and after a
change coupling-driven refactoring period. They found that after the refactoring pe-
riod, the code had low change coupling characteristics.

Demeyer [52] pointed out that refactoring is often blamed for performance reduc-
tion, especially in a C++ context, where the introduction of virtual function calls
introduces an extra indirection via the virtual function table. He discovered, however,
that C++ programs refactored this way often run faster than their non-refactored coun-
terparts (e.g. compilers can optimize better on polymorphism than on simple if-else
statements).

Stroggylos et al. [53] assessed a similar question to ours, namely whether refactoring
improves software quality or not. They analyzed version control system logs (46 revision
pairs) of open-source projects (Apache, Log4j, MySQL connector and Hibernate core)
to detect changes marked as `refactoring' and how software metrics were a�ected. They
found that �the expected and actual results often di�er �, and although �people use
refactoring in order to improve the quality of their systems, the metrics indicate that
this process often has the opposite results.�

Alshayeb et al. [54] studied the e�ects of refactorings on di�erent external qual-
ity attributes, namely adaptability, maintainability, understandability, reusability, and
testability. They analyzed a system developed by students and two open-source sys-
tems with at most 60 classes and less than 12,000 lines of code. They investigated how
C&K metrics had changed after applying refactoring techniques taken from Fowler's
catalog and estimated their e�ects on the external quality attributes. They found that
refactoring did not necessarily improve these quality attributes.

Geppert et al. [55] studied the refactoring of a large legacy business communication
product where protocol logic in the registration domain was restructured. They inves-
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tigated the strategies and e�ects of the refactoring e�ort on aspects of changeability
and measured the outcomes. The �ndings of their case study revealed a signi�cant
decrease in customer-reported defects and in e�orts needed to make changes.

Wilking et al. [56] investigated the e�ect of refactoring on maintainability and mod-
i�ability through an empirical evaluation carried out with 12 students. They tested
maintainability by randomly inserting defects into the code and measuring the time
needed to �x them; and they tested modi�ability by adding new requirements and
measuring the time and LOC metric needed to implement them. Their maintainabil-
ity test displayed a slight advantage for refactoring, but regarding modi�ability, the
overhead of applying refactoring appeared to undermine other, positive e�ects.

Negara et al. [57] presented an empirical study that considered both manual and
automated refactorings. They claimed that they analyzed 5,371 refactorings applied by
students and professional programmers, but they did not provide further information
on the systems in question.

A large-scale study, with similar �ndings, was carried out by Murphy-Hill et al. [58].
They applied refactorings taken from Fowler's catalog, and their data sets spanned over
13,000 developers with 240,000 tool-assisted refactorings of open-source applications.
Our study is complementary, as we analyzed industrial systems instead of open-source
ones and we mostly dealt with coding issues instead of refactorings from the catalog.

Kolb et al. [59] reported on the refactoring of a software component called Image
Memory Handler (IMH), which was used in Ricoh's current products of o�ce appli-
ances. The component was implemented in C and it had about 200 KLOC. They eval-
uated software metrics of the product before and after a refactoring phase and found
that the documentation and implementation of the component had been signi�cantly
improved, by the refactoring.

Kim et al. [60] reported on an empirical investigation of API-level refactorings.
They studied API-level refactorings and bug �xes in three large open-source projects,
totaling 26,523 revisions of evolution. They found an increase in the number of bug
�xes after API-level refactorings, but the time taken to �x bugs was shorter after
refactorings than before. In addition, they noticed that a large number of refactoring
revisions included bug �xes at the same time or were related to later bug �x revisions.
They also noticed frequent `�oss refactoring' mistakes (refactorings interleaved with
behavior modifying edits).

In their study, Kim et al. [24] presented a study of refactoring challenges at Microsoft
through a survey, interviews with professional software engineers and a quantitative
analysis of version history data (of Windows 7). Among several interesting �ndings,
their survey showed that the refactoring de�nition in practice seemed to di�er from a
rigorous academic de�nition of behavior-preserving program transformations and that
developers perceived that refactoring involved substantial cost and risks.

3.3.5 Code smells and maintenance

Another topic close to ours is the e�ect of (�xing) code smells on maintenance problems.
Yamashita and Moonen [61] found that the e�ect of code smells on the overall

maintainability is relatively small. They observed 6 developers working on 4 Java
systems and only about 30% of the problems that they faced were related to �les
containing code smells.

In another study, Yamashita and Counsell [62] found that code smells were not
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good indicators for comparing the maintainability of systems di�ering greatly in size.
They evaluated four medium-sized Java systems using code smells and compared the
results against previous evaluations on the same systems based on expert judgment
and C&K metrics.

In a recent study, Yamashita [63] assessed the capability of code smells to explain
maintenance problems on a Java system which was examined for the presence of twelve
code smells. They found a strong connection between the Interface Segregation Prin-
ciple and maintenance problems.

Similarly, Hall et al. [64] found that some smells do indeed indicate fault-prone code
in some circumstances, but that the e�ects that these smells had on faults were small.
As they said, �arbitrary refactoring is unlikely to signi�cantly reduce fault-proneness
and in some cases may increase fault-proneness�.

Ouni et al. [65] claimed that most of the existing refactoring approaches treated
the code-smells to be �xed with the same importance; and they proposed a prioritiza-
tion of code-smell correction tasks. Another prioritization approach was proposed by
Guimaraes et al. [66] based on software metrics and architecture blueprints.

Khomh et al. [67] investigated the impact of antipatterns on classes in object-
oriented systems and found that classes participating in antipatterns were more change
and fault-prone than others.

Abbes et al. [68] investigated the e�ect of Blob and Spaghetti Code antipatterns on
comprehension in 24 subjects and on three di�erent systems developed in Java. Their
results showed that the occurrence of one antipattern did not signi�cantly make its
comprehension harder, hence they recommend avoiding a combination of antipatterns
via refactoring.

D'Ambros et al. [69] studied the relationship between software defects and a number
of design �aws. They also found that, while some design �aws were more frequent, none
of them could be considered more harmful in terms of software defects.

Chatzigeorgiou et al. [70] studied the evolution of code smells in JFlex and JFreeChart.
They noticed that only a few code smells were removed from the projects and in most
cases their disappearance was not the result of targeted refactoring activities, but rather
a side-e�ect of adaptive maintenance.

Tsantalis et al. [71] examined refactorings in JUnit, HTTPCore, and HTTPClient.
Among several interesting �ndings, they found that there was very little variation in
the types of refactorings applied on test code, since most of the refactorings were about
reorganization and the renaming of classes.

Recap

In contrast to the above-mentioned studies, in ours (1) we observed a large amount
of manual refactorings (1,273 refactoring operations in 315 commits, counting also a
commit with 454 operations); (2) we studied the e�ect of refactorings on maintainability
in real-life, large-scale industrial systems with over 2.5 million total lines of code;
(3) these commits �xed di�erent design �aws including code smells, antipatterns and
coding issues; (4) lastly, we applied a probabilistic quality model (ColumbusQM) which
integrates di�erent properties of the system like metrics, clones and coding issues. Our
study was also carried out in a large-scale in vivo (industrial) environment.
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3.4 Summary

The main goal of our experiments was to learn how developers refactor in an industrial
context when they have the required resources (time and money) to do so. Our exper-
iments were carried out on six large-scale industrial Java projects of di�erent sizes and
complexity. We studied refactorings on these systems, and we learned which kinds of
issues developers �xed the most, and which of these refactorings were best according to
certain system attributes. We investigated the e�ects of refactoring commits on source
code maintainability using maintainability measurements based on the ColumbusQM
maintainability model [20].

We found that developers tried to optimize their refactoring process to improve the
quality of these systems and that they preferred to �x concrete coding issues rather
than �x code smells indicated by metrics or automatic smell detectors. We claim that
the outcome of one refactoring on the global maintainability of the software product is
hard to predict; moreover, it might sometimes have a detrimental e�ect. However, a
whole refactoring process can have a signi�cant bene�cial e�ect on the maintainability,
which is measurable using a maintainability model. The reason for this is not only
because the developers improve the maintainability of their software, but also because
they will learn from the process and pay more attention to writing better maintainable
new code.
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�If you want to make an apple pie from scratch,

you must �rst create the universe.�

� Carl Sagan

4
Challenges and Bene�ts of Automated

Refactoring

To decrease software maintenance cost, software development companies generally use
static source code analysis techniques. Static analysis tools are capable of �nding
potential bugs, anti-patterns, coding rule violations, and they can enforce coding style
standards. Although there are several available static analyzers to choose from, they
only support issue detection. The elimination of the issues is still performed manually
by developers.

This is not a coincidence. Every developer knows that refactoring is not always
easy. Developers need to identify the piece of code that should be improved and decide
how to rewrite it. Furthermore, refactoring can also be risky; that is, the modi�ed code
needs to be re-tested, so developers can see if they broke something. Many IDEs o�er
a range of refactorings to support so-called automatic refactoring, but tools can really
able to automatically refactor code smells are still under research.

Previously, we gained insights into how developers handle hand-written refactoring
tasks and in what way it a�ected the maintainability of the source code. Based on the
results of the manual refactoring phase of the Refactoring Project, here we will design
a toolset that supports the automatic elimination of coding issues in Java. We will
provide this refactoring tool as an aid to developers. We shall investigate the quality-
changing e�ects of tool-assisted refactorings, while observing what kind of changes the
usage of the tool causes in everyday work of developers.

4.1 An Automatic Refactoring Framework for Java

Tools which support automatic refactorings often assume that programmers already
know how to refactor and they have a knowledge of the catalog of refactorings [12],
but this is usually an unreasonable assumption. As Pinto et al. found in their study
where they examine questions of refactoring tools on Stack Over�ow, programmers
are usually not able to identify refactoring opportunities, because of a lack of knowl-
edge in refactoring, or a lack of understanding of the legacy code. They also claim
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that �refactoring recommendations is one of the features that most of Stack Over�ow
users desire (13% of them)� [33]. In another recent study, Fontana et al. compare
the capabilities of refactoring tools to remove code smells and they found only one
tool (JDeodorant) which was able to support code smell detection and then suggested
which refactoring to apply to remove the detected smells [72]. Of course, most current
tools lack this required feature to identify refactoring opportunities and to recommend
problem-speci�c corrections which could even be automatically performed by the tools
(or semi-automatically including some interactions with the developers).

In this section, we will introduce FaultBuster, an automatic code smell refactoring
toolset which was designed with the following goals in mind:

• to assist developers in identifying code smells that should be refactored,

• to provide problem speci�c, automatic refactoring algorithms to correct the iden-
ti�ed code smells,

• to seamlessly integrate easily with the development processes via plugins of pop-
ular IDEs (Eclipse, NetBeans, IntelliJ) so developers can initiate, review, and
apply refactorings in their favorite environments.

4.1.1 Overview

Next, we will provide an overview of the structure of FaultBuster and give a short
introduction to its features.

I Problem Context

The potential users of FaultBuster are members of a development team, potentially
a developer or perhaps a quality specialist or a lead developer. Our aim was to help
them by supporting `continuous refactoring ' where developers prefer to make small
improvements on a regular basis instead of just adding new features over a long period
and restructuring the whole code base only when real problems arise.

Figure 4.1. Overview of the architecture of FaultBuster
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For this purpose, FaultBuster was designed to periodically analyze the system in
question, report problematic code fragments and provide support to �x the identi�ed
problems through automatic transformations (refactorings).

We notice here that most of the transformations supported by FaultBuster can be
viewed as classic refactorings which do not alter the external behavior at all, just im-
prove the internal structure of the source code. However, some of them may not �t into
the classic de�nition. As mentioned in Section 2.3, some of the transformations �x po-
tential bugs, which may indeed alter the behavior of the program, but not the behavior
which the developer originally intended to implement. Hence, for some transformations,
it means that we deviate slightly from the strict de�nition by allowing changes to the
code that �x possible bugs, but do not alter the behavior of the code in any other way.
For simplicity, we will call refactorings all the transformations of FaultBuster.

A sample refactoring of a coding rule violation (Position Literals First In Com-
parisons) can be seen in Listing 4.1. This code works perfectly until we invoke the
`printTest' method with a null reference that would result in a Null Pointer Exception
(because of line 3). To avoid this, we have to compare the String literal with the vari-
able, not the variable with the literal (see Listing 4.2). This and similar refactorings are
simple, but one can avoid critical or even blocker errors by using them appropriately.� �
public class MyClass{

public static void printTest(String a){

if(a.equals("Test")) {

System.out.println("This is a test!");

}

}

public static void main(String [] args) {

String a = "Test";

printTest(a);

a = null;

printTest(a); // What happens?

}

}� �
Listing 4.1. A sample `Position Literals First In Comparisons' issue� �
public class MyClass{

public static void printTest(String a){

if("Test".equals(a)) {

System.out.println("This is a test!");

}

}

public static void main(String [] args) {

String a = "Test";

printTest(a);

a = null;

printTest(a); // What happens?

}

}� �
Listing 4.2. Sample refactoring of Listing 4.1

II Architecture

Figure 4.1 provides an overview of the architecture of FaultBuster. The toolset consists
of a core component called Refactoring Framework, three IDE plugins to communicate
with the framework, and a standalone Java Swing client (desktop application).

Refactoring Framework This component is the heart of FaultBuster as its main
task is to control the whole refactoring process. The framework handles the continuous
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quality measurements of the source code, the identi�cation of critical parts from the
viewpoint of refactoring, the restructuring of these parts, the measurement of quality
improvement and the support of regression tests to verify the invariance after applying
the refactorings.

In order to do so, the framework:

• Controls the analysis process and stores the results in a central database: it
periodically checks out the source code of the system from a version control system
(Subversion, CVS, Mercurial, Git), executes static analyzers (Java analyzer, rule
checker, code smell detector, etc.) and uploads the results into the database.

• Provides an interface through web services to query the results of the analyses
and to execute automatic refactoring algorithms for selected problems. After
executing the algorithms on the server side, the framework generates a patch
(di� �le) and sends it back to the client.

• The analysis toolchain is controlled and can be con�gured through Jenkins.

• Has refactoring algorithms and the main settings of the framework are con�g-
urable through a web engine of the framework.

The framework was designed to be independent of the programming language. Al-
though the current implementation only supports the Java language, it can support new
languages and can be easily extended with additional refactorings. Several modules
have been integrated in the implementation of the task: well-known tools supporting
development procedures, like version control systems, project management tools, de-
velopment environments, tools supporting tests, tools measuring and qualifying source
code and automatic algorithms that implement refactorings.

IDE plugins We implemented plugins for today's most popular development envi-
ronments for Java (Eclipse, NetBeans, IntelliJ IDEA) and integrated them with the
framework. The goal of these plugins is to bring the refactoring activities to be imple-
mented closer to the developers.

A plugin gets a list of problems in the source code from the framework, processes
the results, and shows the critical points which detrimentally in�uence software quality
to the user. A developer can then select one or more problems from this list and ask for
solution(s) from the framework, which can then be visualized and (after con�rmation)
applied to the code by the plugin. Lastly, the developer can make some minor changes
to it (e.g. commenting) and commit the �nal patch to the version control system.

When we designed the plugins, the main idea was to integrate the features o�ered
by the framework as much as we could into the development environment. For example,
we implemented standard features such as context assist in Eclipse. So it was a main
concern that developers could work in the environment that they were used to and
access the new features in a standard way.

Figure 4.2 shows a screenshot of the Eclipse plugin with our own wizard to set
parameters of an algorithm which �xes a Long Function issue. Figure 4.3 shows the
visualization of a patch after the execution of the algorithm.
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Figure 4.2. Eclipse plugin � Screenshot of a Refactoring wizard with the con�guration
step of a refactoring algorithm for the Long Function smell

Figure 4.3. Eclipse plugin � Di�erence view of a patch after refactoring a Long Function
smell

Standalone Swing Client Besides the IDE plugins, we implemented a standalone
desktop client to communicate with the Refactoring Framework. At the beginning this
client had only testing purposes, but later it implemented all the necessary features of
the whole system, so it became a useful standalone tool of FaultBuster. The client is
able to browse the reports on problematic code fragments in the system, select problems
for refactoring, and invoke the refactoring algorithms, just like IDE plugins are able to
do.

Administrator Pages The framework has two graphical user interfaces to con�gure
its settings. Analysis tasks are controlled by Jenkins to periodically check out the
source code and to execute the static analyzers. These tasks can be con�gured through
the admin page of Jenkins. The rest of the framework can be con�gured through its
own admin pages. Here, it is possible to con�gure user pro�les and set some global
parameters of the refactoring algorithms. In addition, this UI can be used to examine
log messages and statistics of the framework.
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Refactoring Algorithms We implemented automatic refactoring algorithms to �x
common code smells and bad programming practices. The input of such an algorithm is
a coding issue (with its kind and position information) and the abstract semantic graph
(ASG) of the source code generated by the SourceMeter tool (see Section 4.1.2). The
output of an algorithm is a patch (uni�ed di� �le) that will �x the selected problem.

FaultBuster implements algorithms that can solve 40 di�erent kinds of coding issues
(see Table 4.1) in Java. Most of these algorithms solve common programming problems
like `empty catch block', `avoid print stack trace', `boolean instantiation,' while some
of them implement heuristics to �x bad code smells such as a long function, overly
complex methods or code duplications.

Some algorithms can interact with the developer because they can be parametrized.
For instance, in the case of a `method naming convention' issue it is possible to ask the
developer to give a new name for the badly named method. Still, many algorithms do
not need extra information, e.g. the case of a `local variable could be �nal' issue, the
�nal keyword can be simply inserted into the declaration of the variable automatically.

It is also possible to select more occurrences of the same problem type and �x them
in one go by invoking a so-called batch refactoring task. In this case, the Refactoring
Framework will execute the refactoring algorithms and will generate a patch containing
the �xes for all the selected issues. The only limit here is the boundary of the analysis,
so it is possible to select problems from any classes, packages or projects, they just
have to be analyzed beforehand by the framework.

III Extended Functionality

The core framework was implemented in Java as a Tomcat Web Application and it
serves the IDE plugins through web services. Refactoring algorithms were implemented
in Java using the Columbus ASG API of SourceMeter. Thanks to the Tomcat environ-
ment the toolset is platform-independent and it runs on all the supported platforms of
SourceMeter (Windows and Linux).

Refactoring Wizards The client applications of FaultBuster are only soft clients,
all functionality residing on the server side. This includes the refactoring algorithms
as well. This allows the framework to extend its support of refactoring algorithms.
Anytime an algorithm gets added or gets updated, just the server needs to be upgraded;
and the clients will instantly support the new features.

Ticketing System Because of the server-client architecture of FaultBuster many
users are able to connect to the server at the same time. To prevent concurrent modi�-
cations we introduced a state of the coding issues, which could be any of the following:

• Open: A detected coding issue. Available for �xing.
• Under refactoring: The coding issue is currently under refactoring by someone else.
• Untested: The coding issue has been refactored but it is still untested.
• Completed: The coding issue has been refactored and tested.
• Committed: The coding issue has been �xed and committed to the version control

system.
• Rejected: It is not a real coding issue or the suggested �x was declined.
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Table 4.1. Refactoring algorithms in FaultBuster

Local AddEmptyString
ArrayIsStoredDirectly
AvoidReassigningParameters
BooleanInstantiation
EmptyIfStmt
LocalVariableCouldBeFinal
PositionLiteralsFirstInComparisons
UnnecessaryConstructor
UnnecessaryLocalBeforeReturn
UnusedImports
UnusedLocalVariable
UnusedPrivateField
UnusedPrivateMethod
UselessParentheses

Naming BooleanGetMethodName
MethodNamingConventions
MethodWithSameNameAsEnclosingClass
ShortMethodName
SuspiciousHashcodeMethodName

Interactive AvoidInstanceofChecksInCatchClause
AvoidPrintStackTrace
AvoidThrowingNullPointerException
AvoidThrowingRawExceptionTypes
EmptyCatchBlock
LooseCoupling
PreserveStackTrace
ReplaceHashtableWithMap
ReplaceVectorWithList
SimpleDateFormatNeedsLocale
SwitchStmtsShouldHaveDefault
UseArrayListInsteadOfVector
UseEqualsToCompareStrings
UseLocaleWithCaseConversions
UseStringBu�erForStringAppends

Heuristical Clone Class (experimental)
CyclomaticComplexity
ExcessiveMethodLength
LongFunction
NPathComplexity
TooManyMethods
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The state of the coding issues were set by the client software automatically. This
way, developers saw which coding issues were already under refactoring and they did
not �x the same issues twice.

4.1.2 Under the Hood: Automating the Refactoring Process

Now that we have a better understanding how FaultBuster is designed we should take a
look under the hood and investigate how it actually works underneath. Throughout the
lifetime of the project we faced many challenges where we found interesting problems
and solutions to these problems which we share in the followings.

Premise To perform refactoring operations, we created a mapping between the tex-
tual output of the static analyzer and the structural representation of the source code.
This task required us to create an algorithm that takes as input a textual source code
position (i.e. start and end line) and type information (i.e. for loop) of the problematic
code segment and executes a search on the syntax tree to locate the related source code
element in the tree. To make reverse searching possible, we use a spatial database. The
database is created by transforming the source code into geometric space. Here, line
numbers and column positions from the AST are used to de�ne areas. These areas are
used in R-trees, where area based searching is possible.

General Process Before going into detail, we should have an overview of the general
refactoring process. As Fowler de�nes it, refactoring is �a change made to the internal
structure of software to make it easier to understand and cheaper to modify without
changing its observable behavior� [12]. Based on this de�nition if we model the code as
a graph � which every compiler does � a refactoring is a (behavior preserving) trans-
formation on a graph. More speci�cally, it can be viewed as a transformation on the
abstract syntax tree (AST). Executing such transformation requires three components:

• An AST as a representation of the source code.
• A transformation algorithm.
• Starting points (AST nodes) called the �origin� where the transformation algo-
rithm begins.

First, we parse the source code with a parser which builds an AST. Second, we create
a transformation algorithm that will make modi�cations on the AST (i.e. pull up a
method from one class to its ancestor). Next, we pick a node on the AST as the origin
where the transformation algorithm will start working (i.e. selecting the method to
pull up). After the transformation has been made, we get a modi�ed (refactored) AST
and the refactoring is complete.

Automated Process Because our main goal was to create automated refactorings,
we extended the process with a few additional steps. These steps in the algorithm
allow us to interact with developers and to make the transformations automatically.
Our process works as follows:
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Process 1

1. We create an AST representation of the source code.
2. We carry out a static analysis on the source code to �nd problematic code parts,

i.e. coding issues, rule violations and metric warnings. We list these issues as
suggestions to help the user �nd candidates for refactoring.

3. The user selects one of the issues as the target of the refactoring process.
4. Based on the type of the issue chosen by the user, a refactoring algorithm is

selected that is capable of �xing the given type of issue.
5. Based on the selected issue a proper origin node is chosen from the AST.
6. The algorithm makes the transformation and modi�es the AST, while keeping

track of what modi�cations it made. A modi�ed AST is then created.
7. We generate source code from the modi�ed AST.
8. The newly refactored source code is shown to the user where he or she can test

the code and decide whether to accept or reject the refactoring.

Next, we will present these steps in greater detail and discuss our results.

4.1.3 Process Details

I Building AST

To build an AST from the source code we will use the SourceMeter [23] tool. SourceMe-
ter uses OpenJDK [73] as a backend to parse the code and build an abstract semantic
graph (ASG). ASG is an extended version of the AST with cross-edges and much
more [25]. This additional information was crucial in the automation process. Because
it allowed us to create �awless transformations which otherwise would not be possible.
Thus Step 1 of Process 1 is covered.

II Finding Refactoring Suggestions

Choosing which part of the source code to refactor is quite hard. To improve the
maintainability of the code, one can either start optimizing for metric values or try
to eliminate anti-patterns by introducing design patterns into the code. Any of them
might be a good solution. However, we will choose coding issues as the main target of
our automated refactorings because of the experiences we gathered in Chapter 3. To
identify coding issues we shall choose the well-known PMD static source code analyzer.
It is a widely used tool among developers, especially for checking Java rule violations.
Because all of the participating project members had a Java code base, it was the
optimal choice to integrate it into the framework.

The output of PMD worked well in identifying coding issues and even in presenting
some of these to developers as refactoring suggestions. Now let us examine the sample
in Listing 4.3. In this simple example, PMD �nds 9 rule violations (with default
settings). It �nds issues such as missing package declaration, missing comments, short
variable names, magic numbers, and missing braces. Even in this simple sample of
code, there are many issues that can be �xed with computer assistance.

To extract the issues we will use the XML output of PMD. This �le contains a list
of violations for each �le with name, description, priority, and position information.
An example violation is shown in Listing 4.4. This is one taken from the list of issues
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� �
1 public class Example {

2 public static int limiter(int x) {

3 if (x > 10)

4 return 10;

5 return x;

6 }

7 }� �
Listing 4.3. Example code

� �
<file name="Example.java">

...

<violation beginline="3" endline="4" begincolumn="3" endcolumn="13"

rule="IfStmtsMustUseBraces" ruleset="Braces" class="Example"

method="limiter" priority="3">

Avoid using if statements without curly braces

</violation>

...

</file>� �
Listing 4.4. PMD's XML report

we got as output after running PMD on Listing 4.3. It clearly states that we should
use curly braces in the if statement in Line 3.

After presenting these kinds of issues to developers, they are usually able to select
one for refactoring. Thus Step 2 and Step 3 of Process 1 are covered.

III Selecting the Right Transformation for the Job

After the user has selected an issue, the next step is to �nd the right transformation.
Many researchers work on solutions to automate this process using machine learning
techniques [74�76]. However, came up with a much simpler solution. We created several
general refactoring transformations, i.e. for moving, adding, deleting, and swapping
source code elements. We created a mapping between PMD violations and the trans-
formations. For example, to �x the curly braces issue, we mapped it to an insertion
transformation where a block element will be injected below the if statement (See the
illustration in Figure 4.4). Each mapping de�nes di�erent parameters based on the
type of issue. And the transformation in the former example requires an if statement
as a parameter. Thus Step 4 of Process 1 is covered.

IV Selecting a Proper Origin

After the user has selected an issue to �x and we choose the right transformation, the
next step in the process is to pick an origin point on the AST, which we can give as
a parameter to the transformation algorithm. In other words, one has to perform a
search on the AST to �nd an element that matches both the description provided by
the PMD report and the type of the parameter the transformation algorithm requires.

The report provides only a few key points for a violation, i.e. a begin line and
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Figure 4.4. Simpli�ed illustration of a refactoring on the AST of Listing 4.3.� �
1 public class Example {

2 public static int limiter(int x) {

3 if (x > 10)

4 return 10;

5 return x;

6 }

7 }� �
Listing 4.5. PMD highlight

column, end line and column, class, and method. Also, the source �le is available
in the file tag. If we look at the example in Listing 4.4 and the results in the
example in Listing 4.3, we get the problematic code part highlighted. The highlighted
part in Listing 4.5 shows the particular if statement that requires braces. Although
this highlighted segment is a good visual aid for the developer to help �nd where the
violation is, it is problematic for the computer to �nd nodes in the AST based on little
more than position information.

One way to address the problem is to store position information for each source
code element in the AST during the parsing process. Fortunately, SourceMeter does
this already. Now that we know the positions on the AST, we can attempt to match the
violation location information to the ones we have on the AST. It may come as no sur-
prise that a simple equality match did not work. PMD and SourceMeter have di�erent
parsers and therefore it is quite unlikely they will have the same position information

� �
1 public class Example {

2 public static int limiter(int x) {

3 if (x > 10)

4 return 10;

5 return x;

6 }

7 }� �
Listing 4.6. SourceMeter highlight
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for each and every source code element. Listing 4.6 shows the position SourceMeter
has identi�ed for the if statement in question. Looking at both highlighted cases tells
us that a simple approximation will not su�ce to get a match. To handle the problem,
we took a di�erent direction which we call reverse AST-search.

Reverse AST-Search This notion was born when we decided to take a di�erent
direction and start looking at the source code elements, not as just data or nodes in a
tree. In the text editor, they look like little areas or patches. Since they all have begin
and end lines and columns, they can be viewed as coordinates on a map. This led us
to the idea of transforming the source code into a geometric space.

We took line numbers and column positions from the AST and used them to de�ne
areas. These areas form rectangles where the corner points are the begin and end
positions of the source elements. The rectangular areas are then used to build a spatial
database, where area-based queries are possible.

i) Spatial Databases and R-trees A spatial database [77] is a database that
is optimized to store and query data that represents objects de�ned in a geometric
space. Common database systems use indexes to quickly look up values and the way
that most databases index data is not optimal for spatial queries. Instead, spatial
databases use a spatial index to speed up database operations. To create spatial index
data, we decided to use R-trees [78].

An R-tree is a data structure where the key idea is to group together information
based on spatial data and index these groups by using their minimum bounding rect-
angles1. Next, these groups are bound together at the next level of the tree by their
minimum bounding rectangles, and so on. This way, a query cannot intersect any of
the objects contained because all the objects within a bounding rectangle occur to-
gether. The input of a search is a rectangle called a query box. Every rectangle in a
node (starting from the root node) is checked to see whether it overlaps with the search
rectangle or not. If it does, the same thing happens with its corresponding child nodes.
The search goes on recursively until all matching nodes get visited. Meanwhile, when
a leaf node is found and it overlaps with the query box it is added to the result set.

R-tree applications cover a wide spectrum, ranging from spatial and temporal to
image and video databases. In industry, it is used where multi-dimensional data needs
to be indexed. For example, a common application is in digital maps where R-trees
are used to link geographical coordinates to POIs [79].

ii) Building Spatial Index for the AST To create a spatial database for
the source code, we used the si method in Algorithm 1. The method requires C, an
AST element with position information. This might be a root node or a class node,
say. When the algorithm commences, it creates an R-tree for storing the spatial index
(Alg. 1, Line 1) and begins to traverse the descendants of the C element (Alg. 1,
Line 2). Note that every kind of traversal is acceptable since the position of the
elements do not depend on each other.

For each source code element c, the algorithm takes into account their position
P ; namely, start line, start column, end line, end column (Alg. 1, Line 3). Next,
using these positions rectangles are created. To be precise, it creates one, two or three

1The �R" in R-tree is for rectangle.
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Algorithm 1 Building Spatial Index for the AST.
Funct si(C)

Require: C is an AST element
1: Let I be a new R-Tree
2: for all c ∈ descendants(C) do
3: Let Pstartline

, Pstartcol , Pendline
, Pendcol

be the position coordinates of c
4: if Pstartline

= Pendline
then

5: Add rectangle {Pstartline
, Pstartcol , Pendline

, Pendcol
} to I(c)

6: else
7: Add rectangle {Pstartline

, Pstartcol , Pstartline
,∞} to I(c)

8: Add rectangle {Pendline
, 0, Pendline

, Pendcol
} to I(c)

9: if Pendline
− Pstartline

> 1 then
10: Add rectangle {Pstartline

+ 1, 0, Pendline
− 1,∞} to I(c)

11: end if
12: end if
13: end for
14: return I

rectangles, depending on the length of the current source element. If the element
position is con�ned to a single line, one rectangle is created (Alg. 1, Line 5), which
is a line on the 2D plane. In the case of multiple lines, we have a multiline element,
which is an element that starts at a line in a column, and it ends in another line in a
column. All positions between these two positions are part of the element. For example,
in Listing 4.6 the if statement is a two-line element and the highlight indicates the
positions belonging to the statement. To handle this, we create two rectangles. The
�rst line has no end column (Alg. 1, Line 7), and the second begins at zero (Alg. 1,
Line 8). If there more lines between them, we create a rectangle that covers all the
space between the two lines (Alg. 1, Line 10).

Each time a rectangle is created it is added to the R-Tree with a binding to the
AST element. This way when the spatial query function starts running, we will get
AST elements instead of rectangles. Once all the descendant source code elements get
visited, we can return the resulting R-tree, and the spatial index is ready.

When we tested the algorithm in the example in Listing 4.3, we got the search space
shown in Listing 4.7. Note that every node that has multiple lines are separated into
more rectangles, like the if statement.

iii) The Search Algorithm Once we have built our spatial index, we can
use it to locate a node in the AST based on position information. We created a
method that uses inputs such as the ASG from SourceMeter, the parameter type of
the transformation, and the violation position from the PMD report in order to search
the geometric space. The Reverse AST-search Algorithm (rasta for short) is listed in
Algorithm 2 below.

The purpose of the algorithm is to �nd the source code element that is highlighted
in the PMD report. The function begins by creating a list of the source code element
candidates. Next, it builds a spatial index with the C AST parameter (Alg. 2, Line 2).
The newly constructed index is used in the next step to query the candidates. As
mentioned earlier, the spatial database requires a rectangle, called the query box as
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� �
Rect (1, 1), (1, INF) = Class

Rect (2, 0), (6, INF) = Class

Rect (7, 0), (7, 2) = Class

Rect (2, 2), (2, INF) = Method

Rect (3, 0), (5, INF) = Method

Rect (6, 0), (6, 3) = Method

Rect (2, 16), (2, 19) = PrimitiveTypeExpression

Rect (2, 28), (2, 33) = Parameter

Rect (2, 28), (2, 31) = PrimitiveTypeExpression

Rect (2, 35), (2, INF) = Block

Rect (3, 0), (5, INF) = Block

Rect (6, 0), (6, 3) = Block

Rect (3, 3), (3, INF) = If

Rect (4, 0), (4, 14) = If

Rect (3, 6), (3, 14) = ParenthesizedExpression

Rect (3, 7), (3, 13) = InfixExpression

Rect (3, 7), (3, 8) = Identifier

Rect (3, 11), (3, 13) = IntegerLiteral

Rect (4, 4), (4, 14) = Return

Rect (4, 11), (4, 13) = IntegerLiteral

Rect (5, 3), (5, 12) = Return

Rect (5, 10), (5, 11) = Identifier� �
Listing 4.7. Search space for the example in Listing 4.3 with the rectangles and the
type of their referred source code element
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Algorithm 2 The reverse AST-search algorithm.
Funct rasta(C,P, t)
Require: C is an AST element
Require: P is a position
Require: t is a type
1: Set the candidate list R := {}
2: Compute si(C)
3: Let S be the set of all AST nodes whose have intersecting rectangles with P
4: for all s ∈ S do
5: if type(s) is t then
6: Store s in R
7: end if
8: end for
9: return R

a search parameter. The query box in our case is the �highlight� from the PMD's
output. We use this box to ask the R-tree which previously added rectangles intersect
with the parameter. The R-tree returns with a set of AST nodes whose rectangles
satis�ed the query (Alg. 2, Line 3). As an example, Listing 4.7 shows which source
code elements (highlighted lines) remain after the query has been performed with the
Rect(3,3)(4,13) box as the parameter.

Even with a small sample like Listing 4.7, the resulting set of the query can be
quite big. To narrow the result set we use the third parameter, namely the type of the
input parameter of the refactoring transformation, to �lter the results (Alg. 2, Line 5).
The �ltering is achieved by going through the result set and by inserting only those
source code elements onto the candidate list whose type matches (actually, whose type
is compatible with) the input type. After the �ltering, the candidate list is returned
as the result of the function.

Going on the example in Listing 4.7, we have to �lter the result set with the input
parameter type of the refactoring transformation. In Section III we identi�ed this
source code element type as an if statement. Even from a quick glance, we can see
that there are two rectangles where their type is an if statement. Since both of the
two rectangles refer to the same if element, the algorithm terminates. We have found
an origin where the refactoring transformation can begin its operation.

iv) Heuristics As we saw previously, the best case scenario is when the algo-
rithm ends up having only a single element in the list of candidates. This happens
when the result set has only one source code element with the type of parameter. In
this case, it is evident which element was highlighted as the source of the violation.
Nevertheless, there are times when the candidate list has multiple source code elements
of the same type. In such cases, we have to select the proper element as the origin,
otherwise the refactoring will be executed wrongly.

To remove ambiguity we decided to use a �distance� measure to �nd the best candi-
date. We de�ned the distance as the number of characters between the position of the
source code element and the highlight. More speci�cally, on one hand, it is a metric
of the number of characters between the start position (line and column) of the source
code element and the start position (line and column) of the highlight. On the other
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hand, it is the number of characters between the end position (line and column) of the
element and the end position (line and column) of the highlight. The distance is just
the sum of the two. To calculate this value we use the original source �le where the
exact number of characters could be measured.

This method allows us to select the proper source code element from the list of
candidates in almost every case. Still, there is a certain mathematical probability that
the calculated distances will be equal for all candidates. However, because the chance
of this event is astronomically small (it never even happened once in our exhaustive
testing period, see Section 4.2), we chose to notify the user with a message that the
refactoring failed because of ambiguity.

v) Alternative Method The algorithm above uses two-dimensional informa-
tion to back-propagate code smells to AST elements and handles code as lines and
columns. However, source code can be viewed as a linear sequence of characters as
well. Here, a simple one-dimensional data structure and interval operations could re-
place the fairly complicated two-dimensional approach. Despite this mechanism being
seemingly simpler, it would require di�erent input data. Both the given inputs � the
AST and PMD � work with two-dimensional data. This would mean that we would ei-
ther require the source �le as input or the AST and PMD must provide one-dimensional
data.

• The latter requirement would be needed from both tools to replace position in-
formation with char-sequence index or store it as additional data. This new data
would cause an increase both in the processing time and storage space for the
tools for information that probably no one else will ever use. Still, if char-sequence
index data is available as input, the one-dimensional approach is preferable.

• The former requirement would introduce an additional parameter to the algo-
rithm; namely, the original source �le. In the case where source code is given it is
possible to handle the text as one-dimensional data and map the source code el-
ements to char-sequence indexes. However, this approach has several drawbacks.
First, every search would need to read the source �le, which is an i/o intensive
task. Next, the mapping of two dimensional data to character sequence indexes
would have to consider whitespace. For example, when reading a tab character
from the �le, the algorithm has to know it is 2, 4, 8 (or other) characters long.
Both parsers could have mixed tab size settings, which would make the mapping
di�cult. This would also a�ect the two-dimensional approach, but since a line
just contains only a few tabs it easier to match the source code elements in a line
than in the entire �le.

The reverse AST-search algorithm works only with an AST and PMD's report as input.
These tools and inputs are treated as third-party from the algorithm's point-of-view.
Since these inputs contain two-dimensional data and source code is not available, the
one-dimensional approach would not su�ce. Nevertheless, from the point-of-view of
the refactoring process, the source �le is given; but we still choose the two-dimensional
approach because it provides more accurate matches in real-life scenarios.

vi) Summary The reverse AST-search algorithm enabled us to select the proper
origin, which is a source code element in the AST that is the input of the refactoring
transformation later on. Thus Step 5 of Process 1 is covered.
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� �
1 public class Example {

2 public static int limiter(int x) {

3 if (x > 10) {

4 return 10;

5 }

6 return x;

7 }

8 }� �
Listing 4.8. Refactored code

V Executing the Refactoring

Now that we have covered each preceding step, we have all the components and we are
ready to perform the refactoring. As mentioned earlier in Section III, the refactoring
algorithms are de�ned as smaller, multiple generic transformations. The type of the
PMD violation determines which transformation(s) will be executed. There are some
complex cases where a simple transformation will not su�ce and �xing them will require
multiple operations.

In order to �x the missing curly braces (the issue in Listing 4.3), the transformation
inserts a block statement into the then clause of the if statement and rewires every
former member of the then clause to make a member of the block statement. See
Figure 4.4 as an illustration of a process like this.

Once the refactoring transformation completes its operations, a new, modi�ed,
issue-free AST is created. Thus Step 6 of Process 1 is covered.

VI Generating Source Code and Creating Di�s

In the previous step, we completed the refactoring at the model level. Even though the
refactoring process came to an end, there is one more thing to do. Because our main
goal is to assist developers, the next task is to translate the AST back to source code
where they can readily interpret the changes.

Generating Source Code The source code generation is realized by systematically
going through the AST and writing code to a text �le according to the underlining
source code element. For example, if we start at a �le, if there is a package declaration
we write the package keyword following the name of the package and a semicolon to
close the statement. This is followed by import statements and so on. The generation
goes on until every source code element is visited and the code is fully reconstructed
from the AST.

In the case of the example in Listing 4.3, after the refactoring transformation we get
the code shown in Listing 4.8. As expected, both curly braces appeared and therefore
the return statement got a block around it. As a consequence, the PMD rule violation
got �xed, and our code maintainability improved. Thus Step 7 of Process 1 is covered.

Keeping Track of Modi�cations Previously, we showed how to fully reconstruct
the code from the AST. However, generating the whole code base is unnecessary. It
is su�cient to recreate only those code segments where the changes occurred. There

65



Chapter 4. Challenges and Bene�ts of Automated Refactoring

are, however, multiple ways to reduce the amount of generated code. An easy solution
would be to create only those �les which were a�ected by the refactoring. Our only
concern, in this case, was that our code generation cannot reproduce exactly (100%)
equivalent source code. This happens because though SourceMeter stores source code
element positions and even comments, it does not store data concerning whitespaces
and indentation. Despite this, we created the source code generator in such a way that
it �pretty prints� the code, but what is considered �pretty� is subjective. For example,
in Listing 4.8 the beginning bracket is positioned after the method declaration, but
someone may prefer it to be on the next line. On one hand, it is possible to make this
con�gurable. On the other hand, there are other remaining issues, such as whether
there are two spaces between the public and the static keywords or whether they
should be written in separate lines.

To reduce the former anomalies, we sought to minimize generation even within
�les themselves. Our approach keeps track of which nodes are modi�ed and at what
level when the refactoring operation is running. We mark those nodes that get, for
instance, inserted, deleted, or swapped. Furthermore, we mark those nodes which we
visited during the operation but did not modify them. For example, in Listing 4.8 we
put a block statement into the then clause of the if statement and rewired the former
content (the return) of the then clause as a statement of the block node. We marked
this block statement as inserted, and the return as unmodi�ed. The latter was required
because marking a node is a recursive operation which will mark the entire subtree of
that node as well. By marking the return statement as unmodi�ed we will leave this
subtree untouched and bring about e�ciency bene�ts.

Keeping track of modi�cations allowed the generator to only modify those places
where it was necessary. Only the new or modi�ed source code elements get generated,
and every other part of the source code gets copied from the original source �le. In the
example, this works in the following way. The generator starts traversing the refactored
AST from root to bottom, in a preorder strategy. When it �nds unmodi�ed nodes, it
just copies the source code from the original �le into the refactored �le. This is based
on the position information stored in the AST. This goes on until it �nds a modi�ed
node in this case, an inserted block statement. Next, it generates the block statement.
More precisely, it generates only the starting bracket, because there are still unvisited
descendants of the block node in the AST. When the traversal goes to the next child,
it �nds an unmodi�ed node again. It does so the same way as before, it copies the
code from the original source code, but this time it will insert the copied code with
an increased indent because the generator keeps track of the fact that we are now in
a block statement. After every descendant has been visited and copied, we return to
the leave-visit for the block statement. The generator inserts the closing bracket into
the right place, and a visit continues. Since every other node is unmodi�ed, everything
else is copied, and the generation is complete.

Generating just the required code parts created nearly the same code as the original,
with most indentation and whitespaces in the right place. This was an important
request from developers because interviews showed that they did not want to bother
with �xing the indentation (see Section 4.3.3).

Creating Di�s As soon as the generation process ended, it became possible to
present the refactored code to the developers. However, reviewing entire unannotated
�les is not a welcomed idea by developers. Since this is the output of an automated pro-
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� �
--- Example.java (original)

+++ Example.java (refactored)

@@ -1,7 +1,8 @@

public class Example {

public static int limiter(int x) {

- if (x > 10)

+ if (x > 10) {

return 10;

+ }

return x;

}

}� �
Listing 4.9. Output di� �le

cess, users would probably like to check what changes the automation process will apply.
To meet the need of the users, we will only show their a patch (uni�ed di� �le) as

output. This patch �le contains the di�erences between the refactored source �le and
the original one. This enables the developer to review what changes the automation
process made on the code. Besides this, it allows the user to make a decision at the
end of the process of whether to accept or reject the suggested refactoring. If it is the
former, the user can apply the di� on the original source code, and this will transform
it into the refactored code. Thus Step 8 of Process 1 is covered.

For example, Listing 4.9 lists the di� �le for the refactoring of the example in
Listing 4.3. Note that this shows which lines are marked for deletion (starting with a
�-�) and which ones are marked as added (starting with a �+�).

4.1.4 Discussion

I Performance

Our refactoring tool was implemented in Java. One of the requirements for our tool
was for it to be responsive from a user perspective. This required that we to optimize
each step for speed. The most important optimization we preformed was with the
Reverse AST-search algorithm.

Building the spatial database for the whole system was an unnecessary overhead.
To reduce the search space, we built the spatial index based on the issue the user had
selected. The rule violation has information about which source �le it is in. Only
these �le elements were added to the R-tree and it greatly reduced the search space.
As a comparison, building the entire search space on a PC2 for the log4j3 project took
221 ms and used 46 MB of memory, while building only one �le took 53 ms and memory
used was less than a kilobyte.

Further optimizations helped to speed up the process as well. For example, the
the �ltering step moved a few steps ahead in the order of the execution of the Reverse
AST-search algorithm. Filtering was applied while building the search space. Only
those AST nodes were added to the R-tree where the type of node matched the type

2Intel i7 3.40 GHz with 8 GB ram.
3http://logging.apache.org/log4j/1.2
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of refactoring transformation parameter. This way, executing a single search operation
takes less than a millisecond.

The above improvements besides some other tweaks made our tool quick and this
appealed to developers. We did not make detailed measurements of the tool's perfor-
mance in our studies, but in general the tool performed well.

II Threats to Validity

We have identi�ed a few validity threats that might a�ect the the internal and external
validity of our results. Here, we discuss the validity of our �ndings.

Usage of Java We have only considered Java as the target of our actions. Some
of the other languages may require di�erent approach. Nevertheless, our process is
readily adaptable to most text-based programming languages.

Application of a Third-Party Tool We provided support to the developers in
identifying coding issues with a third-party static analyzer, namely PMD. Naturally,
this was a great help in identifying problematic code fragments, but it might have
introduced many unnecessary steps during the refactoring process. There is a risk
here that by using other analyzers or by using our own, we might skip the AST-search
part. For example, if we were to develop our own issue �nder tool (see Section 5),
we could directly report the AST node where the problem is located. However, our
process makes our refactoring tool independent of a single third-party static analyzer.
The way, it is constructed makes it capable of switching to another analyzer with only
minor modi�cation.

4.2 Evaluating the Connection between Automatic

Refactorings and Maintainability

By de�nition, the intention of developers with refactoring is to improve comprehen-
sibility, maintainability, hence the overall quality of the source code. However, there
is a disagreement in the literature as to whether it truly improves quality or not.
In Section 3.2 we investigated this phenomenon and found that in most of the cases
refactoring improved the overall maintainability of the systems in most cases.

Here, we investigate how automatic refactorings change maintainability. We asked
developers to do refactorings on their systems with the previously introduced Refac-
toring Framework called Faultbuster. To study this situation, we address the following
questions:

• Does automatic refactoring increase the overall maintainability
of a software system?

• What is the impact of di�erent automatic refactoring types on
software maintainability?

• What is the impact of di�erent automatic refactoring types on
the code metrics used in the maintainability model?
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4.2.1 Methodology

We gathered our research data in a similar way how we did with the manual refactorings
(see Section 3.2.1). However, there are some di�erences. Figure 4.5 provides a brief
overview of the automatic refactoring phase of the project.

We started by identifying possible targets for refactoring by analyzing their systems
(Step 1 ). During the measurement period, the framework supported the refactoring of
21 di�erent coding issues, so the companies were asked to �x issues from this list4.

Figure 4.5. Overview of the refactoring process

It was a project requirement for the developers to refactor their own code, hence
improve its maintainability, but � just like before � they were free to select how they
went through it. So was the choice of the developers as to what kind of coding issues
they should �x with the help of the framework. The process of �xing a coding issue
was to apply the appropriate refactoring operation o�ered by the framework through
the developers' standard development environment. The FaultBuster plugins were able
to load from the framework and to present in the IDEs all the detected coding issues
that the developers were able to refactor with the help of the tool (Step 2 ). To apply
a refactoring operation, the developers selected an issue from the code and called the
refactoring service through the IDE plugins (Step 3 ). After gathering all the required
information from the plugin, a request was sent to the Refactoring Framework to
perform the refactoring step on the code (Step 4 ).

After a refactoring operation was carried out on the ASG, the framework re-
generated the transformed source code. The generated patch was sent back to the
IDE plugins in which the developers were able to preview the modi�cations (with the
help of the built-in di� viewers of the IDEs) before they applied it (Step 5 ). Of course,
the developers had the opportunity to discard the changes if they were not satis�ed

4After developers started using the tool regularly, they asked us to support more and more coding
issues, and in the end, FaultBuster supported 40 issue types (as described in Section 4.1).

69



Chapter 4. Challenges and Bene�ts of Automated Refactoring

with the resulting refactored code. In that case, no changes were made in the code
base. Note, that the framework allowed �xing multiple issues at once, but this type of
batch refactorings had to be of the same type (for example, the framework was able
to �x hundreds of PositionLiteralsFirstInComparisons issues in one patch, but mixing
issues was not supported). If the presented patch got accepted, the developers applied
them on the current code base and performed a commit to upload the refactored code
into the source code repository (Step 6 ).

Besides applying concrete refactorings, the project required that the companies �ll
out a survey (which we collected with the IDE plugins) after each refactoring and give
an explanation on what and why they refactored during their work session (Step 7 ).
The survey contained revision-related information as well, so we could relate one refac-
toring to a revision in the version control systems.

After this refactoring phase, we analyzed the marked revisions and investigated the
change in the maintainability of the systems caused by refactoring commits. Figure 4.6
gives an overview of this analysis. As before, it was not a requirement from the devel-
opers that they commit only refactorings to the version control system, or that they
create a separate branch for this purpose. What was a requirement though is that a
commit containing refactoring operations could not contain other code modi�cations.
Hence, for each system we could identify the revisions (rt1 , ..., rti , ..., rtn) that were
reported in the surveys collected by the Refactoring Framework after refactoring com-
mits, and we analyzed all these revisions with the revisions prior to them. As a result,
we chose for a system the set of revisions rt1−1, rt1 , ..., rti−1, rti , ..., rtn−1, rtn where rti is
a refactoring commit and rti−1 is the revision prior to this commit.

We performed the analysis of these revisions with QualityGate SourceAudit de-
scribed in Section 2.2. If a commit contained more than one refactoring of the same
type � because the framework supported a way of bulk �xing the issues � we calculated
the average amount of maintainability changes of a refactoring type by dividing the
maintainability change brought about by the whole commit by the number of actual
refactorings contained in it. Everywhere in this chapter, if we deal with maintainability
change caused by a refactoring type, we use the average values of these changes. This
is of course a small threat to validity, as there is no guarantee that all the �xed issues
in various places in the code will a�ect the maintainability in the same way. However,
all the refactorings were performed by an automatic framework which resulted in very
similar (though due to the possible manual steps not necessarily the same) �xes for
the issues, therefore the chances that these refactorings had di�erent impacts on main-
tainability is minimal. Besides analyzing the maintainability of the above revisions, we
gathered data from the version control system as well, such as di�s and log messages.

4.2.2 Results

Following the process described in Section 4.2.1, the companies performed a large num-
ber of automatic refactorings on their own code base using the Refactoring Framework
developed within the project. They uploaded almost 4,000 refactorings to the source
code repositories with more than 1,000 commits altogether (see Table 4.2). We ana-
lyzed 4 projects of 4 di�erent companies and collected data according to the method
depicted in Figure 4.6. That is, we calculated all the maintainability changes brought
about by refactoring commits and aggregated the data at various levels. As the main-
tainability model used takes the number of coding issues into account (see Figure 2.2)
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Figure 4.6. Overview of the analysis process

and the Refactoring Framework supports the refactoring of such coding issues, one
might induce that it is trivial that upon refactoring the maintainability of code will in-
crease. Nonetheless, �xing an issue might cause code changes that lead to e.g. changes
in code clones, new coding issues, or changes in metrics. So it is far from trivial to
predict the complex e�ect of refactorings on code maintainability. What is more, the
task that the Refactoring Framework includes some semi-automatic steps, thus devel-
opers are able to con�gure the same refactoring operations somewhat di�erently. For
example, �xing an EmptyCatchBlock issue begins with three options, namely a) add
logger; b) use printStackTrace(); and c) leave a comment, where selecting one option
may introduce new options (e.g.: comment text and logger kind).

Table 4.2. Selected projects

Company Project kLOC Analyzed Refactoring Refactorings
revisions commits

Company I Project A 1,119 299 217 1,444
Company II Project B 962 868 449 1,306
Company III Project C 206 1,313 316 404
Company IV Project D 780 200 66 682

Total 3,067 2,680 1,048 3,836

First, we show how the sum of all refactoring related maintainability changes turned
out to be for the various projects. Next, we will dig a bit deeper into the data to �nd
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out what the average impact of the individual refactoring types is on software main-
tainability. Then, we will go even one step further to explore the e�ect of refactoring
types on software maintainability at the level of code metrics.

I E�ect of Automatic Code Refactoring on Software Maintainability

The data presented in Table 4.3 can bring us closer to �nd the answer to our �rst ques-
tion. The rows of the table contain an overview of the quality properties of 4 systems of
4 companies participating in the automatic refactoring phase of the project. The Cod-
ing Issues column shows the overall number of issues that were �xed by (semi)automatic
refactoring in a particular system. The Maintainability Before and Maintainability Af-
ter columns contain the maintainability values of the systems before and after the
automatic refactoring phase, calculated as described in Section 2.2 (0 is the worst
value, 10 is the best). The total improvement (Total Impr.) column re�ects the dif-
ference between the maintainability values before and after the automatic refactoring
phase, hence if this value is negative, the overall maintainability of the system has
decreased during the refactoring phase, while a positive di�erence means a maintain-
ability improvement. Note that the companies were allowed to perform any kind of
code modi�cations during this phase, not just refactorings, so this value represents the
combined e�ect of all the code changes on the system maintainability. The next col-
umn, refactoring improvement (Ref. Impr.), is the code improvement achieved solely
by refactorings. This is calculated as the sum of the maintainability changes caused
by commits containing refactoring operations only (i.e. sum of the maintainability
di�erences between refactoring and prior commits). The last column (Ref. Impr. % )
is simply the ratio of the refactoring and total improvement values. Its intuitive mean-
ing would be the amount of code improvement caused by refactoring commits. Bigger
values than 100% may occur, which mean that the e�ect of refactorings is higher than
the overall e�ect of all the code changes; however, this e�ect might be positive and
negative as well.

In total, in 3 out of 4 cases the overall system maintainability values increased
during the refactoring phase. In these 3 projects, the net e�ect of refactoring commits
was also positive, meaning that the automatic refactoring phase increased the main-
tainability of the code. The only exception is Project A, where both the overall system
maintainability and the net e�ect of refactoring commits were detrimental. But even
in this case only a fraction (i.e. 80%) of the maintainability decrease was caused by
the refactoring commits. This �nding is more or less in line with the results of the
manual refactoring phase of the project where we found that in most cases refactoring
improved the overall maintainability of the systems with only a few minor exceptions.
In the case of tool-aided refactoring, this �nding also holds true for 3 projects out of 4.

Table 4.3. Quality changes of the selected projects

Company � Coding Maint. Maint. Total Ref. Ref.
Project Issues Before After Impr. Impr. Impr. %

Comp I � Proj A 1,444 4.449238 4.411970 -0.037268 -0.029822 80
Comp II � Proj B 1,306 6.039320 6.072320 0.032999 0.032999 100
Comp III � Proj C 404 4.132307 4.258933 0.126627 0.144507 114
Comp IV � Proj D 682 6.158691 6.161626 0.002935 0.003142 107
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The seemingly negative results of Project A could be explained by a very project
speci�c factor. The system which su�ers from maintainability decrease belongs to a
company where developers performed only two di�erent types of refactorings, namely
PositionLiteralsFirstInComparisons and UnnecessaryConstructor. Their motivation
might have been that these refactorings required only local changes (i.e. they were
low hanging fruits), therefore they were easier to manage and test the code after the
modi�cation. However, the e�ect of this limited set of refactoring types is completely
di�erent from a more balanced set of refactorings (see Table 4.4).

The results of the other three companies support this hypothesis, as they performed
a much wider range of refactoring tasks, and the maintainability of their systems in-
creased in all cases. In the case of Project C and Project D, it is even true that
the refactoring commits caused a larger increase in the maintainability than the overall
increase at the end of the phase, which means that code modi�cations other than refac-
torings decreased the maintainability. In the UnnecessaryConstructor line of Table 4.4,
we can see that all the values are negative, meaning that this type of refactoring caused
a maintainability decrease in each and every system. Taking into consideration the fact
that out of the two types of refactoring performed by Company I, UnnecessaryCon-
structor was the absolute dominant by its number, it is now clear that the overall
decrease in the maintainability of their system can be credited to this single type of
refactoring. It is an interesting question of why removing an UnnecessaryConstructor
decreases the maintainability, which we elaborate on in Section II.

To summarize, we observe that the overall e�ect of the automatic refactoring phase
tends to be positive, and the small bias is caused by the dominant number of a single
type of refactoring (i.e. UnnecessaryConstructor) in Project A.

II Impact of Automatic Refactoring Types on Software Maintainability

During the automatic refactoring period, developers �xed di�erent kinds of coding is-
sues, which had di�erent e�ects on software maintainability. In Table 4.4 we show for
each system the number of �xed coding issues (column `#') and its average maintain-
ability change (column `avg') credited to the various kinds of coding issue types the
developers �xed (semi)automatically. As the maintainability change of a single commit
measured on the scale of 0 to 10 is extremely small, we also added a column to the table
(column `ratio') that re�ects the number of times this change was bigger or smaller
compared to an average maintainability change caused by a non-refactoring commit.
We refer to this number as nonRefactAvg in the following, and its value is 0.00005.
The ↑ means that the actual change is bigger than the average maintainability change
of the non-refactoring commits, while ↓ means a worse e�ect than the average. Please
note that the average maintainability change of the non-refactoring commits is nega-
tive, so a maintainability decrease may still be marked with ↑ (meaning that the actual
maintainability degradation is smaller than that of an average commit). For example,
a ratio of 1.68 ↑ means that the actual maintainability improvement is greater than
the average non-refactoring commit by 1.68 times of the absolute value of the average
change:

avg = nonRefactAvg + ratio ∗ |nonRefactAvg|

This is why a neutral change value (i.e. 0) is marked with 1 ↑, as 0 is better than the
average maintainability change of non-refactoring commits, which is negative.

We can readily see that Company I �xed only 2 types of coding issues in Project
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A, as we already pointed it out in the previous section. The other companies �xed a
wider range coding issues, 21 types altogether. The results indicate that in 55% of the
cases refactoring increased the overall maintainability of the system, while it decreased
the maintainability in only 10% of the cases (shown in bold). In 35% of the cases it
did not cause any noticeable di�erence in maintainability measured by the model (i.e.
the model was insensitive to the change). If we compare the results with the average
maintainability changes of non-refactoring commits, we can see that only one value
caused a larger maintainability decrease than an average non-refactoring commit. So
even in those few cases where a refactoring type caused a maintainability decrease, it
was much smaller than an average maintainability degradation introduced by a commit
containing no refactorings. Also, the largest maintainability increases caused by some
refactoring types are more than 7 times bigger than the average decrease caused by
non-refactoring commits.

Looking closer at the results, we can see that �xing the UnnecessaryConstructor
coding issue decreased the maintainability in each case. This issue occurs when a
constructor is not necessary; i.e., when there is only one constructor, it is public,
has an empty body, and takes no arguments. The automatic refactoring algorithm
simply deleted these constructors. Intuitively, the maintainability of the source code
should have been increased because we deleted unnecessary code and decreased the
lines of code metric as well. However, ColumbusQM is not directly a�ected by the
system size as it could lead to false conclusions like larger systems are necessarily
harder to maintain, so the code reduction itself would not justify a maintainability
increase anyway. Instead of the mere sizes of the systems, the maintainability model
relies on the distribution of the method lengths. In this particular case the method
length distribution is shifted towards the direction of longer methods as a lot of �good
quality� code/methods got deleted. The removed constructors consisted of just a few
lines, had no coding issues, had small complexity and they did not refer to other classes.
Therefore, a maintainability decrease occur upon deleting such good quality methods
due to the shift in the distribution of metric values like length, complexity or number
of parameters of the remaining methods.

There are two other issues where the maintainability of a system decreased for some
of the projects. One issue is the UnnecessaryLocalBeforeReturn that caused a decrease
in maintainability for Project D. In this case the automatic refactoring algorithm simply
inlined the value of the local variable into the return statement (which resulted in a line
deletion as well). This should have increased the maintainability because it reduces
the method length and removes a coding issue from the source code. However, it did
not change the maintainability or it even decreased it (albeit the decrease was very
small compared to other changes). Investigation of this phenomena revealed that a
single change in lines of code or in the number of minor (low-priority) rule violations
is so small that it has no noticeable e�ect. What is more, in some cases �xing these
issues introduced code clones as well (the only di�erence between two methods was the
unnecessary local variable) which immediately decreased the measured maintainability.

The other issue causing a maintainability decrease is PreserveStackTrace in Project
C. The typical �x of this issue is to add the root exception as a second parameter to the
constructor of the newly thrown exception. However, Company III could not apply this
strategy as their own exception classes did not override this two parameter constructor.
So instead of the usual �x, they instantiated a new exception in a local variable, called
its initCause() method with the root exception and threw the new exception. Besides
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the additional lines, the �x also introduced a new incoming call to the initCause()
method of the exception objects. All these decrease the maintainability, which slightly
outweigh the positive e�ect of removing a coding issue.

All in all, the results indicate that despite the seemingly counter-intuitive e�ects
of �xing some issues, refactoring di�erent types of coding issues usually increase code
maintainability.

III Impact of Automatic Code Refactoring on Code Metrics

Table 4.5 shows all the sensor nodes (internal quality properties) of the ColumbusQM
ADG (see Figure 2.2), and the overall maintainability of a system as well. Sensor
nodes represent goodness values of source code metrics. In the table we list two ratios
for each sensor node. A ratio is the number of coding issue �xes when the refactoring
caused a positive (column `+') or negative (column `�') change to the goodness value
of the current sensor, divided by the number of all refactorings (positive, negative, and
zero change). The values larger than 0.5 are highlighted in bold. The table also shows
the priority (column Pri.) for each coding issue according to a scale between 1-3, and
describes how dangerous an issue is (P1 � critical, P2 � major, P3 � minor).

The goal of the project was to increase the maintainability of the software systems.
The column `Maint. +' shows the ratio of how many times a refactoring increased
the overall maintainability of a system. For example, 0.86 means that UseLocaleWith-
CaseConversions �xes had a positive impact on maintainability in 86% of the cases.
The column `Maint. �' shows the ratio of how many times a refactoring decreased the
overall maintainability of a system. Looking at the same line again, we see that the
value is 0, which means that �xing this type of issues did not decrease the maintain-
ability. The remaining 14% did not a�ect the maintainability in either a positive or
negative way.

Looking at these values, we can see that �xing coding issues generally increases the
overall maintainability. However, there are a few issue types which did not change the
maintainability at all, or they even decreased it. Increases happened mostly because
of the expected behavior of the maintainability model, namely, decreasing the number
of coding issues in the source code improves maintainability and stability, hence the
quality. This behavior can be observed mainly in the P1, P2, P3 columns (the numbers
of coding issues with di�erent priorities, respectively). For example, ArrayIsStoredDi-
rectly did not change any other sensors, just the number of P2 coding issues and this
increased the maintainability in each case. Still, this pattern cannot be applied to
every row in the table. For example AddEmptyString, BooleanGetMethodName coding
issues increased the goodness of P3 sensor in 6-7% of the cases but we cannot see any
increase in maintainability. This is because the positive e�ect of P3 sensor was so small
that it increased the overall maintainability to such a small amount that it is lost due
to rounding errors.

An interesting observation can be made on the EmptyCatchBlock where besides the
91% improvement of P1, one can see a 13% decrease in the P2 sensor. A closer look
into this case told us that in some automatic EmptyCatchBlock refactorings developers
choose to solve the issue with �put an e.printStackTrace() call into the catch block� op-
tion for the refactoring algorithm which resolved the EmptyCatchBlock but introduced
a new AvoidPrintStackTrace issue at the same time.

Another compelling case is the AvoidReassigningParameters issue which has a
de�nitive improvement in the logical lines of code (LLOC) and nesting level (NLE)
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sensors. Fixing this reassignment involved removing some code parts that reduced
the code lines and sometimes the complexity (i.e. the maximal nesting level) of the
projects. Besides reducing the number of coding issues, these improvements caused a
maintainability increase in 29% of the cases. However, in 2% of the cases, we observed
a maintainability decrease. This is because in 11% of the cases the removal of some
code parts resulted in new code clones (CC), hence two or more code parts di�ered
only in the removed statements. So the e�ect of this refactoring is not easy to predict,
but in the majority of the cases we observed a maintainability increase.

UnusedPrivateField increased the goodness of the CBO sensor in 3% of the cases
but it did not a�ect any of the other sensors. This happened mostly because of the
small number of �xes and also because it sometimes introduced UnusedImports coding
issues as well.

Section II explained why UnnecessaryLocalBeforeReturn coding issue decreased
maintainability. Table 4.5 shows that the introduction of code clones (CC) had a
bigger e�ect on maintainability than the �xes of the P3 issue. Similarly, Unneces-
saryConstructor is also referred to in Section II and its precise e�ects can be seen in
Table 4.5. Almost every sensor is a�ected by this coding issue �x, but this is mainly
because of the large number of refactorings.

In summary, we observe that �xing coding issues by automatic refactorings does not
have a signi�cant impact on metrics in most of the cases, mainly because the changes
are local. However, some �xes have an e�ect on metrics one would not think of at �rst
glance.

4.2.3 Threats to Validity

Even in a case study which was carried out in a controlled environment, there are
many di�erent threats which should be considered when we discuss the validity of our
observations. Here, we give a brief overview of the most important ones.

Heterogeneity of the commits

As we were interested in the e�ect of particular refactoring types on software main-
tainability, we �ltered out those commits that contained di�erent types of refactorings.
Although the number of such commits was relatively low, it is obviously a loss of in-
formation. Additionally, when a commit contained multiple refactoring operations of
the same type, we had to use the average of the maintainability changes to estimate
the e�ect of an individual refactoring operation. This is also a threat to validity, as
the same refactorings may have a di�erent impact on the same system. However, its
likelihood is minimal, as all the refactorings have been carried out (semi)automatically,
and this resulted in very similar type of modi�cations in the code.

Maintainability analysis relies only on the ColumbusQM maintainability
model

The maintainability model is an important part of the analysis as it also determines
what we consider as an �e�ect on maintainability� of refactorings. Currently we rely
on ColumbusQM with all of its advantages and disadvantages. On the positive side
this model has been published, validated and re�ects the opinion of developers [20];
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however, we saw that the model might miss some aspects that would re�ect some
changes caused by refactorings.

Limitations of the project

We claim that our experiment was carried out in an in vivo industrial context. However,
this project might had unintentional e�ects on the study. For example, as in the manual
phase, the budget for refactoring was not �unlimited� and some companies were looking
for �xes that required the smallest amount of extra e�ort. A good example of this is
Company I, who really just performed two such types of refactorings.

Limitations of the supported refactoring types

The supported automatic refactorings focus on �xing 21 di�erent coding issues. It is
only a fraction of the possible and widely used set of refactoring operations, therefore
our overall conclusions are limited to these type of refactorings. However, most of these
refactorings are simple yet powerful tools for improving the code structure agreed by
all the companies involved in the project.

4.3 Analysis of Developers' Opinions on Refactoring

Automation

There are several challenges which should be kept in mind during the design and
development phases of a refactoring tool, and one is that developers have several ex-
pectations that are quite hard to satisfy. To address this, during the manual phase we
asked developers what they thought about refactoring automation. Developers pro-
vided us with several recommendations in the manual phase (How did they refactor?
Do they think that it is possible to automate their steps? If yes, how would they
automate them?). Then, they gave us feedback on the resulting implementations (We
asked them how they used it and how much it helped them in their everyday work.).
Besides our experiences, we also examined their opinions.

Here, we present and summarize the opinions of the developers and the several
challenges we faced on how to automate refactoring transformations.

4.3.1 What developers think about refactoring automation?

Throughout the manual refactoring and the automatic refactoring phases, we asked
developers to �ll out surveys for the refactoring operations they had carried out. For
each refactoring commit, they had to �ll out a survey that contained questions targeting
the initial identi�cation steps, and they also had to explain why, how, and what they
modi�ed in their code. There were around 40 developers involved in this phase of the
project (5-10 per company). The questions related to our study were the following:

• How di�cult would it be to automate your manual refactoring for the issue?
(1 - very easy, 5 - very hard) + explanation

• How much did the automated refactoring help in your task? (1 - no help at
all, 5 - great help) + explanation
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I Manual refactorings

During the manual refactoring phase of the project, developers refactored their code-
base manually, and they �lled out a survey for each refactoring. We had an online Trac
system for this purpose, and whenever they opened a ticket for an issue, they had to
explain why they found it problematic, and answer some more questions. Similarly, we
asked them some further questions when they closed the ticket after they had �nished
the refactoring.

Among these questions, they had to rate on a scale of 1 to 5 (1 - very easy, 5 - very
hard) how di�cult it would be to automate the manual refactoring. Along with this
number, they had to justify their answer.

Table 4.6. Developers' feedback on how hard it would be to automate refactoring
operations

Num. of Replies Avg Med Dev Num. of Types

430 2.06 1 1.23 61

The developers completed the survey for 430 tickets, as can be seen in Table 4.6.
Our results tell us that developers gave responses for 61 di�erent kinds of coding issues
(actually we showed them around 220 di�erent kinds of coding issues). Figure 4.7 shows
the histogram of their replies. As can be seen, most of the refactorings were rated with
smaller values, which means that they were optimistic about the automation: they
thought that most of the coding issues could be easily �xed through automated trans-
formations. However, they also identi�ed some cases where they thought that the
automation would be hard to realize. Notice also that Table 4.6 also supports this ob-
servation, as the average value is around 2 and the median is 1. Table 4.7 lists the coding
issues and the level of di�culty of their automation based on feedback of the developers.

Table 4.7. How di�cult the refactoring automation of coding issues is according to
developers

Aut. Coding Issues

Very Hard (5) AvoidInstanceofChecksInCatchClause, ExceptionAsFlowControl, EmptyIfStmt

Hard (4) SwitchStmtsShouldHaveDefault, AvoidCatchingThrowable, MethodReturnsInternalArray

Medium (3)

UseStringBu�erForStringAppends, AvoidSynchronizedAtMethodLevel, SignatureDeclareThrowsEx-
ception, AvoidCatchingNPE, AbstractClassWithoutAbstractMethod, ConsecutiveLiteralAppends,
LooseCoupling, NonThreadSafeSingleton, ReplaceHashtableWithMap, SystemPrintln, UnusedFor-
malParameter, UseLocaleWithCaseConversions, UnsynchronizedStaticDateFormatter

Easy (2)

EmptyCatchBlock, OverrideBothEqualsAndHashcode, PreserveStackTrace, UnnecessaryLocalBe-
foreReturn, AtLeastOneConstructor, UnusedPrivateField, UnusedPrivateMethod, AvoidThrow-
ingRawExceptionTypes, UnusedLocalVariable, AvoidDuplicateLiterals, AvoidDeeplyNestedIfStmts,
AddEmptyString, AvoidFieldNameMatchingTypeName, ArrayIsStoredDirectly, AbstractNaming, Im-
mutableField, OnlyOneReturn, UnnecessaryConstructor, UnnecessaryWrapperObjectCreation

Very Easy (1)

AvoidPrintStackTrace, UnusedImports, UseIndexOfChar, Ine�cientStringBu�ering, IntegerInstanti-
ation, MethodArgumentCouldBeFinal, CyclomaticComplexity, BooleanInstantiation, BigIntegerIn-
stantiation, BeanMembersShouldSerialize, CollapsibleIfStatements, CompareObjectsWithEquals,
IfElseStmtsMustUseBraces, LocalVariableCouldBeFinal, SimplifyConditional, ShortVariable, Uncom-
mentedEmptyMethod, UnnecessaryFinalModi�er, UnusedModi�er, UnnecessaryReturn, Variable-
NamingConventions
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Figure 4.7. Histogram of the answers given for �How di�cult would it be to automate
your manual refactoring for the issue?�

II Automated refactorings

Based on the observations of the manual period, we started to develop the automated
refactoring tool. When we began the development of the tool, we selected the refactor-
ing transformations for implementation based on the earlier feedback of the developers.
Also, we asked the companies to provide us with a list of coding issues (with priorities)
that they wanted to �x in the automated phase so that we could concentrate on the
most desired ones. After gathering the lists, we ranked each coding issue by the values
the companies provided us. Then we created a ranked list of the coding issues that
most of the companies wanted at the top, and the coding issues that nobody wanted
at the end. Interestingly, the resulting list contained many issues that were no longer
considered during the manual phase, most probably because the companies �xed all
occurrences of some issue types so they were not interested in the automation of these.

We started implementing the refactoring algorithms based on this ordered list. We
developed automatic refactoring solutions for 42 di�erent coding issues. The supported
list of coding issues consisted of 22 di�erent issue types that were considered during
the manual period plus 20 new ones.

During the automatic refactoring stage, we asked the developers to once again
document their refactorings. This time, we incorporated the survey into our tool that
asked them to �ll it out after each refactoring transformation. This way, we gathered
over 1,700 answers for 30 coding issue types (see Table 4.8).

Table 4.8. Total help factor survey

Num. of Replies Avg Med Dev Num. of Types

1,726 3.05 3 1.23 31

In the automatic phase, we asked developers about how much the automated refac-
toring solution assisted them in their refactoring task. They had to give a value between
1 and 5 here as well. A 5 meant that the automation helped a lot, while a 1 meant that
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Figure 4.8. Histogram of the answers given for the question �How much did the auto-
mated refactoring help in your task?�

it did not help at all (or it even made the situation worse). As we see in Table 4.8, the
average of the replies was around three. In Figure 4.8, the distribution of the responses
can be seen in a histogram. This tells us that developers were generally satis�ed with
the automated refactoring solutions, and they gave a score of 4 in many cases.

Actually, if we consider all the transformations where the given value is greater
than 1 (these are the transformations that the developers said were a help), we �nd
that all the refactorings made the tasks of developers easier or faster, except for two
cases. This can be seen in Figure 4.9, where we can see the degree of help for each
kind of coding issue. The points stand for the average help of a refactoring solution
and the bars around them indicate the standard deviation.

Every refactoring algorithm for a coding issue got a value above 1, except the
LooseCoupling and the MethodNamingConventions coding issues. In their explana-
tions, the developers said they found that �xing one issue had a communication over-
head that sometimes made it easier for them to refactor the code manually in the IDE
instead. However, this overhead might be negligible if they �x more issues together.
For example, the refactoring solution for MethodNamingConventions issue suggests a
better name for a method (e.g. if a method name starts with an uppercase letter
it recommends the same name beginning with a lowercase letter). After the devel-
oper accepted the refactoring suggestion, they had to wait until our tool applied the
modi�cation. This could take a few seconds because of the server-client architecture.

Upon examining Figure 4.9 again, we realized that when we consider not only
the average but also the standard deviation for each coding issue, we can classify the
following 5 refactoring types as `sometimes bad': LongFunction, CyclomaticComplexity,
UseStringBu�erForStringAppends, UselessParentheses, TooManyMethods.

The developers explained these as follows. The UselessParentheses issue fell into
the same category as the former two; it is faster to do it manually in some cases.
The LongFunction and CyclomaticComplexity issue �xing refactoring solutions used
an extract method refactoring algorithm where the algorithm applied a heuristic to
�nd parts of the code that can be extracted to satisfy the requirement by the issue, to
reduce the length of the method or to reduce the complexity of it. The main problem
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with this algorithm was that it was hard for developers to fathom how it worked. They
simply preferred to do it manually instead of using the tools. The TooManyMethods
issue su�ered from the same problem, but in this case the underlying algorithm was
`extract class'. Developers' notes on the UseStringBu�erForStringAppends issue show
that although they were satis�ed with the semantic aspect of the algorithm, many
formatting problems arose.

4.3.2 Did automation increase developers productivity?

Previously, we found that the automatic tool helped in the everyday work of developers
in most cases. We also found in some cases that time was a relevant factor in considering
a refactoring a help or not. Here, we will examine whether tool-assistance increases
developer productivity.

In the questionnaire we drew up during the automatic period we asked developers
how much time it took to �nish a refactoring with tool-assistance; and how much time
it would have taken doing the refactoring manually. We got replies to this question
for approximately 7,800 refactorings by the end of the project. Figure 4.10 represents
the survey data. Here, we observe how many times faster a tool-assisted refactoring is
compared to a manual one on average. The light-gray bar below the number 1 shows
when the manual and automatic refactoring takes roughly the same time. When a tool-
assisted refactoring is slower than doing it manually it is on the left-hand side of the bar,
otherwise it is on the right-hand side. Colors also represent slower refactorings with
red, faster ones with green, and when they take about the same time with orange bars.

We found that automated solutions in average are 1.7 times faster than manual
ones. However, as Figure 4.10 shows how the di�erence for particular coding issue
types vary. For example, there are six cases where manual methods are faster. A closer
look on the slower issues reveals that it ties up with the observations discussed in the
previous section. Simpler �xes are faster to make in the IDEs manually because of the
server-client architecture of FaultBuster. However, the results also indicate that there
are cases where the automatic technique was 3-5 times faster. One of the reasons why
such an increase in speed was achieved is because these coding issues are refactored
in batches. For example, the UnusedConstructor coding issue was 90% of the times
executed in a batch together with 10 issues of the same type.

4.3.3 Lessions Learned

Thanks to the Refactoring Project, during the development of FaultBuster, we had
chance to get immediate feedback from potential users of the tool in all stages of its
development (starting from the design phases to the last testing phases of the project).

During the design phase of the tool we consulted regularly with the developers
of the participating companies concerning the refactoring transformations which they
wanted to be available in the �nal product. Throughout the initial meetings it became
clear that they wanted ready solutions for their actual problems, particularly for those
which were easily understandable for the developers and by solving them, they could
gain the most in terms of increasing the maintainability of their products. However,
they did not really provide us with a concrete list of the issues that they wanted us
to deal with. In addition, most of the developers said that before the project they
had not used any refactoring tools except the ones provided by their IDEs. Therefore,
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we started implementing transformation algorithms to �x coding rule violations which
were very common in their projects. Soon, when we provided the companies with the
�rst prototype versions for testing, they started to send us lots of other issue types and
refactoring algorithms that they wanted to be supported in the new releases. Among
the desired refactorings, there were some more complex ones too like eliminating long
or complex methods. In the end, we also implemented an algorithm that eliminates
clones (code duplications) from the source code.

At the end of the project, we can indeed say, that FaultBuster performed well and
was tested exhaustively by the companies. The companies participating in the project
performed around 6,000 refactorings altogether which �xed over 11,000 coding issues.
Interviews with the developers showed that they found the everyday work with the
tool really helpful in many situations and they intended to keep using it in the future.

We gathered a lot of experience on how to design and implement such a tool, and
also on the �nal usability of FaultBuster, which we will brie�y summarize below.

I Challenges in how to automate refactoring transformations

Precise syntax tree Without a doubt, a key consideration of refactoring transfor-
mations is to have a precise representation of the source code. One can model the source
code as an abstract syntax tree (AST) to perform di�erent (graph) transformations on
it. Transformations can be just as good as the underlying representation is, so we
found it necessary to have an accurate and complete AST. As an illustration, consider
a rename method refactoring. Here, we do not simply change the method name, but
a) we have to check that the new name does not con�ict with other method names in
the same scope (e.g. parent and child classes); b) we have to check for disambiguation
in other classes where the method is invoked; c) and then, when it passes the former
two checks we are allowed to rename the method and all of its invocations to the new
name. To do this, we have to analyze all the dependencies, and potentially include
external ones as well.

Regenerate (only the) modi�ed code After the transformations on the AST, we
have to apply the changes to the source code. To do this, we have to (re)generate the
source code from the AST (at least, and preferably only for the modi�ed code parts).
It is also advisable not to introduce unnecessary changes to the other parts of the code.

Code formatting The process of code generation requires some indentation and
code formatting as well. It is usually hard for the users to specify formatting rules,
and hence it is also hard to regenerate a code formatted exactly as the user would like
to see it. This was one of the most di�cult challenges we could not fully overcome,
and this caused the most dissatisfaction among developers. However, based on our
experiences, developers mostly accepted this limitation if they found the refactoring to
be semantically correct and they had to reformat the code only a bit manually (e.g.,
they could easily do this in the IDE automatically).

Patch generation As the last step after the transformation, we generated a di�
(di�erence �le or patch) between the old source code and the new one. Then we
sent this di� �le to the IDE where the developers could decide to accept or reject the
modi�cation.
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Code clone elimination Another interesting experience was that the developers
eagerly wanted to eliminate code duplications (code clones). By the end of the project,
we developed an experimental algorithm that was able to refactor code clones via ex-
tract method and extract class refactoring transformations. Note that automated code
clone detection is a hot research topic as well [80], especially code clone elimination. It
is quite a challenge to come up with a good solution for this issue.

II What makes a refactoring operation good or bad?

Precise problem detection Developers only wanted recommendations made for
real faults or optimization opportunities, and they wanted to avoid false positives.
Looking at false recommendations takes time, and it does not bring any bene�t to the
project. Besides false positive issues, they also wished to avoid true negative issues. As
a common use case, they said they wanted to remove all the occurrences of a certain
type of issue. Reporting only some occurrences would give them a false sense of security.

Understandability of the transformations Refactorings with a good and easy-
to-comprehend description were more popular among the developers. Unlike those
refactoring solutions that required more parameters or were harder to understand,
developers rarely used these and gave worse scores in the survey.

Performance It was important to carry out the modi�cations quickly, or at least
quicker than could be done manually.

Batch refactorings One way to improve e�ciency is by supporting the refactoring
of several issues at the same time. With the automated tool, developers were able to
�x many issues of the same type all at once (we called this batch refactoring). This
batch-refactoring process made refactoring tasks a lot faster. For example, they were
able to �x all occurrences of UnusedConstructor issues with a press of a button. This
option was beloved by developers, and batch refactorings got better scores in the survey.
However, we did not allow batch refactoring of all the issues. We had to implement
some restrictions in this process because we observed that developers tended to accept
these refactorings without checking the result of the automated refactoring operations.
This was �attering because it meant that they trusted the algorithm and its results.
Nonetheless, we did not want them to blindly accept the refactorings. Therefore, we
only allowed the refactoring of one type of issue at a time, and we only allowed it for
some simpler refactorings. This way we guaranteed that they had to check complex
refactorings (e.g. extract class) and ensured that simpler ones ran faster.

Comment handling Comments are integral parts of the source code, and sometimes
they are closely related to source code elements. From these transformation, developers
expected that they would also be able to handle these situations. For instance, a
refactoring that removes an unused constructor should remove the comment before
the constructor as well. Similarly, in some cases they asked us to generate simple
comments.
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4.4 Related Work

Related Tools

Since the introduction of the term `refactoring' [11], many researchers studied it [30]
as a technique, e.g., to improve source code quality [48, 81], and many tools were im-
plemented providing di�erent features to assist developers in refactoring tasks. Fault-
Buster is a refactoring tool to detect and remove code smells, i.e., in this section,
we shall give an overview of tools which have similar capabilities, or are related to
FaultBuster through some speci�c features.

In a recent study, Fontana et al. examined refactoring tools to remove code smells
[72]. They evaluated the following tools: Eclipse [82], IntelliJ IDEA [83], JDeodor-
ant [84], and RefactorIT [85]. In the case of JDeodorant, they say that this �is the only
software currently available able to provide code smell detection and then to suggest
which refactoring to apply to remove the detected smells.� To evaluate the other refac-
toring tools, they relied on the code smell identi�cation of iPlasma [86] and inCode [87].

In an earlier study, Pérez et al. also identi�ed smell detection and automatic cor-
rections as an open challenge for the community, and proposed an automated bad smell
correction technique based on the generation of refactoring plans [88].

As regards detecting bad smells, there are many static analyzers available to auto-
matically identify programming �aws, like the products of Klocwork Inc. [89] or Cover-
ity Inc. [90] These tools are sometimes able to identify serious programming �aws (e.g.
bu�er over�ow or memory leak problems) that might lead to critical or blocker prob-
lems in the system. There are open source or free solutions as well, such as PMD [27],
FindBugs [91], CheckStyle [92] for Java, and the Code Analysis features and FxCop in
Visual Studio [93]. These tools usually implement algorithms to detect programming
�aws, but �xing the identi�ed issues remains the task of the developers.

The DMS Software Reengineering Toolkit [94] product of Semantic Designs Inc. has
a `program transformation engine' which allows the tool to perform code generation
and optimization, and makes it able to remove duplicated code (with CloneDR).

There are many IDEs available with automatic refactoring capabilities and they
support typical code restructurings (e.g. renaming variables, classes) and some com-
mon refactorings from the Fowler catalog. For instance, IntelliJ IDEA was one of the
�rst IDEs to implement these techniques and it is able to support many languages
(e.g. PHP, JavaScript, Python), not just Java, which it was originally designed for.
Eclipse and NetBeans also implement similar algorithms. However, neither of these
IDEs support the automatic refactoring of programming �aws. And there are many
plugins available to extend their refactoring capabilities, such as ReSharper [95] and
CodeRush [96] for .NET.

Compared to these tools, the above all lack the feature of scanning the code and
suggesting which refactorings to perform, which is one of the main strengths of Fault-
Buster. JDeodorant, as an Eclipse plug-in, is the only tool that has a similar capability,
as it is able to identify four kinds of bad smells (namely `Feature Envy', `State Check-
ing', `Long Method' and `God Class'), and refactor them by using a combination of 5
automatic refactoring algorithms. FaultBuster is more general in a way, as it allows
the refactoring of coding issues (see Table 4.1) and it has plug-in support for IntelliJ
and NetBeans too (besides Eclipse).

Another good feature of FaultBuster is its ability to e�ectively perform a large set
of refactorings (i.e. batch refactorings) together on a large code base. The lack of tools
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available that can handle a massive Java code base and provide a large class of useful
refactorings also motivated the development of refactoring tools like Refaster [97] from
Google [98].

Related Studies

Since the term `refactoring' was introduced [11, 12], many researchers have studied
its role in software development. Some studies estimate that about 70�80% of all
structural changes in the code are due to refactorings [99, 100], which clearly indicates
its importance in software evolution. Mens et al. published a survey to provide an
extensive overview of research work in the area of software refactoring [30] and cited
over 100 studies. However, the popularity of the topic has been increasing recently.

Automation techniques can support the regular task of refactoring and they are
intensively studied by researchers. Ge et al. implemented the BeneFactor tool which
detects developers' manual refactoring and reminds them that automation is available,
then it completes the refactoring automatically [101, 102]. Vakilian et al. proposed a
compositional paradigm for refactoring (automate individual steps and let programmers
manually compose the steps into a complex change) and implemented a tool to support
it. Henkel et al. implemented a framework which captures and replays refactoring
actions [103]. Jensen et al. used genetic programming for automated refactoring and
the introduction of design patterns [104]. Also, there are many approaches available to
support speci�c refactoring techniques, such as extract method [105, 106], refactoring
to design patterns [84] and clone refactoring [107].

There seems to be, however, disagreement among researchers as to whether refac-
toring truly improves software maintainability or not. Stroulia and Kapoor [45] inves-
tigated how metrics were a�ected and found that size and coupling metrics of their
system decreased after the refactoring process. Du Bois and Mens [46] studied the
e�ects of refactoring on internal quality metrics based on a formalism to describe the
impact of a representative number of refactorings on an AST representation of the
source code. Du Bois wrote his dissertation after studying the e�ects of refactoring
on internal and external program quality attributes [48] and earlier Du Bois et al. [47]
proposed refactoring guidelines for enhancing cohesion and coupling metrics; they got
promising results by applying these transformations to an open-source project. Kataoka
et al. [49] provided a quantitative evaluation method to measure the maintainability
enhancement e�ect of refactorings. Yu et al. [38] adapted a modeling framework in
order to analyze software qualities to determine which software refactoring transfor-
mations were the most appropriate. Moser et al. [50] studied the impact on quality and
productivity as they observed small teams working in similar, highly volatile domains
and assessed the impact of refactoring in a close to industrial environment. Their re-
sults indicate that refactoring not only increases software quality, but also improves
productivity. One of the few industrial case studies that investigated the typical use
and bene�ts of refactorings was carried out by Kim et al. [108] at Microsoft. Their
survey revealed that the refactoring de�nition in practice was not con�ned to a rigorous
de�nition of semantics-preserving code transformations and that developers perceived
that refactoring involves substantial cost and risks. They found that the top 5 percent
of preferentially refactored modules in Windows 7 experience a greater reduction in
the number of inter-module dependencies and several complexity measures but they
increase the size of more than the remaining 95 percent. This indicates that measuring
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the impact of refactoring requires multi-dimensional assessment.
A large-scale study was carried out by Murphy-Hill et al. [58] where they studied

manual refactorings from Fowler's catalog, and their data set spans over 13,000 de-
velopers with 240,000 tool-assisted refactorings of open-source applications. Similarly,
Negara et al. [57] presented an empirical study that considered both manual and au-
tomated refactorings. They reported that they analyzed 5,371 refactorings applied by
students and professional programmers, but they did not provide more information
about the systems in question.

Most of the above studies were performed on either several small projects and/or
open-source systems, which is one important di�erence compared to our study, as we
examined a large amount of automatic refactorings on proprietary software. Another
di�erence is that we used the ColumbusQM to objectively measure changes in the
maintainability, while earlier studies relied just on internal code metrics. It allows us
to compare di�erent refactorings and draw conclusions which might help developers in
planning refactoring tasks or inspire research projects.

4.5 Summary

In this chapter, we summarized our experiences of the automatic refactoring period
of the Refactoring Project. We sought to develop automated refactorings and for this
purpose we designed FaultBuster, an automated refactoring framework. We presented
an automated process for refactoring coding issues. We used the output of a third-party
static analyzer to �nd refactoring suggestions. We created an algorithm that is capable
of locating a source code element in an AST based on textual position information.
The algorithm transforms the source code into a searchable geometric space by building
a spatial database.

We had to take into account several expectations of the developers when we de-
signed and implemented the automatic refactoring tools. Among several challenges
of the implementation, we identi�ed some quite important ones, such as performance,
indentation, formatting, understandability, precise problem detection, and the neces-
sity of a precise syntax tree. Some of these have a strong in�uence on the usability
of a refactoring tool, hence they should be considered early in the design phase. We
made an exhaustive evaluation, which con�rmed that our approach can be adapted to
a real-life scenario, and it provides viable results.

We made interesting observations about the opinions of the developers who utilized
our tools. The results showed that they found most of the manual refactorings of coding
issues easily implementable via automatic transformations. Also, when we implemented
these transformations and observed the automated solutions, we found that almost all
refactoring types helped them to improve their code.

Employing the QualityGate SourceAudit tool, we analyzed the maintainability
changes caused by the di�erent refactoring tasks. Our analysis revealed that out of the
supported coding issue �xes, all but one type of refactoring operation had a consistent
and traceable positive impact on the software systems in the majority of cases. Here,
3 out of the 4 companies involved achieved a more maintainable system at the end of
the refactoring phase. We observed however that the �rst company preferred low-cost
modi�cations, therefore they performed only two types of refactorings from which re-
moving unnecessary constructors had a controversial e�ect on maintainability. Another
observation was that it was sometimes counter productive to just blindly apply the au-
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tomatic refactorings without taking a closer look at the proposed code modi�cation.
It happened several times that the automatic refactoring tool asked for user input to
be able to select the best refactoring option, but developers used the default settings
because this was easier. Some of these refactorings then introduced new coding issues,
or failed to e�ectively remove the original issue. So human factor is still important,
but the companies were able to achieve a measurable increase in maintainability just
by applying automatic refactorings.

Last but not least, this study shed light on some important aspects of measuring
software maintainability. Some of the unexpected e�ects of refactorings (like the detri-
mental e�ect of removing unnecessary constructors on maintainability) are caused by
the special features of the applied maintainability model.

The fact that developers tested the tool on their own products provided a real-world
test environment. Thanks to this context, the implementation of the toolset was driven
by real, industrial motivation and all the features and refactoring algorithms were
designed to ful�ll the requirements of the participating companies. We implemented
refactoring algorithms for 40 di�erent coding issues, mostly for common programming
�aws. By the end of the project the companies refactored their systems with over 5
million lines of code in total and �xed over 11,000 coding issues. FaultBuster gave
a complex and complete solution that allowed them to improve the quality of their
products and to incorporate continuous refactoring into their development processes.
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�We cannot solve our problems with the same

thinking we used when we created them.�

� Albert Einstein

5
Applications of Model-Queries in

Anti-Pattern Detection

In the detection of coding anti-patterns, the starting point of the refactoring process
is to provide developers with problematic points in the source code. Developers then
decide how to handle the issues they found. During the Refactoring Project, �rst
developers investigated the list of reported anti-patterns and manually addressed the
problems. Based on these experiences, the actual needs of partners were evaluated,
and a refactoring framework was implemented with support for anti-pattern detection
and guided automated refactoring with IDE integration.

In FaultBuster we used a third-party coding rule violation detection tool called
PMD (see Section 4.1.2). PMD is a widely used, open-source static analyzer tool in
the Java community. It has been integrated into SonarQube [109] and has its own
Eclipse plugin. At the time of the development this seemed like a good solution with
many bene�ts. Then, it quickly became clear that achieving our goals using PMD has
some drawbacks. First, as we mentioned in Section 4.1.3, we had to implement the
Reverse AST-search Algorithm to �nd the problematic source code elements in the
AST. Second, on several occasions PMD did not provide precise problem highlights,
as in Listing 4.5. Third, the reports of developers indicated (see Section 4.3.3) that in
many cases the suggested coding issues are not real problems (false positives) and that
there are several instances where it lacks the power to identify real ones (true negatives).

In this chapter, we focus on the detection of coding anti-patterns. In order to
create a superior detection tool, we will investigate the costs and bene�ts of using the
popular industrial Eclipse Modeling Framework (EMF) as an underlying representation
of program models processed by four di�erent general-purpose model query techniques
based on native Java code, OCL evaluation and (incremental) graph pattern matching.
We will provide an in-depth comparison of these techniques on the source code of 28
Java projects using anti-pattern queries taken from refactoring operations in di�erent
usage pro�les. Our results reveal that general purpose model queries can outperform
hand-coded queries by 2-3 orders of magnitude, with the trade-o� of an increase in
memory consumption and model load time of up to an order of magnitude.
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5.1 Motivation

In the Refactoring Project, the original plan was to use the Columbus ASG of SourceMe-
ter as the program representation together with its API to implement queries, since
the API o�ers program modi�cation functionality for implementing refactorings as well.
However, queries for �nding anti-patterns and the actual modi�cations can be sepa-
rated. Our work builds on this separation to investigate the performance of various
query solutions. Our aim was to include generic, model-based solutions in the com-
parison. Generic solutions o�er �exibility and additional features like change noti�ca-
tion support in the EMF and reusable tools and algorithms, like supporting high-level
declarative query de�nitions [110, 111]. Such features could reduce the e�ort needed
to de�ne refactorings as well.

In the following, we investigate two viable options for developing queries for refac-
torings: (1) execute queries and transformations by developing Java code working
directly on the ASG; and (2) create the EMF representation of the ASG and use
EMF models with generic model-based tools. Several years ago, we found that typical
modeling tools were able to handle only middle-sized program graphs [112]. We now
re-exam this question and assess whether model-based generic solutions have evolved
to compete with hand-coded Java-based solutions. We seek answers to questions like:
What are the main factors that a�ect the performance of anti-pattern detection (like
the representation of program models, their handling and traversing)? What size of
programs can be handled (in terms of memory and runtime) with various solutions?
Does incremental query execution lead to a better performance?

We should add that while we present our study on program queries in a refactoring
context, our results can be applied in other areas as well. For instance, program queries
are applied in several scenarios in maintenance and evolution from design pattern
detection to impact analysis; furthermore, we think that real-life case studies are �rst-
class drivers of improvement of model-driven tools and approaches.

5.2 Technological Overview

In this section, we �rst give a brief overview on program queries. First, we will show
how to represent Java programs as an ASG or EMF model, then present the graph
pattern formalism and use it to capture various anti-patterns.

5.2.1 Introduction to Program Queries

Program queries play a central role in various software maintenance and evolution tasks.
Refactoring, an example of such tasks, seeks to change the source code of a program
without altering its behavior in order to improve its readability, maintainability, or to
detect and eliminate coding anti-patterns. After identifying the location of the problem
in the source code, the refactoring algorithm applies prede�ned operations to �x the
issue. In practice, the identi�cation step is frequently de�ned by program queries, while
the manipulation step is captured by program transformations.

Advanced refactoring and reverse engineering tools (like the Columbus framework [25])
�rst construct an Abstract Semantic Graph (ASG) as a model from the source code of
the program, which enhances the traditional Abstract Syntax Tree with semantic edges
for method calls, inheritance, type resolution, etc. In order to handle large programs,
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the ASG is typically stored in a highly optimized in-memory representation. Moreover,
program queries are captured as hand-coded programs traversing the ASG driven by a
visitor pattern, which may require a lot of development and maintenance e�ort.

Models used in model-driven engineering (MDE) are uniformly stored and manip-
ulated in accordance with a metamodeling framework, such as the Eclipse Modeling
Framework (EMF), which o�ers advanced tooling features. Essentially, EMF automat-
ically generates a Java API, model manipulation code, noti�cations for model changes,
persistence layer in XMI, and simple editors and viewers (and many more) from a do-
main metamodel, which can signi�cantly speed up the development of EMF-compliant
domain-speci�c tools.

EMF models are frequently post-processed by advanced model query techniques
based on graph pattern matching that exploits di�erent strategies such as local search
[113] and incremental evaluation [114]. Some of these approaches can be scaled up for
large models with millions of elements in forward engineering scenarios, but up to now,
no systematic investigation has been carried out to demonstrate if they can be e�ciently
applied as a program query technology. If this is the case, then advanced tooling o�ered
by the EMF could be readily used by refactoring and program comprehension tools
without drawbacks.

5.2.2 Managing Models of Java Programs

I Abstract Semantic Graph for Java

The Java analyzer of the Columbus reverse engineering framework is found in SourceMe-
ter and it is used to get program models from the source code (similarly as for the C++
language [25, 115]). The ASG contains all information that is in a typical AST ex-
tended with semantic edges (e.g., call edges, type resolution, overrides). It is designed
primarily for reverse engineering purposes [116, 117] and it conforms to our Java meta-
model.

In order to keep the models of large programs in memory, the ASG implementation
is heavily optimized for low memory consumption, e.g., handling all model elements
and String values in a central store to avoid storing duplicate values. However, these
optimizations are hidden behind an API interface.

In order to assist the processing aspect of the model (e.g., executing a program
query), the ASG API supports visitor-based traversal [118]. These visitors can be
used to process each element on-the-�y during traversal, without manually coding the
(usually preorder) traversal algorithm.

Example 1 To illustrate the use of the ASG, we present a short Java code snippet
and its model representation in Figure 5.1. The code consists of a public method called
equals with a single parameter, together with a call of this method using a Java variable
srcVar. The corresponding ASG representation is depicted in Figure 5.1b, omitting type
information and boolean attribute values such as the �nal �ags for readability.

The method is represented by a NormalMethod node that has the name equals and
public accessibility attribute. The method parameter is represented by a Parameter

node with the name attribute other, and it is connected with the method using a
parameter reference.

The call of this method is represented by a MethodInvocation node that is connected
to the method node by an invokes reference. The variable the method is executed
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public boolean equals(Object other) {...}

...

// Code inside another method

// The variable 'srcVar ' is defined locally

srcVar.equals("source");

...

(a) Java Code Snippet

NormalMethod,
name:&“equals”&
accessibility:&public&

StringLiteral,
value:&“source”&

Iden3fier,
name:&“srcVar”&

Method,
Invoca3on,

Parameter,
name:&“other”&

parameter&

invokes&

operand& argument&

(b) ASG Representation

Figure 5.1. ASG Representation of Java Code

on is represented by an Identifier node via an operand reference. Lastly, an argument

reference connects a StringLiteral node describing the "source" value.

II Java Application Models in EMF

Metamodeling in the EMF Metamodeling is a fundamental part of modeling lan-
guage design as it allows the structural de�nition (e.g., abstract syntax) of modeling
languages. The EMF provides a Java-based representation of models with various fea-
tures, such as noti�cation, persistence, and generic, re�ective model handling. These
common persistence and re�ective model handling capabilities enable the development
of generic (search) algorithms that can be executed on any given EMF-based instance
model, regardless of its metamodel.

The model handling code is generated from a metamodel de�ned in the Ecore meta-
modeling language together with higher level features such as editors. The generator
work-�ow is highly customizable, e.g., allowing the de�nition of additional methods.

The main elements of the Ecore metamodeling language are the following: EClass

elements de�ne the types of objects; EAttribute extend EClasses with attribute values
while EReference objects present directed relations between EClasses.

Example 2 As an illustration, we present a small subset of the Java ASG metamodel
realized in the Ecore language in Figure 5.2 that focuses on method invocations depicted
in Figure 5.1. The metamodel was designed to provide an equivalent representation
of the ASG of the Columbus framework in the EMF, both at the model level and the
generated Java API. The entire metamodel consists of 142 EClasses with 46 EAttributes
and 102 EReferences.

The NormalMethod and Parameter EClasses are both elements of the metamodel that
can be referenced from Java code by name. This is represented by generalization rela-
tions (either direct or indirect) between them and the NamedDeclaration EClass. This
way, both inherit all the EAttributes of the NamedDeclaration, such as the name and the
accessibility controlling the visibility of the declaration.
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Figure 5.2. A Subset of the Ecore Model of the Java ASG

Similarly, the EClasses MethodInvocation, Identifier and StringLiteral are part of
the Expression elements of Java. Instead of attribute de�nitions, the MethodInvocation

is linked to other EClasses using three EReferences: (1) the EReference invokes points
to the referred MethodDeclaration; (2) the argument selects a list of expressions to be
used as the arguments of the called methods, and (3) the inherited operand EReference
selects an expression representing the object the method is called on.

Notes on Columbus Compatibility The Java implementation of the Java ASG
of the Columbus Framework and the generated code from the EMF metamodel use
similar interfaces. This makes it possible to create a combined implementation that
supports the advanced features of the EMF, such as the change noti�cation support
or re�ective model access, and it remains compatible with the existing analysis algo-
rithms of the Columbus Framework by generating an EMF implementation from the
Java interface speci�cation.

However, there are also some key di�erences between the two interfaces that should
be addressed. The most important di�erence lies in multi-valued reference semantics,
where the EMF disallows having two model elements connected multiple times using the
same reference type, while the Columbus ASG occasionally relies on such features. To
maintain compatibility, the EMF implementation is extended with proxy objects, which
ensure the uniqueness of references. The implementation hides the presence of these
proxies from the ASG interface while the EMF-based tools can navigate through them.

Other minor changes range from di�erent method naming conventions for boolean
attributes to de�ning additional methods to traverse multi-valued references. All of
them are handled by generating the standard EMF implementation together with the
Columbus compatibility methods.

5.2.3 De�nition of Model Queries using Graph Patterns

Graph patterns [110] are a declarative, graph-like formalism representing a condition (or
constraint) to be matched against instance model graphs. This formalism is usable for
various purposes in model-driven development, such as de�ning model transformation
rules and de�ning general purpose model queries including model validation constraints.
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Figure 5.3. Graph Pattern Representation of the Search Queries

Here, we give only a brief overview of the concepts, and for more detailed, formal
de�nitions see [119].

A graph pattern consists of structural constraints prescribing the interconnection
between the nodes and edges of a given type and expressions to de�ne attribute con-
straints . These constraints can be illustrated by a graph where the nodes are classes
from the metamodel, while the edges prescribe the required connections of the selected
types between them.

Pattern parameters are a subset of nodes and attributes interfacing the model el-
ements interesting from the perspective of the pattern user. A match of a pattern is
a tuple of pattern parameters that ful�lls all the following conditions: (1) it has the
same structure as the pattern; (2) it satis�es all structural and attribute constraints;
and (3) it does not satisfy any NAC.

Complex patterns may reuse other patterns by applying di�erent types of pattern
composition constraints . A (positive) pattern call identi�es a subpattern (or called pat-
tern) that is used as an additional set of constraints to meet, while negative application
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conditions (NAC) describes the cases where the original pattern is not valid. Next,
match set counting constraints are used to calculate the number of matches a called
pattern has, and use them as a variable in attribute constraints. Pattern composition
constraints can be illustrated as a subgraph of the graph pattern.

When evaluating the results of a graph pattern, any subset of the parameters can
be bound to model elements or attribute values that the pattern matcher will handle
as additional constraints. This allows reuse of the same pattern in di�erent scenarios,
such as checking whether a set of model elements ful�lls a pattern, and it lists all
matches of the model.

Example 3 Figure 5.3 captures all the search problems from section 5.3 as graph pat-
terns. Here, we will only discuss the String Literal as Compare Parameter problem
( 5.3d) in detail, and all other patterns can be interpreted in a similar way.

The pattern consists of �ve nodes called inv, m, op and arg, representing the model el-
ements of the types MethodInvocation, NormalMethod, Literal, Expression and StringLiteral,
respectively. The distinguishing (blue) formatting for the node inv means that it is the
parameter of the pattern.

In addition to the type constraints, node m shall also ful�ll an attribute constraint
(�equals�) on its name attribute. The edges between the nodes inv and m (and for arg)
represent a typed reference between the corresponding model elements. However, as
the node op is included in a NAC block (depicted by a dotted red box), the edge operand

means that either no operand should be given or the operand must not point to a Literal

typed node.
Finally, to ensure that the invoked method has only a single parameter, the number

of arguments are counted. The highlighted part of the pattern formulates a subpattern
consisting of the arguments of the MethodInvocation, and the number of these subpattern
matches is checked to be 1. This kind of checking could also be expressed using a NAC
block describing a di�erent parameter, but the use of match counting is easier to read.

After matching this pattern to the model from Figure 5.1, the result will be a set
containing a single element, namely the MethodInvocation instance.

5.3 Experiment Setup

In the �rst round of experiments we selected six types of anti-patterns based on the
feedback of project partners and formalized them as model queries. The diversity of
the problems was among the most important selection criteria, resulting in queries
that varied both in complexity and programming language context ranging from sim-
ple traverse-and-check queries to complex navigation queries potentially with negative
conditions. Here, we brie�y and informally describe these refactoring problems and
the related queries used in our case study.

Switch without Default Missing default case has to be added to the switch. Related
query: We traverse the whole graph to �nd Switch nodes without a default case.

Catch Problem In a catch block there is an instanceof check, for the type of the
catch parameter. Instead of the instanceof check a new catch block has to be added
for the checked type and the body of the conditional has to be moved there. Related
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query: We search for identi�ers on the left hand side of the instanceOf operator and
check whether they point to the parameters of the containing catch block.

Concatenation to Empty String When a new String is created starting with
a number, usually an empty String is added from the left of the number to force
the int to String conversion, because there is no int + String operator in Java. A
much better solution is to convert the number using the String.valueOf() method �rst.
Related query: We search for empty string literals, and check the type of the containing
expression. If the container expression is an in�x expression, then we also make sure
that the string is located at the left hand side of the expression and the kind of the
in�x operator is the String concatenation (�+�).

String Literal as Compare Parameter When a String variable is compared with
a String literal using the equals() method, it is unsafe to have the variable on the left
hand side. Changing the order makes the code safe (by avoiding null pointer exception)
even if the String variable to be compared is null. Related query: We search for all
method invocations with the name "equals". Afterwards, we check that their single
parameter is a string literal.

String Compare without Equals Method This refactoring was mentioned earlier.
Related query: We search for the == operator and check whether the left hand side
operand is of type java.lang.String. We have to check the right hand side operand as
well: in case of null we cannot use the method call. In fact, it is not necessary because
in this case the comparison operator is the right choice.

Unused Parameter When unused parameters remain in the parameter list they
usually can be removed from the source code itself. Related query: We search for
the places in the method body where parameters are used. However, there are speci�c
cases when removing a parameter that is not used in the method body results in errors,
such as (1) when the method has no body (interface or abstract method); (2) when the
method is overridden by or overrides other methods; and (3) in public static void main

methods.

After the �rst round of our experiments described in [120], it turned out that all
antipatterns could be e�ectively evaluated by our selection of tools. In order to �nd
the limits of the approaches, we selected two additional, more complex antipatterns
that required additional capabilities.

Avoid Rethrowing Exception The catch block is unnecessary if the exception
handling code only re-throws the caught exception without further actions. We look
for a thrown exception in the catch block and check whether the thrown exception is the
same (or descendant) as the caught one. However, simply rethrowing the exception is
valid, if a speci�c exception is to be handled externally, while a more generic exception
handler block is responsible for managing a superclass of the caught exception. This
antipattern requires a transitive closure calculation for the inheritance hierarchy as a
new feature.
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Cyclomatic Complexity Cyclomatic complexity measures the number of linearly
independent paths through a program's source code, usually calculated for a function
as the number of decision points +1. A highly complex code (e.g. assessed using the
cyclomatic complexity metric) tends to be di�cult to test and maintain and it tends
to have more defects. The pattern requires counting various types of program elements
within a method body. This calculation relies on counting model elements together
with simple arithmetic operations and extensive traversal around the containment hi-
erarchy. To have the same validation format, we shall list the methods with cyclomatic
complexity higher than 10.

5.4 Program Queries Approaches

Now, we give a brief overview of the possible approaches for implementing anti-pattern
detection as program queries. First, a visitor-based search approach is described, fol-
lowed by two di�erent graph-pattern based approaches (both supported by the EMF-
IncQuery), and then we will use the OCL language to describe the query problems.

5.4.1 Manual Search Code

The ASG representation allows one to traverse the Java program models using the
visitor [118] design pattern that can form the basis of the search operations.

Visitor-based searches are easy to implement and maintain if the traversed rela-
tions are based on containment references, and require no custom setup before exe-
cution. However, as the order of the traversal is determined outside the visitor, non-
containment references are required to be traversed manually, typically with nested
loops. Alternatively, traversed model elements and references can be indexed, and in
a post-processing step these indexes can be evaluated for e�cient query execution. In
both cases, signi�cant programming e�ort is needed to achieve e�cient execution.

Example 4 The results of the String Literal as Compare Parameter ( 5.3d) pattern
can be calculated by collecting all MethodInvocation instances from the model, and then
executing three local checks whether the invoked method is called equals, if it has an
argument with a type of StringLiteral, and if it is not invoked on a Literal operand.

Figure 5.4 presents (a simpli�ed) Java implementation of the visitor. A single visit

method is used as a start for traversing all MethodInvocation instances from the model,
and checking the attributes and references of the invocation. It is possible to delegate
the checks to di�erent visit methods, but then the visitor has to track and combine the
status of the distributed checks to present the results that are di�cult to implement
in a sound and e�cient way.

The ASG does not initially contain reverse edges in the model. It provides an API
to generate these extra edges in a second pass after loading the model, but this requires
extra time and memory. As the subject queries in this study could be implemented
without these extra resources, to keep the memory footprint low, we prefer not to
generate them.
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� �
public class CompareParameterVisitor extends Visitor {

//A set to store results

private Set <MethodInvocation > invocations

= new HashSet <MethodInvocation >();

@Override

public void visit(MethodInvocation node) {

super.visit(node);

// Checking invoked method name and number of parameters

if ("equals".equals(node.getInvokes (). getName ())

&& node.getArgument (). size() == 1) {

//Node argument

Expression argument = node.getArgument (0);

//Node operand

Expression operand = node.getOperand ();

//Type checking for argument

if (argument instanceof StringLiteral

//NAC checking for operand

&& !( operand instanceof Literal )) {

// Result found

invocations.add(node);

}

}

}

}� �
Figure 5.4. Visitor for the String Literal as Compare Parameter Problem

5.4.2 Graph Pattern Matching with Local Search Algorithms

Local search based pattern matching (LS) is commonly used in graph transformation
tools [121�123], which commences the match process from a single node and extends
it in a step-by-step fashion with the neighboring nodes and edges following a search
plan. From a single pattern speci�cation multiple search plans can be calculated [113],
hence the pattern matching process starts with a plan selection based on the input
parameter binding and model-speci�c metrics.

A search plan consists of a totally ordered list of extend and check operations.
An extend operation binds a new element in the calculated match (e.g., by matching
the target node along an edge), while check operations are used to validate the con-
straints between the already bounded pattern elements (e.g., attribute constraints or
whether an edge runs between two matched nodes). If an operation fails, the algorithm
backtracks; and if all operations are executed successfully, a match is found.

Some extend operations, such as �nding the possible source nodes of an edge and
iterating over all elements of a certain type might be very expensive to execute during
a search, but this cost can be reduced by the use of an incremental model indexer,
such as the EMF-IncQuery Base1. This kind of indexer can be set up while loading
the model, and then updating it on model changes using the noti�cation mechanism
of the EMF. If no such indexing mechanism is available (e.g., because of its memory
overhead), the search planner algorithm should consider these operations with higher
costs, and provide alternative plans.

Example 5 To �nd all String Literals appearing as parameters of equals methods,
a 7-step search plan given in Table 5.1 was used. First, all NormalMethod instances

1https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/API/BaseIndexer
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Table 5.1. Search Plan for the String Literal Compare Pattern

Operation Type Notes

1: Find all m that m ⊂ NormalMethod Extend Iterate
2: Attribute test: m.name=="equals" Check
3: Find inv that inv.invokes → m Extend Backward
4: Count of inv.argument → arg is 1 Check Called Plan
5: Find arg that inv.argument → arg Extend Forward
6: Instance test: arg ⊂ StringLiteral Check
7: Find op that inv.operand → op Extend Forward
8: NAC analysis: op 6⊂ Literal Check Called plan

NormalMethod,
name:&“equals”&
accessibility:&public&

StringLiteral,
value:&“source”&

Iden3fier,
name:&“srcVar”&

Method,
Invoca3on,

Parameter,
name:&“other”&

parameter&

invokes&

operand& argument&

1&

2
3&

5&

6&

7&

8&

4&

Figure 5.5. Executing the Search Plan

are iterated over to check for their name. Then a backward navigation operation is
executed to �nd all the corresponding method invocations to check its argument and
operand references. In the last step, a NAC check is executed by starting a new plan
execution for the negative subplan, but this time only looking for a single solution.

Figure 5.5 shows the execution of the search plan on the simple instance model
introduced previously. In the �rst step, the NormalMethod is selected, then its name at-
tribute is validated, followed by the search for the MethodInvocation. At this point,
following the argument reference ensured that only a single element was available, then
the StringLiteral was found and checked. Lastly, the operand reference is followed, and
a NAC check is executed using a di�erent search plan.

It should be mentioned here that the search begins with listing all NormalMethod ele-
ments as opposed to the visitor-based implementation, which starts with the MethodInvocations.
This was motivated by the observation that in a typical Java program there are more
method invocations than method de�nitions, so starting this way would likely result in
fewer traversed search states, while still �nding the same results in the end. However,
this optimization relies on having an index which allows cheap backward navigation dur-
ing pattern matching for step 3 (unlike the ASG based solution where this information
is not available without an extra traversal).

5.4.3 Incremental Graph Pattern Matching using the Rete al-
gorithm

Incremental pattern matching [114, 124] is an alternative pattern matching approach
that explicitly caches matches. This makes the results available at any time without an
additional search, but the cache needs to be incrementally updated whenever changes
are made to the model.

The Rete algorithm [125], which is well-known in rule-based systems, was e�ciently
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adapted to several incremental pattern matchers [126�128]. The algorithm uses an
extended incremental caching approach that not only indexes the basic model elements,
but it also indexes partial matches of a graph pattern that enumerates the model
element tuples that satisfy a subset of the graph pattern constraints. These caches are
organized in the graph structure called a Rete network, which can be incrementally
updated during model changes.

The input nodes of Rete networks represent the index of the underlying model
elements. The intermediate nodes execute basic operations like �ltering, projection,
and join, on other Rete nodes (either input or intermediate) they are connected to,
and store the results. Afterwards, the match set of the entire pattern is available as an
output (or production) node.

When the network is initialized, the initial match set is calculated and the input
nodes are set up to react to the model changes. When receiving a change noti�cation,
an update token is released on each of their outgoing edges. Upon receiving such a
token, a Rete node determines how (or whether) the set of stored tuples will change,
and releases update tokens on its outgoing edges. This way, the e�ects of an update
will propagate through the network, eventually in�uencing the result set stored in the
production nodes.

Example 6 To illustrate a Rete-based incremental pattern matching, we �rst depict
the Rete network of the String Literal as Compare Parameter pattern in Figure 5.6.

Method'
Invoca-on'

Normal'
Method'

String'
Literal' Expression' Literal'

join'
invokes(

join'
argument(

join'
operand(

NAC(filter'
name(

join'

equals,(inv,(source,(srcVar(

equals,((inv( inv,(source(

equals,((inv(

inv,(srcVar(

inv,(srcVar(

Count'=='1(

inv,(source(

Figure 5.6. Rete Network for the String Literal Compare Pattern

The network consists of �ve input nodes that store the instances of the types NormalMethod,
MethodInvocation, StringLiteral, Expression and Literal, respectively. The input nodes
are coupled by join nodes that calculate the list of elements connected by invokes,
argument and operand references, respectively. As both ends have already been enu-
merated in the parent nodes, both forward and backward references can be calculated
e�ciently. The invoked method list (output of the invokes join node) is �ltered by the
name attribute of Methods, while the argument lists are filtered for one per call. The
NAC checking is executed by removing the elements with Literal types from the result
of the operand join. Then, all partial matches are joined together to form the resulting
matches.
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� �
context MethodInvocation:

def: stringLiteralAsCompareParameter : Boolean =

self.invokes.name = 'equals '

and self.arguments -> exists(oclIsKindOf(StringLiteral ))

and self.arguments -> size() = 1

and not self.operand.oclIsKindOf(Literal)� �
Figure 5.7. The OCL Expression of the String Literal as Compare Parameter Problem

It should be stressed that the Rete node, such as the MethodInvocation in the example,
can be used in multiple join operations; in such cases the �nal join is responsible for
�ltering out the unwanted duplicates (for a selected variable).

5.4.4 Model Queries with OCL

OCL [111] is a standardized, pure functional model validation and query language
for de�ning expressions in the context of a metamodel. The language itself is very
expressive, exceeding the expressive power of �rst order logic by o�ering constructs
such as collection aggregation operations (sum(), etc.). The rest of the section gives a
basic overview of OCL expressions, and for a more detailed description of the possible
elements consult the speci�cation [111].

Variables of an OCL expression refer to instance model elements and a set of basic
types including strings, various number formats and di�erent kinds of collections. For
these types, built-in operations are de�ned such as comparison operators and member-
ship testing.

Furthermore, OCL expressions are compositional, allowing one to de�ne sub-expressions
in more complex expressions, including the let expression for de�ning additional vari-
ables, the if expression for implementing conditions and iterator expressions that eval-
uate subexpressions on all members of a collection.

Each OCL expression is valid in a context , described as a metamodel type. The OCL
standard allows the de�nition of multiple context variables, but OCL implementations
often just support a single one.

Example 7 To illustrate the capabilities of OCL, Figure 5.7 formulates the String
Literal as Compare Parameter problem as an OCL query. This query can be evaluated
starting from a MethodInvocation context variable, which is referred to throughout the
query as self.

The query is described as the conjunction of 4 di�erent sub-expressions:

1. It is checked whether the target of the invocation has a name attribute with the
value of 'equals'. The type of the invoked call is not checked, as based on the
metamodel it is known to be correct.

2. It is checked whether the list of arguments contains an element that has the type of
(StringLiteral). The exists operation is one of the iterator operations that detects
whether any member of the collection satis�es the condition.

3. It is checked whether the size of the arguments collection is exactly 1.

4. Lastly, the operand type is checked not to be Literal.
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OCL expressions can be evaluated as a search of the model, where the corresponding
search plan is encoded in the expression itself. This makes the manual optimizations
of the queries possible, but it requires a detailed understanding of the instance, meta-
models, and the underlying OCL engine.

5.5 Measurement Context

To provide a context for our performance evaluation, next we will describe the exe-
cuted measurements of this experiment. This includes a detailed evaluation of all our
instance models and queries using di�erent complexity metrics and the description of
our measurement process. The selection of metrics was motivated by earlier results
of [129] where the values of di�erent metrics are compared with the execution time of
di�erent queries.

The use of metrics helps us to identify which queries/models are more di�cult for
the selected tools. And it also allows us to compare both the models and the queries
with other available performance benchmarks.

5.5.1 Java Projects

The approaches were evaluated on a test set of 28 open-source projects. The projects
are sized between 1kLOC and 2MLOC, and used in various scenarios. The list of
projects include the ArgoUML editor, the Apache CloudStack infrastructure manager
tool, the Eclipse Platform, the Google Web Toolkit (GWT) library, the Tomcat Java
application server, the SVNKit Subversion client, the online homework system WeB-
WorK, and the Weka data mining software, and many others. Table 5.2 contains the
full list of projects and their analyzed versions (and projects where snapshots were used
are marked in the table).

To compare these models, Table 5.2 shows di�erent metrics that characterize them,
including their size in terms of lines of code and in terms of number of nodes, edges
and attributes of the graph representation, the number of metamodel types used and
the indegree and outdegree of the graph nodes. The graph structure of all models are
similar: they use about 90�100 of the types speci�ed in the metamodel, and the average
indegree and outdegree is 3. The big numbers in the maximum indegree column are
related to the representation of the Java type system: a few types, such as String or
int are referred to many times throughout the code.

In the remainder of the section, only the results related to the programs larger than
100kLOC are presented, as they still represent a wide range of Java applications, and
in the case of smaller models the speci�c di�erences between the tools are much smaller
(but similar to those presented here)2.

5.5.2 Query Complexity

The antipatterns used di�erent approaches in the various tools, resulting in di�erent
query complexity in each case. To compare them, Table 5.3 describes the complexity of
queries implemented in the various tools. We have selected lists complexity measures for

2For a detailed test result containing all the models and raw measurement data visit our website:
http://incquery.net/publications/extended-program-query-comparison
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Table 5.2. Model Metrics

Version LOC
Node-
Count

Edge---
Count

Attribute-
Count

Type-
Count

ArgoUML 0.35.1&(*) 174&516 1&002&129 2&973&258 6&895&018 100 3 72&230 3 445
CloudStack 4.1.0 1&369&952 5&390&662 16&478&218 36&650&136 100 3,1 631&140 3,1 1&198
Eclipse 3.0.0 2&294&146 8&403&914 26&254&507 58&219&100 97 3,1 1&245&390 3,1 1&958
Frinika 0.5.1 64&828 429&407 1&292&961 3&065&383 99 3 54&286 3 844
GWT 2.3.0 1&078&630 3&219&239 9&986&705 22&364&819 101 3,1 392&098 3,1 1&206
Hibernate 3.5.0 773&166 2&444&419 7&563&207 16&789&330 102 3,1 193&769 3,1 522
Jackrabbit 2.8 590&420 1&765&882 5&341&431 12&145&662 100 3 271&217 3 708
Java-DjVu 0.8.06 23&570 129&068 372&444 926&653 92 2,9 26&918 2,9 1&026
javax.usb 1.0.1& 1&161 12&231 32&388 89&399 83 2,6 969 2,6 148
JFreechart 1.2.0 327&865 865&148 2&663&967 6&022&410 93 3,1 50&658 3,1 445
JML 1.0b3 10&159 72&598 212&544 520&599 94 2,9 4&908 2,9 221
JTransforms 2.4 38&400 295&009 945&643 2&053&900 80 3,2 117&775 3,2 217
Makumba 0.8.1.9 65&065 378&204 1&127&797 2&637&424 98 3 62&717 3 445
OpenEJB 4.5.2 575&363 1&785&660 5&428&385 12&377&185 101 3 152&624 3 540
Physhun 0.5.1 4&935 36&962 108&888 263&091 86 2,9 2&944 2,9 148
ProteinShader 0.9.0 22&651 137&416 391&322 997&679 88 2,8 9&654 2,8 445
Qwicap-Guess 1.4b24 443 7&903 21&222 59&069 85 2,7 918 2,7 107
Robocode 1.5.4 28&245 204&362 599&556 1&500&298 97 2,9 17&323 2,9 445
sdedit 3.0.5 14&717 145&453 413&998 1&075&471 97 2,8 12&643 2,8 445
Stendhal 0.75.1 105&411 667&142 2&037&645 4&688&300 98 3,1 49&556 3,1 445
Struts2 1.4.0 274&092 927&163 2&849&021 6&452&090 100 3,1 95&272 3,1 620
Superversion 2.0b8 29&282 238&842 705&875 1&731&692 94 3,0 2&041 3,0 445
SVNKit 1.3.0.5847 114&189 698&753 2&203&436 4&843&209 93 3,2 57&987 3,2 272
Tomcat 8.0.0&(*) 459&579 1&338&601 4&084&668 9&302&681 102 3,1 116&637 3,1 620
WebWork 2.2.7 46&208 285&372 853&724 2&018&672 95 3 36&439 3 445
Weka 3.7.10&(*) 205&537 1&615&637 4&989&653 11&259&543 99 3,1 216&651 3,1 550
Xalan 2.7 349&681 708&445 2&093&338 4&937&831 93 3 87&447 3 445
Xins 2.2a2 21&698 164&989 472&003 1&193&822 89 2,9 15&169 2,9 445

Avg/Max-
InDegree

Avg/Max-
OutDegree

Table 5.3. Query Complexity Metrics

OCL
LOC CC Param. Variables Edges Attr. Calls NEG MC

catch 78 14 4 6 3 0 1 0 9
concatenate 32 8 6 8 3 1 3 0 4
constant;compare 39 10 6 11 5 0 2 2 7
no;default;switch 53 11 2 3 1 0 0 1 2
string;compare 56 15 10 17 10 1 7 2 15
unused;parameter 88 21 11 19 8 0 6 1 21
avoid;rethrow 210 54 11 24 12 0 2 1 23
cyclomatic;complexity 114 22 23 40 5 2 9 7 34

QueryVisitor
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the di�erent formalisms to understand how query complexity varies with the di�erent
approaches.

In the case of visitors, we calculate the lines of Java code required together with
its cyclomatic complexity. The six original queries were written in less than 100 lines
of code and had a cyclomatic complexity of 10�20. The two new queries were more
complex both in terms of lines of code and cyclomatic complexity.

For graph patterns, we rely on metrics de�ned in [129]: the number of query vari-
ables and parameters , the number of edge and attribute constraints, the number of sub-
pattern calls and the combined number of negative pattern calls and match counters
NEG . It should be added that the metrics were not calculated from the graphical no-
tation of Figure 5.3, but their implementation in the EMF-IncQuery, where di�erent
subpatterns were created to facilitate reuse both at the design level and during run-
time. A subpattern call introduces new variables for the parameters of the subpattern
that are the same as some parameters at their call site; this might lead to an increased
number of variables compared to the number of edge and attribute constraints.

To measure the complexity of OCL queries, we used a minimum complexity (MC)
metric presented in [130] that is based on calculating or estimating the number of
model elements visited during the execution of its search, where multiple visits of the
same element accounts as di�erent ones. However, the metric de�nition relies on the
model structures; and in order to have a model-independent metric, estimates need to
be provided for the models.

Here, we calculate a lower bound of this metric by underestimating the number of
visited model elements while mentioning that each OCL expression or operation will be
evaluated with at most one model element that is related to the number of conditions
to be evaluated. This way, it is possible to get a lower bound of the complexity for
instance models that have at least one single result for the query.

The complexity of the queries over the di�erent approaches behave in a similar way
in almost every case except for the following three: (i) the no default switch case uses the
simplest pattern and an OCL query, while in the case of visitors, (ii) the concatenation
case uses the simplest visitor. (iii) Conversely, the calculation of cyclomatic complexity
is clearly the most complex query in the graph patterns formalism and OCL, while its
visitor is much simpler than the avoid rethrow . We think that this di�erence is based
on the fact that the calculation of cyclomatic complexity needs only the traversal of
the containment hierarchy that visitors excel in.

5.5.3 Measurement process

All the measurements were executed on a dedicated Linux-based server with 32 GB
RAM running Java 7. On the server, the Java ASG of the Columbus Framework was
installed along with the EMF-IncQuery (supporting graph pattern matching using
both the local search and the Rete-based incremental approaches) and the Eclipse
OCL [131] tool.

All the program queries were implemented as both visitors for the ASG (by a
Columbus expert from the University of Szeged) and as graph patterns (by a model
query expert from the Budapest University of Technology and Economics) - who was
a di�erent reviewer from the original implementer of the query. In the case of OCL
expressions, we relied on our previous experience in comparing model query tools [129],
where OCL experts were asked to verify the created queries. Visitors were executed on
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both model representations, while the graph patterns (both for local search-based and
incremental queries) and the OCL queries were evaluated on the EMF representation.
In order to also be able to understand use cases where multiple queries are executed
together, indexes were built for all queries. In every case, the time to load the model
from its serialized form and the time to execute the program query were measured
together with the maximum heap size usage.

The query implementations were manually veri�ed to return the same values for
all the tools in three ways. First, (1) the speci�cations created were reviewed to ful�ll
the original, textual speci�cations. Then, (2) in a selection of smaller programs all
instances were manually compared to return exactly the same issues. Lastly, (3) for
each model, the number of issues found was reported and compared.

Every program query was executed ten times, and the standard deviation of the
results was veri�ed. Afterwards, we averaged the time and memory results without
the smallest and the largest values. In order to minimize the interference between the
di�erent runs, for the execution of a model, tool and query a new JVM was created
and ran in isolation. Also, all the measurements were performed with a 10 minute
timeout: when loading the model, initializing and executing the query took more than
the timeout, the measurement was treated as a failed one. The time to start up and
shut down the JVM was not included in the measurement results.

5.6 Measurement Results

To compare the performance characteristics of the di�erent program query techniques,
next we will present the detailed performance measurement results.

5.6.1 Load Time and Memory Usage

Figure 5.4a shows the time required to load the models in seconds. As our measure-
ments suggested that the model load time was practically independent of the query
selection, we will only provide an aggregated result table. The only exception to this
rule is the cyclomatic complexity pattern with incremental pattern matching: here
we found that indexing the transitive closure of the containment hierarchy was pro-
hibitively expensive both in terms of load time and memory usage. For this reason,
we executed two sets of measurements: (1) one without initializing the cyclomatic
complexity pattern (INC), and (2) another that also included this pattern (INC-CC).

Figure 5.8 shows the detailed load time and memory usage measurements for the
Jackrabbit tool in box plots; and the diagrams for the other cases were similar. In
general, the diagrams reveal that the repeated measurements of the test cases in general
have very small di�erences, except in a few cases, and there are large di�erences when
comparing the results of di�erent techniques.

It can be seen that the load time is 3�4 times longer when using an EMF-based
implementation over the manual Java ASG, and further increases can be seen when
initializing the pattern matchers for local search and incremental queries. The two-
phase load algorithm for the EMF model (EMF case), and the time to set up the
indexes (local search) and partial matches (Rete) may account for these increases. As
OCL does not use any speci�c index, no additional load overhead over the EMF visitor
implementation was measured.
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Table 5.4. Measurement Results

(a) Load Time (in seconds)

CloudStack 27,5 ± 0,6 115 ± 3,2 115 ± 1,8 156 ± 3,0 343 ± 5,9
ArgoUML 6,7 ± 0,1 25 ± 0,6 25 ± 0,5 35 ± 0,6 52 ± 1,3 312 ± 53,3
Eclipse 41,7 ± 0,7 169 ± 2,3 171 ± 2,8 238 ± 3,2 470 ± 4,1
GWT 16,1 ± 0,1 80 ± 2,1 80 ± 0,5 102 ± 2,7 199 ± 2,3
Hibernate 13 ± 0,2 58 ± 1,7 57 ± 1,8 83 ± 1,9 146 ± 2
Jackrabbit 10,4 ± 0,2 39 ± 0,5 38 ± 0,6 55 ± 0,7 113 ± 2,3 796 ± 152
JFreeChart 5,6 ± 0,2 21 ± 0,4 21 ± 0,4 30 ± 0,5 44 ± 1,2 277 ± 7,0
OpenEJB 10,6 ± 0,2 44 ± 0,8 43 ± 0,7 60 ± 0,8 117 ± 3,1
Stendhal 4,4 ± 0,1 17 ± 0,5 17 ± 0,4 23 ± 0,4 36 ± 1,2 239 ± 11,7
SVNKit 4,4 ± 0,1 18 ± 0,3 18 ± 0,4 25 ± 0,5 39 ± 14 268 ± 7,7
Struts2 5,7 ± 0,1 23 ± 0,4 23 ± 0,4 32 ± 0,6 49 ± 1,1 292 ± 8,7
Tomcat 8,3 ± 0,2 33 ± 0,6 33 ± 0,6 43 ± 0,6 69 ± 1,7 484 ± 15,8
Weka 9,4 ± 0,2 38 ± 0,7 37 ± 0,3 52 ± 0,4 111 ± 2,4 526 ± 29,5
Xalan 4,8 ± 0,1 19 ± 0,3 19 ± 0,2 25 ± 0,3 38 ± 1,1 254 ± 9,4

ASG EMF OCL LS INCHCCINC

NA//

/NA//
/NA//
/NA//

/NA//

(b) Memory Usage (in MB)

CloudStack 2189 ± 0,47 3503 ± 1,39 3925 ± 38 4017 ± 2,7 10414 ± 58,88
ArgoUML 198 ± 0,81 404 ± 0,9 461 ± 2,3 549 ± 9,1 5068 ± 42,09 11974 ± 841
Eclipse 2453 ± 0,66 4054 ± 1,87 4641 ± 3,9 4745 ± 1848 17754 ± 753,93
GWT 2579 ± 0,12 1967 ± 2,49 2178 ± 2,9 3566 ± 1,3 5973 ± 32,93
Hibernate 2086 ± 0,14 2524 ± 1,73 2788 ± 2,4 2995 ± 37,5 4507 ± 2,54
Jackrabbit 309 ± 0,04 583 ± 4,62 651 ± 63 955 ± 9,8 3652 ± 59,45 22123 ± 1593
JFreeChart 160 ± 0,06 360 ± 2,18 429 ± 67 530 ± 82,6 4400 ± 0,34 10560 ± 273
OpenEJB 344 ± 0,26 656 ± 2,89 662 ± 82 946 ± 6,5 3889 ± 23
Stendhal 109 ± 0,06 229 ± 0,51 431 ± 36 460 ± 124,2 3383 ± 68,85 7783 ± 629
SVNKit 129 ± 0,48 252 ± 3,12 401 ± 2,6 409 ± 2,8 3717 ± 4819 9835 ± 556
Struts2 159 ± 0,03 359 ± 2,71 479 ± 2,6 521 ± 2,9 4893 ± 70,27 11636 ± 180
Tomcat 246 ± 0,04 547 ± 6,05 601 ± 7,6 788 ± 66,7 6637 ± 64,05 16929 ± 2169
Weka 290 ± 0,07 616 ± 6,08 615 ± 151 695 ± 10,6 3427 ± 1 20357 ± 1377
Xalan 146 ± 0,59 260 ± 2,85 441 ± 1,7 445 ± 9 3600 ± 0,52 8259 ± 535

ASG EMF OCL LS INCHCCINC

NA

NA
NA
NA

NA

(c) Query Execution Time (in seconds)
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ASG 5,3 7,6 6,0 5,5 5,3 5,9 5,4 6,0 16%
EMF 3,9 5,0 3,7 3,7 4,1 4,0 3,6 4,4 15%
OCL 6,2 90,7 6,8 9,0 6,6 7,1 7,4 ---NA 6%
LS 0,13 81,50 0,55 0,28 0,02 0,26 1,09 0,76 24%
INC 0,012 -----NA 0,010 0,024 0,012 0,013 0,013 0,020 18%
ASG 1,8 2,4 1,7 1,9 1,7 1,8 1,6 1,9 5%
EMF 1,3 1,5 1,3 1,3 1,2 1,3 1,1 1,3 9%
OCL 2,4 14,3 2,0 2,9 1,6 2,1 2,2 ---NA 11%
LS 0,05 6,94 0,16 0,09 0,01 0,06 0,17 0,26 13%
INC 0,012 0,011 0,010 0,013 0,012 0,012 0,012 0,012 13%
ASG 8,0 11,3 8,3 9,2 7,8 7,7 7,0 9,3 11%
EMF 5,6 7,4 5,5 5,6 5,9 5,7 5,3 6,1 10%
OCL 10,3 122,2 10,0 12,4 9,4 9,9 12,1 ---NA 3%
LS 0,20 99,82 0,85 0,25 0,08 0,21 1,03 1,45 8%
INC 0,010 -----NA 0,009 0,013 0,014 0,010 0,011 0,022 11%
ASG 5,2 11,2 5,4 5,1 6,9 5,9 5,4 6,4 24%
EMF 3,0 3,9 2,8 2,8 2,9 2,9 2,8 3,2 8%
OCL 4,7 37,5 4,6 5,8 4,0 4,6 4,6 ---NA 9%
LS 0,05 29,15 0,47 0,15 0,03 0,10 0,53 0,39 4%
INC 0,010 -----NA 0,009 0,012 0,012 0,011 0,011 0,013 7%
ASG 4,2 5,3 4,6 3,9 4,5 3,9 5,1 4,5 19%
EMF 2,8 3,2 2,7 2,6 2,4 2,7 2,3 2,8 9%
OCL 3,8 34,4 3,7 6,0 3,3 4,3 3,7 ---NA 10%
LS 0,05 14,58 0,23 0,13 0,02 0,10 0,30 0,37 5%
INC 0,011 -----NA 0,009 0,011 0,011 0,010 0,010 0,011 14%
ASG 2,8 3,6 2,8 2,8 2,7 2,8 2,6 3,0 4%
EMF 1,8 2,3 1,8 1,8 1,8 1,8 1,6 1,9 6%
OCL 2,9 24,1 2,9 4,1 2,6 3,3 3,2 ---NA 8%
LS 0,10 50,93 0,26 0,10 0,04 0,13 0,32 0,36 36%
INC 0,012 0,013 0,010 0,011 0,011 0,011 0,011 0,012 13%
ASG 2,3 2,9 2,2 2,3 2,2 2,3 2,1 2,4 8%
EMF 1,2 1,4 1,1 1,2 1,1 1,1 1,0 1,2 6%
OCL 1,9 12,1 1,9 2,7 1,4 1,8 2,3 ---NA 6%
LS 0,05 6,94 0,16 0,10 0,01 0,06 0,10 0,21 28%
INC 0,009 0,010 0,010 0,012 0,012 0,010 0,012 0,012 23%
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ASG 2,6 3,5 2,6 2,8 2,5 2,6 2,4 2,9 3%
EMF 1,8 2,3 1,8 1,9 1,9 1,9 1,7 2,0 9%
OCL 2,9 20,4 2,8 3,9 2,3 3,4 3,1 ---NA 7%
LS 0,12 12,40 0,25 0,11 0,02 0,17 0,36 0,36 32%
INC 0,012 -----NA 0,009 0,012 0,011 0,011 0,011 0,013 16%
ASG 1,6 2,1 1,7 1,8 1,6 1,7 1,5 1,9 9%
EMF 0,9 1,2 1,0 1,0 1,0 1,0 0,9 1,0 2%
OCL 1,5 10,1 1,7 2,2 1,2 1,5 1,8 ---NA 3%
LS 0,03 4,64 0,16 0,09 0,01 0,05 0,19 0,23 20%
INC 0,010 0,011 0,010 0,013 0,012 0,010 0,012 0,012 14%
ASG 1,6 1,9 1,6 1,7 1,6 1,6 1,5 1,8 7%
EMF 1,0 1,2 1,0 1,0 1,0 1,0 0,9 1,0 9%
OCL 1,5 13,3 1,8 2,2 1,2 1,6 2,3 ---NA 6%
LS 0,06 9,49 0,16 0,06 0,01 0,09 0,19 0,25 18%
INC 0,012 0,012 0,010 0,012 0,011 0,011 0,010 0,012 16%
ASG 2,2 2,9 2,2 2,3 2,3 2,2 2,0 2,4 7%
EMF 1,2 1,5 1,2 1,2 1,2 1,2 1,1 1,3 4%
OCL 2,0 12,7 2,0 2,8 1,5 1,9 2,1 ---NA 7%
LS 0,05 7,09 0,15 0,08 0,02 0,07 0,23 0,26 16%
INC 0,012 0,011 0,010 0,011 0,012 0,011 0,011 0,013 14%
ASG 2,3 3,0 2,4 2,4 2,4 2,4 2,2 2,6 7%
EMF 1,5 2,0 1,5 1,5 1,5 1,5 1,3 1,6 15%
OCL 2,6 21,3 2,5 3,3 2,1 2,7 3,1 ---NA 8%
LS 0,08 13,48 0,23 0,10 0,02 0,13 0,33 0,31 16%
INC 0,013 0,012 0,011 0,013 0,012 0,012 0,013 0,012 24%
ASG 3,2 4,3 3,2 3,3 3,1 3,2 3,0 3,4 5%
EMF 1,7 2,2 1,7 1,7 1,7 1,7 1,5 1,8 4%
OCL 2,8 26,2 3,1 3,6 2,3 2,8 3,2 ---NA 7%
LS 0,06 21,46 0,27 0,09 0,02 0,09 0,39 0,33 23%
INC 0,010 0,013 0,009 0,011 0,010 0,010 0,011 0,011 11%
ASG 1,7 2,0 1,7 1,7 1,6 1,7 1,6 1,8 9%
EMF 1,1 1,3 1,1 1,2 1,1 1,1 1,0 1,2 8%
OCL 1,9 12,5 1,8 2,2 1,3 1,8 2,2 ---NA 3%
LS 0,05 11,32 0,16 0,07 0,02 0,08 0,21 0,24 3%
INC 0,011 0,011 0,010 0,013 0,012 0,012 0,011 0,013 11%
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Figure 5.8. Distribution of Load Time and Memory Usage of the Jackrabbit Project
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A similar increase can be seen for the memory usage in Figure 5.4b. Here, the
EMF representation uses about twice as much memory, while the incremental engine
may require an additional 10�15 times more memory to store its partial result caches
compared with the ASG. When adding the cyclomatic complexity pattern as well, an
additional increase in memory usage is observed, resulting in a memory exhaustion for
the largest models (over 500kLOC, or 1.7M graph nodes).

The smaller memory footprint of the Java ASG representation is the result of model-
speci�c optimizations that are not applicable in generic EMF models. The additional
increase for local search and Rete-based pattern matchers is mostly due to the index
and partial match set sizes, respectively. Like load times, the use of OCL does not
result in a change in memory usage compared with the EMF model.

The memory footprint increase of the cyclomatic complexity pattern is probably
caused by the indexing of the transitive closure of the parent relation. As every model
element has a parent and the containment hierarchy is usually deep, this transitive
closure may alone become several times the size of the entire model, making it very
expensive to index. Despite this, the containment hierarchy can be e�ectively traversed
using search operations, hence the other approaches can handle this query much better.

Generally speaking, neither for load times nor memory usage was the standard
deviation of the results signi�cant compared with the other values, with the notable
exception of the load time of the Jackrabbit tool with INC-CC, and the SVNKit appli-
cations memory usage with INC. The �rst one can be explained with garbage collection,
as the memory usage was close to the 25 GB limit. For the latter, we have no clear
explanation; however as we have witnessed no other �uctuations of this size, we think
that it was caused by a temporary issue that occurred during our measurements.

5.6.2 Search Time

Figure 5.4c presents the search time measurements (and uses NA if the measurement
timed out). For each model and each program query the average search time is listed
�rst. Furthermore, in Figure 5.9, we highlighted the results of the Jackrabbit project
in a box plot, where there are only minimal di�erences between any two di�erent
executions of the same case, similar to load and search times.

Both visitor implementations performed similarly, producing similar execution times
for queries, but they increased with model size as they traverse the entire model to �nd
the results. The time di�erences between the ASG and EMF visitors were mainly the
results of the memory optimizations of the original ASG implementation that avoided
storing the same values multiple times, but required additional indirections during the
model traversal. The reverse navigation option is not used in our measurements.

The local search and Rete based solutions provide a two-to-three orders of mag-
nitude faster query execution, achieved by replacing the model traversal by calls to a
pre-populated (and incrementally updated) index. Also, the search time of incremental
queries is largely independent of model size, while in the case of local search it increases
more slowly than in the case of the visitor executions. As the search times for INC
queries were exactly the same regardless whether the cyclomatic complexity query was
loaded or not, their rows were merged in the table.

The execution of OCL queries include a traversal of the model together with ad-
ditional search operations, making the search slower than the visitor implementations.
An exception to this is the unused parameter query: in this case the search opera-
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tion timed out every time. This is most likely caused by the usage of the allInstances
function that is used to �nd the source of an edge without reverse navigation options.

In addition, as seen in Figure 5.4c, the execution time of visitor implementations
increases linearly. This is in line with our expectations, as visitors have to traverse
the entire model during the search. In spite of this, the search time for incremental
queries are roughly the same for all queries, as the search simply means returning the
results. In most of our patterns, the local search is an order of magnitude slower than
incremental queries. However, the concatenation pattern (see Figure 5.3c) runs just as
slow as the visitors in this regard. This is in line with our earlier experience [132] with
di�erent pattern matching strategies that the execution performance for local search
techniques depends on the query complexity and the model structure.

To validate the results, for each program and tool combination we have the max-
imum standard deviation in percentage terms of their corresponding search time. In
most cases, the standard deviation is low; only 9 rows contain deviations over 20%. As
our measurements have revealed time di�erences of orders of magnitude, these di�er-
ences do not invalidate our conclusions drawn from the analysis.

5.7 Evaluation of Usage Pro�les

Following the evaluation of the raw measurement data, we will now explain how the
di�erent approaches were compared in various usage pro�les, and we will summarize
our �ndings. Then we will discuss the di�erent threats to validity, and the ways they
were handled.

5.7.1 Usage Pro�les

In order to compare the approaches, we calculated the total time required to exe-
cute program queries for three di�erent usage pro�les , namely one-time, commit-time,
and save-time analysis. The pro�les were selected by estimating the daily number of
commits and �le changes for a small development team.

One-time analysis consists of loading the model and executing each program query
in a batch mode. In case the analysis needs to be repeated, the model is reloaded. In
our measurements, this mode is represented by a load operation followed by a single
query evaluation.

Commit-time analysis can be used in a program analysis server that keeps the
model in-memory, and on each commit, it is updated as opposed to be reloaded, and
then it re-executes all queries. In our case, this mode is represented by a load operation
followed by 10 query evaluations.

Save-time analysis is executed whenever the programmer saves a �le in the IDE,
and then the IDE either executes the analysis itself, or noti�es the analysis server. It is
similar to commit-time analysis, but it is executed more often. In our measurements,
this mode is represented by a load operation followed by 100 query evaluations.

5.7.2 Usage Pro�le Analysis

We calculated the execution times for the search pro�les for all the projects by con-
sidering the time to load the models (Figure 5.4a), and increasing it by 1, 10 and
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100 times the search time of six queries one after another, respectively. As the un-
used parameter and cyclomatic complexity query could not always be executed in OCL
and the incremental matcher, respectively, to keep the results comparable, they were
excluded from this calculation.
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Figure 5.10. Execution Time over Models

Figure 5.10 shows our measured values for total execution times on the various
usage pro�les from two points of view. We included detailed graphs for the selected
models where load times and query times can be observed (note the di�erences in the
time axis).
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The results indicate that albeit the visitor approaches execute queries more slowly,
as there are no additional data structures initialized, the lower load time makes this
approach very e�ective for one-time, batch analysis. However, as all visitors are im-
plemented separately, as to execute all of them would require six model traversals;
reducing this would provide a further time advantage of this solution over the local
search based ones. This issue could be managed by combining all the queries in a
single visitor, thus increasing its complexity. Still, visitors behave worse regarding the
run time in the case of a repeated analysis: the mean time for executing 100 searches
increased from 32 to 1967 seconds for the ASG-based implementation (and from 62 to
1257 when executed over EMF).

OCL queries behave in a similar way to visitor-based searches. Here, no indexing
is used, but the model is traversed during search. Executing a single query is more
expensive than executing a single visitor, and during the measurements nothing is
shared between the di�erent executions, making the mean one-time execution time of
the six queries 71 seconds (almost the same as the result of the local search based
pattern matcher), repeating it a hundred times is done in 2204 seconds (slower than
the ASG version). However, selecting an OCL execution mode that evaluates multiple
OCL queries during a single traversal where possible might signi�cantly reduce the total
search time, and help make this approach a viable alternative to hand-coded visitors.

The local search based approach is noticeably faster than visitor-based solutions
with memory usage and initialization time penalties introduced by the use of caching.
The mean execution times range from 69 to 171 seconds. These properties make the
approach work very well in the Commit-time analysis pro�le, and other pro�les with
a moderate amount of queries. However, if a bad search plan is selected for a query,
such as in the case of the Concatenation to Empty String pattern, its execution time
may become similar to the visitor-based implementations.

The incremental , Rete-based pattern matching approach provides instantaneous
model query times, as the results are always available in a cache. This makes such an
algorithm powerful for repeatedly executed analysis scenarios, such as the Save-time
analysis pro�le (mean time: 131 seconds, the lowest from all approaches). However, to
initialize the caches, a lengthy preparatory phase is required and it makes this technique
the slowest for one-time analysis scenarios (mean time: 394 seconds).

If the save-time analysis pro�le is used and the required memory of the incremental
approach cannot be met, the complementing local search matcher can be used and it
still has a performance advantage over the visitor-based solutions. Also, by moving
the analysis to a distributed, cloud-based system, it is possible to manage even larger
models using the incremental approach [133].

Next, we evaluated how execution times varied when increasing the model size.
Figure 5.11 shows the analysis time using di�erent tools over the model size in each
usage pro�le and it adds linear trend lines to compare the rate of increase. We found
that our �ndings were consistent over di�erent models: regardless of the model size,
the same relative ordering can be observed in the case of each pro�le.

5.7.3 Lessons Learned

From a memory consumption perspective, the manually optimized ASG excels while
providing a fast query execution for the one-time usage pro�le. However, a generic
model implementation, such as EMF, may be a viable alternative when additional
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features of these frameworks are used and the doubled memory usage is acceptable.
Furthermore, the use of generic model implementations means generic query approaches
can become an alternative for manually coded searches based on usage pro�les:

• Batch solutions, such as the Eclipse OCL implementation have minimal addi-
tional memory requirements while their performance is similar to that of manu-
ally written visitors.

• Full incremental solutions, such as the Rete-based pattern matcher of the EMF-
IncQuery, provide results instantaneously even after model changes, making it
bene�cial for recurring queries and evolving source code, to meet their memory
requirements.

• The local search implementation of the EMF-IncQuery uses an incremental
indexer to speed up search implementations, achieving query evaluation times
that are orders of magnitude faster than non-indexed solutions, but with a lower
memory consumption. This result is in line with the idea of hybrid pattern
matching [132], where incremental and search-based approaches complement each
other for better performance characteristics.

Both the OCL and the graph pattern formalism provide a higher-level speci�cation
of program queries, resulting in a more compact query description compared to manu-
ally coding visitors, and in our subjective experience, they are easier to understand and
reduce query development time. Advanced features, such as the computation of tran-
sitive closures, are also supported, further reducing the length of query descriptions.

Regardless of the modeling technology, optimizing the queries, either for perfor-
mance or memory consumption, may require a deep understanding of the behavior of
the underlying algorithms. In some cases, this means a complete reformulation of the
query. For instance, in the case of the catch problem, the pattern description requires
an inverse navigation between the catch parameters and its references, while the visitor
implementation traverses the containment subtree instead.

We have also identi�ed cases where one of the selected tools works noticeably better
or worse than the other candidates:

• If inverse relations are not modeled, some queries in OCL cannot be implemented
e�ciently (e.g. without iterating all instances of a type). Not surprisingly, adding
the inverse relations increases the memory usage of the model.

• Navigating the containment hierarchy (especially transitively) requires a huge
amount of memory with the Rete-based incremental approach, as it requires
storing many model element-ancestor pairs in the memory.

• Visitor-based solutions can very e�ectively traverse the containment hierarchy.
In the case of the cyclomatic complexity calculation, this is the main reason why
the visitor implementations outperform all the others.

In addition, as a rule of thumb, we have created a simpli�ed representation (see
Figure 5.12) based on the lessons we learned from the results in a form of a decision
model to choose the more suitable tools for the di�erent usage scenarios. The �gure
servers as a supplementary guide to aid the understanding of our observations above,
but it is not a complete presentation of our results.
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Figure 5.12. Decision Model (Simpli�ed Representation)

In the refactoring project, the implemented FaultBuster refactoring framework (pre-
sented in Chapter 4) applies the one-time scenario as the usage scenario was planned
for the ASG which does not support incremental model updates. In addition, a large,
4M LOC proprietary program has been refactored, so the decision during this project
was to keep the ASG and the one-time approach. From this research, we may conclude
that generic solutions are viable alternatives and by using an incremental tool setup a
huge performance gain can be achieved when su�cient memory is available.

5.7.4 Threats to Validity

We have identi�ed several validity threats that can a�ect the construct, the internal
and external validity of our results. The �rst is the low construct validity.

Low construct validity may threaten the results of various usage pro�les, as the
results do not include the time required to update the indexes and Rete networks on
model changes. However, based on the previous measurement results related to EMF-
IncQuery [128], we think that such slowdowns are negligible in cases where the change
size is small compared to that of the model.

Furthermore, in the case of very large heap sizes (over 10 GB) the garbage col-
lection of JVM instances may block the program execution for several minutes in a
non-deterministic way. To make the measurements reproducible, the JVM instances
were allocated their maximum heap size during startup instead of gradually extending
it as needed.

We tried to mitigate internal validity threats by comparing the measurements when
we changed only one measurement parameter at a time. For example, the EMF im-
plementation of the Java ASG makes it possible to di�erentiate between the changes
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caused by di�erent internal model representations by comparing the di�erent model
representations using the same search algorithm �rst, then we compare the EMF-based
visitor with generic pattern matching solutions.

An important threat in a study to compare various methods is that the evaluation
is carried out through actual implementations. The decisions in the implementation
may a�ect the overall outcome and the judgement of the choice of method. To reduce
this threat, the implementation can be performed by experts of the given technologies.
Hence, the same query is implemented in a slightly di�erent way in each method
depending on the features of the methods like the availability of reverse edges.

Note that the authors are not experts of the OCL tools, and, the metamodel it-
self does not favor the structure expected by OCL. However, as we have found that
OCL performs comparably to the visitor-based implementations, it is clearly a viable
alternative to manually coded searches.

As regards external validity , the generalizability of our results largely depends on
whether the selected program queries and models are representative for general applica-
tions. The queries were selected prior to the projects and scenarios. These refactorings
were emphasized by project partners and were selected to cover several aspects of
transformations.

The selected open-source projects di�er in size and characteristics � including com-
putational intensive programs, applications with heavy network and �le access and
with a graphical user interface. Moreover, the projects were selected from the testbed
of the Columbus Java static analyzer and ASG builder program where the aim was to
cover a wide range of Java language constructs.

As for projects from di�erent programming languages, they require a corresponding
metamodel and instance models. The Columbus framework itself provides metamodels
and code analyzers for creating these models for various languages, such as C/C++,
C# or RPG, and these metamodels can be ported similarly to the EMF. However,
a further evaluation may be needed to validate whether the results still hold, as the
properties of these program models may di�er signi�cantly.

Another issue is the selection of model query tools. Although several other tools are
available, based on the results of over a decade of research on e�cient graph pattern
matching techniques, we think that other pattern matcher tools should provide similar
results to either our local search or incremental measurements.

In our work, we used Java-based tools and the EMF framework so that the results
of the tools could be compared. Despite this, the investigated tools support additional
languages. For example, the Columbus API is available in C++, and OCL tools
are available for di�erent modeling formalisms and languages. The EMF-IncQuery
framework has been implemented in Java and focuses on EMF models; however the
language and runtime are also being adapted to di�erent formalisms such as RDF and
the metamodeling core of MPS.

OCL queries expect that a context object will be selected from the environment
and expressions can be evaluated from this point. However, the standard does not
specify how to select this context object, and di�erent OCL tools support varying
query execution modes. Such modes include the Impact Analyzer of the Eclipse OCL
tool [131], which tracks model changes and just recomputes those results that rely on
the modi�ed model elements; or the model invariant formulation that can evaluate
multiple boolean queries in parallel. In order to be able to measure the execution
times of single queries, we selected all possible context objects by traversing the entire
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source model. To evaluate the e�ects of choosing a di�erent context selection strategy
or execution mode, additional measurements are needed.

Overall, our results were similar for all the models and queries, so we think our
results should generalize well to other program queries and models, as far as the memory
requirements of indexing or Rete building are met.

5.8 Related Work

In our comparison, we evaluated solutions that are speci�c to program models and
generic methods not restricted to the domain of program models. Now, we present
related research in two groups starting from generic to program model-speci�c solutions.

5.8.1 Software Analysis Using Generic Modeling Techniques

Program queries are a common use case for modeling and model transformation tech-
nologies including transformation tool contests. The program refactoring case of the
GraBaTs Tool Contest 2009 [134] and the program understanding case of the Transfor-
mation Tool Contest 2011 [135] rely on a program query evaluation followed by some
transformation rules, focusing on the applicability of modeling tools for refactoring and
reverse engineering. In 2011, six tools were entered in the contest (GreTL, VIATRA2,
Edapt, MOLA, GrGen.NET and Henshin), some of them were EMF-based, others re-
lied on a di�erent metamodeling approach, and for each tool the tasks were executed
in a few seconds (albeit sometimes after costly model import operations). This work
extends these results by comparing the costs of using generic modeling environments
to manually optimized refactoring models; and extends the performance comparisons
with a larger pool of real-world software models and the use of di�erent model queries.

The refactoring case was reused in [136] to select a query engine for a model repos-
itory, but, its performance evaluations did not consider incremental cases.

A series of refactoring operations were de�ned as graph transformation rules by
Mens et al. [137], and they were also implemented for both the Fujaba Tool Suite
and the AGG graph transformation tools. Although the study presents the graph
transformations that are useful as an e�cient description of refactoring operations, no
performance measurements were included. The Fujaba Tool Suite was also used to �nd
design pattern applications [138]. As a Java model representation, the abstract syntax
tree of the used parser generator was used, and the performance of the queries were
also evaluated.

The Java Model Parser and Printer (JaMoPP) project [139] provides a di�erent
EMF metamodel for Java programs. It was created to directly open and edit Java
source �les using EMF-based techniques, and the changes were written back to the
original source code. Despite this, the EMF model of the JaMoPP project does not
support any existing model query or refactoring approaches, and every program query
or refactoring is to be reimplemented to execute it over the JaMoPP models. This
approach was used in [140], and it relies on the Eclipse OCL tool together with a
display of the identi�ed issues in the Eclipse IDE.

The EMF Smell and EMF Refactor projects [141] allow one to �nd design smells
and execute refactorings over EMF models based on the graph pattern formalism. As
Java programs can be translated into EMF models, this also permits the de�nition and
execution of program queries.
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One key di�erence between our experiment and the above-mentioned related stud-
ies is that we compare the performance characteristics of hand-coded and model-based
query approaches.

When comparing the performance of the di�erent approaches, an additional factor
needs to be considered. Namely, as there are multiple di�erent (sometimes not even
EMF-based) metamodels used to describe Java applications, further measurements are
required to evaluate the e�ects of a metamodel selection. However, we think that our
test setup is general enough to handle the large set of tools, approaches and queries
proposed by these studies.

The train benchmark described in [128] concentrates on on measuring the perfor-
mance of incremental model query approaches. It relies on synthetic models scalable to
any model size, and de�nes both query and model manipulation steps to measure the
real impact of query re-evaluation. The author of [129] attempted to predict the query
evaluation performance based both on metrics of models and queries. In our work,
we applied these metrics on real-world models to evaluate the query engine instead of
synthetic models, and while our results were quite similar, a more detailed comparison
is required to analyze their usefulness.

5.8.2 Software Analysis Designed for Program Models

Several tools are available for detecting coding issues in Java programs. The closest
solutions to our ASG+Visitor method are, for example, the PMD checker [27] and
FrontEndART's FaultHunter [142], which in fact is built on the top of the Columbus
ASG. These applications can be integrated into IDEs as plug-ins, and they can be
extended with the searches implemented in Java code or in a higher level language,
such as XPath queries in PMD. PMD provides rules for a great variety of coding
problems, but the given model and query API is not as �exible as the solutions used
in this research. The main usage scenario of these tools is to run the checkers once on
(any version of) the source code and �nd coding issues. Unfortunately, they do not
support incremental model updates yet.

In contrast to generic solutions, there are several systems that support (meta) mod-
eling and querying especially program models. FAMIX [143] is a language-independent
meta-model for representing procedural and object-oriented code, used in the Moose
reverse engineering environment [144]. The MOOSE environment provides query pos-
sibilities in Smalltalk. The authors claim that their approach is not Smalltalk speci�c
and it can be applied Java as well. The Rascal [145] metaprogramming language is
designed for source code analysis and manipulation. Its analysis features are based on
relational calculus, relation algebra and logic programming systems. Its tool support
includes an Eclipse-based IDE, and the language provides Java integration. For any
task not (readily) expressible in RASCAL, one may use Java method bodies inside Ras-
cal functions. These solutions use their own meta model to represent Java programs,
unlike solutions in our study, where the Columbus meta model is used via the EMF.
Nevertheless, these tools are candidates for comparative research in the future.

In addition, several approaches allow one to de�ne program queries using logical
programming, such as the JTransformer [146] using Prolog clauses, the SOUL ap-
proach [147] that relies on logic metaprogramming, and CodeQuest [148], which is
based on Datalog. However, none of these o�er a comparison with hand-coded query
approaches. The DECOR methodology [149] provides a high-level domain-speci�c lan-
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guage for evaluating program queries. It was evaluated in terms of performance on 11
open-source projects, including the Eclipse project. It took around one hour to �nd its
de�ned smells. These results are di�cult to compare to ours, as the evaluated queries
are di�erent (and some of them are more complex than the ones de�ned here), but
they are described in enough detail to extend our environment. However, evaluating
the e�ects of representation and tool selection is problematic, as neither the model rep-
resentation, implementation structure nor the used programming language is shared
between the di�erent approaches.

A key advantage of our approach is the ability to select the query evaluation strategy
based on the required usage pro�le. Additionally, it is possible to re-use the existing
program query implementations while using a high-level, graph pattern-based de�nition
for the new queries.

5.9 Summary

In this chapter, we evaluated di�erent query approaches for locating anti-patterns for
refactoring Java programs. In a traditional setup, an optimized Abstract Semantic
Graph was built by SourceMeter, and it was processed by hand-coded visitor queries.
In contrast, an EMF representation was built for the same program model which has
various advantages from a tooling perspective. Furthermore, anti-patterns were identi-
�ed by generic, declarative queries in di�erent formalisms evaluated with an incremental
and a local-search based strategy.

Our experiments that were carried out on 28 open source Java projects of varying
size and complexity demonstrated that encoding ASG as an EMFmodel results in an up
to 2-3 fold increase in memory usage and an up to 3-4 fold increase in model load time,
while incremental model queries provided a better run time compared to hand-coded
visitors with a 2-3 order of magnitude faster execution, at the cost of an additional
increase in memory consumption by a factor of up to 10-15. Following this, we provided
a detailed comparison of the di�erent approaches and this made it possible to select
one over the other based on the required usage pro�le and the expressive capabilities
of the queries.

To sum up, we emphasize the expressiveness and concise formalism of pattern
matching solutions over hand-coded approaches. They o�er a quick implementation
and an easier way to experiment with queries together with di�erent available execution
strategies. However, depending on the usage pro�le, their performance is comparable
even with 2,000,000 lines of code.
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�You can't connect the dots looking forward;

you can only connect them looking backwards.�

� Steve Jobs

6
Conclusions

In this thesis we discuss di�erent topics to support the `continuous refactoring` of
software systems. Now, we shall summarize our contributions and draw some pertinent
conclusions. We will answer our research questions and elaborate on the main lessons
we learned.

6.1 Summary of the thesis contributions

In general, the results presented indicate that refactoring should and can be automated
via computer assistance. Developers are receptive to tools that suggest refactoring op-
portunities. They welcome tools even more when these are capable of providing solu-
tions as well. We also showed that refactoring is a good practice in programming, and
when performed continuously it has bene�cial e�ects on measurable software main-
tainability. We provided a detailed comparison of di�erent approaches to locate anti-
patterns for refactoring Java programs. In addition, we identi�ed several challenges
of implementing an automated refactoring tool. Our recommendations may serve as a
guideline for others who face similar challenges when designing and developing auto-
matic refactoring tools that meet the high expectations of today's developers.

We should add here that the studies presented in the study are closely connected to
the Refactoring Research Project. The project provided us with a good opportunity to
do research in real-life industrial environment. This motivated us to carry out studies
on more practical topics. The project spawned a lot of research papers over the years.
Many of them were presented at international conferences, including the one ([8]) that
won the best paper award at the IEEE CSMR-WCRE 2014 Software Evolution Week,
Antwerp, in Belgium, February 3-6, 2014.

Now, we will restate our initial research questions and answer them one by one.
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RQ1: What will developers do �rst when they have given the time and
money to do refactoring tasks?

Our studies contain valuable insights into what developers do. Throughout our ex-
periments, we collected 1,273 refactorings in the manual phase and at the end of the
automatic phase we got about 6,000 tool-aided refactorings. We observed developers in
a large, in vivo, industrial context while doing hand-written and automatic refactoring
tasks.

In Chapter 3, we found that developers tend to �x coding rule violations more
often than anti-patterns or metric value violations. We learned that they optimized
the refactoring process and started �xing more serious issues �rst. Although keeping
priority a concern, they kept choosing those issues which were easier to �x. Our
interviews with the developers and our analysis of the evolution of their system revealed
that by the end of the project developers had learned to write better code.

We continued our research in Chapter 4 by providing developers with an automatic
refactoring tool. We learned that they are optimistic about automation and they
thought that automated solutions could increase their e�ciency. Developers thought
that most of the coding issues could be easily �xed via automated transformations.
This trust manifested itself when we noticed that sometimes they just blindly applied
the automatic refactorings without taking a closer look at the proposed code modi�-
cation. It happened several times that the automatic refactoring tool asked for user
input to be able to select the best refactoring option, but developers used the default
settings because it was easier. Partners were generally satis�ed with the automated
refactoring solutions and they enthusiastically asked us to extend its support with new
types of �xable coding issues. We found that their most loved feature was batch refac-
toring � where they could �x several issues at once � because it greatly increased their
productivity.

RQ2: What does an automatic refactoring tool need to meet developers
requirements?

The manual phase of the Refactoring Project told us that developers seek to �x coding
issues. We also learned that developers do not like switching between their normal
development activities and a refactoring tool, and therefore the tool has to be integrated
into their IDEs. Our results suggest that one of the most important features of a
refactoring tool is to provide refactoring recommendations (i.e. what to refactor and
how). This requires precise problem detection to avoid false positive matches. We
found that the refactoring transformations have to be transparent and well documented
because we noticed that developers tended to use simpler refactorings because they
lacked the understanding of more complex ones (e.g. clone extraction). An interesting
�nd was that the partner companies often demanded di�erent solutions for the same
coding issue. This tied in with developers requests to allow some parametrization of
refactoring algorithms. To ful�ll the latter two requirements a fully-automated method
did not su�ce. Instead, a semi-automatic solution was necessary. Besides the control
over the refactoring algorithms, developers wanted to have a decision in the end as
well, whether to accept or reject the suggested �x. Here, developers can compare the
original and the refactored version of the code; and they can run unit and integration
tests on the system before accepting a �x. What is more, what developers would like
from the refactoring transformation is to use correct code formatting, identi�cation,

126



Chapter 6. Conclusions

and to modify it as little code as possible. They also asked for comment handling, such
as removing comments with remove method refactoring.

Based on the former guidelines, in Chapter 4, we introduced FaultBuster, an auto-
matic refactoring toolset. FaultBuster has two special properties that makes it unique
among other tools. First, it is designed as a server-client refactoring framework which
has built in issue management that ensures that no issues are �xed by di�erent devel-
opers at the same time. Second, it allows programmers to �x multiple coding issues at
once, in so-called batches. FaultBuster's main target is coding rule violations and code
smells. Under the hood, it uses a well-de�ned automated refactoring process to perform
transformations on the program model. This model includes the Reverse AST-search
Algorithm which maps coding issues to source code elements.

RQ3: How does manual and automatic-tool aided refactoring activity a�ect
software maintainability?

We identi�ed lots of refactoring commits throughout the project. First, it was 315 in
the manual phase (Chapter 3) and later, 1,048 in the automatic phase (Chapter 4).
By employing the QualityGate SourceAudit tool (which implements the ColumbusQM
quality model), we analyzed the maintainability changes induced by the di�erent refac-
toring tasks. By measuring the maintainability of the involved subject systems before
and after the refactorings, we got valuable insights into the e�ect of these refactorings
on large-scale industrial projects.

We learned that the outcome of one refactoring on the global maintainability of
the software product is hard to predict; moreover, it might sometimes actually have
a detrimental e�ect. Generally speaking, though a whole refactoring process can have
a signi�cant bene�cial e�ect on the measurable maintainability. We found that �xing
anti-patterns have larger positive e�ect on quality than �xing either coding issues
or metric values. In addition, our study shed light on some important aspects of
measuring software maintainability. Some of the unexpected e�ects of refactorings
(like the detrimental e�ect of removing unnecessary constructors on maintainability)
are caused by the special features of the maintainability model applied.

Our results do not suggest signi�cant di�erences between manual and automatic-
tool aided refactoring activity from the maintainability point of view. If refactoring is
a way to either software heaven or hell, automated refactoring is just a faster way of
getting there.

RQ4: Can we utilize graph pattern matching to identify anti-patterns as
the starting point of the refactoring process?

In Chapter 5, we investigated the costs and bene�ts of using the popular industrial
Eclipse Modeling Framework (EMF) as an underlying representation of program models
processed by four di�erent general-purpose model query techniques based on native
Java code, OCL evaluation and (incremental) graph pattern matching. We provided
an in-depth comparison of these techniques on the source code of 28 Java projects using
anti-pattern queries taken from refactoring operations in di�erent usage pro�les.

Our main �nding is that advanced generic model queries over EMF models can run
several orders of magnitude faster than dedicated, hand-coded techniques. However,
this performance gain is o�set by an up to 10-15 fold increase in memory usage (in the
case of full incremental query evaluation) and an up to 3-4 fold increase in the model
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load time for EMF based tools and queries, compared to native Columbus results.
Hence the best strategy should be planned in advance, depending on how many times
the queries should be evaluated after loading the model from scratch. This is why, any
of these four techniques is su�cient for creating an anti-pattern detection tool that is
capable of identifying refactoring suggestions.
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A
PMD rule violations

The following pages contain descriptions of rule violations from the o�cial PMD web-
site [27]. Only those violations are listed here, which are mentioned in the thesis.

AddEmptyString

Finds empty string literals which are being added. This is an ine�cient way to convert
any type to a String.� �

1 String s = "" + 123; // bad

2 String t = Integer.toString (456); // ok� �
ArrayIsStoredDirectly

Constructors and methods receiving arrays should clone objects and store the copy.
This prevents that future changes from the user a�ect the internal functionality.� �

1 public class Foo {

2 private String [] x;

3 public void foo (String [] param) {

4 // Don't do this , make a copy of the array at least

5 this.x = param;

6 }

7 }� �
AtLeastOneConstructor

Each class should declare at least one constructor.� �
1 public class Foo {

2 // no constructor! not good!

3 }� �
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AvoidCatchingNPE

Code should never throw NPE under normal circumstances. A catch block may hide
the original error, causing other more subtle errors in its wake.� �

1 public class Foo {

2 void bar() {

3 try {

4 // do something

5 } catch (NullPointerException npe) {

6 }

7 }

8 }� �
AvoidCatchingThrowable

This is dangerous because it casts too wide a net; it can catch things like OutOfMem-
oryError.� �

1 public class Foo {

2 public void bar() {

3 try {

4 // do something

5 } catch (Throwable th) { // Should not catch

throwable

6 th.printStackTrace ();

7 }

8 }

9 }� �
AvoidDuplicateLiterals

Code containing duplicate String literals can usually be improved by declaring the
String as a constant �eld.� �

1 public class Foo {

2 private void bar() {

3 buz("Howdy");

4 buz("Howdy");

5 buz("Howdy");

6 buz("Howdy");

7 }

8 private void buz(String x) {}

9 }� �
AvoidInstanceofChecksInCatchClause

Each caught exception type should be handled in its own catch clause.
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� �
1 try { // Avoid this

2 // do something

3 } catch (Exception ee) {

4 if (ee instanceof IOException) {

5 cleanup ();

6 }

7 }

8 try { // Prefer this:

9 // do something

10 } catch (IOException ee) {

11 cleanup ();

12 }� �
AvoidPrintStackTrace

Avoid printStackTrace(); use a logger call instead.� �
1 class Foo {

2 void bar() {

3 try {

4 // do something

5 } catch (Exception e) {

6 e.printStackTrace ();

7 }

8 }

9 }� �
AvoidReassigningParameters

Reassigning values to parameters is a questionable practice. Use a temporary local
variable instead.� �

1 public class Foo {

2 private void foo(String bar) {

3 bar = "something else";

4 }

5 }� �
AvoidSynchronizedAtMethodLevel

Method level synchronization can back�re when new code is added to the method.
Block-level synchronization helps to ensure that only the code that needs synchroniza-
tion gets it.� �

1 public class Foo {

2 // Try to avoid this

3 synchronized void foo() {
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4 }

5 // Prefer this:

6 void bar() {

7 synchronized(this) {

8 }

9 }

10 }� �
AvoidThrowingNullPointerException

Avoid throwing a NullPointerException - it is confusing because most people will as-
sume that the virtual machine threw it. Consider using an IllegalArgumentException
instead; this will be clearly seen as a programmer-initiated exception.� �

1 public class Foo {

2 void bar() {

3 throw new NullPointerException ();

4 }

5 }� �
AvoidThrowingRawExceptionTypes

Avoid throwing certain exception types. Rather than throw a raw RuntimeException,
Throwable, Exception, or Error, use a subclassed exception or error instead.� �

1 public class Foo {

2 public void bar() throws Exception {

3 throw new Exception ();

4 }

5 }� �
BigIntegerInstantiation

Don't create instances of already existing BigInteger (BigInteger.ZERO, BigInteger.ONE)
and for 1.5 on, BigInteger.TEN and BigDecimal (BigDecimal.ZERO, BigDecimal.ONE,
BigDecimal.TEN)� �

1 public class Test {

2 public static void main(String [] args) {

3 BigInteger bi=new BigInteger (1);

4 BigInteger bi2=new BigInteger("0");

5 BigInteger bi3=new BigInteger (0.0);

6 BigInteger bi4;

7 bi4 = new BigInteger (0);

8 }

9 }� �
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BooleanGetMethodName

Looks for methods named 'getX()' with 'boolean' as the return type. The convention
is to name these methods 'isX()'.� �

1 public boolean getFoo (); // bad

2 public boolean isFoo(); // ok

3 public boolean getFoo(boolean bar); // ok , unless

checkParameterizedMethods=true� �
BooleanInstantiation

Avoid instantiating Boolean objects; you can reference Boolean.TRUE, Boolean.FALSE,
or call Boolean.valueOf() instead.� �

1 public class Foo {

2 Boolean bar = new Boolean("true"); // just do a

Boolean bar = Boolean.TRUE;

3 Boolean buz = Boolean.valueOf(false); // just do a

Boolean buz = Boolean.FALSE;

4 }� �
ConsecutiveLiteralAppends

Consecutively calling StringBu�er.append with String literals� �
1 public class Foo {

2 private void bar() {

3 StringBuffer buf = new StringBuffer ();

4 buf.append("Hello").append(" ").append("World"); //

bad

5 buf.append("Hello World");//good

6 }

7 }� �
ConstructorCallsOverridableMethod

Calling overridable methods during construction poses a risk of invoking methods on
an incompletely constructed object and can be di�cult to discern. It may leave the
sub-class unable to construct its superclass or forced to replicate the construction pro-
cess completely within itself, losing the ability to call super(). If the default constructor
contains a call to an overridable method, the subclass may be completely uninstan-
tiable. Note that this includes method calls throughout the control �ow graph - i.e., if
a constructor Foo() calls a private method bar() that calls a public method buz(), this
denotes a problem.� �

1 public class SeniorClass {

2 public SeniorClass (){
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3 toString (); //may throw NullPointerException if

overridden

4 }

5 public String toString (){

6 return "IAmSeniorClass";

7 }

8 }

9 public class JuniorClass extends SeniorClass {

10 private String name;

11 public JuniorClass (){

12 super(); // Automatic call leads to

NullPointerException

13 name = "JuniorClass";

14 }

15 public String toString (){

16 return name.toUpperCase ();

17 }

18 }� �
EmptyCatchBlock

Empty Catch Block �nds instances where an exception is caught, but nothing is done.
In most circumstances, this swallows an exception which should either be acted on or
reported.� �

1 public void doSomething () {

2 try {

3 FileInputStream fis = new FileInputStream("/tmp/

bugger");

4 } catch (IOException ioe) {

5 // not good

6 }

7 }� �
EmptyIfStmt

Empty If Statement �nds instances where a condition is checked but nothing is done
about it.� �

1 public class Foo {

2 void bar(int x) {

3 if (x == 0) {

4 // empty!

5 }

6 }

7 }� �
150



PMD rule violations

ExceptionAsFlowControl

Using Exceptions as �ow control leads to GOTOish code and obscures true exceptions
when debugging.� �

1 public class Foo {

2 void bar() {

3 try {

4 try {

5 } catch (Exception e) {

6 throw new WrapperException(e);

7 // this is essentially a GOTO to the

WrapperException catch block

8 }

9 } catch (WrapperException e) {

10 // do some more stuff

11 }

12 }

13 }� �
IfElseStmtsMustUseBraces

Avoid using if..else statements without using curly braces.� �
1 public void doSomething () {

2 // this is OK

3 if (foo) x++;

4 // but this is not

5 if (foo)

6 x=x+1;

7 else

8 x=x-1;

9 }� �
Ine�cientStringBu�ering

Avoid concatenating non literals in a StringBu�er constructor or append().� �
1 public class Foo {

2 void bar() {

3 // Avoid this

4 StringBuffer sb=new StringBuffer("tmp = "+System.

getProperty("java.io.tmpdir"));

5 // use instead something like this

6 StringBuffer sb = new StringBuffer("tmp = ");

7 sb.append(System.getProperty("java.io.tmpdir"));

8 }

9 }� �
151



PMD rule violations

IntegerInstantiation

In JDK 1.5, calling new Integer() causes memory allocation. Integer.valueOf() is more
memory friendly.� �

1 public class Foo {

2 private Integer i = new Integer (0); // change to

Integer i = Integer.valueOf (0);

3 }� �
LocalVariableCouldBeFinal

A local variable assigned only once can be declared �nal.� �
1 public class Bar {

2 public void foo () {

3 String a = "a"; //if a will not be assigned again it

is better to do this:

4 final String b = "b";

5 }

6 }� �
LooseCoupling

Avoid using implementation types (i.e., HashSet); use the interface (i.e, Set) instead.� �
1 import java.util.ArrayList;

2 import java.util.HashSet;

3 public class Bar {

4 // Use List instead

5 private ArrayList list = new ArrayList ();

6 // Use Set instead

7 public HashSet getFoo () {

8 return new HashSet ();

9 }

10 }� �
MethodNamingConventions

Method names should always begin with a lower case character, and should not contain
underscores.� �

1 public class Foo {

2 public void fooStuff () {

3 }

4 }� �
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MethodReturnsInternalArray

Exposing internal arrays directly allows the user to modify some code that could be
critical. It is safer to return a copy of the array.� �

1 public class SecureSystem {

2 UserData [] ud;

3 public UserData [] getUserData () {

4 // Don't return directly the internal array , return

a copy

5 return ud;

6 }

7 }� �
MethodWithSameNameAsEnclosingClass

Non-constructor methods should not have the same name as the enclosing class.� �
1 public class MyClass {

2 // this is bad because it is a method

3 public void MyClass () {}

4 // this is OK because it is a constructor

5 public MyClass () {}

6 }� �
NonThreadSafeSingleton

Non-thread safe singletons can result in bad state changes. Eliminate static singletons if
possible by instantiating the object directly. Static singletons are usually not needed as
only a single instance exists anyway. Other possible �xes are to synchronize the entire
method or to use an initialize-on-demand holder class (do not use the double-check
idiom). See E�ective Java, item 48.� �

1 private static Foo foo = null;

2

3 // multiple simultaneous callers may see partially

initialized objects

4 public static Foo getFoo () {

5 if (foo==null)

6 foo = new Foo();

7 return foo;

8 }� �
OverrideBothEqualsAndHashcode

Override both public boolean Object.equals(Object other), and public int Object.hashCode(),
or override neither. Even if you are inheriting a hashCode() from a parent class, con-
sider implementing hashCode and explicitly delegating to your superclass.
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� �
1 // this is bad

2 public class Bar {

3 public boolean equals(Object o) {

4 // do some comparison

5 }

6 }

7

8 // and so is this

9 public class Baz {

10 public int hashCode () {

11 // return some hash value

12 }

13 }

14

15 // this is OK

16 public class Foo {

17 public boolean equals(Object other) {

18 // do some comparison

19 }

20 public int hashCode () {

21 // return some hash value

22 }

23 }� �
PositionLiteralsFirstInComparisons

Position literals �rst in String comparisons - that way if the String is null you won't
get a NullPointerException, it'll just return false.� �

1 class Foo {

2 boolean bar(String x) {

3 return x.equals("2"); // should be "2". equals(x)

4 }

5 }� �
PreserveStackTrace

Throwing a new exception from a catch block without passing the original exception
into the new exception will cause the true stack trace to be lost, and can make it
di�cult to debug e�ectively.� �

1 public class Foo {

2 void good() {

3 try{

4 Integer.parseInt("a");

5 } catch(Exception e){

6 throw new Exception(e);

154



PMD rule violations

7 }

8 }

9 void bad() {

10 try{

11 Integer.parseInt("a");

12 } catch(Exception e){

13 throw new Exception(e.getMessage ());

14 }

15 }

16 }� �
ProperCloneImplementation

Object clone() should be implemented with super.clone().� �
1 class Foo{

2 public Object clone(){

3 return new Foo(); // This is bad

4 }

5 }� �
ReplaceHashtableWithMap

Consider replacing this Hashtable with the newer java.util.Map� �
1 public class Foo {

2 void bar() {

3 Hashtable h = new Hashtable ();

4 }

5 }� �
ReplaceVectorWithList

Consider replacing Vector usages with the newer java.util.ArrayList if expensive thread-
safe operation is not required.� �

1 public class Foo {

2 void bar() {

3 Vector v = new Vector ();

4 }

5 }� �
ShortMethodName

Detects when very short method names are used.� �
1 public class ShortMethod {

2 public void a(int i) { // Violation
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3 }

4 }� �
SignatureDeclareThrowsException

It is unclear which exceptions that can be thrown from the methods. It might be
di�cult to document and understand the vague interfaces. Use either a class derived
from RuntimeException or a checked exception.� �

1 public void methodThrowingException () throws Exception {

2 }� �
SimpleDateFormatNeedsLocale

Be sure to specify a Locale when creating a new instance of SimpleDateFormat.� �
1 public class Foo {

2 // Should specify Locale.US (or whatever)

3 private SimpleDateFormat sdf = new SimpleDateFormat("

pattern");

4 }� �
SimplifyConditional

No need to check for null before an instanceof; the instanceof keyword returns false
when given a null argument.� �

1 class Foo {

2 void bar(Object x) {

3 if (x != null && x instanceof Bar) {

4 // just drop the "x != null" check

5 }

6 }

7 }� �
SuspiciousHashcodeMethodName

The method name and return type are suspiciously close to hashCode(), which may
mean you are intending to override the hashCode() method.� �

1 public class Foo {

2 public int hashcode () {

3 // oops , this probably was supposed to be hashCode

4 }

5 }� �
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SwitchStmtsShouldHaveDefault

Switch statements should have a default label.� �
1 public class Foo {

2 public void bar() {

3 int x = 2;

4 switch (x) {

5 case 2: int j = 8;

6 }

7 }

8 }� �
UnnecessaryConstructor

This rule detects when a constructor is not necessary; i.e., when there's only one
constructor, it's public, has an empty body, and takes no arguments.� �

1 public class Foo {

2 public Foo() {}

3 }� �
UnnecessaryLocalBeforeReturn

Avoid creating unnecessarily local variables.� �
1 public class Foo {

2 public int foo() {

3 int x = doSomething ();

4 return x; // instead , just 'return doSomething ();'

5 }

6 }� �
UnnecessaryWrapperObjectCreation

Parsing method should be called directly instead.� �
1 public int convert(String s) {

2 int i, i2;

3

4 i = Integer.valueOf(s).intValue (); // this wastes an

object

5 i = Integer.parseInt(s); // this is better

6

7 i2 = Integer.valueOf(i).intValue (); // this wastes an

object

8 i2 = i; // this is better

9
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10 String s3 = Integer.valueOf(i2).toString (); // this

wastes an object

11 s3 = Integer.toString(i2); // this is better

12

13 return i2;

14 }� �
UnsynchronizedStaticDateFormatter

SimpleDateFormat is not synchronized. Sun recomends separate format instances for
each thread. If multiple threads must access a static formatter, the formatter must be
synchronized either on method or block level.� �

1 public class Foo {

2 private static final SimpleDateFormat sdf = new

SimpleDateFormat ();

3 void bar() {

4 sdf.format (); // bad

5 }

6 synchronized void foo() {

7 sdf.format (); // good

8 }

9 }� �
UnusedImports

Avoid unused import statements.� �
1 // this is bad

2 import java.io.File;

3 public class Foo {}� �
UnusedLocalVariable

Detects when a local variable is declared and/or assigned, but not used.� �
1 public class Foo {

2 public void doSomething () {

3 int i = 5; // Unused

4 }

5 }� �
UnusedModi�er

Fields in interfaces are automatically public static �nal, and methods are public ab-
stract. Classes or interfaces nested in an interface are automatically public and static
(all nested interfaces are automatically static). For historical reasons, modi�ers which
are implied by the context are accepted by the compiler, but are super�uous.
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� �
1 public interface Foo {

2 public abstract void bar(); // both abstract and

public are ignored by the compiler

3 public static final int X = 0; // public , static , and

final all ignored

4 public static class Bar {} // public , static ignored

5 public static interface Baz {} // ditto

6 }

7 public class Bar {

8 public static interface Baz {} // static ignored

9 }� �
UnusedPrivateField

Detects when a private �eld is declared and/or assigned a value, but not used.� �
1 public class Something {

2 private static int FOO = 2; // Unused

3 private int i = 5; // Unused

4 private int j = 6;

5 public int addOne () {

6 return j++;

7 }

8 }� �
UnusedPrivateMethod

Unused Private Method detects when a private method is declared but is unused.� �
1 public class Something {

2 private void foo() {} // unused

3 }� �
UseArrayListInsteadOfVector

ArrayList is a much better Collection implementation than Vector.� �
1 public class SimpleTest extends TestCase {

2 public void testX () {

3 Collection c = new Vector ();

4 // This achieves the same with much better

performance

5 // Collection c = new ArrayList ();

6 }

7 }� �
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UseEqualsToCompareStrings

Using '==' or ' !=' to compare strings only works if intern version is used on both sides� �
1 class Foo {

2 boolean test(String s) {

3 if (s == "one") return true; //Bad

4 if ("two".equals(s)) return true; // Better

5 return false;

6 }

7 }� �
UseIndexOfChar

Use String.indexOf(char) when checking for the index of a single character; it executes
faster.� �

1 public class Foo {

2 void bar() {

3 String s = "hello world";

4 // avoid this

5 if (s.indexOf("d") {}

6 // instead do this

7 if (s.indexOf('d') {}

8 }

9 }� �
UselessParentheses

Sometimes expressions are wrapped in unnecessary parentheses, making them look like
a function call.� �

1 public class Foo {

2 boolean bar() {

3 return (true);

4 }

5 }� �
UseLocaleWithCaseConversions

When doing a String.toLowerCase()/toUpperCase() call, use a Locale. This avoids
problems with certain locales, i.e. Turkish.� �

1 class Foo {

2 // BAD

3 if (x.toLowerCase ().equals("list"))...

4 /*

5 This will not match "LIST" when in Turkish locale

6 The above could be
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7 if (x.toLowerCase(Locale.US).equals ("list")) ...

8 or simply

9 if (x.equalsIgnoreCase ("list")) ...

10 */

11 // GOOD

12 String z = a.toLowerCase(Locale.EN);

13 }� �
UseStringBu�erForStringAppends

Finds usages of += for appending strings.� �
1 public class Foo {

2 void bar() {

3 String a;

4 a = "foo";

5 a += " bar";

6 // better would be:

7 // StringBuffer a = new StringBuffer ("foo");

8 // a.append (" bar);

9 }

10 }� �
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Summary

At some stage in their career every developer eventually encounters the code that no
one understands and that no one wants to touch in case it breaks. But how did the
software become so bad? Presumably no one set out to make it like that. The process
that the software is su�ering from is called software erosion � the constant decay of a
software system that occurs in all phases of software development and maintenance.

Software erosion is inevitable. It is typical of software systems that they evolve
over time, so they get enhanced, modi�ed, and adapted to new requirements. As a
side-e�ect the source code usually becomes more complex, and drifts away from its
original design, then the maintainability costs of the software increases. This is one
reason why a major part of the total software development cost (about 80%) is spent
on software maintenance tasks [10]. One solution to prevent the detrimental e�ects
of this software erosion, and to improve the maintainability is to perform refactoring
tasks regularly.

The term refactoring became popular after Fowler published a catalog of refactoring
transformations [12]. These transformations were meant to �x so-called `bad smells'
(a.k.a. `code smells'). Bad smells indicate badly constructed and hard-to-maintain
code segments. For example, the method at hand may be very long, or it may be a
near duplicate of another nearby method. The bene�t of understanding code smells is
to help one discover and correct the anti-patterns and bugs that are the real problems.
Eliminating these issues should help one to create quality software.

Keeping software maintainability high is in everybody's interest. The users get their
new features faster and with fewer bugs, the developers have an easier job modifying the
code, and the company should have lower maintenance costs. Good maintainability can
be achieved via very detailed speci�cation and elaborated development plans. However,
this is very rare and only speci�c projects have the ability to do so. Because software is
always evolving, in practice, the continuous-refactoring approach seems more feasible.
This means that developers should from time to time refactor the code to make it more
maintainable. A maintenance activity like this keeps the code �fresh� and hopefully
extends its lifetime.

A key goal of this thesis is to contribute to the automated support of software system
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maintenance. More speci�cally, the thesis seeks to propose methodologies, techniques
and tools for:

• analyzing software developers behavior during hand-written and
tool-aided refactoring tasks;

• evaluating the bene�cial and detrimental e�ects of refactoring on
software quality;

• adapting local-search based anti-pattern detection to model-query
based techniques in general, and to graph pattern matching in par-
ticular.

Evaluation of Developers' Refactoring Habits

The aim of our experiments was to learn how developers refactor in an industrial
context when they have the required resources (time and money) to do so. Our ex-
periments were carried out on six large-scale industrial Java projects of di�erent sizes
and complexity. We studied refactorings on these systems, and learned which kinds
of issues developers �xed the most, and which of these refactorings were best accord-
ing to certain attributes. We investigated the e�ects of refactoring commits on source
code maintainability using maintainability measurements based on the ColumbusQM
maintainability model [20].

We found that developers tried to optimize their refactoring process to improve the
quality of these systems and that they preferred to �x concrete coding issues rather
than �x code smells suggested by metrics or automatic smell detectors. We think that
the outcome of one refactoring on the global maintainability of the software product
is hard to predict; moreover, it might sometimes have a detrimental e�ect. However,
a big refactoring process can have a signi�cant bene�cial e�ect on the maintainability,
which is measurable using a maintainability model. The reason for this is not only
because the developers improve the maintainability of their software, but also because
they will learn from the process and pay more attention to writing more maintainable
new code in the future.

Challenges and Bene�ts of Automated Refactoring

Here, we sought to develop automated refactorings and for this purpose we designed
FaultBuster, which is an automated refactoring framework. We presented an auto-
mated process for refactoring coding issues. We used the output of a third-party static
analyzer to �nd refactoring suggestions, then we created an algorithm that was capable
of locating a source code element in an AST based on textual position information.
The algorithm transforms the source code into a searchable geometric space by building
a spatial database.

We had to take into account several expectations of the developers when we de-
signed and implemented the automatic refactoring tools. Among several challenges
of the implementation, we identi�ed some quite important ones, such as performance,
indentation, formatting, understandability, precise problem detection, and the neces-
sity of a precise syntax tree. Some of these have strong in�uence on the usability of a
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refactoring tool, hence they should be considered early on the design phase. We per-
formed an exhaustive evaluation, which con�rmed that our approach can be adapted
to a real-life scenario, and it provides viable results.

We made interesting observations about the opinions of the developers who utilized
our tools. The results showed that they found most of the manual refactorings of coding
issues easily implementable via automatic transformations. Also, when we implemented
these transformations and observed the automated solutions, we found that almost all
refactoring types helped them to improve their code.

Employing the QualityGate SourceAudit tool, we analyzed the maintainability
changes caused by the di�erent refactoring tasks. The analysis revealed that out of the
supported coding issue �xes, all but one type of refactoring operation had a consistent
and traceable positive impact on the software systems in the majority of cases. Three
out of the four companies got reached a better maintainable system at the end of the
refactoring phase. We observed however, that the �rst company preferred low-cost
modi�cations, hence they performed only two types of refactorings from which remov-
ing unnecessary constructors had a controversial e�ect on maintainability. Another
observation was that it was sometimes counter productive to just blindly apply the
automatic refactorings without taking a closer look at the proposed code modi�cation.
On several occasions it transpired that the automatic refactoring tool asked for user
input to be able to select the best refactoring option, but developers used the default
settings because this was easier. Some of these refactorings then introduced new coding
issues, or failed to e�ectively remove the original issue. So human factor is still impor-
tant, but the companies were able to achieve a measurable increase in maintainability
just by applying automatic refactorings.

Last but not least, this study shed light on some important aspects of measuring
software maintainability. Some of the unexpected e�ects of refactorings (like the neg-
ative impact of removing unnecessary constructors on maintainability) are caused by
the special features of the maintainability model applied.

The fact that developers tested the tool on their own products provided a real-world
test environment. Thanks to this context, the implementation of the toolset was driven
by real, industrial motivation and all the features and refactoring algorithms were
designed to ful�ll the requirements of the participating companies. We implemented
refactoring algorithms for 40 di�erent coding issues, mostly for common programming
�aws. By the end of the project the companies refactored their systems with over 5
million lines of code in total and �xed over 11,000 coding issues. FaultBuster gave a
complex and complete solution for them to improve the quality of their products and
to implement continuous refactoring to aid their development processes.

Model-Queries in Anti-Pattern Detection

We evaluated di�erent query approaches for locating anti-patterns for refactoring Java
programs. In a traditional setup, an optimized Abstract Semantic Graph was built
by SourceMeter, and processed by hand-coded visitor queries. In contrast, an EMF
representation was built for the same program model which has various advantages from
a tooling perspective. Furthermore, anti-patterns were identi�ed by generic, declarative
model-queries in di�erent formalisms evaluated with an incremental and a local-search
based strategy.
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Our experiments that were carried out on 28 open source Java projects of di�erent
size and complexity demonstrated that encoding ASG as an EMF model results in an
up to 2-3 fold increase in memory usage and an up to 3-4 fold increase in model load
time, while incremental model queries provided a better run time compared to hand-
coded visitors with 2-3 orders of magnitude faster execution, at the cost of an increase
in memory consumption by a factor of up to 10-15. In addition, we provided a detailed
comparison between the di�erent approaches that enabled them to select one over the
other based on the required usage pro�le and the expressive capabilities of the queries.

To sum up, we emphasize the expressiveness and concise formalism of pattern
matching solutions over hand-coded approaches. They o�er a quick implementation
and an easier way to experiment with queries together with di�erent available execution
strategies; however, depending on the usage pro�le, their performance is comparable
even on 2,000,000 lines of code.
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A karrierje egy pontján minden programozó szembesül egy olyan kódrészlettel aminek
m¶ködését senki sem érti és senki sem szeretne hozzányúlni, nehogy véletlen elrontsa.
A kérdés az, hogy hogyan keletkezett ez a siralmas kódrészlet. Feltételezhet®en senki
sem önszántából írta ilyenre. Sokkal valószín¶bb, hogy a programunk a szoftver erózió
áldozata, amely a szoftver egész életciklusára � legyen az fejlesztés vagy karbantartás
� jellemz® folyamatos hanyatlás.

A szoftver eróziója elkerülhetetlen. Egy szoftverrendszer folyamatosan fejl®dik az
id® múlásával: új funkciók kerülnek bele, korábbi funkciók módosulnak vagy t¶nnek el;
egyszóval igazodik az új igényekhez és környezethez. Ezek velejárója, hogy a forráskód
általában bonyolultabb lesz és egyre inkább eltávolodik a kezdeti állapotától. Követ-
kezményképp megn® a szoftver karbantartásának költsége. Ez is nagyrészt hozzájárul
ahhoz, hogy a szoftverfejlesztési költségek nagyobb része (kb. 80%) a karbantartásra
megy el [10]. A költségek csökkentéséhez redukálni kell a szoftvererózió okozta hatást,
és növelni kell a karbantarthatóságot rendszeresen végrehajtott refaktoring m¶veletek
segítségével.

A refaktoring kifejezés aztán vált népszer¶vé, hogy Fowler publikálta katalógusát a
refaktoring átalakításokról [12]. Ezen átalakítások célja az úgy nevezett "b¶zl®" kódok
helyrehozása. Itt a "b¶zl®" szó a nehezen karbantartható vagy rosszul megkonstruált
kódrészekre utal. Ilyen például, ha egy metódus nagyon hosszú, vagy ha egy metó-
dus szinte másolta egy másiknak. Az ilyen "b¶zl®" szerkezetek megértése segítséget
nyújt, hogy felfedjünk hibákat és antimintákat, amik a valós problémákat jelentik a
szoftverben. Ezek kiiktatása jobb min®ség¶ szoftvert eredményez.

Mindenki közös érdeke, hogy a szoftver karbantarthatósága megmaradjon könny¶-
nek. A felhasználók így hamarabb kapnak új funkciókat, melyekben kevesebb hiba
lesz. Emellett a fejleszt®knek is egyszer¶bb dolguk lesz a kód módosításával, és a
fejleszt®cégeknek is csökken a karbantartásra költött költségük. Jó karbantarthatósá-
got nagyon részletes speci�kációval és alaposan kidolgozott tervekkel lehet a legjob-
ban elérni. Azonban olyan helyzetek nagyon ritkán adódnak, ahol ezek a feltételek
teljesülnek. Mivel a legtöbb szoftverre inkább a állandó fejl®dés jellemz®, ezért a gya-
korlatban az id®r®l-id®re történ® folyamatos refaktoring hatékonyabbnak bizonyult a
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könny¶ karbantarthatóság szinten tartására. A tevékenység okán a kód "friss" marad
és megnövekedik az élettartama.

Jelen tézis célja, hogy el®segítse a szoftverrendszerek karbantartását automatizálás-
sal. Kiváltképpen olyan módszertanok, technológiák és eszközök kidolgozásával foglal-
kozik, amik az alábbi témakörökre terjednek ki:

• Szoftverfejleszt®k viselkedésének elemzése kézzel írott és gépi refaktoring
tevékenységek közben.

• A refaktoring szoftver min®ségre gyakorolt pozitív és negatív hatásának
kiértékelése.

• Lokális-keresésre épül® antiminta felismerés átdolgozása modellalapú tech-
nológiára általános és grá�llesztéses módszerekkel.

Szoftverfejleszt®k tevékenységeinek elemzése

Kísérleteink f® motivációja, hogy kiderítsük miképpen refaktorálnak a fejleszt®k ipari
környezetben abban az esetben ha rendelkezésükre áll minden szükséges er®forrás (pénz
és id®) ehhez. A felmérésünket hat olyan nagyméret¶, ipari, Java projekten végeztük
melyek különböznek méretben és komplexitásban. A rendszereken folytatott refakto-
ringok tanulmányozása közben meg�gyeltük mely típusú hibákat javítják a fejleszt®k
leginkább és mely refaktoringok bizonyultak a legjobbnak bizonyos szempontok alap-
ján. Megvizsgáltuk a refaktoring kommitok forráskód min®ségre gyakorolt hatását a
ColumbusQM min®ség modell segítségével [20].

A vizsgálat során azt találtuk, hogy a fejleszt®k megpróbálták optimalizálni a re-
faktoring folyamatukat és el®ször inkább konkrét kódolási szabálysértéseket kezdték el
javítani, mintsem metrikák vagy antiminta detektorok által sugallt problémákat. To-
vábbi elemzések azt mutatták, hogy egy refaktoring hatása a szoftver termék globális
karbantarthatóságra nehezen megítélhet®. Néha el®fordulnak olyan esetek is, ahol egy
refaktoring rontja a globális karbantarthatóságot. Azonban maga a refaktoring folya-
mat hosszabb id®re kivetített hatása jelent®s javulással járhat a szoftver min®ségre,
amely ki is mutatható a min®ség modell segítségével. Ennek oka nem csak a karban-
tartási munkálatok végzése, hanem hogy a folyamat során a fejleszt®k megtanulnak
egyre karbantarthatóbb kódot írni.

Automatikus refaktorálás el®nyeinek és hátrányainak

vizsgálata

Kísérletink kivitelezéséhez szükségünk volt automatikusan végrehajtható refaktorin-
gok kifejlesztésére. Ebb®l kifolyólag alkottuk meg a FaultBuster nev¶, automatikus
refaktoring keretrendszert, amely képes számos kódolási hiba eltüntetésére automati-
kus refaktoring m¶veletek végrehajtásával. A FaultBuster alapjaként szolgáló folya-
matot részleteiben bemutattuk. A folyamat során felhasználtunk egy harmadik fél-
t®l származó statikus elemz®t, amely refaktoring lehet®ségeket javasol. Létrehoztunk
egy algoritmust, ami képes a forráskód elemek megtalálására a saját elemzési fánkban
pusztán szövegpozíció adatok alapján. Az algoritmus átalakítja a forráskódot kereshet®
geometriai térbe azáltal, hogy épít egy térbeli adatbázist.
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A keretrendszer tervezése során a fejleszt®k több elvárását is �gyelembe kellett ven-
nünk: a teljesítményt, eredmény kód formázását és tagolását, a folyamat érthet®ségét,
és a kijavítandó probléma precíz detektálását. A felsoroltak közül több is komoly ki-
hatással van a refaktoring eszköz használhatóságára és ezért már a tervezéi folyamat
elejét®l fogva számolni kellett velük. A fejlesztés befejeztével átfogó kiértékelésnek
vetettük alá az eszközt, amely alátámasztotta, hogy a módszer alkalmazható a gyakor-
latban is és látható eredményekkel szolgál.

A kiértékelés során több érdekes visszajelzést kaptunk az eszközünket használó fej-
leszt®kt®l. Egyrészt kiderült, hogy a résztvev®k szerint könnyen implementálhatók az
általuk végzett kézi refaktoringok automatikusan m¶köd® átalakításokká. Másrészt
az is megállapítható, hogy az implementált automatikus megoldások szinte minden
esetben segítettek nekik a forráskódjuk továbbfejlesztésében.

A QualityGate SourceAudit eszközének alkalmazásával megvizsgáltuk a karban-
tarthatóságbeli értékeket különböz® refaktoring m¶veletek el®tt és után. Az elemzés
kimutatta, hogy egy kivételével minden FaultBuster által támogatott kódolási sza-
bálysértés kijavítása nyomon követhet®en pozitív hatással volt a szoftver rendszerek
min®ségére. A kísérletben résztvev® négy partnercég közül három számszer¶síthet®-
en jobban karbantartható rendszerrel fejezte be a projektet a refaktoring fázis végén.
Ugyanakkor, azt is észre vettük, hogy az egyik cég kizárólag költséghatékony átalakítá-
sokat keresett, és ezért csak két fajta refaktoringot hajtott végre. Ezek közül az egyik
a nem-használt konstruktorok eltávolítása volt, amely gyakran negatív hatással van a
karbantarthatóságra. Egy másik meg�gyelés pedig arra enged következtetni, hogy a
felkínált gépi refaktoringok vakon való elfogadása legtöbbször célszer¶tlen. Gyakran
el®fordult, hogy amikor a refaktoring eszköz a felhasználótól kérte, hogy válassza ki a
szerinte a helyzethez legmegfelel®bb refaktoring beállítást, akkor a fejleszt®k lustaság
miatt az alapbeállításokat választották, ahelyett, hogy komolyabban áttanulmányozták
volna a helyzetet. Ezért néhány ilyen refaktoring nem orvosolta az eredeti problémát,
s®t, néha egészen új kódolási hibákat vezetett be. Tehát az emberi oldal még itt is fontos
tényez®, de ennek ellenére is sikerült a partnercégeknek jelent®sebb javulást el®idézni
a szoftverük min®ségében csak azáltal, hogy gépi refaktoringokat alkalmaztak.

A kutatásunk rávilágított néhány érdekességre a szoftver karbantarthatóság méré-
sével kapcsolatban is. Például, hogy a refaktoringok pár nem várt következménye (mint
az, hogy a nem-használt konstruktorok törlése negatív hatással van a karbantartható-
ságra) az alkalmazott min®ségmodell különlegessége.

A FaultBuster fejlesztéséhez nagyon jó teszt környezetet biztosított, hogy a eszközt
a fejleszt®k a saját valós rendszereiken teszteléték élesben. Ennek a környezetnek hála
az eszköz továbbfejlesztését valós, ipari célok motiválták és minden képessége és refak-
toring algoritmusa úgy lett megtervezve, hogy kielégítse a projektben résztvev® cégek
igényeit. A kutatás során olyan refaktoring algoritmusokat fejlesztettünk ki, amelyek
képesek 40 különböz® fajta tipikus kódolási hiba kijavítására. A projekt végeztével a
partnercégek refaktorálták az összesen több, mint 5 millió kódsorból álló kódbázisukat,
és több, mint 11,000 szabálysértést elimináltak. A FaultBusterrel a cégek kaptak egy
megoldást, amivel el®segíthetik a szoftvereik min®ségének javulását és segítségével be
tudják építeni a folyamatos-refaktorálás módszertanát az fejlesztési folyamataikba.
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Modell-alapú módszerek az antiminta detektálásban

Ebben a fejezetben többfajta forráskód-elem keres® módszert értékeltünk ki. E mód-
szerek segítségével refaktorálható antimintákat detektálhatunk a kódbázisunkban. Ko-
rábbi kísérleteink során hagyományosan egy optimalizált absztrakt szemantikus gráfot
építettünk fel a SourceMeter segítségével, melyet kés®bb kézzel írt vizitor lekérdezé-
sekkel dolgoztuk fel. A kutatás során megnéztük, hogy mennyiben változik a telje-
sítménye a lekérdezéseknek, ha az alatta fekv® reprezentációt lecseréljük EMF-re. Az
EMF támogatásnak hála, kipróbálhattuk miben változik a teljesítmény, ha átírjuk a
lekérdezéseket modell-alapú kérdéseké, különböz® formalizációval, mind inkrementális,
mind pedig lokális-keresés alapú stratégiákkal.

A kísérleteinket 28 darab különböz® méret¶ és komplexitású, nyílt forráskódú Java
projekten végeztük el. Eredményeink azt mutatják, hogy az EMF-be kódolt modellt
2-3-szoros memórianövekedés és körülbelül 3-4-szeres modell betöltési id® jellemzi. Az
inkrementális modell lekérdezések futásideje 2-3 nagyságrenddel gyorsabb volt, mint a
kézzel kódolt lekérdezéseké, de ez egy további 10-15-szörös memórianövekedéssel járt.
Az eredményekr®l egy részletes összehasonlítást készítettünk, aminek segítségével egy-
szer¶bben eldönthet®, hogy saját projektünk tulajdonságaihoz melyik módszer válasz-
tása a legki�zet®d®bb.
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